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This paper presents stress intensity factor (SIF) solutions for fretting fatigue conditions by
including a stress gradient factor (SGF) to correct the classic geometry factor for tension
semi-infinite strip (TSIS) specimen. This gradient factor considers the stress gradient due
to the pressure of the pad on the surface of the specimen, which creates a high concentra-
tion of stresses around the contact of the bodies. To obtain these solutions, 2D finite ele-
ment model simulations were performed varying important fretting parameters, namely:
coefficient of friction, bulk stress intensity, pad radius and material. All configurations
respected a partial slip contact condition and the results obtained show agreement with
the ones obtained analytically. Weight functions were used to obtain stress intensity fac-
tors under mode I, then to compute the SGF, which were fit into equations with a unique
structure, varying only coefficients. To consider real problems, a 3D correction factor was
introduced. The final SGF presented a general form to compute SIF under fretting condi-
tions when applied in suggested methods, such as: Strain-based Fracture Mechanics,
Theory of Critical Distances (TCD) and Stress Gradient.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The fretting fatigue phenomenon occurs whenever relative displacements are found between two different contact sur-
faces submitted to oscillatory load. Because its occurrence reduces the lives of components greatly, understanding how it
works is of great importance. It was pointed out by Madge et al. [1] that the most damaging situation in fretting occurs under
a mix of gross and partial slip regime. The latter is critical because it will always reduce the specimen’s life, since it raises the
slip amplitude between the surfaces. The same doesn’t always hold true for the former, which is also much related to wear.
The partial slip regime occurs whenever Q < lP [2] (where Q is the tangential load on the contact, l is the coefficient of fric-
tion and P is the applied normal load) and the analytical contact solutions for this condition based on the contact theory pro-
posed by Hertz were demonstrated by [3] for cylindrical pads. Also, there is good agreement in the literature [1] that among
all properties involved in fretting fatigue, the relative slip amplitude, the contact pressure and the friction coefficient
between the two surfaces are the most important.
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In order to verify the importance of fretting fatigue analysis over time, a bibliometric analysis was performed. The topic
search ‘‘Fretting” was created in the ISI Web of Science database for the period of 1970 until 2017 (on September, the 24th)
and it was observed that the production of papers containing the term ‘‘Fretting” has been overall increasing considerably.
However, the same holds true for many engineering topics, as well as to numerical methods. For that reason, as displayed in
Fig. 1, the number of articles containing the keyword ‘‘Fretting” was compared to the number of articles containing the key-
words ‘‘Finite element method” (FEM) and ‘‘Fatigue”. Note that the number of fretting articles produced maintains the same
ratio when compared to ‘‘Fatigue” and ‘‘FEM” since 2000. Since the latter topics are much broader than the former and dis-
play a significant increase of production over the years, it can be inferred that there has been a constant interest by the sci-
entific community of studying the fretting phenomenon.

Many numerical models were already proposed in order to properly emulate the rather complex fretting phenomenon.
Despite many satisfactory results being found as in [4,5], these studies usually address specific conditions that require mesh
remodeling if the initial set up is changed. Another difficulty for properly modeling the phenomenon is that certain proper-
ties may vary greatly during simulation according to material properties, loading and boundary conditions. This leads some-
times to quite complex models that may be of difficult practical broader use.

Multiaxial fatigue models were often used to determine crack nucleation direction [6–10], usually associated with a prop-
agation model. Not all articles accounted for tridimensional effects on crack propagation. Some authors created 3-D FEM or
Extended finite element method (X-FEM) models to directly establish tri-dimensional crack propagation [2,5,9,11,12], with a
few proposing simplifications using both 2-D and 3-D analysis [2,5,12] with the goal of reducing computational costs. On the
other hand, [11] simplify it by using an established correction factor.

Furthering the analysis, it was perceived that in order to avoid mesh remodeling for each configuration, as for load
changes or crack growth, some authors made use of the X-FEM [5,11,13], while others [4,6,14–16] used Weight Functions
(WF) associated with Stress Intensity Factors (SIF). To address plasticity, many studies used the in-built function of the soft-
ware ABAQUS or sub-modeling techniques that enabled the use of the elastoplastic properties of materials [7,8,12,17].

Aiming to compute SIF under fretting conditions, some researchers have proposed analytical SIF solutions. Hills & Nowell
[18] presented many different approaches in order to calculate the SIF, e.g. a general solution based on Green’s function
together with the Bueckener superposition principle for an infinite body. However, these solutions are based on linear con-
tact analysis and they do not consider real boundary conditions for real situations. Hills & Comninou [19] studied SIF for var-
ious crack lengths, coefficients of friction and applied load ratios. In their study, a constant normal pressure and a sinusoidal
shear load were applied on the contact surface, in which geometry and loading conditions were approximations of the clas-
sical fretting problem. Giummarra & Brockenbrough [20] estimated SIF by linear equations for a crack in the edge of a half
plane subjected to normal, tangential and fatigue loading. Other works, as described by Ciavarella & Berto [21], study ana-
lytical SIF as an analogy with a notch, the so called ‘‘Crack Like Notch Analogue” (CLNA) model. The main problem with these
described analytical SIF solutions are the lack of the non-linear behavior of contact, which changes all behavior of stresses
around the crack tip. However, they serve as parameters to more complex analyses.

