
Infomotion Pmcesriftg & Management Vol. 16, pp. 49-56
Pergamon &err Lrd.. 1980. Printed in Grea(B&in

SORTING OF TEXTUAL DATA BASES : A VARIETY
GENERATION APPROACH TO DISTRIBUTION

SORTING

DAVID COOPER, MARY E. DICKER and MICHAEL F. LYNCH

~ost~aduate School of Librarianship and Information Science, University of Sheflield,
Sheffield SlO 2TN, England

(Received for publication 10 September 1979)

Abstract-A method of sorting large textual data-bases by computer using external storage is
proposed. The range of sort-keys in a sample of data to be sorted is divided into a fixed set of
partitions, which should also give an adequate representation of new data from a similar
source. The partitions are composed of ordered key ranges. An incoming data stream is
distributed into a series of bins according to the partition in which the key lies, and the bins
are then seperately sorted, using an internal sort, to give an ordered file. It is shown how the
number of disc accesses needed depends on the manner in which the bins become filled, and
thus on statistics of the data. Experiments using an INSPEC data-base give information on
which estimates of the efficiency of the method can be based.

I. INTRODUCTION
Sorting large files of data derived from bibliographic or other primarily textual data bases is
acknowledged to be an expensive procedure. The data may be word tokens from the texts of
documents, author names, subject headings, etc., together with a reference to their source, and
they are to be sorted in order to compare and count them (thus producing a dictionary of word
types), to provide an inverted fife for search purposes, to arrange them for publication in an
index, or for some other similar purpose.

Because of the many transfers of data needed during the process, within internal computer
storage but more significantly between internal and external stores, sorting of large files is a
very time-consuming operation, and is a significant component in the cost of file inversion,
index production, and other processes. Any increase in the efficiency with which sorts are
performed can contribute to reduction in the costs to users of information services.

The literature on sorting procedures is extensive, and is admirably reviewed by MARTIN[~]

and KNUTH[~]. Two distinctions are generally made. The first is between internal and external
sorting; the former involves processing the data in internal storage, while the tatter uses a
combination of internal and external stores such as discs. In the data-base context, the number
of items to be sorted is generalty so large that external sorting is of primary importance. The
second distinction is between comparison and distribution sorting methods. The first order a list
of items by means of a series of comparisons of the relative magnitude of the sort keys; a wide
variety of methods is available, including selection, exchanging and insertion sorting, coupled
with subsequent merging from external media. Distribution sorting operates by testing a key (or
part of it) against predetermined standards, and collecting together all members of a group
defined by a key-range. It is normally employed only when the distribution of the keys is
regular and constant. In this case, the records (which often consist of a key and a pointer) are
moved into a number of bins-which may be either in internal or in external storage--each of
which corresponds to a particular key range. The initial groups may then be split into smaller
and smaher groups until the list is ordered, or a comparison sort may be performed on the
groups themselves. The efficiency of the method depends on defining ranges to ensure an even
dispersion of the keys, so it is important to know the range of values and the distribution of
values of the keys in the list to be sorted.

The distribution of the initial letters of words, index terms, etc., over the alphabet is highly
variable. BOURNE[3] has summarised several studies in this area. Hence the use of the initial

49

50 D. COOPER et al.

letters of these entities for distribution sorting is of limited value. Even more so is the use of
the initial digrams (character pairs) or trigrams, since these show approximately hyperbolic
rank-frequency distributions [4].

Recent research on variety generation[5], a method for mapping elements showing skew
distributions onto approximately rectangular distributions, suggests an approach to sorting
which may have advantages in comparison with conventional methods. The method evisaged
involves the prior analysis of samples of the data to establish key-ranges between which the
keys will be evenly distributed. The key-ranges form a partition set, and are represented by
words at the boundaries of the partitions. In this method, each item in the incoming data stream
is placed in one of a number of bins of equal size within a buffer in internal storage by
comparison with the partition set. (The bins may conveniently number some power of 2.) When
any bin is filled, the contents of all bins are transferred from the internal buffer to equivalent
but larger storage areas on a direct access medium for cumulation. The process is continued
until the whole of the file to be sorted has been processed. The contents of each partition on the
external storage medium are then sorted internally to produce an ordered file.

As an illustration of the method, partition sets of sizes 4, 8, 12 and 16 were generated for the
86 words of the first paragraph of this paper, and Fig. 1 shows the ranges of words allocated to
each partition in each set, together with the number of words (tokens) and the number of
distinct words (types). Of course if these partition sets were to be used for larger files, the
boundaries between the partitions would have to be defined accurately, so that, for example, it
could be determined where each word between “author” and “bases” should go in the set of 8
partitions.

