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Abstract-The purpose of this investigation is to show the feasibility of spectral methods in 
the field of information science, in particular for the analysis of library circulation data. Using 
the software package MATLAB@ we applied the discrete Fourier transform to obtain 
frequency information about the noisy time series of circulation data. Over a time span of two 
academic years we could clearly detect a semestral and-less visibly-a weekly periodicity. 
Other periods were not so distinct and could be spurious. The normal loan period of four 
weeks could not be detected. Following McGrath (1996, Journal of the American Socien, for 
Informorion Science, 47, 136-145), and Naylor and Walsh (1994, Library and Information 
Science Research, 16,299-314) we conclude that spectral methods show a lot of promise for 
analyzing all kinds of time series and other signals occurring in the field of information 
science. This approach certainly deserves more attention from practitioners. 0 1997 Elsevier 
Science Ltd 

1. INTRODUCTION 

Spectral methods are well known in engineering sciences. They belong to the core curriculum 
of any engineering course. Indeed, in the introduction of their classical book on signals and 
systems Oppenheim et al. (1983) state that: 

The concepts of signals arise in an extremely wide variety of fields, and the ideas and 
techniques associated with these concepts play an important role in such diverse areas of 
science and technology as communications, aeronautics and astronautics, circuit design, 
acoustics, seismology, biomedical engineering, energy generation and distribution systems, 
chemical process control, and speech processing. 

Moreover, among the first signals presented in their book they include the discrete-time signal 
of weekly Dow-Jones stock market indices and the species-abundance relation of an ecological 
community. All these fields are close enough to the information sciences to wonder why the 
analysis of signals and systems has not caught on much earlier. Moreover, one of the authors of 
this article (R.R.) has already on several occasions stressed the relations that exist between 
economics and ecology on the one hand, and the information sciences on the other (Rousseau, 
1992, 1994; Rousseau & Van Hecke, 1993). 

As far as we know, McGrath’s (1996) paper, presented at the 4th International Conference on 
Bibliometrics, Informetrics and Scientometrics, Berlin, Germany in 1993, was the first to use 
spectral methods in the frequency domain to study library circulation data. Curiously enough, 
the few studies using spectral methods that preceded McGrath’s work include several articles on 
the much more difficult topic of chaotic behavior (Kurtze et al., 1992; Snyder & Kurtze, 1995; 
Tabah & Saber, 1990). Other scientists that use signal processing methods are Kunz (1987) in 
relation with time studies of patent data, and Hall (1990, 1992), who studied growth models. 
Recently, Naylor & Walsh (1994) have used spectral analysis as a step in deriving a best-fit time 
series model. As their aim was to obtain a complete model for internal library pick-up data, 
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detecting periodicity was only a part of their investigations. Consequently, their approach is 
more sophisticated than ours. 

2. DATA-PURPOSE OF THE INVESTIGATION 

2.1. Data 

The original time series consists of loan data of the KIHWV/HTI library over two consecutive 
academic years. Data were collected on a daily basis by the library staff. Three series of data will 
be analyzed: the total number of loans per day, the number of book loans per day, and the 
number of thesis loans per day. The first series is the sum of the second and the third. As the 
library is closed during weekends and during the holiday periods, a week consists of five days, 
and a year is an academic year of 35 weeks (or 175 days), divided into two semesters. The first 
semester consists of 14 weeks of teaching, followed by a study and examination period of 
three weeks; the second one consists also of 14 weeks of teaching followed by a study and 
examination period of four weeks. Note that all holiday periods, i.e. the Christmas and Easter 
holidays are simply eliminated as the library is closed during these days. A description of the 
KIHWV/HTI library and a discussion of socio-cultural factors affecting the borrowing behavior 
of students can be found in Rousseau & Vandegehuchte (1995). The time series of all loans is 
shown in Fig. 1. Because of the decrease in loans during the study and examination periods the 
four semesters can easily be discerned. The complete data set is given in Appendix A, so that 
others can try to squeeze more information (than we did) out of it. 

2.2. Purpose of the study 

The aim of this investigation is to show the feasibility of spectral methods in the field of 
information sciences, in particular for the analysis of library circulation data. As such, we intend 
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Fig. 1. Two-year loan data: time series. 



Augmenting a characterization network with semantic information 395 

to corroborate McGrath’s approach (1996). In addition, we apply some transformations, e.g. 
detrending of the data, which were not performed by McGrath. 

3. METHODS 

3.1. Basics of signal processing 

We will use elementary signal analysis methods to detect periodicity in the time series. In 
particular, we will transform the given signal (in time domain) into a series in frequency domain. 
The tool to perform this transformation is the discrete Fourier transform (DFT). This is a 
bijective linear transformation from the space of real or complex N-tuples (an N-dimensional 
vector space) onto itself. Here the first space is considered the time domain, consisting of all 
350-tuples (we have 350 data points); the second space is the frequency domain, which in this 
concrete situation is also a 350 dimensional space. The exact form of the DFT is shown in 
Appendix B. Note that in time domain a difference of one unit denotes a difference of one day; 
in frequency space a value of k stands for a pure sinusoid signal with period 350/k days. The 
following example explains these notions. 

