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Abstract

In many practical applications, the need arises to aggregate data of varying dimension. Following from the self-identity property,
some recent studies have looked at the stability of aggregation operators in terms of their behavior as the dimensionality is increased
from n−1 to n. We use the penalty-based representation of aggregation functions in order to investigate the conditions for weighting
vectors associated with some important weighted families, extending on the results already established for quasi-arithmetic means.
In particular, we obtain results for quasi-medians and functions that involve a reordering of the inputs such as the OWA and order
statistics.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

A problem that arises in decision making and information fusion is how to deal with data of varying dimension. If
comparing two items based on multiple criteria or a group of experts’ opinions, it may be that some evaluations are
missing. Similarly, when fusing the readings of sensors, it could be that not all of the readings are available at all times
and we need a global evaluation based on some subset. Thus we are looking for families of aggregation functions that
produce consistent outputs regardless of input cardinality.

Some aggregation functions, such as t-norms, t-conorms and uninorms, are associative, and therefore have a natural
way of defining n-variable instances. Quasi-arithmetic means (with equal weights) is another example where the whole
family of functions is defined consistently. In contrast, defining weighted means and ordered weighted averaging (OWA)
operators consistently does represent a significant challenge.

How to define families of weighted aggregation functions has been approached in [6,8–10] with the construction of
weighting triangles and the notion of extended aggregation functions. Methods include defining recursive sequences
of weighting vectors and the use of quantifiers (which have been especially important for OWA families [21,22]).

The use of weighting triangles allows a kind of mathematical consistency between members of a family of aggregation
functions defined for varying dimension, however some recent studies have also analyzed such families from the
viewpoint of stability [16,19]. Whilst stability and robustness of aggregation is usually thought of in terms of concepts
like Lipschitz continuity [2,11] (a small increase to one of the inputs should not result in a drastic increase to the
output), it also makes sense that the inclusion of an additional input should not drastically alter the aggregated value
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if it is representative of the rest. From Yager’s self-identity property [24] the authors of [16,19] consider the stability of
various classes of aggregation functions. The idea is that given a set of inputs, if we add the aggregated value of these
inputs as a new input, the overall output should not change. A function is considered to be stable if the new input can
be aggregated both from the right and the left (i.e. as either the last or first argument respectively).

This behavior was referred to as F-insensitivity by Ga̧golewsk and Grzegorzewski in the context of extended
aggregation operators satisfying a property they refer to as arity-monotonicity [14,15]. Arity-monotone functions are
non-decreasing with the addition of a new input, which for the producer assessment problem ensures that increased
productivity does not result in a lower overall evaluation. In particular, they looked at conditions on the weights for
symmetric functions that involve a reordering of the inputs such as OWA operators and the ordered weighted maximum.

In this work, we adopt the definitions from [16,19], and firstly, extend their results to all quasi-arithmetic means,
quasi-medians and other averaging functions that can be defined as penalty-based functions [7]. We then consider
weighted aggregation functions in detail.

For weighted functions, the i-th input is usually representative of the source, particular criterion, expert, etc. When
we increase the dimension, the additional inputs would usually be added in the last position, so we will focus on
the notion of R-strict stability. Results for j-th position stability, however can be easily obtained as a corollary with a
re-indexing of the weights. We draw upon the notion of penalty-based aggregation functions to explore the stability
of different aggregation function families. By using the penalty-based expressions, the results that we establish can be
applied broadly to a number of important cases.

We also investigate penalties expressed with a reordering of the inputs. As well as the stability of weighted aggregation
functions being important conceptually for robustness of the aggregation process, a recent example of the need for
such conventions is in defining the generalized Bonferroni mean [3] which uses two means of n and n − 1 arguments
respectively in its construction.

The paper will be set out as follows. In Section 2 we will provide the preliminary notions required for the rest of
the paper, including aggregation functions, penalties, and the definitions of strict-stability [16,19]. We also present a
useful corollary of the propositions in [16,19] regarding the relationship between weighting vectors. In Section 3, we
propose the necessary conditions on weighted penalty functions that lead to R-strictly stable aggregation functions. In
Section 4 we turn to aggregation functions that are calculated with a reordering of the inputs, before summarizing our
findings in the final section.

2. Preliminaries

We will approach stability from the viewpoint of constructing penalty-based aggregation functions. We first give
an overview of aggregation functions, their families and some properties including strict stability, and then show how
these notions relate to their penalty-based representations.

2.1. Aggregation functions

Aggregation functions take multiple arguments and combine them into a single value which is seen to be repre-
sentative. Their properties, construction methods and applications have been investigated in the recent monographs
[4,17,20]. We will consider aggregation functions defined over the unit interval.

Definition 1. An aggregation function f : [0, 1]n → [0, 1] is a function non-decreasing in each argument and satisfying
f (0, . . . , 0) = 0 and f (1, . . . , 1) = 1.

Depending on the application, further properties and behavior are often desired. In particular, we are interested in
averaging aggregation functions, which can be defined in terms of their minimum and maximum arguments.

Definition 2. An aggregation function f is considered to be averaging when

min(x)≤ f (x)≤ max(x),

where x = (x1, x2, . . . , xn).
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Due to the monotonicity of aggregation functions, averaging behavior is equivalent to idempotency, i.e.
f (t, t, . . . , t) = t .

Typical examples of averaging aggregation functions include the arithmetic mean (also referred to as the statistical
average),

AM(x) = 1

n

n∑
i=1

xi ,

and the median,

Med(x) =
{

x(k), n = 2k − 1,

0.5(x(k) + x(k+1)), n = 2k,

where x(k) denotes the k-th input when the inputs are arranged into non-decreasing order.
Note that these functions are defined for all n, although the parameters will change as the dimension varies, e.g. the

weight applied to each input when n=4 will be 1/4 for the arithmetic mean, while for n=50 it will be 1/50.
An important generalized family of averaging functions are the weighted quasi-arithmetic means.