Based on the extensive research of previous works, the authors acknowledge that there are no general expressions such as
found in the Handbook published by Tada et al. [22], in which the SIF is expressed in term of geometry factors f(a/w), for SIF
of cracks originated from the contact of two bodies under fretting condition. Therefore, it is possible to anticipate that the
main contribution of this work is to provide a more general SIF solution, expressed in terms of a stress gradient factor,
for fretting analysis considering different geometries, materials and loadings, hence filling the aforementioned gap.

The structure of this article is divided into 7 sections. In the second, the main idea of the paper is explained, followed by
the elucidation of how the numerical SIF were obtained. Section four details the created numerical models, as well as their
validation. It also explains thoroughly all the considerations taken into account so that the results could finally be presented
Fig. 1. Evolution of fretting-related articles production in comparison to the FEM and fatigue topics from 1970 until October-2017.
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and discussed in Section 5. Finally, the potential and usefulness of the concept proposed in this work is demonstrated in Sec-
tion 6, with the conclusion being presented afterwards.

2. Main concept

The concept herein proposed is based on the idea of Topper & El Haddad [23], which presented the definition of elastic
stress concentration factor (ESCF), Kp, to predict fatigue lives of notched specimen and weld toes. Kp accounts for the increase
in crack tip stress due to a notch or a flaw in a notch. Its equation is given by
Kp ¼ K
r

ffiffiffiffiffiffi
pa

p
f ða=wÞ ð1Þ
where K is the stress intensity factor, r is the nominal stress, a is the crack length, and f ða=wÞ is the geometry factor that
accounts for crack shape and finite specimen size. Topper & El Haddad [23] replaced the theoretical stress intensity factor,
Kt ; by Kp to compute strain range deformation in cyclic stress-strain equations together with Neuber’s rule. In this case, the
crack growth was dictated by a non-uniform stress/strain field and required the use of the ESCF instead of the theoretical
(classical) stress concentration factor (SCF), which is limited to the surface of notch roots. Topper and co-authors used
the term ESCF in other papers [24,25].

In 2011, Gharemani &Walbridge [26] used the same concept proposed by [23] but introduced the term strain-based frac-
ture mechanics (SBFM) for the method presented by Topper & El Haddad. They applied SBFM to study fatigue of material in
penned highway bridge welds under variable amplitude loading conditions. However, Kp is mentioned as stress concentra-
tion factor, creating confusion with theoretical (classical) SCF. Gharemani et al. [27] followed the previous work to propose a
methodology for variable amplitude fatigue analysis in welds using again SBFM. In that work, Kp is referenced as modified
stress concentration factor (MSCF) and the nomenclature was changed to kp:

In the opinion of the authors of this work, the terms ESCF, SCF or MSCF are not adequate to represent the equation (1),
because it is a ratio between two stress intensity factors. In fact, Eq. (1) can be rewritten as:
K ¼ r
ffiffiffiffiffiffi
pa

p
f

a
w

� �
� Kp ¼ Kref � Kp ð2Þ
where the SIF (KÞ, of a desired geometry for analysis, is computed by Kref , a stress intensity factor for a reference geometry,
and Kp, which is a factor to correct the Kref . As described previously, this factor was used in notched specimen and weld toes
that create a stress gradient around the geometry of notch root.

The authors propose to modify the mentioned terms ESCF, SCF and MSCF to Stress Gradient Factor (SGF), Kgrða=wÞ,
because it modifies a SIF (reference) when a gradient stress is present in geometry specimen and it is much like the geometry
factor f ða=wÞ. Fig. 2 visually represents the idea of Kgrða=wÞ for the fretting problem. This work intends to compute SIF in
fretting condition, as shown in Fig. 2(a), by calculating the SIF of a tension semi-infinite strip (TSIS) specimen (Fig. 2(b))
and correcting it with a Stress Gradient Factor that takes into account the gradient stress produced by the pad pressure
on the specimen. This is the main concept of this paper to compute SIF in fretting conditions.

After rewriting Eq. (2) to compute the SGF, the following equation can be used to compute SIF in fretting conditions:
KI ¼ KIðref Þ � Kgrða=wÞ ! Kgrða=wÞ ¼ KI

KIðref Þ
ð3Þ
where KI is computed using the approach described in Section 3 and the TSIS specimen is used to compute KIðref Þ. The geom-
etry factor f ða=wÞ for the TSIS specimen is given by [21]:
f ða=wÞ ¼ 0:857þ 0:265
a
w

þ 1� a
w

� �5:5
� �� �

= 1� a
w

� �1:5
ð4Þ
Now, it is possible to present the differences among KI , Kt and Kgr as shown in Table 1, avoiding any problemwith nomen-
clature and definition.

