
Available online at www.sciencedirect.com

45 (2008) 621–640
www.elsevier.com/locate/dss
Decision Support Systems
SpidersRUs: Creating specialized search engines
in multiple languages

Michael Chau a,⁎, Jialun Qin b, Yilu Zhou c, Chunju Tseng d, Hsinchun Chen e

a School of Business, The University of Hong Kong, Pokfulam, Hong Kong
b Department of Management, University of Massachusetts Lowell, Lowell, MA 01854, USA

c Information Systems and Technology Management, George Washington University, Washington, DC 20052, USA
d Department of Management Information Systems, The University of Arizona, Tucson, AZ 85721, USA
e Department of Management Information Systems, The University of Arizona, Tucson, AZ 85721, USA

Available online 27 July 2007
Abstract

While small-scale search engines in specific domains and languages are increasingly used by Web users, most existing search
engine development tools do not support the development of search engines in languages other than English, cannot be integrated
with other applications, or rely on proprietary software. A tool that supports search engine creation in multiple languages is thus
highly desired. To study the research issues involved, we review related literature and suggest the criteria for an ideal search tool.
We present the design of a toolkit, called SpidersRUs, developed for multilingual search engine creation. The design and
implementation of the tool, consisting of a Spider module, an Indexer module, an Index Structure, a Search module, and a
Graphical User Interface module, are discussed in detail. A sample user session and a case study on using the tool to develop a
medical search engine in Chinese are also presented. The technical issues involved and the lessons learned in the project are then
discussed. This study demonstrates that the proposed architecture is feasible in developing search engines easily in different
languages such as Chinese, Spanish, Japanese, and Arabic.
© 2007 Elsevier B.V. All rights reserved.
Keywords: Search engine development; Multilingual search engines; Information retrieval
1. Introduction

With the growing popularity of the Web, search
engines have been widely used in recent years. Most
Web users begin their Web activities by submitting a
query to a search engine such as Google or Yahoo.
However, as the size of the Web is growing exponen-
tially and the number of indexable pages on the Web has
⁎ Corresponding author.
E-mail addresses: mchau@business.hku.hk (M. Chau),

jialun_qin@uml.edu (J. Qin), yzhou@gwu.edu (Y. Zhou),
chunju@u.arizona.edu (C. Tseng), hchen@eller.arizona.edu (H. Chen).

0167-9236/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dss.2007.07.006
exceeded four billion, it has become more and more
difficult for search engines to keep an up-to-date and
comprehensive search index, resulting in low precision
and low recall rates. Users often find it difficult to search
for useful and high-quality information on the Web
using general-purpose search engines, especially when
searching for information on a specific topic or in a
language other than English.

Many domain-specific or language-specific search en-
gines have been built to facilitate more efficient searching
in different areas. These search engines alleviate the
information overload problem to some extent by provid-
ing more precise results and more customized features.

mailto:mchau@business.hku.hk
mailto:jialun_qin@uml.edu
mailto:yzhou@gwu.edu
mailto:chunju@u.arizona.edu
mailto:hchen@eller.arizona.edu
http://dx.doi.org/10.1016/j.dss.2007.07.006


622 M. Chau et al. / Decision Support Systems 45 (2008) 621–640
Alternatively, some Web users prefer to address the
problem by creating their own small-scale search engines
in a specific domain or language for some special col-
lections. This allows them to have their own customized,
searchable digital libraries that can be accessed by other
users.

However, much effort will be needed to construct
such a search engine that provides effective and efficient
search functionalities with a high-quality collection of
documents. Manually creating the collection and
indexing the terms for searching will require a lot of
time and effort. Another alternative is to automate these
task using software tools [35]. Although comprehensive
software tools for creating search engines exist, most of
them cannot work on non-English languages such as
various European, Asian, and Middle East languages. In
recent years, the number of non-English resources on
the Web is growing rapidly and it has been estimated
that more than 60% of Web users' native language is not
English. A tool that can build specialized search engines
in different languages is thus highly desired.

In this paper, we present our work in designing and
implementing a software tool that addresses this
problem. We will focus on the architectural design and
the technical issues involved in developing such a tool.
The rest of the paper is organized as follows. Section 2
reviews related work in search engine development.
Section 3 discusses our research objective and suggests
the criteria for an ideal search engine development tool.
In Section 4, we present our proposed system, called
“SpidersRUs,” that we have developed to help users
create specialized search engines in different domains
and languages. Section 5 presents sample sessions de-
monstrating how users can use the tool in building
specialized search engines. In Section 6, we present a
case study describing how the proposed tool has been
used to develop a medical search engine in Chinese. In
Section 7, we discuss some of the technical and design
issues involved in developing a multilingual search
engine development tool. Finally, Section 8 concludes
our work and provides some suggestions for future
research.

2. Research background

Search engines and search techniques have been
widely studied in information retrieval literature and
have been used a lot in traditional information systems.
These search engines allow users to retrieve information
efficiently and effectively from a collection. As dis-
cussed earlier, due to the large size of the Web, it is often
desirable to build domain-specific or language-specific
collections that can be searched and managed more
easily. Several components are involved in building a
specialized collection and the corresponding search en-
gines, namely (1) collection building, (2) indexing, and
(3) searching. In this section, we review existing tech-
niques in these three areas, as well as some existing tools
that can be used for search engine development.

2.1. Collection building

Perhaps the most important part of any search engine
is the content. No matter what indexing and retrieval
techniques are used, a search engine would not be useful
if the users do not like its content. Traditionally, infor-
mation retrieval systems have been developed for ma-
terials that are available offline. In recent years, due to
the rapid growth of the Internet and related technologies,
increasingly more useful and valuable resources are
available on the Web. These resources include corporate
Web sites, personal homepages, academic research
papers, online community resources, among others.

As Web pages link to each other by hyperlinks,
“spiders” program are often used to traverse the Web to
collect Web pages. Spiders, also known as Web robots,
Web agents, crawlers, worms, or wanderers, are
programs behind a search engine that retrieve Web
pages by recursively following hyperlinks (URLs) in
pages using standard HTTP protocols [3,5,11]. First, the
spiders read from a list of starting seed URLs and
download the documents at these URLs. Each down-
loaded page is processed and the URLs contained within
are extracted and added to the queue. Each spider then
selects the next URL from the queue and continues the
process until the required number of documents have
been downloaded or the local computing resources have
been exhausted. This Web page collection process is
often called “spidering” or “crawling”. To improve
speed, spiders usually connect simultaneously to
multiple Web servers in order to download documents
in parallel, either using multiple threads of execution
[17] or asynchronous input/output [2].

In addition, a well-designed, “polite” spider should
avoid sending multiple requests to a Web server within a
short amount of time, which would otherwise overload
the Web server [15]. Webmasters or Web page authors
also should be able to specify whether they want to
exclude particular spiders' access. There are two
standard ways. The first one, called the Robot Exclusion
Protocol, allows Web site administrators to indicate, by
specifying a file named robots.txt in the Web site's root
directory, which parts of their site should not be visited
by a spider (robot) [21]. In the second method, usually



623M. Chau et al. / Decision Support Systems 45 (2008) 621–640
known as the Robots METATag, Web page authors can
indicate to spiders whether a document may be indexed
or used to extract more links [23].

Spidering tools have been available since the early
days of the Web. tueMosaic is an early example of
personal Web spiders [13]. Using tueMosaic, users can
enter keywords, specify the depth and width of search for
links contained in the current homepages displayed, and
request the spider to fetch homepages connected to the
current homepage. WebRipper, WebMiner, and Teleport
are some software tools that allow users to download
massively from given Web sites files with particular
types or attributes. Some open-source tools also have
become available in recent years. For example, Heritrix,
the crawler for the Internet Archive project, has been
made available for download [19].