The method is related to a dictionary look-up technique studied by WALKER and GOTLIEB [6],
by MEHLHORN [7] and by LYNCH [8], the purpose of which is to create a balanced binary tree which
preserves lexicographic order, the position of the items or words in the tree being related to

4 partitions

a - data

derived - names

of - source

subject - word

16 partitions

n - an

and - author

bases - bibliographic

conpare - data

derived - expensive

file - for

from - in

index - na1nes

of - 01’

order - procedurr

producing - reference

search - SOUT(‘(’

subject - the

their - thus

t0

together - word

5pes

13

17

I8

14

Types

3

4

3

3

5

3

3

6

2

4

6

6

4

4

I

5

Tokens 8 partitions

21

21

22

22

a - author

bases - data

derived - for

from - names

of - psocedure

producing - sorting

Sb”TW - thus

to - word

Tokens 12 partitions

6

5

5

5

5

5

5

6

5

5

6

6

5

5

6

6

a - and

are - be

bibliographic - data

derived - files

for - headings

in - names

of - other

primarily - purposes

reference - sO”=cB

subject - them

they - to

together - word

Types

7

6

8

9

6

II

9

6

Types

4

5

4

7

3

7

L

7

7

6

3

5

Tokens

II

IO

IO

II

10

II

II

I2

Tokens

8

7

6

7

6

8

8

7

7

8

8

6

Fig. 1. Partition sets generated from the words of the first paragraph of this paper.

Sorting of textual data bases : a variety generation approach to distribution sorting 51

their relative frequencies. However in the binary tree case it is desirable to place high
frequency items on nodes as near to the root as possible, whereas the partition set should be
chosen to place high frequency terms away from the boundaries between partitions, which are

analogous to the nodes near the root.
A number of factors influence the practicability of the method proposed here. It is, clearly,

dependent on characteristics of the data-base and of the individual data elements. The
skewness of the rank-frequency distribution of words (related to the token-type ratio, or the
mean number of occurrences of the words) differs substantially for different data-elements, e.g.
author names, text words and index terms. The partition set for the same data-element in
different data-bases will also depend on the particular vocabulary used, and on the relative
frequencies of the words or keys within it. Further, there is the question of the constancy of
these characteristics, or of their reflection in partition sets, over time.

Studies of the application of variety generation methods in several contexts provide
indications of the behaviour of textual data in several of these respects. They suggest in
particular that in a data-base of constant provenance there are only slow changes with time of
the gross characteristics, i.e. of the efficiency with which the textual data are described by
means of a relatively small symbol set comprising variable-length character strings which occur
with approximately equal frequencies in the data-base. Thus LYNCH, PETRIE and SNELL[~]
examined symbol sets consisting of character strings from the titles of papers in the INSPEC
data-base, which showed little change over a period of three years. LYNCH[lo] and BRACK,
COOPER and LYNCH [1 l] reached similar conclusions in studying the MARC data-base. In the case
of non-bibliographic texts, in this instance samples from the Standard Sample of Present-Day
Edited American Engfish for Use with Digital Computers (The Brown Corpus) [121, YEATES[131
and EMLY[~~] have shown that, in general, only slight variations in behaviour occur within or
even between different genres of informative prose in English when texts are compressed using
variety-generation symbol sets of size 256. The partition sets considered here are rather
different in that they are concerned with dividing an alphabetically ordered file into blocks of
approximately equal size rather than with fragments of text. However the overall statistical
consistency of textual data suggests that similar stability will be found for the partition sets.

2. METHODS OF IMPLEMENTATION

We now discuss two alternative strategies for storing the partitioned file on disc. A disc is
divided into cylinders, each being an area of the disc which can be accessed without moving the
read/write heads, and each cylinder is divided into buckets, the smallest addressable areas. The
concept of a bucket is to some extent a software one, since it may be possible to select one of
several sizes for it, each being a multiple of the true minimum area written or read in one

operation. We assume that as internal storage bins are written to disc, each of them begins in a
new bucket; this restriction could be relaxed, resulting in more efficient use of disc space, more
complicated processing and more disc accesses. It is also assumed that no other programs

which may be running simultaneously will use any disc used by the sorting program. If they did
so the advantages of requiring only small movements of the read/write heads would be lost.