3. Numerical SIF

A study of historical and state-of-the-art Computational Fracture Mechanics techniques as well as a taxonomic research
of the different cracking processes representations was presented by Ingraffea [28], dividing such approaches into geomet-
rical and non-geometrical. Two major methods are used for the former: Constrained (prescribed, analytical geometry and
known solutions methods) and Arbitrary (meshfree, adaptive FEM/BEM, lattice, particle and atomistic methods). Two other
major methods are used for the latter: Constitutive (smeared crack, element extinction and computational cell methods) and
Kinematic (Enriched element method and XFEM/GFEM) methods.

TheWeight Function method [29,30] is a Known Solution Method [28] and was herein employed to calculate stress inten-
sity factors (SIF). It was successfully used for such purpose before [31–33] and its main advantage is that it allows the loading
analysis to be performed apart from the geometry. For a determined cracked geometry, any applied load to the body in ques-



Fig. 2. General concept of the use of SGF.

Table 1
Main characteristics of KI , Kt and Kgr .

KI Kt Kgrða=wÞ
Definition Stress Intensity Factor (Mode I) Stress Concentration Factor Stress Gradient Factor
Equation r

ffiffiffiffiffiffi
pa

p � f ða=wÞ rmax=r KI
KIðref Þ

Applicability da/dN, Crack propagation eN, SN, Crack initiation Short Crack initiation and propagation
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tion will have its effects computed by the same known weight function.According to Glinka & Reinhardt [34], the following
tasks are necessary prior to obtaining the SIF using the weight function method:
- Computation of the stress distribution along a defined plane using linear elastic analysis;
- Application of the aforementioned stress distributions to the crack surface;
- Choice of the appropriate generic weight function;
- Integration of the product of the stress function and the weight function over the crack length or the crack surface.

The SIF is then obtained by integrating the product between the weight function mðy; aÞ and the stress field of the
uncracked body rðyÞ over the crack length a:
KI ¼
Z a

0
rxðyÞmðy; aÞdy ð5Þ
The values of rxðyÞ are obtained through FEM by extracting the stress fields in a straight line from the maximal normal
stress rxmaxas displayed in Fig. 3(a).
Fig. 3. Stress field extraction path used to compute KI (a) and geometry configuration used for single edge crack (b).
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The main advantage of using weight functions is that the stress fields of the uncracked body can be used to further com-
putation of the Stress Gradient Factor (SGF), which excludes the necessity of mesh remodeling with crack growth.

A vast number of one-dimensional weight functions for different geometries were suggested by Tada et al. [22] in their
handbook, each containing a different formula for every different crack geometry. Glinka & Shen [33] suggested an Eq. (6)
that could be used for any crack geometry, in which only the different Mi parameters are modified accordingly. The crack
geometry used in this study is illustrated in Fig. 3(b), where a is the crack length, w is the specimen width, F is the force,
y is the distance between the specimen surface and the load F and K is determined at point A.

For the geometry represented in Fig. 3(b), the weight function mðx; aÞ is given by:
mðy; aÞ ¼ 2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� yÞp 1þM1 1� y

a

� �1=2
þM2 1� y

a

� �1
þM3 1� y

a

� �3=2
� �

ð6Þ
where the Mi parameters are specific for each crack configuration. In this work, considering a single edge crack in a finite
plate, the coefficients were borrowed from [35] and can be found in Appendix A.
4. Numerical model

This section demonstrates how to obtain the stress distribution in fretting geometry using the Finite Element Method in
order to compute SIF by integrating this stress distribution and weight functions. At first, the materials, bulk stresses and
boundary conditions were chosen to properly create a finite element model using ANSYS. The output simulations were com-
pared to the analytical solution found in [3] and validated. The point on the specimen’s top surface correspondent to the
maximum normal stress was considered to display the most critical situation. Therefore, the stress fields under a straight
line from that point were extracted to compute the SIF under mode I KIðfrettingÞ [4,6,14–16]. The nature of such weight func-
tions made it unnecessary to refresh stress fields as the crack progressed and KIðfrettingÞ was finally used together with KIðref Þ to
calculate Kgrða=wÞ.

First of all, it was necessary to choose the materials to be analysed. The materials chosen were steel, aluminum and tita-
nium alloys. For each simulation, the pad and the specimen were set with the same material. This choice was based on their
vast engineering use as components subjected to fretting fatigue [2,7,9,13,36,37]. Once the material properties were used as
an input, it was necessary to determine the applied bulk stresses. Therefore, since the latter play a major role in fretting fati-
gue, discovering their relation to Kgr was of great interest. For that reason, simulations were produced for each material with
bulk stresses of 100, 80 and 60 MPa.

The maximum bulk stresses that still respected the partial slip regime were estimated for all materials. The most critical
value was then used for all materials in order to assure that all models would still be in partial slip regime for the defined
configuration. This criterion was adopted so that further analysis containing different materials, such as verifying the influ-
ence of elastic properties in Kgr behavior would not be affected by the change of the bulk stresses themselves. Since the coef-
ficient of friction (COF), m, is also very relevant in fretting analyses, its behavior was also studied fixing all other previously
mentioned parameters and correlating its changes to the ones observed for Kgr : The COF adopted were of 0.9, 0.75, 0.65 and
0.55, covering a great range of values present in the literature [2,7,9,13,36,37].