Some spiders were also designed to provide addi-
tional functionalities. For example, the Competitive
Intelligence Spider performs breadth-first search on
given URLs and applies linguistic analysis and cluster-
ing to the search results [7]. The hybrid simulated
annealing spider supports “global” searching on the
Web [38].

2.2. Indexing

Documents retrieved by spiders are stored in a
repository of Web pages. To reduce the storage space
needed, the pages are often compressed when they are
stored. The repository is usually in the form of a
database, but it is also common for small-scale search
systems to simply store the documents as files. An
indexer processes the documents in the repository and
builds an underlying index of the search engine. The
indexer tokenizes each document into words and records
the occurrences of each word in the document. The
indexer also calculates scores, such as the term frequency
and document frequency of each word, that can be used
for search result ranking or further processing.

The indexing results from the Indexer are then
converted into an “inverted index.” While the result of
the original indexing process, often called the forward
index, maps a document to a list of words contained
within it, the inverted index maps a word to a list of
documents containing the word. This allows fast re-
trieval of documents when a search query is submitted to
the search engine. The resulting searchable indexes are
usually stored into a database or a file system.

SMART (System for the Mechanical Analysis and
Retrieval of Text), developed by Salton and his col-
leagues, probably was one of the earliest indexing tools
that were widely used [29]. SMART creates an index for
a set of documents and assigns a weight to each term–
document relationship, based on the TFIDF formula
(term frequency multiplied by inverse document fre-
quency) [28]. Lucene, Swish and Glimpse [22] are three
other tools that create indexes over a set of documents,
especially Web documents. These tools scan through the
documents and build an inverted, searchable index be-
tween each term and each document based on their
occurrences. All three tools were later enhanced or
combined with other tools to include Web page fetching
(i.e., spidering) capabilities. For example, Lucene had a
sub-project for spider called Nutch [24], Swish was
enhanced to become Swish-e [32], WebGlimpse was a
spider-enabled version of Glimpse.

2.3. Searching

A query engine accepts search queries from users and
performs searches on the indexes [1]. After retrieving
search results from the indexes, the query engine is also
responsible for ranking the search results according to
various content analysis and link analysis scores. It is
also responsible for generating a summary for each
search result, often based on the Web page repository.
The query engine in some search engines is also re-
sponsible for caching the results of popular search
queries. After all the processing, the query engine gen-
erates and renders a search result HTML page and sends
it back to users through the user interface. The user
interface allows users to submit their search queries and
view the search results. When a user performs a search
through the Web interface, the query is passed to the
query engine, which retrieves the search results from the
index database and passes them back to the user.

2.4. Existing tools

In addition to the spidering and indexing tools
discussed earlier, there are many free software tools that
provide all of the components of a search engine, i.e.,
collection building, indexing, searching, index storage
structure, and user interface. Users can build their own
search engines with such tools. Some popular examples
of comprehensive search engine development tools are
WebGlimpse [22], ht://dig [18], GreenStone [35–37]
and Alkaline [34]. These tools take a list of Web sites
from a user as seed URLs, collecting Web pages based
on these seeds, index these pages, and set up a user
interface for querying and browsing.

Although these toolkits provide integrated envi-
ronments for users to build their own domain-specif-
ic search engines, most of these tools only work for



624 M. Chau et al. / Decision Support Systems 45 (2008) 621–640
English documents and are not able to process non-
English documents, especially for non-alphabetical
languages. Only a few of them, such as GreenStone,
support multilingual collection building. As a result,
most of these tools cannot be used to create digital
library for non-English collections.

Another problem is that many of these tools do not
provide enough technical details, and their components
and building steps are tightly coupled. As a result, users
often find it difficult to customize the tools or reuse the
intermediate results in other applications (such as
document classification) even if they have strong
technical skills. For example, in Alkaline, all the
intermediate results of the spidering and indexing
processes are hidden from users. In addition, most of
these tools store the spidering results (Web pages) and
indexing results (indexed terms and the document–term
relationships) in binary format or other proprietary
formats, often due to performance issues. This has made
it very difficult, if not impossible, for users to use the
results from a search tool for other purposes or in other
applications.

3. Research objective

As discussed earlier, a tool that supports search
engine creation in multiple languages is highly desired.
An ideal tool should have the following properties:

• Platform-independent: The tool should be platform-
independent such that users with different platforms
and operating systems can use it without problems.

• Self-contained: Similar to the platform-independent
requirement, the tool should be self-contained and
should not rely on any underlying database system.
This can ensure that users can use the tool easily
without having to buy or install any database on their
computers.

• Modular: The tool should be designed as a modular
and object-oriented tool such that users can modify or
plug-in other modules relatively easily.

• User-friendly: Users should be able to install the tool,
customize the settings, build collections, and main-
tain the system easily.

• Integratable: The tool should be designed in a way
such that it would be easy to integrate it with other
existing tools and systems. Output of the tool (such
as collected Web pages and index files) should be in
plain text format such that they can be reused in other
applications easily.

• Multilingual support: The tool should be able to
process documents in different languages.
• Multiple format support: The tool should be able to
process documents in popular formats in addition to
HTML, e.g., MS Word and PDF files.

Most existing tools, however, do not satisfy these
requirements because of various problems such as the
inability to process non-English languages, the com-
plexity involved in the tools, or the low interoperability
and portability of the intermediate and end results. To
address these problems, a tool, called SpidersRUs, has
been developed to support specialized search engine
building in different languages. This research aims to
explore the various issues in designing and implement-
ing such a software tool. In particular, we investigate the
technical issues involved in a tool that supports
collection building in various languages.

4. Proposed architecture

4.1. Choice of implementation platform

To explore the research issues, we designed and
developed a software tool called SpidersRUs for creating
specialized search engines in different languages (http://
ai.bpa.arizona.edu/spidersrus/). After considering the
requirements discussed in the previous section, the
Java language was chosen as the programming language
for our implementation. Java is an object-oriented
language that is platform-independent. This allows the
tool to run on different hardware platforms and operating
systems with the Java virtual machine installed. Java also
has been shown to be suitable for search engine
development and has been used in several other spider
applications [10,17]. In addition, Java has been well
designed to support multiple languages. Each character
is stored as a double-byte character in Unicode rather
than a single-byte one. The Unicode standard is a
character coding system that provides a unique double-
byte number for every character in all languages [33].
Such standard is extremely useful for developing
multilingual systems [12].

We also decided to store all intermediate files, including
Web pages and index files, in their original formats or plain
text formats. Although this may not be very space-efficient
as the files are not compressed, it allows users to use the
intermediate results for other purposes. More details will
be discussed later in this section.

4.2. System architecture

The tool consists of five major modules — Spider,
Indexer, Index Structure, Searcher, and the Graphical

http://ai.bpa.arizona.edu/spidersrus/
http://ai.bpa.arizona.edu/spidersrus/


625M. Chau et al. / Decision Support Systems 45 (2008) 621–640
User Interface (GUI). Fig. 1 shows an architecture
diagram depicting how the components work together.
Each component will be explained in detail in this
section.

The architecture of SpidersRUs is similar to those of
popular Web search engines [1,2]. The Spider module
collects documents from the Web. These documents are
stored as files in their original form in the local repos-
itory. The files are then indexed by the Indexer module.
Terms are extracted from the documents and the indexes
are created and saved as files. The users can then start
the Searcher module which will load the index files.
This will allow the users to search the collection through
the GUI. In the following, we will discuss the design of
each component and the technical issues involved. In
particular, we will discuss how they have been im-
plemented to work with multiple languages.