Definition 3. For a strictly monotone continuous generating function � : [0, 1] → [−∞, ∞] and weighting vector w,
the weighted quasi-arithmetic mean is given by

Q AMw(x) = �−1

(
n∑

i=1

wi�(xi )

)
. (1)

Special cases include:

�(t) = t , the weighted arithmetic mean, W AM(x) = ∑n
i=1 wi xi ;

�(t) = tq , the weighted power mean, P Mq (x) = (
∑n

i=1 wi x
q
i )1/q ;

�(t) = − ln t , the weighted geometric mean, G(x) = ∏n
i=1 xwi

i .

It is usually required that the weights are non-negative with
∑n

i=1 wi = 1. For equal weights, we recover the symmetric
cases corresponding with each generator.

The weight wi often is indicative of the importance of the input xi . For instance, in multi-criteria decision making,
it may be that criterion 1 is more important than the others, so we ensure that w1 is the largest weight.

A weighted extension of the median also exists.

Definition 4. Given a weighting vector w, we denote the corresponding vector u by rearranging the components of w
according to a non-increasing permutation of the input vector x, i.e. uk = wi if xi = x(k) is the k-th largest input. The
lower weighted median is then given by

Medw(x) = x(k),

where k is the index obtained from the condition,

k−1∑
j=1

u j <
1

2
and

k∑
j=1

u j≥1

2
.

For the upper weighted median, we exchange the inequalities <, ≥ with ≤, > respectively.

OWA functions and their generalizations are also well known examples of averaging functions. Rather than allocate
a weight to the i-th input, the weight assigned depends on the relative order of the inputs.
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Definition 5. Given a weighting vector w, the OWA function is

OW Aw(x) =
n∑

i=1

wi x(i),

where the (i) notation denotes the components of x being arranged in non-increasing order x(1)≥x(2)≥ · · · ≥x(n).

Special cases of the OWA operator, depending on the weighting vector w, include the arithmetic mean where all
the weights are equal, i.e. all wi = 1/n, the maximum for w = (1, 0, . . . , 0), minimum for w = (0, . . . , 0, 1) and the
median, with w j = 1 if n = 2 j − 1 (n odd) or w j = w j+1 = 0.5 if n = 2 j (n even), and wi = 0 otherwise. The OWA
can also be used to model k-order statistics, with wk = 1, and wi = 0 for all i � k.

An important generalization of the OWA is the induced OWA [23], where the ordering of the input vector is determined
by an auxiliary variable z.

Definition 6. Given a weighting vector w and an inducing variable z, the Induced Ordered Weighted Averaging (IOWA)
function is

I OW Aw(〈x1, z1〉, . . . , 〈xn, zn〉) =
n∑

i=1

wi x�(i), (2)

where the �(i) notation denotes the inputs 〈xi , zi 〉 reordered such that z�(1)≥z�(2)≥ · · · ≥z�(n) and the convention that
if q of the zi are tied, i.e. z�(i) = z�(i+1) = · · · = z�(i+q−1),

x�(i) = · · · = x�(i+q−1) = 1

q

i+q−1∑
j=i

x�( j).

For the preceding weighted functions, w needs to be specified for each n. This may be fixed for many applications,
however if we consider a family of functions with varying dimension, the concept of a weighting triangle becomes
useful for referring to the sequence of weighting vectors as n is increased.

Definition 7 (Calvo et al. [10]). A weighting triangle W is a sequence of weighting vectors, wn , n = 2, 3, . . . such that∑n
i=1 wn

i = 1 for each n. It can be represented by

1

w2
1 w2

2

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3 w4

4

...

As we are interested in the stability of weighted functions as n varies, we will often make reference to the relationship
between wn−1 and wn . We now turn to this notion of stability.

2.2. Strictly stable families

Following from Yager’s self-identity property [24], Rojas et al. propose the following conditions for stability of a
family of aggregation functions [19].

Definition 8. Let {An : [0, 1]n → [0, 1], n ∈ N } be a family of aggregation functions. Then it is said that:

1. {An}n is R-strictly stable if

An(x1, . . . , xn−1, An−1(x1, . . . , xn−1)) = An−1(x1, . . . , xn−1),
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2. {An}n is L-strictly stable if

An(An−1(x1, . . . , xn−1), x1, . . . , xn−1) = An−1(x1, . . . , xn−1),

3. {An}n is LR-strictly stable if both properties hold simultaneously.

Rojas et al. established that geometric means and arithmetic means with respect to a weighting vector with equal
weights, the maximum, minimum, and median are LR-strictly stable, while the weighted counterparts of these means
and the OWA, in general, are unstable.

We emphasize that as is clear from the case of the OWA, the symmetry of an aggregation function does not imply
strict-stability. The following example of T–S functions helps illustrate this.

Example 1. Consider the T–S functions first defined in [25] and later studied in [18], which take the average of a
t-norm (T) and t-conorm (S). The linear convex T–S function is given by

L�,T,S(x) = (1 − �) · T (x) + � · S(x),

with � ∈]0, 1[.
If T is the minimum and S is the maximum, L will be strictly stable. Assume that the inputs are in non-increasing

order, we let An−1(x1, x2, . . . , xn−1) = y∗, with

y∗ = (1 − �) · min(x1, x2, . . . , xn−1) + � · max(x1, x2, . . . , xn−1)

= (1 − �)xn−1 + � · x1.

Since xn−1≤y∗≤x1, if we include y∗ in the aggregation, we have

An(x1, x2, . . . , xn−1, y∗) = (1 − �) · min(x1, x2, . . . , xn−1, y∗) + � · max(x1, x2, . . . , xn−1, y∗)

= (1 − �)xn−1 + � · x1

= y∗ = An−1(x1, x2, . . . , xn−1)

as required.
However, it will not usually be the case that

T (x1, x2, . . . , xn−1, y∗) = T (x1, x2, . . . , xn−1)

and

S(x1, x2, . . . , xn−1, y∗) = S(x1, x2, . . . , xn−1),

so other T–S functions will be unstable in general.