At last, for a specific case with steel, rb ¼ 100 MPa and m = 0.75, pad radii were modified so that the effects on Kgr pro-
duced by such changes could be analysed. All other simulations used the standard value of 100 mm as the pad diameter.

36 models were created to cover all three materials in the first two cases (fixed bulk stress with mutable COF and vice
versa) and 5 extra models were needed for the third case (pad radii variation), totalling 41 models.

The boundary conditions as well as the geometry of the 2D plane-strain models used in this study are illustrated in Fig. 4
(a). It is noticeable that symmetrical properties in relation to Fig. 2(a) were used in order to reduce computational cost. The
load Q was not applied to the surface directly but resulted as reaction of the bulk stress since the pad had its movement
restricted in the x-direction and was in contact with the specimen.

The numerical simulation was divided into 3 sub-steps. At first, a small displacement of �5 � 10�4 mm was imposed to
the pad against the specimen to assure that no rigid body motion would occur during the simulation and no singularity prob-
lemwould happen. The second step consisted of removing such displacement and applying a vertical force P of�543 N to the
pad top surface. In this step, the bulk stress was also introduced, starting from 0 and linearly ascending to its maximum at
step 3.

A real fretting test takes thousands or millions of cycles of loading and only half a cycle was simulated herein. However, as
the elastic condition is always satisfied in this model, the same stress fields are always computed for the same conditions, as
it was verified later for 1.5 and 5.5 cycles with stress ratio R = 0 and agrees with previous studies [38–41].

The number of nodes, contact elements, solid elements and average time for each material simulation is presented in
Table 2.

The coarse mesh was created by dividing 200 times both pad and specimen into quadratic elements. The contact half-
width had already been calculated, which permitted the refinement of squared zones as depicted in Fig. 4(b). For the alu-
minum models, because the calculated contact size was larger, the inner square width was of 2 mm instead of 1.5. The con-
tact zone mesh was then refined to squared 50 mm edge size elements in the external zone and refined to squared 5 mm edge



Fig. 4. (a) Numerical model boundary conditions and geometry and (b) Refined mesh for the whole model (left) and zoom of the contact mesh (right).

Table 2
Number of nodes, elements and time elapsed in simulations.

Material Nodes Contact elements Solid elements Total of Elements Time elapsed (s)*

Steel 121069 1665 119923 121591 1488.6
Aluminum 151435 1683 150260 151946 2192.3
Titanium 121069 1665 119923 121591 1634.3

* Intel Core i5-6400 CPU @2.70 GHz with 32 GB RAM memory was used.
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size elements in the external zone. These values were suggestions made by Talemi et al. [4], which used similar geometry
and conditions. The final refined mesh for the model is shown in Fig. 4(b).

The numerical resolution was configured as static and the Newton-Raphson asymmetric method with sparse asymmetric
matrix was used. The contact was defined by the Augmented Lagrange method with a ratio of 0.75.

Prior to further advancement of the model, it was necessary to evaluate the results, which was accomplished by compar-
ing the numerical results to the ones obtained with the equations proposed in Nowell & Hills [3]. The materials properties
used are shown in Table 3.

Since the contact half-width is much smaller than the specimen half-width, the infinite semi-plane assumption is valid.
For the aluminum simulation, it was found analytically a contact semi-width of 0.9118 mm, a stick zone semi-width of

0.36472 mm and a contact pressure, Po, of 379.11 MPa when P = 543 N, Q = 296.25, m = 0.65 and rbulk = 100 MPa. The com-
parison between theoretical and numerical results is shown in Fig. 5.
Table 3
Materials properties.

Material Aluminum Titanium Steel

Modulus of Elasticity 74.1 GPa 127 GPa 200 GPa
Poisson’s ratio 0.33 0.32 0.30



Fig. 5. Comparison between analytical and numerical results for aluminum alloy nominal stress (top) and shear stress (bottom).
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The results obtained numerically show good agreement with the analytical solution. The error between the maximum
contact pressure obtained analytically (379.11 MPa) and numerically (381.7 MPa) is less than 1%. Similar errors were found
for all other materials. Whilst for normal stresses the numerical curves are practically coincident to the ones obtained ana-
lytically, it is possible to notice that shear stresses curves are not exactly coincident but close and display small disturbances
within the contact adherence zone. This probably occurred because small bending moments emerged against the pad, as a
reaction of the bulk stress and the horizontal restriction imposed and also because how the problem is formulated in ANSYS.

Under fretting conditions, the multiaxial stress fields are very complex and considerable efforts have been made by many
researchers in order to understand the different behaviors of each stage of crack growth, as well as to predict crack growth
direction. However, there is already much experimental evidence that cracks under the fretting regime are formed near the
contact region, initially propagating in low angles in respect to the free surface and then kinking to higher angles, until a near
perpendicular direction is reached. At this final stage, cracks continue to propagate almost linearly until failure.