The first arrangement of partitions on the disc uses fixed disc bins. Each partition is
assigned a fixed area on one or more consecutive cylinders of the disc, adjacent partitions being
assigned adjacent areas of disc. When the bins are written from internal storage to disc, each
can be written with one transfer except at the ends of cylinders when two will usually be
needed. The seek times will be very small since adjacent partitions are stored close together on
the disc, and this seek time can be partially taken up by calculations of the number of words to
be transferred, the disc address and so on. Hence the writing process consists of a single sweep
through the disc, with some latency time on each occasion when a new cylinder is accessed.
Reading a partition into internal storage for the final sort will be rapid since the partition will be
contained on a series of adjacent cylinders, and the read/write head can be positioned before
reading starts. A disadvantage of this system is that a fair amount of space on the disc is
wasted, since the space allocation for each partition must be sufficient to accommodate the
largest.

An alternative strategy is to write all the data from internal storage to disc serially; the data
to be written each time an internal storage bin is filled consist of the bins arranged con-

52 D. COOPER et al.

secutively, each preceded by a pointer to the disc address (bucket and position in bucket) of the
previous bin corresponding to the same partition, and a count of the number of items in that
bin. Each bin could be written beginning in a new disc bucket, but this would involve waiting
for a whole rotation before writing each bin, as well as wasting space at the end of buckets. It
would normally be best therefore to collapse all the internal storage bins to consecutive areas
and calculate all the pointers before writing the data, with one disc transfer for each cylinder
accessed. The next transfer will begin at the beginning of the next free bucket, and so the
read/write heads will be correctly placed without further action. When all the data have been
written to the disc each partition is read into internal storage for the final sort by a single
backwards sweep through the disc, with some latency time and a small seek time as each new
cylinder is accessed, the bucket address having been decided by the pointer in the previously
read bin. The count in that bin enables unwanted data at the end to be excluded, as well as
preventing unwanted buckets from being read.

The second disc storage pattern is more efficient than the first for writing the bins to disc but
slightly less so for reading them into internal storage before the final sorts. It is shown below
(Section 4. Practical Considerations) that there are likely to be more transfers involved in the
former process than in the latter when the sort is used on the largest amounts of data, and since
the second storage pattern also uses less disc space it is the natural choice in these circum-
stances. The first strategy may find a place when the sorting process is split into more than one

stage (see Section 4).

3.EXPERIMENTALWORK

An algorithm has been developed for producing a partition set for use in distribution sorting
of a textual data-base. This has been used to generate several partition sets, from samples of
various sizes, and their behaviour when applied to the data-base has been investigated.

The data-base used was a 6-month cumulation of the INSPEC Computer and Control
Abstracts for 1976, a total of 14,6% document references. The data-element selected for
examination was the free index term field; from these fields, a total of 194,663 word tokens was
extracted. (A word was defined as a string of alphabetic symbols, truncated if necessary to 16
characters.) These tokens represented a total of 14,919 word types (token: type ratio = 13.05). In

addition, index terms were extracted from linear samples of one record in two, one in five, and
one in ten from the data-base, giving files of 97334,38633 and 18847 word tokens. The whole file
will be referred to as File A, and the samples as Files B, C and D in order of decreasing size.

From each of these four files, partition sets of sizes 16, 32, 64, 128 and 256 were generated.
The generation method consisted essentially of sorting the file (using a standard disc-sort
package) and then dividing up the alphabetical list according to the cumulative frequency.
There are problems however when words with high frequency occur near partition boundaries
and some words even have frequencies higher than the desired partition size-for example,
each of the two most common words in the file, “system” and “control”, has a frequency
higher than l/64 of the total number of tokens. Hence, particularly for the larger partition sets,
it is necessary to allocate more than one bin to single words of high frequency. This will not
cause subsequent problems of lack of storage for sorting if no other words go into the same
bins as these frequent words, since they will not need to be sorted further. The problem of
words of moderately high frequency causing uneveness in the sizes of partitions is harder to
solve. The method chosen to reduce their effect was to divide the ordered file into sections,
each section consisting either of a single high frequency word or the words between two such in
alphabetical order. Partitions are then allocated to each section separately. More precisely, the
steps listed below are carried out. In several of these steps some numerical parameters are
specified; these are the values that were used to generate the partition sets used here, but they
can be altered experimentally.

1. The ideal partition size P is calculated by dividing the total frequency by the number of
partitions required.

II. The file is divided into sections. Each word with frequency above 0.5 P becomes a
section on its own, and the other sections are the sets of words in between. (Improved results
have been obtained subsequently by altering this step, putting a word in a section on its own
only if its frequency is at least P, and letting words of frequency between 0.5 P and P begin a
new section).