The strict stability conditions can be considered recursively for the definitions of aggregation functions of n and
n − 1 dimensions. In [13] some rules for defining such functions using a sequence of 2-variate weighted means
were considered from the viewpoint of consistency and computability. The following proposition was established for
weighted geometric, arithmetic and harmonic means in [16], and previously for weighting triangles associated with
weighted quasi-arithmetic means in [8].

Proposition 1. Let W be a weighting triangle according to Definition 7. The family of weighted means defined by these
weights is R-strictly stable if and only if for all n > 2 the following holds:

wn
i = (1 − wn

n ) · (wn−1
i ), i = 1, . . . , n − 1,

and L-strictly stable if and only if

wn
i = (1 − wn

1 ) · (wn−1
i−1 ), i = 2, . . . , n.

An R-strictly stable weighting triangle is hence defined completely from the sequence w2
2, w3

3, . . . , wn
n . We can also

consider the notion of j-th position stability, e.g. the case where additional inputs are always aggregated in the 2nd
position.
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Corollary 1. A family of weighted means defined with respect to a weighting triangle W is j-th position-strictly stable
if and only if for all n > j it holds:

wn
i =

{
(1 − wn

j ) · wn−1
i , i < j,

(1 − wn
j ) · wn−1

i−1 , i > j.

Proof. For i < j , corresponding weights for weighting vectors of n and n − 1 dimensions will have the same index i.
The new input is then inserted in the j-th position, shifting the index for all i > j , so for these inputs wn

i will correspond
with wn−1

i−1 . �

We also might be interested in conditions for weighting vectors to be both L- and R-strictly table. We obtain the
following corollary from Proposition 1.

Corollary 2. For weighted means, a weighting triangle is LR-strictly stable if and only if there exists a �≥0 such that
wn

i = �wn
i−1 for i = 2, 3, . . . , n.

Proof. We express the two-dimensional weighting vector in terms of �, with w2 = (w, �w). For L-strict stability we
require the ratio between the 2nd and 3rd input to be the same, since they both are determined from w2 by multiplying
by (1 − w3

1), so

w3
2 : w3

3 = w : �w

while similarly for R-strict stability we require

w3
1 : w3

2 = w : �w.

For these to hold simultaneously, we recursively ensure that the ratio w : �w holds and it follows that the three-
dimensional weighting vector must have the ratio

w3
1 : w3

2 : w3
3 = w : �w : �2w.

Since we require w(1 + � + �2) = 1, the value of � follows from the solution to

� = −1 ±
√

1 − 4

(
1 − 1

w

)
,

which has a unique feasible solution for all 0 < w≤1.
As n increases to 4, we will require w : �w : �2w : �3w and so on. �

This means that we can determine all wn of an LR-strictly stable weighting triangle from the ratio between the
weights for w2. The value of � = 1 leads to the weighting triangle where each wn has equal weights. If � = 0 we
have the weighting triangle with wn

1 = 1, wn
i = 0 otherwise, for all n, while the limiting case of � = ∞ will have

wn
n = 1, wn

i = 0 otherwise. If we have � = 2, for example, the weighting triangle will be

1
1
3

2
3

1
7

2
7

4
7

1
15

2
15

4
15

8
15

...

We will consider penalty-based aggregation functions to determine properties on the weights for weighted functions.
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2.3. Penalty-based aggregation functions

The use of penalties to define important families of aggregation functions has been studied recently in [5,7]. It was
already well known to Laplace that arithmetic means and medians minimize respectively the squared and absolute
differences between inputs and output [20], so it is useful to approach the construction of aggregation functions from
this angle when we are interested in an aggregated value that is representative of the arguments.

Definition 9. A penalty function P : [0, 1]n+1 → 
̄+ = [0, ∞] satisfies:

(i) P(x, y)≥0 for all x, y;
(ii) P(x, y) = 0 if xi = y ∀i ;

(iii) For every fixed x, the set of minimizers of P(x, y) is either a singleton or an interval.

The penalty based function is then given by

f (x) = arg min
y

P(x, y),

if y is the unique minimizer, and y = (a + b)/2 if the set of minimizers is the interval (a, b) (open or closed).

Condition (iii) can be satisfied by ensuring that P(x, y) is quasiconvex in y for any fixed x.
A special class of penalty functions referred to as faithful penalty functions was investigated by Calvo et al. in [12].

Let P be given by

P(x, y) =
n∑

i=1

wi p(xi , y), (3)

where p : [0, 1]2 → 
+ is a dissimilarity function (or penalty) with the properties

(1) p(x, y) = 0 if and only if x = y, and
(2) p(x, z)≥p(y, z) whenever x≥y≥z or x≤y≤z,

and w = (w1, . . . , wn) is a weighting vector.

Remark 1. In the case of faithful penalty functions, any positive scalar multiple of w will have the same minimizer and
hence corresponds to an averaging aggregation function with weights given by wi/

∑n
i=1 wi . Where we have unequal

weights, we will assume that
∑n

i=1 wi = 1 so that each wi will (usually) correspond with the associated weight in the
resulting aggregation function.

We list some of the special cases that will be of interest to us:

1. Let p(xi , y) = (xi − y)2. The corresponding faithful penalty-based aggregation function is a weighted arithmetic
mean.

2. Let p(xi , y) = |xi − y|. The corresponding faithful penalty-based aggregation function is a weighted median.
3. Let P(x, y) = ∑n

i=1 wi p(x(i), y), where x(i) is the i-th largest component of x. We obtain the ordered weighted
counterparts of the means in the previous examples, namely the OWA and weighted medians. Where the order is
induced by some auxiliary variable z, we obtain the IOWA.

4. Let c≥0 and

p(x, y) =
{

x − y if x≤y,

c(y − x) if x > y.
(4)

We obtain the �-quantile operator, with � = c/(1 + c). To obtain the k-th order statistic, we take c = (i − 1/2)/
(n − 1 + 1/2).