In this work, the crack was considered to initiate at the point that achieves the maximum normal stress. The crack was
then assumed to propagate linearly, perpendicular to the surface of the specimen. The path herein adopted is not realistic, as
observed in multiple studies [4,5,42], because of its trajectory and because of the exact initiation location. For crack initiation
and very small crack lengths, studies indicate that shear stress plays an important role [18]. Nonetheless, this straight crack
path perpendicular to the free surface of the specimen has been used before satisfactorily in some fatigue researches [4,6,14–
16,40].

To evaluate the effects on the mode I stress intensity factors (KI) caused by such simplifications, finite element (FE) mod-
els were created in ANSYS with cracks containing the angles most frequently observed experimentally [5,39,40,43,44], as
depicted in Fig. 6. The cracks in FE models were manually discretized in each desired position and the SIFs were evaluated
using J-integral. It can be seen from Fig. 6 that most angles are between 10 and 22 degrees.

Fig. 7 displays the relative differences between KI with perpendicular crack (0�) in relation to kinked cracks with 15� and
20� using FEM (J- integral) and WF. Furthermore, it compares the mode I SIF obtained with the two different methods for the
straight crack path. The mode I SIF computed using weight functions presented a mean relative difference between straight
and kink paths of less than 8% for 20� and less than 4% for 15� for crack lengths of the order of 150 mm. This difference is even
less when the FE models using the J-integral are analyzed: in this case, the mean relative differences are about 2% for both
angles. Thus, the simplification used in this work for the crack path seems reasonable. Moreover, for the straight crack, the
average relative difference between the stress intensity factors calculated with the FE model using J-integral and the ones
obtained using weight function is 2.29%.

The results show no significant discrepancy for different KI values when the crack is perpendicular to free surface. This
relative convergence of results probably occurs because as soon as the crack starts propagating in the next stage, it continues
to grow perpendicularly to the direction of the maximum positive stress [33] and this path then coincides to the one hereby
proposed. Thus, such match is even more expected in cases that the kinked portion of the crack is very small when compared
to the overall length. Indeed, this agrees with what had been previously studied by [45], in which it was demonstrated for
cracks with initial 45� kink angle that even for reasonably high b/c (Fig. 6) ratios, if the remote loading is a uniform tension
parallel with the free surface of the specimen, the crack tips SIF will not differ much from the ones obtained for a straight
crack.



Fig. 6. Frequency of kink angles found in the literature and numerical model considering crack kink.

Fig. 7. Comparison between KI obtained by FEM and weight functions.
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The stress fields obtained in one of the FEM is illustrated in Fig. 8. They provide valuable information, as the magnitude of
each stress component when the maximum bulk stress is reached.

All stress fields found in other simulations presented similar behavior. Therefore, their results will be omitted. The stress
distribution along the crack path starting at the point with maximum value, rxðmaxÞ, on the surface of the specimen and the
evolution of the maximum stress fields in each step are shown in Fig. 9.

It is evident from Fig. 9(b) that rx will be the most significant stress, forcing the crack to grow. When rx ¼ rxmax , the ry=rx

ratio is practically null, while sxy=rx � 15%. The present shear stress, albeit much smaller than the maximum normal stress,
is of some significance. Therefore, the final question regarding the assumed conditions is howmuch has been neglected upon
ignoring KII in this work. To answer that question, Fig. 10 shows the difference between Keq and KI. Two Keq were considered:
(a) Keq model based on the displacements behind the crack tip reaching a critical value, proposed by Tanaka [46] and (b) Keq

derived for elastic loading under plane stress conditions, based on the relations between the potential energy release rate G
and the SIF [47]. These equations are presented, respectively, by:
Keq ¼ ½K4
I þ 8K4

II�
1=4

andKeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

q
ð7Þ
The first model gives a difference of less than 1.8% and the second one gives a difference of less than 4.5%. However, this
difference is unrealistic, because when the mode II stress intensity factors present significant values, the crack tips tend to
kink to minimize KII, as it is seen in numerical simulations in compact tension and bending specimens and observed in fati-
gue experiments [48,49] with relative differences of less than 0.1 %.



Fig. 8. (a)rx; ðbÞry and (c) sxy , in MPa, for steel rb = 100 MPa and l ¼ 0.9.

Fig. 9. Stress distribution along the chosen path (a) evolution of the maximum stress fields in each step (b) – steel rb = 100 MPa and l ¼ 0.9.
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5. Results and discussion

After validation, it was finally possible to compute Kgrða=wÞ using the equation:
Kgrða=wÞ ¼ KIðfrettingÞ
KIðref Þ

ð8Þ
where Kgrða=wÞ is the Stress Gradient Factor, KIðfrettingÞ is the SIF for fretting conditions, KIðref Þ is a reference (TSIS specimen) SIF
that depends on the applied bulk stress range, on the crack length a and on a geometric function f(a/w).