4.2.1. Spider
The task of the Spider module is to fetch Web pages

and other Web documents from the Internet to form the
collection that the users want to create. Designing a
Spider for a search engine is a challenging task. First, a
search engine spider needs to be scalable and be able to
download millions of Web pages within a reasonable
amount of time and limited memory usage. Second, the
spider needs to avoid duplicated URLs as well as
duplicated content. Many Websites have mirror sites
containing exactly the same content and different URLs
often refer to the same document. For instance, the four
URLs http://www.arizona.edu, http://arizona.edu, http://
128.196.133.81, and http://www.arizona.edu/index.
html all point to the same Web page. An efficient spider
Fig. 1. System ar
should only fetch and store the content of one of these
pages to avoid having duplicated documents in the
search results list. Third, a search engine spider should
not cause problems to other Web users. As reviewed in
Section 2, a polite spider should provide Robot Exclu-
sion support and avoid overloading any Web servers.
Lastly, because our system is designed for specialized
search engine development, the spider also should allow
users to specify customizable filters on what URLs and
what contents they would like to collect. Unwanted
content should be filtered by the spiders. Our design of
the Spider module has partly followed the design of
Mercator [17] and is shown in Fig. 2.

The core of the Spider module is the small spiders\
the search agents that actually connect to Web servers
and download documents. These spiders are written in
multiple threads such that they connect to multiple Web
servers simultaneously. The multiple threads ensure that
the bandwidth between the computer and the Internet
can be utilized effectively as the download speed will be
least affected by the slow response time of one particular
Web server. Each spider will get the first URL from its
corresponding URL queue (to be discussed below) and
try to download the page.

The collected files are sent to a SpiderMaster object
that controls all the spiders. These documents are then
passed to the ContentHandler. The ContentHandler is
responsible for checking the documents downloaded
and saving them to the local disk. The ContentHandler
will first check to see whether the document has been
downloaded before, possibly from a mirror Web site,
using a hashtable called Content Seen. After checking
with the hashtable, the document will be checked by the
chitecture.

http://www.arizona.edu
http://arizona.edu
http://128.196.133.81
http://128.196.133.81
http://www.arizona.edu/index.html
http://www.arizona.edu/index.html


Fig. 2. Design of the Spider module.

626 M. Chau et al. / Decision Support Systems 45 (2008) 621–640
ContentFilter. The filter contains two user-specified
lists: a good term list and a bad term list. This process
allows users to control the quality and relevance of the
collection. After that, the document will be saved to the
local disk. A unique item id also will be assigned to the
document and an index will be stored in the Item Index.

If the document is an HTML file, the HTMLParser
will extract all the URLs from the file. These URLs will
be passed to the URLHandler for processing. First, they
will be checked against the Robot Exclusion Protocol. If
a robots.txt file is found on that Web server specifying
that the current URL should be excluded, then the URL
will be discarded. If the URL passes the checking, it will
then be checked against the URL Filter. The URL Filter
also contains two user-specified lists: a Good URL list
and a Bad URL list. These two lists can be specified
using regular expression [20]. After checking with the
URL Filter, the URL will be checked to see whether it
has been seen before using the URL Seen hashtable.

If a URL passes all the checking, it will be added to
the URL queues. While our spiders are designed to
download Web documents in a breadth-first search
order, our spiders also need to be “polite” and do not all
send requests to the same Web server at the same time.
Following the design of Mercator, a set of multiple first-
in–first-out queues is used in our system instead of a
single queue. Each queue is assigned to exactly one
spider, and URLs from the same host are always added
to the same queue. This makes sure that there will not be
more than one spider sending request to the same Web
server simultaneously, thus preventing our system from
overloading any Web servers.

4.2.2. Indexer
After the spiders have finished downloading the

required number of documents or have been stopped
manually, the user can proceed to the next step to start
the Indexer module. The Indexer creates a searchable
index for the documents collected by extracting terms
from the documents and recording the relationships
between these terms and the documents.

As the main objective of our research is to develop a
tool to support multilingual search engines creation, our
Indexer should be able to process documents in different
languages. Also, because of the diverse formats of
documents on the Web, the Indexer also should be able
to handle documents in different formats, such as
HTML, MS Word, PDF, and so on. The design of our



627M. Chau et al. / Decision Support Systems 45 (2008) 621–640
Indexer module and our Index Structure is shown in
Fig. 3.

First, the IndexerMaster checks the Item Index
created by the Spider module to see how many
documents have been collected and their locations in
the local disk. The information for each document is
then sent to the appropriate parser to convert the file to a
uniform document object for indexing. The document
object models a document in different elements such as
document title and document body in plain text formats.
The file is loaded by the Indexer using the encoding
specified by the user. Because Java supports the reading
of byte streams based on different character sets, this
allows our program to read the file correctly using the
specified language encoding.

Each document object is then passed to the
DocIndexer for indexing. Specifically, the DocIndexer
will tokenize the document into words and then create
an index recording that these words appear in this
document. The relative positional information and the
frequency for each word are also recorded. This process
is relatively easy for most Western languages in which
spaces are used to separate words. However, for
ideographic languages such as Chinese or Japanese, in
which there is no space between words, it would not
make sense to use only spaces and punctuations in
tokenization because this would result in very long
Fig. 3. Design of the Indexer mod
phrases which would be difficult to be matched by
users' search queries. To address the problem, the
DocIndexer first tries to detect what language is used in
the document. If a non-space-delimited language is
used, the DocIndexer will index each double-byte
character found in the document. Otherwise, it will
simply index each word. One should note that single-
character-based indexing for Asian languages may not
achieve retrieval precision as good as that of other
advanced indexing methods such as multiple-character-
based indexing (e.g., bigrams or n-grams) or phrase-
based indexing. However, a single-character index is
often smaller in size and can achieve higher recall. To
maintain simplicity and smaller index size, we have
adopted single-character-based indexing in our tool.
Nonetheless, the DocIndexer can be easily extended to
adopt other indexing methods such as multiple-charac-
ter-based indexing or stemming (e.g., [26]), which is
currently not available in our system.

After the index is created, it is stored in the Index
Structure and converted into an “inverted index”. While
the original index maps a document to a list of words
contained within, an inverted index is designed to map a
word to a list of documents containing the word. This
allows fast retrieval of documents when a search query
is passed to the search engine. The inverted index is also
stored in the Index Structure.
ule and the Index Structure.



628 M. Chau et al. / Decision Support Systems 45 (2008) 621–640
4.2.3. Index Structure
The Index Structure is the underlying representation

of the documents and the search index in any search
engine created by our tool. One of the major require-
ments of a search engine is to support fast retrieval.
Users will lose patience on search engines that have
slow response time. Therefore, a well-designed index
structure and retrieval algorithm is core to a search
engine. As we do not make use of any proprietary da-
tabase in our tool, we have developed our own file
structure and retrieval mechanisms for our indexes. This
file-based index allows our tool to run independently
without relying on any database systems.

Because we would like the index to be easily read by
users or reused in other applications, we have aimed to
design the Index Structure in a simple format. Currently,
the Index Structure consists only of five files, and these
files are stored in plain text format which is easily
readable by users. Although a binary file format will
allow faster retrieval and more efficient use of storage
space, such format is difficult to be read by humans or
reused in other applications. While it is also possible to
store the files in binary formats and provide simple API
for users to access these files, in this case, however, the
files are still not immediately reusable, especially by
users with little computer background. Since the perfor-
mance difference in retrieval time and storage space is
not large, we decided to use the plain text format. As a
result, our index is in a more readily reusable format
than other similar applications which store their indexes
in binary forms.