5. Let p(x, y) = (g(x) − g(y))2. The corresponding faithful penalty-based aggregation function is a weighted quasi-
arithmetic mean with the generator g. The generalized OWA, generalized Choquet and quasi-medians can also be
obtained by making the analogous substitutions.
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6. Let p(x, y) = |g(x) − g(y)|. The corresponding faithful penalty-based aggregation function is a weighted quasi-
median with the generator g and defined as f (x) = g−1(Medw(g(x))).

3. R-strict stability

From Proposition 1 it follows that a family of weighted means cannot be consistently defined for all n≥2 such that
it is both L- and R-strictly stable unless every pair of sequential weights satisfies wi = �wi−1. On the other hand, the
usual interpretation of weighting vectors is that the weight wi reflects the importance of the input xi , so it may not
always make sense in applications to shift the indices of the inputs the way we do when An−1 is aggregated in the first
or j-th position. We may wish to insert a new input that is naturally ordered before some of those already included,
however there is no reason why this value could not be aggregated in the n-th position as long as this is kept in mind
when it comes to interpretation.

We will hence restrict the following considerations to the notion of R-strict stability, which is equivalent to the
self-identity property, however results for any position j could be obtained with a simple re-indexing of the weights. 1

We will do this by means of penalty-based aggregation operators of the form given in Eq. (3). Expressing the functions
in this way allows us to generalize the results for a number of important aggregation families, including weighted
quasi-arithmetic means and weighted quasi-medians.

We use the notation x and xi � n to denote the respective input vectors (x1, x2, . . . , xn−1, xn) and (x1, x2, . . . , xn−1). For
aggregation functions expressed in terms of their penalties, we have the following propositions. Proposition 2 provides
sufficient conditions on the weighting vectors for the aggregation family to be R-strictly stable, while Proposition 3
gives the necessary and sufficient conditions in the case that the penalty function is differentiable.

Proposition 2. Given a family {An}n of faithful penalty-based aggregation operators with (Eq. (3))

P(x, y) =
n∑

i=1

wi p(xi , y),

if the weighting vectors wn and wn−1 associated with the penalty expressions for each An(x) and An−1(xi � n) satisfy:

wn
i = �nw

n−1
i , i = 1, . . . , n − 1,

each �n≥0 a constant, 2 then the family is R-strictly stable.

Proof. For An(x) and An−1(xi � n) with respect to the weighting vectors wn and wn−1 respectively, we have the following
penalty-based expressions:

An(x) = arg min
y

n∑
i=1

wn
i p(xi , y), (5)

An−1(xi � n) = arg min
y

n−1∑
i=1

wn−1
i p(xi , y). (6)

R-strict stability requires An(x1, . . . , xn−1, An−1(xi � n)) = An−1(xi � n). If we denote the minimizer in Eq. (6) by
y∗ = An−1(xi � n), this requirement can be stated in terms of the penalty-based expression of An(x) as

arg min
y

(
n−1∑
i=1

wn
i p(xi , y) + wn

n p(y∗, y)

)
= y∗. (7)

The minimizer on the left hand side must be y = y∗ from which it follows that p(y∗, y) = 0. We hence discard the
penalty associated with wn

n and re-write Eq. (7) using the penalty expression of y∗ = An−1(xi � n) on the right hand side.

1 We will also consider functions whose calculation can involve a reordering of the inputs in Section 4.
2 Here we allow the relationship wn

i = 0, ∀i � n, wn
n > 0 that results for �n = 0.
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This gives

arg min
y

n−1∑
i=1

wn
i p(xi , y) = arg min

y

n−1∑
i=1

wn−1
i p(xi , y). (8)

It is clear that if wn
i = �nw

n−1
i for i = 1, . . . , n − 1 then both sides will have the same minimizer for any choice of

p(x, y) and R-strict stability will hold. �

As a corollary, we establish that all unweighted quasi-arithmetic means and quasi-medians are R-strictly stable (take
�n = 1), which extends the results of [8,19].

The next proposition shows that in the case of p(x, y) being differentiable, this relationship between the weighting
vectors is also the necessary condition for stability.

Proposition 3. For a family {An}n of faithful penalty-based aggregation operators where the penalty function p(x, y)
is differentiable in y, R-strict stability holds if and only if the weighting convention described in Proposition 2 is
satisfied.

Proof. From the previous proof we know that Eq. (8) must hold for stability. Given that p(x, y) must be defined such
that y takes a unique value in [0,1], for every fixed x, we will have either y = 0, y = 1 or

d

dy

(
n−1∑
i=1

wn
i p(xi , y)

)
=

n−1∑
i=1

wn
i

d

dy
p(xi , y) = 0, (9)

d

dy

(
n−1∑
i=1

wn−1
i p(xi , y)

)
=

n−1∑
i=1

wn−1
i

d

dy
p(xi , y) = 0. (10)

It follows from this that wn and wn−1 can only differ by a scalar multiple and necessarily that

wn
i = �nw

n−1
i , i = 1, . . . , n − 1. �

This relationship between the weighting vectors had already been established by Gómez et al. for weighted arithmetic
means, harmonic means, quadratic means and power means [16], however we see here that such a convention is necessary
for the R-strict stability of all penalty-based functions with p(x, y) differentiable. To show that differentiability of p
is essential, we consider a case such as p(x, y) = |x − y| where the weighting convention is still sufficient, but is not
necessary to guarantee R-strict stability. Example 2 illustrates this last point.

Example 2. Consider a lower weighted median (Definition 4) resulting from the penalty expression p(x, y) = |x − y|
and the two-dimensional weighting vector, w2 = (0.4, 0.6). We have the following two situations:

x1≥x2 from which we obtain u = (0.4, 0.6) and x(k) = x2;
or

x2≥x1, which gives u = (0.6, 0.4) and x(k) = x2 again. In fact, for any two-dimensional weighting vector with
w2

1 < w2
2, it will follow that Medw(x) = x2.