As illustrated in Fig. 11, the smaller the COF, the smaller the initial Kgr values were. This can be explained because higher
values of COF produce higher nominal stresses under the contact zone for the same applied bulk stress. This raises KIðfrettingÞ
for smaller crack lengths but not KIðref Þ. It can also be clearly seen in Fig. 11 the convergence of all Kgr curves. Johnson [50]
states that the maximum depth z which is influenced by the contact pressure for a contact semi-width e is z = 0.78e, com-
puted to be at approximately z = 0.44 mm (a/w = 0.044) for this model. In this case, the Kgr curves will converge for even



Fig. 10. SIF comparison upon neglecting KII .

Fig. 11. Steel - Kgr curves and their respective fits for rb = 100 MPa varying the COF.
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smaller crack lengths, a, because the stress increments caused by solely varying the COF was not that significant. In other
words, changing the COF but maintaining the same bulk stress for the same material shows only appreciable Kgr differences
for very small crack lengths. Finally, the curve fits presented in Fig. 11 show good point dispersion predictions and their
equations are found in Appendix B. The displayed Kgr results obtained for steel followed the same behavior for all other
tested materials.

Fig. 12 presents Kgr varying the bulk stress and considering fixed COF and material (steel). When the applied bulk stress is
increased, Kgr is reduced for a/w 6 0.008, approximately. This occurs because raising the bulk stress causes the initial values
of KIðref Þ to be increased substantially more than the ones obtained for KIðfrettingÞ. The Kgr curves also present a change in their
slope. In this fixed COF case, convergence of the different Kgr only occurs when the contact pressure exerts practically no
influence on the crack growth. For rb = 80 MPa and 100 MPa, the curve fits can perfectly predict points dispersion. Although
the curve fit forrb = 60 MPa has satisfactory results until a/w � 0.03, longer cracks cannot be consistently fit into the pro-
posed equation. However, for cracks longer than that, the Kgr curve fit values would return values lower than 1, which would
not make any physical sense. Therefore, their equations were adjusted so that in this scenario, a stress gradient factor of 1
would be returned.

For fixed COF and applied bulk stress, the Kgr curves for the three different materials are presented in Fig. 13. The higher
the modulus of elasticity of a material, the higher the Kgrvalues for the same crack length for small cracks (a/w � 0.01, in this
case). This occurs because considering the same geometry, the same load will result in a higher contact pressure for a higher
modulus of elasticity. The higher contact pressure causes KIðfrettingÞ values to be higher but does not alter KIðref Þ significantly.
Thus, materials with higher modulus of elasticity present higher Kgr values for small cracks but once the contact pressure
stops exerting its influence, the opposite occurs. This happens because KIðfrettingÞ values start decreasing significantly, as
KIðref Þ remains unaltered by the end of the contact pressure influence.

Finally, Fig. 14 illustrates the consequences of varying pad radii with all other parameters fixed. It demonstrates that
smaller the pad radius is the higher Kgr becomes for the same crack length until a/w � 0.01. This accords to the previous
hypothesis that higher contact pressures cause KIðfrettingÞ values to be higher but not significantly KIðref Þ, displaying higher



Fig. 12. Steel - Kgr curves and their respective fits for COF = 0.9 varying bulk stress.

Fig. 13. Titanium, Steel and Aluminum - Kgr curves and their respective fits for COF = 0.75 and rb = 60 MPa.
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Kgr initially. Naturally, smaller pads produce less contact area as well as higher contact pressures and for the same clamping
force.

Interestingly, in all cases the different Kgrða=wÞ fit into equations of the same structure as (9), each with its own coeffi-
cients, which are presented in Appendix B.
Kgrða=wÞ ¼ A1e½ð�a=wÞ=t1 � þ A2e½ð�a=wÞ=t2 � þ A3e½ð�a=wÞ=t3 � þ 1 ð9Þ
6. Applicability

The results hereby presented were computed for 2D models. Since real cracks propagate in 3D structures, it is necessary
to treat themwith a 3D correction factor, such as proposed by [6,51]. Navarro et al. [6] used a constant 3D correction factor of
0.78 for elliptical cracks. However, this correction factor is still far from realistic and can be improved using weight function
results obtained by Vázquez et. al. [52], in which a linear correction is computed by:
3DFactorða=wÞ ¼ 0:55þ 1:27ða=wÞ 6 1 ð10Þ

The results presented in this work are of comprehensive applicability and should be considered as general solutions as

present by [22], for example. The authors suggest applying the presented SIF fretting solution for the following methods:
6.1. Strain-Based Fracture Mechanics (SBFM) [53,54]

Originally, Kgr was proposed to compute lives in components with notch root [25,55] and extended later to welded com-
ponents [26,27,56]. In this case, even though the obtained Kgr already consider the presence of cracks along the extracted
stress field, they are still limited to local elastic stresses. Under fretting, however, the plastic deformation in certain areas,



Fig. 14. Steel – Kgr curves for rb= 100 MPa and COF 0.75, varying pad radii.
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especially in the contact region, may not be neglected. Therefore, it is necessary to use the SBFM, which unlike the linear
elastic fracture mechanics, computes different SIF using deformations instead of stresses, given by:
DK ¼ EDe
ffiffiffiffiffiffi
la

p � f ða=wÞ ð11Þ

where DK is the stress intensity factor range, E is Young Modulus, De is the local inelastic strains when a hysteresis loop is
created using Neuber’s rule and Ramberg-Osgood material model to a determined applied nominal stress. The Kgr is used in
Neuber’s rule instead of Kt:
½Kgrða=wÞ�2 ¼ DeDr
DenDrn

ð12Þ
where DrDe are the local inelastic stress/stain and DrnDen is the nominal inelastic stress/strain.