Our Index Structure consists of five files, namely
Items.dat, ItemDetails.dat, Terms.dat, Relations.dat, and
SortedRelations.dat. These files store the item (docu-
ment) index, the item details (e.g., document titles), the
term index, the document–term index, and the inverted
index, respectively. The files are designed based on the
table design in a relational database.

In order to support different languages, the files, par-
ticularly the terms and the document titles, have to be
stored in their respective encoding. One alternative is to
store such information using UTF-8, a compressed stor-
age format for Unicode characters. However, because
UTF-8 is still not very popular for Web pages in some
languages, we decided to store this information in their
original encoding for easier processing and display to the
users.

4.2.4. Searcher
After the index is created for a collection, the Search-

er module will allow users to perform searches. The
module is a query engine responsible for parsing user
queries and retrieving results from the index. The Search
module supports both Boolean searching (specified
using keywords “AND”, “OR” and “NOT”) and phrase
searching (specified using double quotes). The phrase
searching is possible because we stored the position
information in our index. Search results are then ranked
by the frequencies of the search terms and returned to
the user.

When the Search module is started, it loads some
information about the Index Structure in order to
support retrieval. The Search module contains a simple
version of a Web server, which will create listen on a
port for user query. For example, after starting the
Search module using the default port number 9999, the
search engine developer can access the search service
through the URL http://localhost:9999/. For other users,
the search service can be accessed by replacing “lo-
calhost” with the domain name or IP address, e.g.,http://
ai.arizona.edu:9999/. When a search query is inputted
by the user, it will be sent to the Search module and
processed according to the given encoding. The Search
module will then retrieve the search results which will
be rendered in an HTML template and returned to the
user through the given language encoding. The HTML
template and the image files used in the search result
page can be customized by users in different languages.

4.2.5. GUI
The Graphical User Interface (GUI) module is writõ-

ten in Java and allows users to interact with the other
modules in the system. Users can create new pro-
jects, maintain their collections, or delete existing ones
through the GUI. They can also specify the options for
the other modules (e.g., the number of pages to be
collected by the Spider) through the interface. In the next
section, we will show how users can use the tool through
the user interface.

5. Sample user sessions

The SpidersRUs toolkit allows users to build, access,
and maintain multiple document collections in multiple
languages. In this section, we demonstrate the process of
building multilingual document collections and Web-
based search engine services with the toolkit.

5.1. Creating a new collection

The first step of building a new document collection
is to create a new project in the toolkit. There are two
different methods to create a new project: a simple
method and an advanced method. A user can choose the

http://localhost:9999
http://ai.arizona.edu:9999/
http://ai.arizona.edu:9999/


629M. Chau et al. / Decision Support Systems 45 (2008) 621–640
desired method by clicking the “File” menu in the tool-
bar and selecting either “New” or “Advanced New” op-
tion in a drop-down menu.

After selecting themethod of creating a new project, the
user can specify the name of the project, the location to
store the project files, the language encoding of the col-
lection, and the description of the project (see Fig. 4). In the
advanced method, the user can modify and implement
certain components in the toolkit such as HTMLParser,
HTMLFilter and Searcher. This allows users to customize
the toolkit for specific usage.

After all the parameters are specified, a new project is
created. The current status of the new project will be
displayed in the main window. Other existing projects
that were created in the past also will be shown on the
panel on the left-hand side.

5.2. Spidering

After a project is created, the user can interact with
the Spider module by clicking on the “Spidering” tab
(see Fig. 5). The “Add Seeds” button allows the user to
add seed URLs (starting URLs) to start the spidering
Fig. 4. Creating a
process. The user can add seeds by typing the URLs one
by one in the text box or by loading the URLs from a
text file which contains a list of seed URLs. The seed
URLs added will be displayed in the interface.

The “Advanced” button allows the user to set para-
meters of the Spider module such as the number of
spiders (multiple threads) to be used, the maximum level
from the seed URLs that the spiders should visit, the
number of Web pages to be collected, the maximum
waiting time that a spider should wait before giving up
on fetching a Web page, and whether any proxy server
should be used. The user can also limit the spiders to
fetch pages only in the same Web domain, or specify
whether the Robot Exclusion Protocol should be fol-
lowed during the spidering process.

After all the parameters are specified, the user can
start the spidering process by clicking the “Start” button.
During the spidering process, status messages, including
errors encountered, will be displayed in a message win-
dow. This allows the user to monitor the spider process
closely. The user also can stop the process by pushing
the “Stop” button. Clicking on the “Resume” button will
resume a paused spidering process.
new project.



Fig. 5. The user interface for the Spider module.

630 M. Chau et al. / Decision Support Systems 45 (2008) 621–640
5.3. Indexing

After the spidering process is completed, the user can
go to the interface for the Index module by clicking on the
“Indexing” tab (see Fig. 6). The user can start the indexing
process by pushing the “Start Indexing” button. During
the indexing process, status messages and error messages
are displayed in the message window. The default indexer
in the toolkit will automatically select word-based index
or character-based indexing method according to the
language of the document collection specified. When the
forward indexing process is finished, the user can then
start the sorting process to create the inverted index by
clicking the “Starting Sorting” button. The indexing pro-
cess and sorting process are separated in order tomake the
program more flexible.

5.4. Search service

After the indexing and sorting processes have been
finished, the user can go to the search service interface.
The user can assign a port number for the search service
or simply accept the default port number “9999” and
click the “Start service” button. When the service starts,
the user can launch a browser window (e.g., Microsoft
Internet Explorer) to search the collection by clicking the
“Launch Browser” button. Any search results will be
displayed to the user in the proper language encoding
(see Fig. 7). In the example, the user enters the search
term “ ” (“trade”) in Simplified Chinese in the search
box in the Web browser and the results are displayed to
the user. As mentioned earlier, the HTML template and
the image files used can be customized by the users.

5.5. Maintaining previous collections

The SpidersRUs toolkit can build and maintain
multiple projects or collections. To work on a previously
built collection, the user can simply choose the project
name on the left-hand side window and click the “Load
Project” button (see Fig. 8). After the project is loaded,
all the information related to the project will be retrieved
and displayed. The user can make modifications to the
collection or simply start the search service for this
collection. The user also can delete an existing col-
lection by clicking the “Delete” button.



Fig. 6. The user interface for the Indexer module.

631M. Chau et al. / Decision Support Systems 45 (2008) 621–640
5.6. Examples of collections in other languages

The SpidersRUs Toolkit is designed to deal with
different languages. Fig. 9 shows some examples of
collections built by the toolkit in Japanese, Spanish, and
Arabic. As discussed earlier, the support for multiple
languages, which is not available in most current search
engine tools, will be very useful for specialized search
engine development. Currently, the Web user interface is
designed in English. However, this can be easily
customized for different languages.

6. Case study

SpidersRUs has been designed to help users develop
specialized search engines in different languages easily
and effectively. In this section, we present the use of the
SpidersRUs toolkit to develop a Web search engine that
specializes in medical information in the Chinese
language. We will describe the background of the case
study, how the toolkit was used in the development
of the search engine, and an evaluation study of the
collection built.
6.1. Background

The search engine was developed by our research
group to address the need for medical information of
Chinese-speaking users [39, 40]. A tremendous number
of Chinese medical information resources have been
created on the Web, ranging from scientific papers and
journals to general health topics and clinical symposia.
However, Web users are often frustrated when they try
to look for Chinese health information online. There are
few medical domain-specific search engines built for
Chinese users. Compared to the wide availability of
English medical information services such as MED-
LINE and CANCERLIT, current Chinese medical in-
formation services cannot satisfy the growing medical
information needs of Chinese users.