For three inputs, we then have x3 = x2 and any weighting vector with w3
1 < 0.5 will result in a weighted median

that is R-strictly stable with respect to the two-dimensional case. For instance, the relationship between the weighting
vectors w2 = (0.4, 0.6) and w3 = (0.45, 0.3, 0.25) is R-strictly stable for weighted medians, even though the ratio
w1 : w2 is not preserved.

This merely shows that R-strict stability may not be the best indicator of consistency for penalty-based aggregation
functions defined with respect to a non-differentiable penalty. When p(x, y) is differentiable, however, and wn

n � 1,
R-strict stability is equivalent to the preservation of the ratios between each of the weights. We have the following
useful corollaries that follow from Propositions 2 and 3.
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Corollary 3. All weighted quasi-arithmetic means are R-strictly stable if and only if for any sequence of weights
wn, wn−1 it holds that

wn
i = (1 − wn

n )wn−1
i , i = 1, 2, . . . , n − 1.

Proof. Direct from Proposition 3 with �n = (1 − wn
n ) and the ability to model these functions in the form of

Eq. (3). �

For quasi-weighted medians in the next proposition, we have only the one-directional if part.

Corollary 4. All weighted quasi-medians are R-strictly stable if for any sequence of weights wn, wn−1 it holds that

wn
i = (1 − wn

n )wn−1
i , i = 1, 2, . . . , n − 1.

Proof. Direct from Proposition 2 with �n = (1 − wn
n ). �

Corollary 5. A family of alpha-quantile operators is R-strictly stable with � = c/(1 + c) provided c is fixed for all n.

Proof. Direct from Proposition 2 with p(x, y) defined as it is in Eq. (4) and equal weights for all i. �

The �-quantile operator includes special cases of the median (with c = 1), the maximum (c = ∞) and the minimum
(c = 0), all of which can be defined with respect to its penalty expression with equal weights. This result does not
extend to k-order statistics, however, since c depends on n and the penalty expressions would differ for An and An−1.
We provide an example for the alpha-quantile operator.

Example 3. Consider the �-quantile operator with � = 3
4 . This has a penalty expression of

p(x, y) =
{

x − y if x≤y,

3(y − x) if x > y.

Suppose we have the input vector xi � n = (0.2, 0.3, 0.7, 0.9). Any value in the interval [0.7, 0.9] will minimize the
overall penalty so we take the mid-point and have

An−1(0.2, 0.3, 0.7, 0.9) = 0.8.

For An we minimize the penalty with respect to the input vector,

x = (0.2, 0.3, 0.7, 0.9, An−1(xi � n)) = (0.2, 0.3, 0.7, 0.9, 0.8).

We then will have An(x) = 0.8 since p(0.8, 0.8) = 0 and we already know that 0.8 minimizes the penalty of the
original inputs in x, so

An(0.2, 0.3, 0.7, 0.9, An−1(xi � n)) = An−1(xi � n)

as required.

The following example illustrates the application of the weighting convention in Corollary 3.

Example 4. Consider the weighting vector w4 = ( 3
20 , 5

20 , 8
20 , 4

20 ). The R-strictly stable weighting triangle would
require the relative ratios between each pair wn

i , wn
i+1 to be preserved. It would be given by

1
3
8

5
8

3
16

5
16

8
16

3
20

5
20

8
20

4
20

...
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Although Proposition 2 extends to a number of important aggregation functions including weighted means and
quantile operators, it cannot be used to establish R-strict stability for more general aggregation functions that require
a reordering step in their calculation such as the OWA function. We will now turn to penalty-based functions defined
with respect to an auxiliary order-inducing variable.

4. R-strict stability for penalty-based aggregation functions with order inducing variables

In this section we will first present some general results, then investigate some specific weighting conventions
associated with the OWA function. We also show how these considerations apply in the context of k-Nearest Neighbors
(kNN) function approximation, where the output value of an unknown datum is predicted by averaging the closest k
observed data. For the following considerations, we will focus on stability in the relationship between wn and wn−1 as
it will not always be possible to define stable weighting triangles.

4.1. General results

As stated in [16], the OWA function in general is neither L- nor R-strictly stable. We have seen that some special cases,
namely the �-quantile and weighted medians, which include the median, minimum and maximum, are R-strictly stable
(and L-strictly stable since they are symmetric). We are interested in the conditions on weighting vectors associated
with order-induced functions for R-strict stability.

Definition 10. Given an order-inducing variable z where zi is associated with the input xi , a weighted order-induced
aggregation function associates the weight wi with x�(i) where �(x) denotes a reordering of the inputs, �(x) =
(x�(1), x�(2), . . . , x(n)) such that z�(1)≥z�(2)≥ · · · ≥z�(n).

In the case of zi = xi , we will have inputs arranged in non-increasing order as they are for the standard OWA
operator, while zi = i will lead to the xi being associated with wi as is the case for weighted means.

In general, it is possible to choose an order-inducing variable as some function of the xi such that the relative ordering
could change with the introduction of a new input. The following example illustrates this case.

Example 5. We wish to define a consensus driven aggregation framework by allocating higher weight to values which
are close to the mean. We therefore define the auxiliary order-inducing variable by

zi = 1 −
∣∣∣∣∣xi − 1

n

n∑
i=1

xi

∣∣∣∣∣ .
It is clear that the introduction of an extreme value could affect the relative ordering. Consider the inputs x =
(0.1, 0.3, 0.8). The mean is 0.4 so our input pairs for aggregation will be

〈x, z〉 = (〈0.1, 0.7〉, 〈0.3, 0.9〉, 〈0.8, 0.6〉)
and we have �(x) = (x2, x1, x3).

We then introduce the input x4 = 0.8. The mean is now 0.5 and we have

〈x, z〉 = (〈0.1, 0.6〉, 〈0.3, 0.8〉, 〈0.8, 0.7〉, 〈0.8, 0.7〉).
The order induced by z is now �(x) = (x2, x4, x3, x1) and the relative ordering of x1 and x3 has changed.

In order to avoid such situations, we will limit ourselves to order-inducing variables that satisfy the following
definition of order consistency based on the definition given in [1].