Let x=(x(n)),,=, ..,.. 29 where 

x(n)= 1.0 cos(2?7$,n)+2.0 cos(2?&,n)+3.0 cos(277&n) (1) 

withf, = l/5, fi= 1/3,f,= l/10. This signal is shown in Fig. 2. Clearly, knowing only the sequence 
x(n), it is nearly impossible to decompose x(n) into its three terms. 

Applying the DFf (when IV is an arbitrary integer, and a more efficient numerical realization, 
known as the FFT, i.e. the Fast Fourier Transform, when N is a power of two) yields Fig. 3. Now 
we have all the information we need to decompose the original signal X. The frequencies J;, i = 1, 
2. 3 can be found by dividing the numbers associated with the peaks (here: 3, 6 and 10) by N 
(here 30). The amplitudes (here 1.0,2.0 and 3.0) are obtained by dividing the values for X(k) by 
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Fig. 2. Time-domain representation of equation (1). 
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Fig. 3. Frequency-domain representation of equation (1). 

25 

N/2 (here 15). We further note that if the average of the signal is zero, the first component of the 
DFT (indexed by 0) is zero too. 

We will further apply autocorrelation: this is a technique that suppresses random variations, 
and therefore enhances the real signal hidden in the noise. The mathematical formula used to 
calculate the autocorrelation function is given in Appendix B. 

The power spectrum, denoted as PS, is the DFT of the autocorrelation function (Shiavi, 1991). 
It is always real and non-negative. Basically this provides us with the same information as the 
DFI of the original signal, but the advantage lies in the fact that now the unwanted influence 
of randomness (noise) is suppressed. Note, however, that to obtain the amplitudes of the original 
signal from the PS we first have to take the square root of the amplitude of the PS value and then 
divide the result by N/2. 

How can we detect periodicity in a signal? It can be shown (see e.g. Jaffe, 1987b; Oppenheim 
et al., 1983) that: 

1. If the original signal is periodic, the autocorrelation function is also periodic with the same 
period; 

2. If a signal is periodic then its DPT consists of a repetitive pattern of a non-zero component 
followed by a fixed number of zeros. The non-zero components are not necessarily of equal 
magnitude. This is illustrated in Fig. 4. 

3.2. From theory to practice 

Data manipulation was done by means of the student version of MATLAB@. Some functions 
(such as “detrend”) were already available, other ones were not (such as the circular 
autocorrelation function) and were created by us as so-called m-files. 

The first step we took was “detrending” the signal. This means that a best-fitting linear 
function was calculated and then the values corresponding to this linear function were subtracted 
from the original data. This resulted in a signal with zero average. The “detrending” operation 
is necessary to avoid scattering energy round zero. It is recommended in most books on signal 
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Fig. 4. DFT of the periodic pattern x(n)= [7, -6, 2, 31 repeated six times. 

processing, e.g. Shiavi (1991) but as far as we could see this was not applied by McGrath 
(1996). 

Next, we applied the autocorrelation function, resulting in a roughly sinusoidal signal (see 
Fig. 5). Finally, we applied the DFT to this signal, giving us the power spectrum of the original 
signal. 

4. RESULTS 

The power spectra for all loans, book loans and thesis loans are shown in Figs 6,7 and 8. We 
assumed that the input sequence x(n) (the loan data) is a sum of cosines as in (2): 

x(n)= jf, A, cos(27@) (2) 

The number M is unknown (in theory it could even be +CQ) but this does not matter, as we are 
interested only in the main contributing terms. Our first aim is to find periodic patterns in the 
data. Hence, we tried to identify the peaks in the frequency spectra. In the spectrum of all loans 
we observed a huge peak at k=4, and a smaller one at k= 12; the peak at k=46 is clearly visible 
as well. Book and thesis loans separately yield similar results. For a period of one week 
(=5 days) we explicitly searched for a peak at 35015 =70, where we detected a peak, although 
a fairly weak one. Table 1 “translates” frequency units to frequencies (in ~Hz) and periods (in 
library days), and gives a subjective indication of the relative magnitude of the effect. 