Several factors contribute to the difficulties of sup-
porting Chinese information-seeking in the medical area.
One major problem is the regional differences between
mainland China, Hong Kong and Taiwan. Although the
populations of all three regions use Chinese, they use
different Chinese characters. People frommainlandChina
where Simplified Chinese is used usually find it difficult



Fig. 7. Search results for a Chinese collection.

632 M. Chau et al. / Decision Support Systems 45 (2008) 621–640
to read Traditional Chinese that is used in HongKong and
Taiwan, while people from the latter two areas also have
similar problems in searching for information written in
Simplified Chinese. Moreover, Simplified Chinese and
Traditional Chinese are encoded differently in computer
systems. Simplified Chinese is usually encoded using the
GB encoding while Traditional Chinese is usually en-
coded using the Big-5 encoding. When searching in a
system encoded one way, users usually cannot get infor-
mation encoded in the other. Building a Chinese medical
Web portal that supports information searching for users
in the three regions is, therefore, a challenging task. These
issues make the medical domain in Chinese an ideal
testbed to study the use of the SpidersRUs toolkit to build
specialized search engine in non-English languages.

6.2. Collection building and indexing

The SpidersRUs toolkit was used to build the search-
able collections from the three regions for the medical
portal. After getting the suggestions from medical do-
main experts in these regions, 210 starting URLs were
manually selected, including 87 from mainland China,
58 from Hong Kong and 65 from Taiwan. These URLs
cover a large variety of medicine-related topics, such as
public clinics, drug information, and hospital informa-
tion. Staring with these medically related URLs, the
SpidersRUs toolkit searched the Web to download
documents. We assumed that medical pages included in
the list were likely to point to sites that were considered
useful [6,9].

Web documents from mainland China, Hong Kong
and Taiwan were collected separately in order to dif-
ferentiate among sources and identify encoding schemes.
Therefore, the toolkit was executed three times to build
three separate collections. The toolkit was first run using
the URLs from mainland China, and collected around
150,000 pages in around 3 h. This collection consisted of
pages written in Simplified Chinese encoded in the
GB2312 format. Then the toolkit was used to build the
Taiwan collection, which also downloaded approximately
150,000 pages in three hours' time. Finally, a Hong Kong



Fig. 8. Loading an existing collection.

633M. Chau et al. / Decision Support Systems 45 (2008) 621–640
collection was built, consisting of around 5000 pages
downloaded in about 10 min. Both the Taiwan and the
Hong Kong collections consisted of Web pages written in
Traditional Chinese encoded using Big-5.

The spidering process was not as fast as other tests
that we have performed previously on English pages, in
which we were able to download about 100,000 Web
pages in an hour. One of the main reasons is that both
tests were run in the United States. As a result,
connecting to and downloading pages from Web servers
in China, Taiwan, and Hong Kong would take sig-
nificantly more time than from those in the US. None-
theless, the reported times were still within a reasonable
limit for specialized search engine development and for
updating (refreshing) the collection.

The collected documents were then indexed by the
indexer in the toolkit. Because the toolkit provides
multilingual support, no special processing was needed
from the users. The indexing for the mainland China
collection and the Taiwan collection each took around
2 h, while the Hong Kong collection only took a few
minutes. The mainland China collection was indexed
based on the GB2312 encoding while the Taiwan and
the Hong Kong collections were indexed using the Big-
5 format.

In the system, users could access the collections built
by the SpidersRUs toolkit as well as other popular
Chinese search engines such as Sina (http://www.sina.
com), Yahoo Hong Kong (http://hk.yahoo.com), and
Openfind (http://www.openfind.com.tw). A sample
screenshot is shown in Fig. 10. The SpidersRUs collec-
tions and user interface were integrated into the interface.
Users could choose from the list of search engines shown
(including the ones built by SpidersRUs) and perform
“meta-searching” on the collections [3,8,30]. The search
results were then combined and displayed to users.

To enable cross-searching between Traditional Chinese
and Simplified Chinese among the three regions, an en-
coding conversion program is used. The encoding con-
verter uses a dictionary that maps between Simplified
Chinese characters (in GB2312) and Traditional Chinese
characters (in Big-5). In the Simplified Chinese version,
when a user enters a query in SimplifiedChinese, the query
is sent to search the mainland China collection using

http://www.sina.com
http://www.sina.com
http://hk.yahoo.com
http://www.openfind.com.tw


Fig. 9. Examples of collections in Japanese, Spanish and Arabic built by the toolkit.

634 M. Chau et al. / Decision Support Systems 45 (2008) 621–640



Fig. 10. Accessing the collections built by SpidersRUs.

635M. Chau et al. / Decision Support Systems 45 (2008) 621–640
Simplified Chinese. At the same time, the query is con-
verted into Traditional Chinese and used to search the
Hong Kong and Taiwan collections that use traditional
Chinese. After the results are retrieved, the encoding
conversion program is invoked again to convert the search
results from Traditional Chinese into Simplified Chinese.
Thewhole process is transparent to the user. This encoding
conversion program enables cross-regional search and
addresses the problem of different Chinese characters and
encodings. It also demonstrates that it is easy to integrate
our toolkit with other applications.

Because documents collected were stored in their
original formats, they could be easily further processed
for other purposes. For example, we were able to use a
Mutual Information program [25] to extract meaningful
Chinese phrases from the document collections. These
phrases were then saved into a separate index file and
used for document summarization and document clus-
tering [4,39].
6.3. Evaluation

An evaluation study was conducted to evaluate the
performance of the search system. In the study, the
medical search system was compared with existing
Chinese Search Engines for their performance in
Chinese medical information browsing and searching
[39]. Forty-five subjects from mainland China, Taiwan,
and Hong Kong (15 from each region) participated in
the experiment. Each subject was asked to perform four
search tasks. In a search task, a subject would be asked a
short question that required a specific answer which
could be found in the documents in the collection.

Yahoo HK, Openfind, and Sina, are chosen as our
benchmarks as they are one of the most widely used
search engines in Hong Kong, Taiwan, and China, res-
pectively. Efficiency was measured by the average time
that subjects needed to perform a task. Effectiveness was
represented by accuracy, which was measured by the



636 M. Chau et al. / Decision Support Systems 45 (2008) 621–640
number of correct answers given by a subject divided
by the total number of questions. The evaluation results
showed that our system achieved higher efficiency and
effectiveness than the benchmark search engines. In
terms of effectiveness, our system performed signifi-
cantly better than Sina (paired t-test p-value=0.008)
and comparably to Yahoo HK and Openfind in search
tasks. In terms of efficiency, our system was signifi-
cantly better than Sina (p=0.040) and Openfind
(p=0.045) and comparable to Yahoo HK. On average,
our system achieved 20% higher effectiveness and was
30% more efficient than the benchmark systems. The
results also showed that the document clustering tool
could improve users' performance when browsing.
More details about the evaluation can be found in
[39,40].

The case study has shown that it is easy and convenient
for search engine developers to use the SpidersRUs tool to
create a specialized search engines in non-English lan-
guages. In the case study, the collections created from
SpidersRUs were combined with other search engines and
were able to improve users' searching and browsing
performance. It also demonstrated that the intermediate
results of the process, including the documents down-
loaded from the Web and the terms extracted from these
documents, could be used to integrate with other ap-
plications to provide advanced functionalities such as
document summarization and document clustering.

7. Discussions

We have presented the architecture design of the
SpidersRUs toolkit, a sample user session of the system,
and a case study on a Chinese medical search engine. In
this section, we will discuss the performance of our
system and some lessons learned.