Definition 11. Consider two pairs of vectors 〈x, z〉 and 〈x′, z′〉 where z′ is obtained from z by considering an additional
input 〈xn+1, zn+1〉. An inducing variable is order consistent if whenever it holds that zi≥z j , then it also holds that
z′

i≥z′
j .
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In other words, a new pair 〈xn+1, zn+1〉 does not affect the relative ordering of 〈x, z〉.
For penalty-based aggregation functions, we consider the inputs 〈xi , zi 〉 such that the weight wi is associated with

the �(i)-th penalty p(x�(i), y).
From the n inputs we obtain a reordering according to z and let x�( j) = xn . This gives the following reordered input

vectors for n and n − 1 arguments respectively,

�(x) = (x�(1), . . . , x�( j−1), xn, x�( j+1), . . . , x�(n)),

�(xi � n) = (x�(1), . . . , x�( j−1), x�( j+1), . . . , x�(n)).

The penalty expressions replacing Eqs. (5) and (6) will then be given by

An(x) = arg min
y

⎛
⎝ j−1∑

i=1

wn
i p(x�(i), y) + wn

j p(xn, y) +
n∑

i= j+1

wn
i p(x�(i), y)

⎞
⎠ , (11)

An−1(xi � n) = arg min
y

⎛
⎝ j−1∑

i=1

wn−1
i p(x�(i), y) +

n∑
i= j+1

wn−1
i−1 p(x�(i), y)

⎞
⎠ . (12)

Note that the effect of xn being ordered in the j-th position rather than the n-th is that the weighting indices in An−1
are shifted by 1 for all i > j (see Corollary 1), e.g. if xn was reordered to x�(3) then the weight wn−1

5 would be
associated with x�(6) in Eq. (12) while wn

5 would be associated with x�(5) in Eq. (11). For ease in interpreting the
relationship between the two equations, let us express wn−1 in terms of an (n − 1)-dimensional weighting vector
u = (u1, . . . , u j−1, u j+1, . . . , un) where

ui =
{

�nw
n−1
i , i < j,

�nw
n−1
i−1 , i > j.

Eqs. (11) and (12) then can be written as

An(x) = arg min
y

⎛
⎝ n∑

i=1,i � j

wn
i p(x�(i), y) + wn

j p(xn, y)

⎞
⎠ , (13)

An−1(xi � n) = arg min
y

⎛
⎝ n∑

i=1,i � j

ui p(x�(i), y)

⎞
⎠ . (14)

We see that where we know the value of j (the position in which xn is aggregated), we will have an analogous situation
to standard orderings and can draw upon the result from Corollary 1. Although in the previous analysis we were able
to remove the term associated with xn = An−1(xi � n), here it will not be the case in general that xn = x�( j) for all x,
i.e. the value of j may be dependent on the aggregated value An−1(xi � n). Example 6 helps to illustrate this last point.

Example 6. Consider an OWA operator with w = (0.5, 0.3, 0.2). The aggregated value An−1(0.8, 0.3, 0.1) = 0.51
so when we include 0.51 and aggregate An(0.8, 0.3, 0.1, 0.51), we have �(x) = (0.8, 0.51, 0.3, 0.1) and xn = x�(2).
On the other hand, aggregating An−1(0.8, 0.7, 0.1) = 0.63 means we would then aggregate An(0.8, 0.7, 0.1, 0.63) and
�(x) = (0.8, 0.7, 0.63, 0.1), i.e. xn = x�(3). So for this function, the value of j when we determine xn = x�( j) will
depend on the input values.

However, there are situations where the value of j may be the same for all input vectors, e.g. in the case of k-order
statistics.

We begin with the following proposition, which states that a family of order-induced aggregation operators will be
R-strictly stable if we can define weighting vectors consistently according to j.
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Proposition 4. Given an order consistent inducing variable z and a family of penalty-based aggregation operators
with

P(x, y) =
n∑

i=1

wi p(x�(i), y),

if the weighting vectors wn and wn−1 associated with the penalty expressions of An and An−1 satisfy

wn
i =

{
�nw

n−1
i , i < j,

�nw
n−1
i−1 , i > j,

with �n≥0 a constant for all possible j such that zn = z�( j), then the function is considered R-strictly stable.

Proof. We can establish this analogously to Proposition 2 from the similarity between Eqs. (5), (6) and Eqs. (13), (14).
Since zn = z�( j), it will follow that xn = An−1(xi � n) will be associated with the weight wn

j and p(x�( j), y) = 0, we

then have the same requirement as Eq. (8) with a shift in the indexing for wn−1
i for i > j . �

To show how this proposition applies, we will extend the previous example.

Example 7 (Contd from Example 6). We wish to extend the OWA with wn−1 = (0.5, 0.3, 0.2) to include a 4th input.
In order to define wn such that the relationship between wn−1 and wn is R-strictly stable, it should hold that

OW A(0.8, 0.3, 0.1, 0.51) = 0.51 and OW A(0.8, 0.7, 0.1, 0.63) = 0.63

(and the same for any OW A(xi � 4) used as the input x4). In the first case, where the aggregated value leads to j = 2,
we require

wn
1 = �n0.5,

wn
3 = �n0.3,

wn
4 = �n0.2, (15)

while for the latter case when j=3 we require

wn
1 = �n0.5,

wn
2 = �n0.3,

wn
4 = �n0.2. (16)

We hence note from Eqs. (15) and (16) that wn
2 and wn

3 should be equal. This leads to the weighting vector w =
( 5

13 , 3
13 , 3

13 , 2
13 ) and �n = 1 − 3

13 . Given that the output of this OWA is bounded such that j will only ever be equal to
2 or 3, R-strict stability will hold for all three-dimensional input sets.

It will not always be possible to define weighting vectors in such a way for order-induced functions. For instance,
an OWA with w = (0.4, 0.3, 0.2, 0.1) has no corresponding R-strictly stable five-dimensional weighting vector. The
output could lead to xn being aggregated in any position j=2,3,4, so the reasoning from Example 7 would lead to the
requirement of wn

2 = wn
3 = wn

4 which is not possible since �n0.3 � �n0.2.
We do, on the other hand, have the following corollary.