Sorting of textual data bases: a variety generation approach to distribution sorting 53

III. Two adjacent sections are fused if their combined total frequency is less than 1.3 P.
IV. The number of partitions to be allocated to each section is decided on the basis of total

section frequencies. This is done by setting a “maximum level” for the mean partition size in
any section, calculating the number of partitions in each section needed to achieve it, and
increasing the maximum if the total number of partitions is too large. Note that the most
frequent words may be allocated to more than one partition, and that these partitions will not be
shared with other words. The “maximum level” used during the calculations is multiplied by
0.95 for sections containing more than one word, The balance between the amounts of space for
frequent and less frequent words may be changed by altering this factor.

V. The partitions for the sections containing only one word are now fixed. For other
sections, the mean partition size is calculated, and the division points for the partitions are
placed as close as possible to the position required. However if a rather frequent word near a
division point makes this impossible, and the result would be a partition which is smaller than
0.75 times the mean size for the section or larger than 1.3 P, then the section is divided into two
at this point, and the process starts again at Step III.

The most important performance measure of a partition set with a tile is the ratio of the
mean number of words per p~ition to the maximum; this is referred to as a density. When
partitions of the whole file are considered the density measures the efficiency with which
internal storage is used on average for the final sort, and if the disc is divided into fixed sections
for the partitions, it gives an upper bound to the efficiency of use of the disc space. On the other
hand, the mean density of the bins in internal storage over the stages when the bins are written
to disc measures the proportion of the available internal storage used on average, which is
inversely proportional to the number of disc accesses required to write all the data. Note that if
the latter density falls much below 0.5, then it would probably be better to abandon the fixed
bins and replace them by a series of linked lists, together covering just over half the available
internal storage (the exact proportion depending on the relative amounts of space needed for
the record and the link). The lists can then be converted into variable length bins in the
remaining internal store before writing to disc. Various modifications of this scheme could be
used to provide a higher effective bin density.

Also, if only a few partitions have size near the maximum for the whole file, then the
effective density can be increased if the linked bin strategy is used for disc space allocation,
since special measures can be taken to deal with the few very large partitions, e.g. a small scale
merge using spare capacity on the disc.

Table 1 shows the density obt~ned when a partition set is applied to the whole of its parent
file, for each size of partition set generated from each file. There are no obvious trends
according to file size, but the density decreases with increasing size of the partition set, from
0.97 for size 16 to 0.76 for size 256.

In practice a partition set will have to be generated from a sample of the data-base only.
Table 2 shows the densities obtained when the partition sets derived from the small file D are
applied to each file. The differences from the figures in Table 1 are small except in the case of
partition sets of size 256, when there is some serious degradation of the performance of the set
from the one-in-ten sample D on the whole file A.

Table 3 shows the bin densities obtained when each of the files is partitioned by each of its
five partition sets, in each case for two bin sizes, one fairly small and one fairly large in relation

Table 1. Densities on application of partition sets to the whole of their parent files

File

Size of set D C B

I6 O-97 O-98 O-96 0.97

32 O-85 0.90 0*87 O-88

64 0.82 0.83 O-80 0.81

128 0.79 0.78 0.79 0.78

256 O-75 0.76 O-76 0.75

54 D. COOPER ef al.

Table 2. Densities on application of partition sets from File D to whole files

File

Size of set D C B A

16 0.97 0.95 o-94 0.94

32 0.85 0.86 0.87 0.87

64 O-82 0.83 O-80 0.79

128 0.79 0.77 0.78 0.74

256 0.75 o-70 0.67 0.66

to the particular file size and partition set size. It can be seen that the densities are rather small
for very small bin sizes. The last column of the table shows the result of partitioning the
complete file A by means of partition sets from the smallest sample D. Comparison with the
results obtained with partition sets from A suggests that the bin density should not be affected
by the small sample from which the partition sets were generated except a little in the case of
the sets of size 256.

Similar results for a much wider range of bin sizes are tabulated by DICKER[~~]. It was
generally found that the density decreased gradually from the density for the whole file, as the
bin size decreased from a value large enough to accommodate all the file to a value requiring
the bins to be emptied about ten times. The density then decreased more rapidly as the bin size
decreased further, the relationship being approximately of the form d = m log b + c, where d is
the density, b is the bin size and m and c are constants.