7.1. Performance

Speed is an important issue in search engine deve-
lopment. Because the size of the Web keeps growing,
tools for search engine creation, even only for personal or
domain-specific search engines, need to scale up to thou-
sands or even millions of pages. When we developed the
SpidersRUs toolkit, we designed it with the aim to build
collections up to around half to onemillion documents. To
achieve this objective, we spent a lot of time in optimizing
the codes for each module in order to improve perfor-
mance, both in terms of speed and memory usage. One
major bottleneckwe encountered during the early stage of
our project is the I/O operations. In order to improve
performance by minimizing disk seek time and read/write
time, all I/O operations had to be buffered. We also
ensured that the different modules did not have any
memory leakage. As the tool has to process one million
documents, any small leakage in memory would be mul-
tiplied by a million times, which would significantly
affect the tool's performance.

For the Spider module, we had to make sure that each
spider agent was light-weighted and would not consume
too many resources. Another problem with the Spider
module was that some working memory, such as the
spider queues, was too large to be stored entirely in
memory. However, it would also be very inefficient to
store them completely in the local disk because the
reading time would be too slow. To address the problem,
we stored part of the information in the memory and part
in the local disk. The information that was more likely to
be used (e.g., the head elements of a queue) would be
cached in the program's memory. Less frequently used
information would be stored in the local disk, and read
into memory only when needed.

Sorting the forward index to become the inverted
index is not an easy task when the index is large. To
minimize the memory usage of this process, the forward
index is first split into buckets based on the term id. For
example, the first bucket will contain the relations for
the terms whose term id is in the range of 1 to 100, the
second bucket will contain those between 101 and 200,
and so on. Each bucket is then ordered individually
based on term id. After all buckets are sorted, they are
combined to form the final inverted index.

As can be seen from our discussion, there is always a
tradeoff between speed and memory. We tried to design
our toolkit to run on high-end personal computers (e.g.,
Intel Pentium 4 at the time of our design) rather than
powerful computer servers or low-end personal compu-
ters. In an evaluation test, the final tool was able to
develop a collection of one million pages within two
days (approximately one day for spidering and one day
for inverted indexing). While this is not as fast as some
sophisticated applications (e.g., the Mercator which uses
an optimized version of the Java Virtual Machine
[16,17]), it is well suited for specialized search engine
development.

7.2. Developing multilingual systems

There are several major issues in developing multi-
lingual systems. First, each language has its own charac-
teristics for text tokenization, so special attention need to
be paid to the tokenization method in the indexing
process. As discussed earlier, there is no space between
words for some languages. Second, different encodings



637M. Chau et al. / Decision Support Systems 45 (2008) 621–640
exist even for the same language. For example, Japanese
can be encoded in EUC or Shift-JIS. Also, every
language can be encoded in its specific encoding as well
as Unicode. Third, it is important to know what en-
coding is used when reading a series of bytes from the
Web or from the local disk. If the correct encoding was
not known, it would be difficult to convert the bytes
back to its original characters.

To address the first problem, our toolkit index
documents in different languages in different ways.
For languages where words are separated by spaces,
spaces are used to indicate word boundary for the
Indexer. For other languages, the indexer will assume
that a word boundary exists between every pair of
double-byte characters and will index each of them.
While this approach may not be very efficient for some
languages as some characters may appear very fre-
quently, it would apply to any languages easily.

To address the last two problems, the encoding of a
document must be known. While it is possible to let the
system automatically detect the encoding of a docu-
ment, either by checking the characters used in the
document or by looking at the meta-information of a
Web page, such methods do not always give the correct
encoding. It is not uncommon that Web page authors put
the wrong encoding information in the meta-data of the
HTML file. Therefore, we allow the user to specify
manually the encoding to be used for each collection.
Currently, our system can only handle a set of docu-
ments in the same encoding. This includes handling
English plus an Asian language (e.g., English and
Traditional Chinese as both can be represented in Big-5
encoding), but not two languages with different en-
codings like Japanese and Chinese. If the documents
collected are encoded using Unicode (which can be used
to code all languages), our system can handle multiple
languages. One way of doing this is to detect the en-
coding of the source documents and convert all doc-
uments into Unicode. Such a detection component will
be a possible future direction for our development.

Java, as mentioned earlier, is a programming lan-
guage designed for multiple languages. Each character
is treated as a double-byte Unicode character in Java.
When reading a stream of bytes from the Web or from
disk, a Java program can easily convert the bytes to
the Unicode characters of a particular language accord-
ing to the encoding specified by the user. When the
program needs to save a character string (e.g., a term or
the title of a document) to the local disk, the Unicode
characters, be it Chinese, English, or Arabic, can be
converted back to the byte streams based on the
encoding specified by the user. This has made it very
convenient to develop multilingual information systems
in Java.

7.3. Implications for system developers and users

New collections can be created easily using software
tools such as SpidersRUs. With a set of URLs defined
by the users, a new collection can be built in a few
minutes to a few hours. System developers and Web site
administrators can use the tool to build a specialized
Web search engine in a language they choose. In ad-
dition, researchers can use the tool to collect documents
from the Web for other purposes. For example, Web
documents can be used as a linguistic resource for
various linguistic and information retrieval research
(e.g., [14]). SpidersRUs can help users download a
selected set of documents from the Web conveniently.
Also, as demonstrated in our case study, the tool can be
used to create a forward index and an inverted index in
any languages that can be used in other applications
such as document clustering. While many other re-
searchers have used SMART [29] for such purposes for
English documents, SpidersRUs can be used for any
languages. As the files and the indexes created by
SpidersRUs are in plain text format, they can be easily
integrated into any other applications.

The tool also encourages users to create their col-
lections and own search engines. Similar to Greenstone
[37], SpidersRUs supports collection building in mul-
tiple languages and we plan to promote it to different
parts of the world. The tool can be used to build a search
engine for a single Web site, a specific domain, a digital
library, an archival, or multimedia documents (with
minor modifications). However, we also have another
intention. In addition to allowing users to create their
own searchable collections in their own languages,
SpidersRUs essentially provides the tools for users to
spider, index, and search a collection in their own lan-
guages. This gives system developers and users more
power over other tools such as Greenstone (which store
their information in binary format), as users can reuse
the collected files and the search indexes in any way
they like. They can combine them with any of their own
applications, such as an information retrieval system, an
e-commerce system, or other Web applications.

One limitation of our tool is that we currently do not
support incremental update. A complete re-run is needed
for refreshing the search engine index. However, due to
the small size of the collections intended for our tool,
this would only take a reasonable amount of time. We
are currently working on revising the tool to support
incremental refresh and update.



638 M. Chau et al. / Decision Support Systems 45 (2008) 621–640
8. Conclusion and future directions

In this paper, we have reviewed existing research in
specialized, multilingual search engines and proposed
an architecture for search engine development. We have
presented the design and a sample user session of the
SpidersRUs toolkit, and have shown several search en-
gines developed by the toolkit in different languages. A
case study on using the toolkit for developing a Chinese
medical search engine also has been discussed. Our result
has demonstrated that toolkit can be used for developing
search engine effectively and efficiently in multiple lan-
guages. Some technical issues involved in our study, such
as the optimization of the toolkit and the use of Java in
developing multilingual systems, are also discussed.

Our future work has several directions. First, we
would like to further enhance the performance of our
system. While the current performance level is satisfac-
tory, it is possible to further improve the speed of the
spidering and indexing processes and to make the system
more stable. We also plan to make the system more
customizable by allowing users to have more control
over the options that can be selected in the system.

Second, we would like to expand our toolkit for
multimedia information. In recent years, more and more
multimedia data, such as music, images, and movies, are
available on the Web. It is important to create a toolkit
that allows users to develop easily search engines for
multimedia materials. As most current tools rely on
meta-data (e.g., [35]), it would be useful to have a
toolkit that can help users collect and index multilingual,
multimedia data automatically.