Corollary 6. A family of order-induced aggregation functions can be defined such that R-strict stability holds if
An−1(xi � n) = x�( j) with j fixed for any given n.

Proof. Direct from Proposition 4. �

From this we establish that all k-order statistics are R-strictly stable since j = k for all n, i.e. An−1(xi � n) = x�(k). We
hence have �n = 0 for all n and wn

j = 1. Proposition 4 can also be applied to families of weighted means where each
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additional input is not necessarily aggregated in the n-th position. For instance, suppose we have w3 = (0.7, 0.1, 0.2)
and we want to define a weighting vector for the case when x2 is missing. The relationship between wn−1 = ( 7

9 , 2
9 )

and wn is not considered R-strictly stable according to Proposition 2, however if the order rearrangement is taken into
account using Proposition 4, we can consider it to be R-strictly stable with z defined such that z3 = z�(2). This provides
us with a framework which allows us to extend the results of R-strict stability to the notion of stability with respect to
the j-th input and an ordering variable.

In general, if we cannot predict the position j to which xn = An−1(xi � n) is ordered, R-strict stability will require
that the relationship between the weighting vectors specified in Proposition 4 holds with j taking multiple values as it
did in Example 7. This gives us the following family of weighting vectors.

Corollary 7. Consider an order-consistent induced aggregation function and the pair 〈xn, zn〉 such that xn = An−1
(〈xi � n, zi � n〉) and zn is bounded relative to �(z), i.e.

z�(a)≥zn≥z�(b).

If it holds that wn−1
a+1 = wn−1

a+2 = · · · = wn−1
b−2 , then wn can be defined according to Proposition 4 such that the function

is R-strict stable.

When the penalty p(xn, y) is associated with the weight wn
j , the previous indexation of weights for i > j shifts

across by 1. In order for the proportional weighting allocated to the inputs to be maintained for multiple j, a necessary
requirement is that the weights distributed from j = a + 1 to j = b − 1 are the same, so for wn , we will have
wn

a+1 = wn
a+2 = · · · = wn

b−1.

Proof. We assume that there exists an input vector xi � n such that zn = z�( j) and that the weights satisfy Proposition
4. In particular, note that wn

j−1 = �nw
n−1
j−1. If there exists a set of inputs x′

i � n such that z′
n = z′

�( j−1), then we require

wn
i =

{
�nw

n−1
i , i < j − 1,

�nw
n−1
i−1 , i > j − 1,

with �≥0 as a constant. In this case we have wn
j = �nw

n−1
j−1 and we see that for both cases to simultaneously satisfy

the weighting convention,

wn
j = wn

j−1 = �nw
n−1
j−1 .

By extending this reasoning, we determine that the weighting relationship will need to hold for all possible j such
that An−1(xi � n) = x�( j). �

This means weighting conventions such as that used for the olympic average, w = (0, w, w, . . . , w, 0), w =
1/(n − 2) and in fact any weighting vector w = (0, . . . , 0, wa, w, w, . . . , w, wb, 0, . . . , 0) (including the trimmed
means) can be considered R-strictly stable since the output will always be bounded between the inputs associated with
wa and wb. A pair of weighting vectors that satisfy R-strict stability according to Corollary 7 are provided in Example 8.

Example 8. Consider an OWA function with six- and seven-dimensional weighting vectors defined as follows:

w6 = (0, 2
6 , 1

6 , 1
6 , 2

6 , 0).

w7 = (0, 2
7 , 1

7 , 1
7 , 1

7 , 2
7 , 0).

We note that Proposition 7 is satisfied for j = 3, 4, 5. Let us assume that the inputs have been presorted into non-
increasing order. We know that OW A(x1, x2, . . . , x6) = x7 will be bounded between x2 and x5 so, when checking for
R-strict stability, in the calculation of OW A(x1, . . . , x6, x7) we will have

OW A(x) = 2
7 x2 + 1

7 x3 + 1
7 x4 + 2

7 x5 + 1
7 x7

regardless of whether x7 = OW A(xi � 7) is aggregated in position j = 3, 4, 5 according to its value.
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Fig. 1. RIM quantifiers corresponding with the weighting vectors of six- and seven-dimensions from Example 8.

We will now turn our attention to special ways of defining OWA weights and the conditions for R-strict stability.

4.2. Defining weights for OWA operators

In the case of OWA operators, zi = xi and we will simply use the notation x(i) to denote the i-th largest input. We
can determine from Corollary 7 that weighting vectors are R-strictly stable if

x(a) > OW A(xi � n) > x(b)

holds for some a, b and wi = w j , ∀i, j ∈ {a + 1, . . . , b − 1}. This includes k-order statistics with a + 1 = b − 1 = k.
In [21,22], Yager proposed the use of Basic Unit-interval Monotone (BUM) functions Q : [0, 1] → [0, 1], Q(0) =

0, Q(1) = 1, or Regular Increasing Monotone (RIM) quantifiers in order to define the weighting vectors for OWA
functions. For a given Q and n, the weights are calculated using

wn
i = Q

(
i

n

)
− Q

(
i − 1

n

)
.

Examples of RIM quantifiers include “for all” with Q(1) = 1, 0 otherwise; “there exists” with Q(0) = 0, 1 otherwise;
and other concepts using

Qa,b(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if t≤a

n
,

nt − a

b − a
, if

a

n
< t <

b

n
,

1 if t≥b

n
.

In particular, OWA functions can model various linguistic quantifiers, e.g. suppose n=5, “most” can be modeled with
the vector w = (1/3, 1/3, 1/3, 0, 0) and “80% of” with w = (0, 0, 0, 1, 0).