6.2. Theory of Critical Distances (TCD) [57,58]

In the TCD, Taylor [59] assumes a characteristic material length parameter, the so-called critical distance L, previously
defined by Haddad, Smith and Topper [53],which can be estimated fromDKR (long-crack SIF range threshold for a stress ratio
R) and DSR (smooth specimen fatigue limit at R– 0):
L ¼ 1
p

DKR

DSR

	 
2

ð13Þ
In the analysis of uncracked notched components, the stress distribution is needed to determine the smooth specimen
fatigue limitDSR using the Point Method (PM) or Line Method (LM). For instance, the PM criterion for crack propagation (fati-
gue limit) is that the local stress at a distance x = L/2 ahead of the notch tip equals to the smooth specimen fatigue limit DSR.
This way, this criterion uses a relation among a local stress distribution, DSR and L which does not make much sense with Eq.
(13), which is a relationship among a SIF, DSR and L.

Fig. 15 shows the difference between rx(y)/rn (normalized local stress distribution) and Kgr for a typical FE model ana-
lyzed previously in section 5. It is possible to note a difference of approximately 200% between the curves when y = 0.5
(a/w = 0.1), for example. Therefore, the authors suggest applying Kgr curve in the TCD method instead of local stress distri-
bution, rxðyÞ; because it creates a relationship among a SIF, DSR and L which is more consistent with Eq. (13).

6.3. Stress gradient [60,61]

This model predicts the behavior of short cracks departing from notch tips provoked by fatigue. It computes the local
stresses using a stress intensity factor for each point dependent of a function of both the crack size and the notch radius.
That function tends to the classical Kt when the crack length is null and may be replaced by the correspondent Kgr curve
in order to consider correct behavior of short cracks. The model also needs to derivate the stress/SIF gradient and, in the case
of the fretting application herein proposed:
d½Kgrða=wÞ�
da

¼ �A1e½ð�a=wÞ=t1 �

wt1
� A2e½ð�a=wÞ=t2 �

wt2
� A3e½ð�a=wÞ=t3 �

wt3
ð14Þ
Additionally, the SIF solutions are a viable way to consider variable amplitude loading in fretting analysis. The solutions
provided in this work can be properly adjusted by interpolating the Kgr curves. Furthermore, it is possible to develop them to
become a broader equation containing amplitude variation parameters.



Fig. 15. Difference between Kgr and normalized local stress distribution.
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4. Conclusions

In this work, a new approach to Kgr which can be used in fretting fatigue life estimation was presented. It was also demon-
strated how important fretting fatigue parameters affect Kgr . Despite the complex nature of the fretting phenomenon, the Kgr

curves demonstrated predictability and were, at least for most cases, perfectly fit into equations. Moreover, further develop-
ment of the Kgr curves embracing amplitude variation parameters should make them an even more powerful tool for fretting
analysis.

For the study of parameters that influence the value of Kgr , 41 models were produced. In the contact region, the higher
COF and the modulus of elasticity, the higher the initial values of Kgr . The opposite happens when the normal tension and the
pad radius increase, that is, the initial values of Kgr decrease. In general, the curves of Kgr have the same equation and con-
verge to 1 as they move away from the contact region, as expected.

The numerical model proposed in this study considers the non-linear effects caused by the contact between pad and spec-
imen. However, it is a 2Dmodel using elastic material behavior. For real crack problems, a 3D correction factor must be intro-
duced and may be used together with SBFM, for instance, in order to consider plastic behavior of materials. On the other
hand, the SGF concept may be used to estimate the notch fatigue limit satisfactorily or even to predict the behavior of short
cracks using the stress gradient method.

Albeit this study was limited to presenting solutions for bulk stress loading, it is possible to further expand the usefulness
of Kgr to include bending loading as well, which can be relevant in some fretting situations. Moreover, future studies may
include variable COF and a wear coefficient.

Finally, it is possible to produce a handbook of Kgr for different geometries and loading situations, as accomplished by
Tada et al. [15] for different SIF, for example.