Third, we are improving our toolkit such that more
language-specific or document-specific features can be
set. For example, specific indexers (such as one that
employs phrase-based indexing) can be defined for
different languages according to their characteristics
such that the indexing process can be more effective.
Customized indexers can also be used to handle semi-
structured documents such as XML and fielded-texts in
database by extracting text from every field in the data
source and storing them into the Index Structure. We also
plan to implement cross-language information retrieval
(CLIR) functionality into the toolkit [27]. For example,
users would be able to retrieve Japanese documents by
inputting an English query, and vice versa.

Lastly, we are working on developing a version of
our toolkit that is OAI-compliant [31]. OAI, or the Open
Archive Initiative, provides some standards for search
engine and digital library systems. A toolkit that can
collect information from OAI-compliant Web sites as
well as provide information to other users according to
the OAI standard would be very useful for the exchange
and sharing of data among search engines and digital
libraries. This would be especially useful for commu-
nities where a large number of domain-specific digital
libraries are involved, such as the National SMETE
Digital Library (NSDL) community.

Acknowledgements

This project has been supported in part by the
following grants:

• NSF Digital Library Initiative-2, “High-performance
Digital Library Systems: From Information Retrieval
to Knowledge Management,” IIS-9817473, April
1999–March 2002.

• NSF National SMETE Digital Library: “Intelligent
Collection Services for and about Educators and
Students: Logging, Spidering, Analysis and Visualiza-
tion,” DUE-0121741, September 2001–August 2003.

We would like to thank Chia-Jung Hsu for his
contribution to this project and the user manual, and
Maryan Mikhael and Shingka Wu for the graphic
design. We would also like to thank other members of
the Artificial Intelligence Lab at the University of
Arizona who have tested the toolkit and shared with us
their ideas and comments.

References

[1] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, S. Raghavan,
Searching the Web, ACM Transactions on Internet Technology
1 (1) (2001) 2–43.

[2] S. Brin, L. Page, The Anatomy of a Large-Scale Hypertextual
Web Search Engine, Proceedings of the 7th WWW Conference,
Brisbane, Australia, Apr 1998.

[3] M. Chau, D. Zeng, H. Chen, Personalized spiders for web search
and analysis, Proceedings of the First ACM/IEEE-CS Joint
Conference on Digital Libraries, Roanoke, Virginia, USA, 2001,
pp. 79–87, June 24–28, 2001.

[4] M. Chau, H. Chen, J. Qin, Y. Zhou, W.K. Sung, Y. Chen, Y. Qin,
D. McDonald, A. Lally, M. Landon, NanoPort: a web portal for
nanoscale science and technology, Proceedings of The Second
ACM/IEEE-CS Joint Conference on Digital Libraries, Portland,
Oregon, USA, July 14–18, 2002, 2002, p. 373.

[5] M. Chau, H. Chen, Personalized and focused web spiders, in:
N. Zhong, J. Liu, Y. Yao (Eds.), Web Intelligence, Springer-
Verlag, 2003, pp. 197–217, February 2003.

[6] M. Chau, H. Chen, Comparison of three vertical search spiders,
IEEE Computer 36 (5) (2003) 56–62.

[7] H. Chen, M. Chau, D. Zeng, CI Spider: a tool for competitive intel-
ligence on the web, Decision Support Systems 34 (1) (2002) 1–17.

[8] H. Chen, H. Fan, M. Chau, D. Zeng, MetaSpider: meta-searching
and categorization on theWeb, Journal of the American Society of
Information Science & Technology 52 (13) (2001) 1134–1147.



639M. Chau et al. / Decision Support Systems 45 (2008) 621–640
[9] H. Chen, A. Lally, B. Zhu, M. Chau, HelpfulMed: intelligent
searching for medical information over the Internet, Journal of
the American Society for Information Science and Technology
54 (7) (2003) 683–694.

[10] H. Chen, M. Ramsey, P. Li, The Java search agent workshop, in:
P. Gabriella, F. Crestani (Eds.), Soft Computing in Information
Retrieval, Physica-Verlag, 2000, pp. 122–140.

[11] F.C. Cheong, Internet Agents: Spiders, Wanderers, Brokers, and
Bots, New Riders Publishing, Indianapolis, Indiana, USA, 1996.

[12] D. Czarnecki, A. Deitsch, Java Internationalization, O'Reilly &
Associates, Sebastopol, California, USA, 2001.

[13] P. DeBra, R. Post, Information retrieval in the World-Wide Web:
making client-based searching feasible, Proceedings of the First
International World Wide Web Conference, Geneva, Switzer-
land, 1994.

[14] F. Duclaye, F. Yvon, O. Collin, Using the Web as a linguistic
resource for learning reformulations automatically, Proceedings
of the Third International Conference on Language Resources
and Evaluation (LREC-2002), Las Palmas, Canary Islands,
Spain, May 2002, 2002, pp. 390–396.

[15] D. Eichmann, Ethical web agents, Proceedings of the 2nd Inter-
nationalWorldWideWebConference, Chicago, Illinois, USA, 1994.

[16] A. Heydon, M. Najork, Performance limitations of the Java core
libraries, Proceedings of the 1999 ACM Java Grande Confer-
ence, Jun 1999, 1999, pp. 35–41.

[17] A. Heydon, M. Najork, Mercator: a scalable, extensible Web
crawler, World Wide Web 2 (4) (1999) 219–229.

[18] ht://dig Group. “htdig Reference.” [Online], Available at http://
www.htdig.org/htdig.html.

[19] Internet Archive, Heritrix Wiki, [Online], Available at http://
crawler.archive.org/cgi-bin/wiki.pl, 2006.

[20] S.C. Kleene, Representation of events in nerve nets and finite
automata, Automata Studies, Annals of Mathematics Studies 34
(1956) 3–42.

[21] M. Koster, A Standard for Robot Exclusion, [Online], Available
at http://www.robotstxt.org/wc/norobots.html, 1994.

[22] U. Manber, M. Smith, B. Gopal, WebGlimpse: combining
browsing and searching, Proceedings of the USENIX 1997 Annual
Technical Conference, Anaheim, California, 1997, Jan 1997.

[23] M.L. Mauldin, Spidering BOF report, Report of the Distributed
Indexing/Searching Workshop, Cambridge, Massachusetts, USA,
May 1996, 1996.

[24] Nutch, Welcome to Nutch! [Online], Available at http://lucene.
apache.org/nutch/index.pdf, 2006.

[25] T. Ong, H. Chen, Updatable PAT-Tree approach to Chinese key
phrase extraction using mutual information: a linguistic founda-
tion for knowledge management, Proceedings of the Second
Asian Digital Library Conference, Taipei, Taiwan, Dec 1999,
pp. 63–84.

[26] M.F. Porter, An algorithm for suffix stripping, Program 14 (3)
(1980) 130–137.

[27] J. Qin, Y. Zhou, M. Chau, H. Chen, Multilingual web retrieval: an
experiment in English–Chinese business intelligence, Journal of
the American Society for Information Science and Technology
57 (5) (2006) 671–683.

[28] G. Salton, Automatic Text Processing, Addison-Wesley, Read-
ing, Massachusetts, USA, 1989.

[29] G. Salton, M.J. McGill, Introduction to Modern Information
Retrieval, McGraw-Hill, New York, USA, 1983.

[30] E. Selberg, O. Etzioni, Multi-service search and comparison
using the MetaCrawler, Proceedings of the 4th World Wide Web
Conference, Boston, Massachusetts, USA, Dec 1995.
[31] H. Suleman, E.A. Fox, A Framework for Building Open Digital
Libraries, D-Lib Magazine 7 (12) (2001), Available at: http://
www.dlib.org/dlib/december01/suleman/12suleman.html.