A period of 87.5 days corresponds precisely to one average semester (17 weeks=85 days, 
18 weeks=90 days). This result is not surprising and was already clearly visible in the original 
data. It constitutes, however, a corroboration of the spectral method. Although weak, we did find 
the expected five-day period. We have no explanation for the other two peaks: a period of 29 
library days corresponds to 41 calendar days or about six weeks. It might be that this peak is just 
an harmonic of the “semester” peak. A partial explanation lies perhaps in the fact that students’ 
lab reports are due approximately every three weeks. A period of seven library days corresponds 
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Fig. 5. Autocorrelation function applied to all loan data. 

to one and a half weeks. Perhaps it could be that students tend to borrow a book roughly every 
10 calendar days. Anecdotal evidence seems to suggest that some students borrow a book, 
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Fig. 6. Power spectrum of all loan data (truncated at k= 100). 
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Fig. 7. Power spectrum of book loans (truncated at k= 100). 

glance through it, and either find what they were looking for or see that this book is not really 
what they want. After somewhat more than a week they return it to try another one. We realize 
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Fig. 8. Power spectrum of thesis loans (truncated at k= 100). 
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Table 1. frequencies and approximate periods 

Numbers Frequency Period All loans Books Theses 
, 

4 0.13 87.5 strong strong strong 
12 0.40 29 strong strong strong . 
46 I .54 7.5 moderate strong weak 
70 2.31 55 weak weak none 

this is a poor explanation, but after consulting the main librarian we could not find a better one. 
We further mention that the “maximum” loan period is four weeks. Yet, we could not detect a 
four-week period in the data. Perhaps, this could be explained by the fact that this “maximum” 
period only applies to students (not to staff) and theses are moreover often borrowed for one 
semester or even for a whole academic year (which is tolerated so long as no-one else requests 
this particular thesis). We note that there are several other “moderate” and “weak” peaks for 
which, however, we have no explanation. 

The amplitudes associated with the main peaks are approximately 4.7 (all loans), 3 (books) 
and 1.7 (theses). Further, returning to Fig. 5 which shows the autocorrelation function of the 
input sequence x(n), we observe that there is already a period of one semester (87.5 days). The 
amplitude of this sinusoidal wave is 2(5000) “‘/350=5.3 (cf. Appendix B for the method of 
calculation). The difference between 5.3 and 4.7 (theoretically they should be equal) can be 
explained by the fact that after applying the DFT to the autocorrelation function some energy 
is scattered in side lobes. We conclude that library loans are characterized by a long term wave 
with amplitude five (five loans up and five down). 

We finally note that we tried several refinements, such as applying a window to the 
autocorrelation results (before computing the DFT) or adding corresponding days for the two 
years and then doing the analysis. However, this yielded at best a slight improvement. Therefore, 
we prefer to present the results of the more elementary approach. As an experiment, we extended 
our five-day week to a seven-day week by adding zeros. This resulted in a huge peak at the 
corresponding frequency point. However, this is not what we wanted to find. It is obvious that 
closing the library during weekends creates a regular pattern. What we were investigating was 
whether students’ loan behavior also showed a weekly pattern. 

5. CONCLUSIONS 

The primary purpose of this investigation was to corroborate McGrath’s approach concerning 
the feasibility of spectral methods for the analysis of circulation data. In particular we tried to 
find a periodic@ in the loan data of books, theses and their union. The strongest evidence was 
found for a semestral periodicity. In the KIHWV/HTI libmry loans seem to be characterized by 
a long term wave of amplitude five. Further, a weekly period was detected as well. Other peaks 
in the frequency spectrum were observed but for these no clear explanation could be given. 

Contrary to the approach taken by McGrath, we first applied a detrending of the signal (a 
procedure we strongly recommend), and applied autocorrelation to obtain a better separation 
between signal and noise. Nevertheless, it seems that our results are less clear than McGrath’s. 
The reason for this is undoubtedly the different behavior of students and the different 
organization of the library. Yet, as shown by our experiment, it could be that the inclusion, by 
McGrath, of weekend data when there is less activity in the library, could explain the fact that 
his weekly period is more pronounced than ours. We are not sure whether it makes sense to try 
to detect chaos, in the scientific sense, in such a small signal (a procedure suggested by McGrath 
(1996) and elaborated in McGrath (1995), but we are convinced that the borrowing behavior of 
our students is chaotic in the everyday sense. 

Finally, a more obvious next step would be to model the complete data set, following the 
Naylor-Walsh approach. 
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APPENDIX A 

Loan Data 

Loan data: 1992-1994 (all loans), per week, read from left to right 

Academic year: 1992-I 993 

32 
18 
25 
19 
12 
0 
22 
IO 
I4 
0 
0 
0 

17 24 15 7 22 28 36 16 7 10 8 21 17 13 
I3 17 9 13 12 28 29 25 11 0 27 28 9 15 
28 21 0 5 15 22 8 15 16 14 14 15 12 8 
13 14 9 8 0 0 8 12 7 10 27 13 24 12 
II 6 17 0 I8 8 I2 5 11 2 2 2 0 2 
2 3 4 7 6 IO 6 8 9 7 5 7 I1 23 