Appendix A. – Weight function coefficients for a single edge crack in a finite width [29]:
M1 ¼ �0:029207þ a
w 0:213074þ a

w �3:029553þ a
w 5:901933� a

w 2:657820
� � �� �

1:0þ a
w �1:259723þ a

w �0:048475þ a
w 0:481250� a

w �0:526796þ a
w 0:345012

� � �� �� �

M2 ¼ 0:451116þ a
w 3:462425þ a

w �1:078459þ a
w 3:558573� a

w 7:553533
� � �� �

1:0þ a
w �1:496612þ a

w 0:764586þ a
w �0:659316� a

w 0:258506þ a
w 0:114568

� � �� �� �

M3 ¼ 0:427195þ a
w �3:730114þ a

w 16:276333þ a
w �18:799956þ a

w 14:112118
� � �� �

1:0þ a
w �1:129189þ a

w 0:033758þ a
w 0:192114þ a

w �0:658242þ a
w 0:554666

� � �� �� �
ð15Þ
Appendix B. – Kgr fit equations

The following equations were adjusted using the commercial software ORIGIN with non-linear curve fittings using the
inbuilt ExpDec3function.
Kgrða=wÞ ¼ A1e½ð�a=wÞ=t1 � þ A2e½ð�a=wÞ=t2 � þ A3e½ð�a=wÞ=t3 � þ 1 ð16Þ

Tables B1–B4



Table B.1
- Kgr for steel.

rbulk PARAMETER COF

0.55 0.65 0.75 0.90

60 MPa A1 3.45558 2.31799 3.67544 3.15418
t1 0.01182 0.00169 0.01132 0.00186
A2 2.97827 3.3582 3.6241 2.50623
t2 0.01182 0.01154 0.01131 0.01108
A3 2.05065 3.56465 2.62644 5.19824
t3 0.00164 0.01154 0.00176 0.01108

80 MPa A1 1.78104 2.0354 5.01582 2.93337
t1 0.00403 0.00435 0.01696 0.00478
A2 0.84247 4.84487 2.36391 1.25324
t2 8.53702E-4 0.01713 0.00459 9.00113E-4
A3 4.56288 0.9805 1.10245 5.14449
t3 0.01741 8.9171E�4 9.03226E�4 0.01684

100 MPa A1 3.04794 3.11785 2.95865 1.38952
t1 0.02666 0.02682 0.00819 0.00127
A2 2.12894 2.54259 3.15796 3.53281
t2 0.00746 0.00802 0.02678 0.00808
A3 1.04404 1.17054 1.2683 3.2154
t3 0.00127 0.00131 0.0013 0.02664

Table B.2
Kgr for aluminum.

rbulk PARAMETER COF

0.55 0.65 0.75 0.90

60 MPa A1 4.36107 4.20847 1.45383 1.28087
t1 0.02166 0.02234 0.00502 0.00454
A2 2.06476 1.66238 0.65739 0.56646
t2 0.00553 0.00536 9.65E�04 8.94E�04
A3 0.78989 0.72815 4.0507 3.82767
t3 0.00108 9.98E�04 0.02255 0.02267

80 MPa A1 2.12661 0.77418 0.77418 1.52008
t1 0.0088 0.00139 0.00139 0.00829
A2 0.86358 1.75216 1.75216 2.83924
t2 0.00137 0.00861 0.00861 0.0321
A3 3.03016 2.9401 2.9401 0.70446
t3 0.03156 0.03181 0.03181 0.00139

100 MPa A1 2.23321 2.15243 2.11648 1.35534
t1 0.04359 0.04421 0.04384 0.01132
A2 2.14789 0.7498 0.6744 0.60815
t2 0.01206 0.00187 0.00184 0.00186
A3 0.83533 1.80042 1.5351 1.95588
t3 0.0018 0.01213 0.01155 0.04519

Table B.3
Kgr for titanium.

rbulk PARAMETER COF

0.55 0.65 0.75 0.90

60 MPa A1 2.39166 2.18723 2.81259 1.77328
t1 0.00343 0.00224 0.01507 0.00204
A2 5.8945 2.99415 2.81271 2.72187
t2 0.01486 0.01454 0.01507 0.01543
A3 0.82885 2.93809 1.93458 2.49846
t3 7.13804E�4 0.01454 0.00211 0.01543

80 MPa A1 2.51461 2.0404 3.81197 3.57289
t1 0.00631 0.00611 0.02223 0.02265
A2 4.03025 0.95274 1.74468 1.52793
t2 0.02199 0.0011 0.00577 0.00547
A3 1.07097 3.92722 0.85068 0.7497
t3 0.00109 0.02213 0.00109 0.00106
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Table B.3 (continued)

rbulk PARAMETER COF

0.55 0.65 0.75 0.90

100 MPa A1 1.05884 2.30723 0.89272 1.97717
t1 0.00144 0.00954 0.00144 0.00915
A2 2.76371 2.68424 1.97717 2.65228
t2 0.00956 0.03286 0.00915 0.03273
A3 2.73935 0.9693 2.65228 0.89272
t3 0.03269 0.00147 0.03273 0.00144

Table B.4
Kgr for steel - rbulk ¼ 100 MPa and COF = 0.75.

PARAMETER r (mm)

20 30 40 50 60 70

A1 4.9114 3.74832 3.3405 2.95865 2.63522 2.49914
t1 0.01593 0.00664 0.0076 0.00819 0.00864 0.00945
A2 4.36714 1.63779 1.43242 3.15796 3.00311 1.04062
t2 0.00542 0.00113 0.00124 0.02678 0.02932 0.00146
A3 1.94421 3.94756 3.41195 1.2683 1.14545 2.73988
t3 0.00102 0.02032 0.02407 0.0013 0.00126 0.03216
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