[32] Swish-e Development Team, The Swish-e Documentation,
[Online], Available at http://swish-e.org/current/docs/index.html,
2002.

[33] The Unicode Consortium, The Unicode Standard. Worldwide
Character Encoding, Addison-Wesley, 1992.

[34] Vestris Inc., Alkaline: A UNIX/NT Search Engine, [Online],
Available at http://alkaline.vestris.com/docs/pdf/alkaline.pdf,
2001.

[35] I.H. Witten, R.J. McNab, S.J. Boddie, D. Bainbridge, Green-
stone: a comprehensive open-source digital library software
system, Proceedings of the ACM Digital Libraries Conference,
San Antonio, Texas, USA, 2000.

[36] I.H. Witten, D. Bainbridge, S.J. Boddie, Greenstone: open-source
DL software, Communications of the ACM 44 (5) (2001) 47.

[37] I.H. Witten, D. Bainbridge, S.J. Boddie, Power to the people:
end-user building of digital library collections, Proceedings of
the Joint Conference on Digital Libraries, Roanoke, Virginia,
USA, June 2001, 2001, pp. 94–103.

[38] C.C. Yang, J. Yen, H. Chen, Intelligent Internet searching agent
based on hybrid simulated annealing, Decision Support Systems
28 (3) (2000) 269–277.

[39] Y. Zhou, J. Qin, H. Chen, CMedPort: an integrated approach to
facilitating Chinese medical information seeking, Decision
Support Systems 42 (3) (2006) 1431–1448.

[40] Y. Zhou, J. Qin, H. Chen, Z. Huang, Y. Zhang, W. Chung, G.
Wang, CMedPort: a cross-regional Chinese medical portal,
Proceedings of the ACM/IEEE-CS Joint Conference on Digital
Libraries, Houston, Texas, May 27–31, 2003, 2003, p. 379.

Michael Chau is an Assistant Professor and the
BBA(IS)/BEng(CS) Coordinator in the School
of Business at the University of Hong Kong.
He received his Ph.D. degree in management

information systems from the University of
Arizona and a Bachelor Degree in Computer
Science and Information Systems from the
University of Hong Kong. His current research
interests include information retrieval, Web
mining, data mining, knowledge management,

electronic commerce, security informatics, and
as published more than 60 research articles in
ferences, including IEEE Computer, Journal of
Information Science and Technology, Decision
ommunications of the ACM. More information
ww.business.hku.hk/~mchau/.
can be found at http://w

Jialun Qin is an Assistant Professor in the
Department of Management at University
of Massachusetts Lowell. He received his
Ph D. degree in Management Information
Systems from the University of Arizona.
leading journals and con
the America Society for
Support Systems, and C
intelligent agents. He h
His research interests include knowledge
management, data and Web mining, digital
libraries, and human computer interaction.
His publications have appeared in Decision
Support Systems, Journal of the American
Society for Information Science and Tech-
nology, and IEEE Intelligent Systems. Contact him at Jialun_qin@
uml.edu.

http://www.htdig.org/htdig.html
http://www.htdig.org/htdig.html
http://crawler.archive.org/cgi-bin/wiki.pl
http://crawler.archive.org/cgi-bin/wiki.pl
http://www.robotstxt.org/wc/norobots.html
http://lucene.apache.org/nutch/index.pdf
http://lucene.apache.org/nutch/index.pdf
http://www.dlib.org/dlib/december01/suleman/12suleman.html
http://www.dlib.org/dlib/december01/suleman/12suleman.html
http://swish-e.org/current/docs/index.html
http://alkaline.vestris.com/docs/pdf/alkaline.pdf
http://www.business.hku.hk/~mchau/
mailto:Jialun_qin@uml.edu
mailto:Jialun_qin@uml.edu


640 M. Chau et al. / Decision Support
Yilu Zhou is an Assistant Professor in the
Department of Information Systems and
Technology Management at George Washing-

ton University. Her current research interests
include multilingual knowledge discovery,
Web mining, text mining and human computer
interaction. She received a Ph.D. in Manage-
ment of Information System from the Uni-
versity of Arizona, where she was also a

research associate of the Artificial Intelligence
Lab. She received a B.S. in Computer Science
University. Contact her at yzhou@gwu.edu.

Chunju Tseng is an Assistant Research

Scientist in the Department of Management
Information Systems at the University of
from Shanghai Jiaotong
Arizona. His research interests include Web
mining, Infectious Disease Surveillance and
human computer interaction. He received his

B.S. degree from the National Taiwan Uni-
versity and M.S. in Management Information
System from the University of Arizona. He has
published articles in Joint Conference on
Digital Libraries and presented in many
International Conference on Digital Govern-
conferences including

ment Research and Conference on Human Factors in Computing
Systems.
Hsinchun Chen is McClelland Professor of

Systems 45 (2008) 621–640
Management Information Systems at the
University of Arizona and Andersen Consult-
ing Professor of the Year (1999). He received
the B.S. degree from the National Chiao-Tung
University in Taiwan, the MBA degree from
SUNY Buffalo, and the Ph.D. degree in

Information Systems from the New York
University. Dr. Chen is a Fellow of IEEE and
AAAS. He received the IEEE Computer
Society 2006 Technical Achievement Award.

He is author/editor of 13 books, 17 book chapters, and more than 130
SCI journal articles covering intelligence analysis, biomedical
informatics, data/text/web mining, digital library, knowledge manage-
ment, and Web computing. Dr. Chen was ranked #8 in publication
productivity in Information Systems (CAIS 2005) and #1 in Digital
Library research (IP&M 2005) in two recent bibliometric studies. He
serves on ten editorial boards including: ACM Transactions on
Information Systems, IEEE Transactions on Systems, Man, and
Cybernetics, Journal of the American Society for Information Science
and Technology, andDecision Support Systems. Dr. Chen has served as
a Scientific Counselor/Advisor of the National Library of Medicine
(USA), Academia Sinica (Taiwan), and National Library of China
(China). He has been an advisor for major NSF, DOJ, NLM, DOD,
DHS, and other international research programs in digital library,
digital government, medical informatics, and national security
research. Dr. Chen is the founding director of Artificial Intelligence
Lab and Hoffman E-Commerce Lab. He is conference co-chair of
ACM/IEEE Joint Conference on Digital Libraries (JCDL) 2004 and
has served as the conference/program co-chair for the past eight
International Conferences of Asian Digital Libraries (ICADL), the
premiere digital library meeting in Asia that he helped develop. Dr.
Chen is also (founding) conference co-chair of the IEEE International
Conferences on Intelligence and Security Informatics (ISI) 2003–
2007. Dr. Chen has also received numerous awards in information
technology and knowledge management education and research
including: AT&T Foundation Award, SAP Award, the Andersen
Consulting Professor of the Year Award, the University of Arizona
Technology Innovation Award, and the National Chaio-Tung Uni-
versity Distinguished Alumnus Award. Further information can be
found at http://ai.arizona.edu/hchen/.

mailto:yzhou@gwu.edu
http://ai.arizona.edu/hchen/

	SpidersRUs: Creating specialized search engines in multiple languages
	Introduction
	Research background
	Collection building
	Indexing
	Searching
	Existing tools

	Research objective
	Proposed architecture
	Choice of implementation platform
	System architecture
	Spider
	Indexer
	Index Structure
	Searcher
	GUI


	Sample user sessions
	Creating a new collection
	Spidering
	Indexing
	Search service
	Maintaining previous collections
	Examples of collections in other languages

	Case study
	Background
	Collection building and indexing
	Evaluation

	Discussions
	Performance
	Developing multilingual systems
	Implications for system developers and users

	Conclusion and future directions
	Acknowledgements
	References