4. PRACTICAL CONSIDERATIONS

The manner in which a sort of the type described might be implemented depends essentially
on two figures; the largest number N of items which the sort is designed to take, and the
number K of items which will fit into internal storage after taking account of the space needed
for buffers in the initial input and final output, counters, etc., and program. It is assumed that
the items are of fixed length, and that a minimum storage method of internal sorting such as
“Quicksort” is chosen. Then K will represent both the number of items which can be
accommodated in each of the final sorts and the number which can be stored in internal storage
during the partitioning.

A natural choice for the number p of partitions is N/K. However the density must be taken
into account, and p should be such that pd(p)K 2 N, where d(p) is the overall density which
can be expected with p partitions. The number p may be a power of 2 to make partitioning
efficient, but this is not essential. Provision will have to be made for dealing with partitions of
more than K items since the method will be applied to new data, but the general stability of
characteristics such as partition sets over large quantities of data suggests that this facility will
not need to be used often.

Once p has been chosen, the bin size must be not more than K/p, and will normally be
chosen to be the nearest integer below K/p. The internal storage bin density D can then be
predicted using tabulations such as Table 3, and the number of times the bins are emptied is
about N/KD. If D is small, consideration should be given to the use of linked lists for the core
bins. Alternatively, the partitioning could be done in two or more stages. In the two-stage case,
a number p1 is chosen near to the square root of p, and the partition set of size pl* is chosen in
two stages, the first being a set of size pl; each partition can be divided further into pI partitions
by the same method. The data to be sorted would be partitioned first into pI partitions, and the
process then repeated with each of these partitions. If the disc space were allocated as fixed
disc bins for the first stage, then very little extra disc space would be needed above that
required for a single stage partition sort, since the disc bin for the first of the pI partitions could
be filled with the data from the second partitioning stage as soon as it had been read into
internal storage and partitioned in the second stage.

The time needed for a sort on N items is, in general, of order N log N. Suppose that the time
for an internal sort is kN log, N + o (N log N), where k is independent of N; here o(N log N)

Ta
bl

e
3.

 M
ea

n
de

ns
iti

es

in
 i

nt
er

na
l

st
or

ag
e

bi
ns

;
pa

rt
iti

on

se
ts

 g
en

er
at

ed

fro
m

th

e
fil

e
to

 w
hi

ch

th
ey

ar

e
ap

pl
ie

d,

ex
ce

pt

in
 t

he
 l

as
t

co
lu

m
n

w
he

re

pa
rt

iti
on

se

ts
 f

ro
m

Da

re

ap
pl

ie
d

to
 A

S
i
z
e
 o
f

p
a
r
t
i
t
i
o
n
 s
e
t

F
i
l
e
 D

F
i
l
e
 C

F
i
l
e
 R

F
i
l
e
 A

B
i
n

M
l%

il
B
i
n

M
W
I
-
I

B
i
n

M
@
X
i

B
i
n

M
e
a
n

r
i
l
e
a
n

s
i
z
e

d
e
n
s
i
t
y

s
i
z
e

d
e
n
s
i
t
y

s
i
z
e

d
e
n
s
i
t
y

s
i
z
e

d
e
n
s
i
t
y

(
A
)

d
e
n
s
i
t
y

(
0
)