For quantifier based aggregation, R-strict stability requires the successive weights to be equal, wi = w j , i.e. that

Q

(
i

n

)
− Q

(
i − 1

n

)
= Q

(
j

n

)
− Q

(
j − 1

n

)
,

for i, j ∈ {a+1, . . . , b−1}. In other words, we require that Q(t) be linearly increasing over the interval [a/n, (b − 1)/n].
This means that the Qa,b(t) operators are a good candidate for forming the basis of R-strictly stable aggregation, however,
it should be kept in mind how the quantifier is defined as n changes. Fig. 1 shows the RIM quantifiers from Example 8.
For the seven-dimensional vector, the function has a constant gradient between i=2 and i=5 since x7 could be aggregated
in any position from j=3 to j=5.
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4.3. Application to kNN

In k-Nearest Neighbors (kNN) function approximation, we predict the value y0 for an unknown input vector x0
by averaging the y-values of the closest k observed data. We hence aggregate the inputs 〈yi , zi 〉 where yi denotes
the observed function value for a given xi and zi is an auxiliary variable indicating the proximity, e.g. using inverse
Euclidean distance with zi = 1/‖xi − x0‖. It is clear that z is order-consistent, since the introduction of a new datum
〈yi , zi 〉 will not affect the relative distances between x0 and each of the xi . We consider the problem of defining R-strictly
stable weights for the set of k inputs used in kNN. In particular, we are interested in the stability of the weights when
the size of k is incremented by 1, i.e. we introduce the datum (xk+1, yk+1).

In standard kNN, we take the arithmetic mean of the nearest k data. Clearly this corresponds with using equal weights
and the aggregation is R-strictly stable.

One weighted extension of kNN weights the neighbors according to inverse distance, i.e.

wi =

(
1

‖x(i) − x0‖
)

∑k
i=1

1

‖x(i) − x0‖
. (17)

Now we consider the inclusion of a new datum as we increase the value of k. In this case, xk+1 will be further away
from x0 than the data originally included in the aggregation, and hence the auxiliary variable zk+1 denoting proximity
will be the (k+1)-th largest, i.e. zk+1 = z(k+1).

We can show that R-strict stability is satisfied automatically when we use Eq. (17) to define the weights. The
calculation of each wi will result in the denominator sum increasing by 1/‖xk+1 − x0‖, which means that we have

�k+1 =
∑k

i=1
1

‖x(i) − x0‖∑k+1
i=1

1

‖x(i) − x0‖
,

and the new weights will satisfy the conditions in Proposition 4.
We provide a numerical example before concluding the paper.

Example 9. Suppose we are trying to predict the output value y0 for a function f when taking the inputs x0 =
(0.2, 0.5, 0.85, 0.92). The input values and output for the four closest observations are given in Table 1 with their
inverse Euclidean distances zi = 1/‖xi − x0‖ given in the last column.

For k=3, the closest three data points are x1, x2, x3 and the weighting vector we obtain from Eq. (17) is w3 =
(0.462, 0.273, 0.265). The predicted output value would then be (to 2 decimal places)

f (x0) = 0.462 × 0.75 + 0.273 × 0.73 + 0.265 × 0.49 = 0.68.

If we then increase k to 4, we will include x4 and need to extend the weighting vector. Eq. (17) gives us w4 =
(0.368, 0.217, 0.211, 0.204). Note that w4

i for i = 1, 2, 3 can each be obtained by multiplying the respective w3
i by

(1 − w4
4). Our predicted output for k = 4 (to two decimal places is)

f (x0) = 0.368 × 0.75 + 0.217 × 0.73 + 0.211 × 0.49 + 0.204 × 0.68 = 0.68,

Table 1
Input vectors for Example 9 with their output yi and inverse Euclidean distance zi to the unknown data point x0 = (0.2, 0.5, 0.85, 0.92).

xi xi1 xi2 xi3 xi4 yi zi

x1 0.21 0.44 0.87 1.00 0.75 10.621
x2 0.30 0.47 0.93 1.00 0.73 6.271
x3 0.30 0.52 0.76 0.84 0.49 6.096
x4 0.16 0.46 0.87 0.76 0.68 5.907
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and we see that R-strict stability is satisfied since the new input was equal to the aggregated value for when k=3 and
f (x0) remained unchanged.

5. Conclusion

We adopted definitions of stability of families of aggregation functions with respect to input cardinality from [19],
and extended their results to quasi-arithmetic means, quasi-medians and other penalty-based aggregation functions.

We have looked thoroughly at conditions on weights for a number of important aggregation functions. We established
that relations between the weighting vectors from [19] are sufficient for all weighted faithful penalty-based functions,
but are necessary only for functions with differentiable penalties, thus leaving the case of weighted medians apart.

In particular, we note that:

• Weighted means defined with respect to a weighted penalty expression where the penalty is differentiable will be
R-strictly stable if and only if the ratio between wn

i and wn−1
i is (1 − wn

n ). This result can also extend to j-th position
stability with an appropriate re-indexing of the weights. It is hence possible to define R-strictly stable weighting
triangles for all quasi-arithmetic means.

• The same weighting convention is sufficient to ensure stability for all weighted penalty-based aggregation func-
tions. This means we can define R-strictly stable weighting triangles for all weighted quasi-medians and �-quantile
operators.

We have also considered the notion of R-strict stability for weighted aggregation functions that are based on a
reordering of the inputs. This led us to defining R-strictly stable weighting vectors of OWA and induced OWA operators.
In particular, we concluded that:

• If we know the relative position of the aggregated value with respect to the inputs and ordering method, it is possible
to define R-strictly stable weighting triangles. All k-order statistics, including the special cases of the maximum,
minimum are R-strictly stable.

• If the relative position of the aggregated value with respect the inputs can change but is bounded, the R-strictly stable
weighting vectors are required to have equal weights for all positions that the aggregated value could take. OWA
functions such as the olympic average and trimmed means are hence R-strictly stable, since the aggregated input will
always be weighted the same when appended to the original input vector. This result can also be applied to OWAs
with weights defined by ab-quantifiers.

An interesting application to the kNN machine learning method was also illustrated.
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