27 32 19 12 16 I2 9 14 I7 11 31 I1 19 4 
18 12 9 18 10 18 13 21 15 13 II 11 22 14 
23 1.5 31 33 15 6 16 II 13 22 17 3 8 11 
8 17 10 14 5 8 IO 0 0 3 13 6 II 4 
9 6 I 9 1 7 2 1 2 3 0 0 0 0 
3 6 2 1 3 1 0 2 3 
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Academic year: 1993- 1994 

10 13 26 21 11 12 19 16 20 6 13 20 7 16 17 
15 16 14 20 20 8 5 14 15 10 0 0 13 16 21 
15 9 20 13 0 11 13 12 14 14 7 13 15 8 21 
18 25 13 1.5 4 11 8 5 5 7 16 12 8 9 6 
9 13 1.5 16 16 13 12 7 9 14 1 0 7 0 10 
I 4 11 2 9 0 6 9 2 3 4 11 11 6 9 
9 13 18 16 10 8 9 3 13 15 9 20 9 9 18 
6 18 18 9 11 8 10 22 14 15 11 13 19 12 7 
6 24 8 28 22 0 12 7 6 11 5 21 6 10 7 
0 11 5 8 6 2 10 8 4 4 7 10 2 1 3 
3 7 9 0 0 2 1 0 4 4 0 2 0 0 12 
4 3 1 0 7 10 2 1 3 4 

Loan data: 1992- 1994 (books), per week, read from left to right 
Academic year: 1992-l 993 

16 12 18 4 4 16 24 24 15 4 8 6 14 12 12 
16 9 12 6 6 12 18 18 21 7 0 10 18 5 11 
17 22 19 0 5 9 20 8 11 8 13 12 15 9 7 
16 10 13 9 8 0 0 7 11 6 7 24 9 15 9 
10 11 5 17 0 16 8 12 5 11 2 2 1 0 2 
0 2 2 4 7 6 10 6 6 7 7 3 6 11 19 
14 22 27 17 12 12 5 7 11 13 11 29 9 16 1 
9 15 8 7 15 8 15 11 18 14 12 6 7 17 11 
8 14 10 19 20 9 4 8 7 13 9 16 3 8 10 
0 7 15 8 12 5 7 8 0 0 3 9 6 4 4 
0 7 6 0 9 1 7 2 1 2 3 0 0 0 0 
0 3 6 2 1 3 1 0 2 3 

Academic year: 1993-l 994 

10 10 23 15 6 2 15 10 15 3 10 19 6 4 13 
15 14 11 13 15 7 4 6 11 8 0 0 11 15 13 
8 9 15 10 0 9 12 7 11 13 4 6 14 3 15 
12 21 9 13 2 11 3 5 5 7 12 12 5 9 6 
9 12 12 15 13 13 12 5 7 13 0 0 7 0 10 
1 4 10 2 9 0 6 8 2 3 3 10 8 6 7 
8 13 13 15 10 6 8 3 8 12 6 14 7 9 12 
5 18 18 4 8 8 9 18 13 13 9 9 16 10 4 
3 19 8 15 13 0 7 5 4 9 4 10 5 10 4 
0 9 2 5 6 2 9 6 3 2 7 10 2 1 3 
3 7 9 0 0 0 0 0 4 4 0 2 0 0 12 
4310692134 

Thesis loans can be obtained by subtracting book loans from all loans. 

APPENDIX B 

Dejnirion and Properties of the DFT 

[For further information we refer the reader to, e.g. Firth (1992); Jaffe (1987a. 1987b); Shiavi (1991)]. 
If x=(x(n)),,,O,,,,,N., is a complex N-tuple, then the discrete Fourier transform (DFT) of x is defined as the 

mapping: 

CN+C%~X 

where X=(X(k)),=,,,.,, is the N-tuple given by: 
N-i 

X(k)= X0 x(n)e -i2”kdN 

The n-th component of the autocorrelation of a complex N-tuple x is calculated as: 
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N-l 

A UTOCOR,(x) = ,& x(n + m)~( m) 

If x(n), n=O,l,..., N-l, is a sum of cosines as in equation (Bl), 

x(n)= j$, A, cos(2tijn) (Bl) 

we can prove that X(k)=0 if k#NJ., j= I.2 ,..., M @l/2) and that X(k)=Afl/2 if k=NJ. Consequently, the 
frequencies4 can be found by considering the index numbers k for which X(k)+0 and puttingJ;=k/N. The 
corresponding magnitude Aj is then equal to 2X(k)/N. We further have the following relation: 

PS(k)=DFT,(AUTOCOR(x))=IX(k)l’ 

Hence the corresponding amplitudes Aj can also be obtained as 2 (F’S(k)) I/‘/N. It can finally be shown that 
if x(n) is given by (3), then 

AUTOCOR,(x)= fi B, cos(2tijn) 

with Bj=NAj’12. 