1
6

1
0
0

3
2

6
4

1
2
8

2
5
0

5
0

1
2
5

3
0

8
0

0
.
6
7

2
0

0
.
3
9

4
0

2
5
6

I
O

0
.
9
4

0
.
7
9

0
.
8
3

0
.
6
2

o*
so

0*
50

0.
57

0
.
2
1

10
00

10
0

5
0
0

1
0
0

3
0
0

5
0

IS
0 2
.
5

8
0

2
0

o
-
9
5

2
5
0
0

0
.
7
6

5
0
0

0
.
8
6

10
00

0
.
6
6

4
0
0

0
.
7
8

7
5
0

0
.
5
3

2
0
0

0
.
6
6

4
0
0

0
.
3
6

1
0
0

0
.
6
2

2
0
0

O
-
2
7

5
0

0.
95

5
0
0
5

O
S
8
5

5
0
0

0
.
8
4

2
5
0
0

0
.
7
5

5
0
0

0
.
7
9

10
00

0
.
6
0

2
0
0

0
.
7
4

8
0
0

0
.
4
5

2
0
0

O
-
6
7

4
0
0

0
.
3
6

1
0
0

0
.
9
6

0
.
9
2

0
.
8
0

0
.
7
A

0
.
8
4

0
.
8
5

0
.
7
2

0
.
7
3

0
.
7
5

0
.
7
4

O
-
5
0

0
.
5
0

0.
71

0
.
7
3

0
.
4
,
s

0
.
5
2

0
.
6
8

O
-
6
1

0
.
4
0

0
.
3
6

56 D. COOPER et al.

denotes any function f of N such that f(N)/N log N tends to zero as N tends to infinity[l6],
i.e. any function which is vanishingly small compared with N log N for large N. If, for some
fixed p, the N items are partitioned into p equally sized bins, to be sorted separately, then each
requires a time (~N/p~ log* (N/p) + o (N log N) for sorting, so the total sorting time is kN log?
N - kN log, p + o(N log N), which is kN log, N+ o(N log N) since kN log, p is o(N log
N). The time needed for the partitioning is of order N log p, which is o(N log N). Hence a sort
based on this principle will take time kN log* N +o(N log N); in other words it takes
asymptotically the same time as an internal sort using p times as much storage. In practice the
relative efficiency of this method and external merging will depend heavily on the number of
transfers to and from external storage in each method, and on the ways in which these transfers are
organised. A study of these factors is now being undertaken.

5. CONCLUSIONS

The experimenter results suggest that the proposed method of sorting is feasible, and that it
is possible to generate a partition set from a reasonably small sample of the data to be sorted,
though care must be taken with large partition sets here. The density which can be achieved in
the internal storage bins seems to vary approximately linearly with the logarithm of the bin size,
although further experiments are desirable to confirm this and show the closeness of the
relationship.

Acknowledgements-We Fhould like to thank the British Library R&D Dept. for providing funds to support this work, the
Institution of Electrical Engineers for providing us with a data-base and JOHN MAHONEY and ALICE MCLURE for help with

extracting words from the data-base.

REFERENCES

(I] W. A. MARTIN, Sorting. Camp. Surveys 1971, 3(4), 147-174.
[2] D. E. KNUTH, The art of computer programming. Vol. 3, Sorting and Searching. Addison-Wesley,

Reading, Mass. (1973).
[3] C. P. BOURNE, Methods of Information Handling. Wiley, New York (1%3).
[4] R. A. FA~RTHORNE, Empericai hy~r~lic distributions (Bradford-Zipf-Mandelbrot) for bibliometric

description and prediction. J. &cum. 1%9, 25(4), 319-343.
[S] M. F. LYNCH, Variety generation-a reinterpretation of Shannon’s mathematical theory of com-

munication, and its implications for information science. J.ASZS 1977, 28(l), 19-25.
[6] W. A. WALKER and C. C. GOTLIEB, A top-down algorithm for constructing nearly optimal lexicographic

trees. In Graph Theory and Computing (Ed. by R. C. READ), pp. 303-323. Academic Press, New York,
(1972).

[7] K. MEHLHORN, A best possible bound for the weighted path length of binary search trees. SZAM J.
Comp. 1977, 6(2), 235-239.

[S] M. F. LYNCH, The statistical microstructure of textual data-bases. Classifications Sot. Bull. 1978,
4(Z), 2-10.

[9] M. F. LYNCH, J. H. PETRIE and M. J. SNELL, Analysis of the microstructure of titles in the INSPEC
data-base. Inform. Sfor. Retr. 1973,9(6), 331-337.

[IO] M. F. LYNCH, Creation of bibliographic search codes for hash-addressing using the variety-generator
method. Program 1975, 9(2), 46-55.

[I 11 E. V. BRACK, D. COOPER and M. F. LYNCH, The stability of symbol sets produced by variety
generation from bibfiographic data. Program 1978, 12(Z), 64-77.

[12] W. N. FRANCIS, ~anaal of ln~o~ution to Accompany ‘A Stundard Sample of Present-day Edited
American English, for Use With Digital Computers’. Brown University, Providence, Rhode Island,
1964.

[13] A. R. YEATES, Test compression in the Brown Corpus using variety-generated keysets, with a review
of the literature of computers in Shakespearean studies. M.A. dissertation. University of Shefield,
1977.

[141 M. A. EEALY, Compression of continuous text by n-gram encoding, with a review of the literature on
computer-produced concordances to Medieval works. M.A. dissertation, University of Sheffield, 1978.

[IS] M. E. DICKER, An investigation into the stability of a partitioning system applied to the INSPEC data
base, and the results of a literature search on evaluation of sorting procedures. M.Sc. dissertation.
University of Sheffield, f978.

[Id] G. H. HARDY, it Course of Pure ~athemut~cs, 10th Edn. University Press, Cambridge,London (1952).

