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In a time of unprecedented change in environmental, geopolitical and socio-economic world affairs, the
search for new energy materials has become a topic of great relevance. Sodium borohydride, NaBH4,
seems to be a promising fuel in the context of the future hydrogen economy. NaBH4 belongs to a class
of materials with the highest gravimetric hydrogen densities, which has been discovered in the 1940s
by Schlesinger and Brown. In the present paper, the most relevant issues concerning the use of NaBH4
odium borohydride
lectrosynthesis
xidation
ydrolysis
onitoring
irect borohydride fuel cells

are examined. Its basic properties are summarised and its synthesis methods are described. The general
processes of NaBH4 oxidation, hydrolysis, and monitoring are reviewed. A comprehensive bibliometric
analysis of the NaBH4 publications in the energy field opens the discussion for current perspectives
and future outlook of NaBH4 as an efficient energy/hydrogen carrier. Despite the observed exponential
increase in the research on NaBH4 it is clear that further efforts are still necessary for achieving significant
overchanges.
ibliometrics © 2011 Elsevier Ltd. All rights reserved.
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. The overall energy scene

The mastery of energy has always been the key to a better world.

is then converted to mechanical energy by a motor. The scien-
tific use of the term “energy” was introduced by Thomas Young
(1773–1829) who provided the most astute definition to date, as
nergy can be defined as an abstract quantity that manifests itself in
any forms, e.g., chemical, electrical, mechanical, radiant, nuclear,

nd thermal energy. In an electric vehicle, for example, a battery
s used to convert chemical energy into electrical energy, which

∗ Corresponding author. Tel.: +351 218417765.
E-mail address: diogosantos@ist.utl.pt (D.M.F. Santos).

364-0321/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.rser.2011.07.018
“energy is the ability to do work”. It is commonly understood that
“work” means the application of effort to accomplish a task, and the
rate at which work is performed is called “power”. Thus, machines
consume energy, perform work, and provide power [1].
Until the advent of the Industrial Revolution in the 18th century,
humankind derived its power mainly from its own exertions, from
animal muscle (horses, oxen, camels), from the wind (windmills
and sailing ships), and from water (watermills). Even with these

dx.doi.org/10.1016/j.rser.2011.07.018
http://www.sciencedirect.com/science/journal/13640321
http://www.elsevier.com/locate/rser
mailto:diogosantos@ist.utl.pt
dx.doi.org/10.1016/j.rser.2011.07.018
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Table 1
Primary energy supply by fuel (%) for world in 2001 and forecast for 2010 and 2020
[3,4].

Year

2001 2010 2020

Oil 35.0 35.3 37.0
Coal 23.3 22.3a 22.6a

Gas 21.2 23.1 23.9
Combustible renewables

(biomass) and wastea
10.9 – –

Nuclear 6.9 6.2 4.2
Hydro 2.2 2.3 2.3
Otherb 0.5 10.9 10.0
Total (%)c 100.0 100.1 100.0
Total (Mtoe) 10,029 12,100 14,800

a Includes combustible renewables and waste for OECD countries only.
b The 2001 data separate out combustible renewables (mostly wood and dung)

and waste from “coal”; the IEA predictions for 2010 and 2020 report this item for
OECD countries under “coal”, and for non-OECD countries under “other”; this some-
what curious procedure explains the apparent increases attributed to renewables,
which is most illusionary.
D.M.F. Santos, C.A.C. Sequeira / Renewable and

imited resources, however, some humankind’s achievements were
emarkable.

Sources of power began to change with the development of the
atmospheric” engine in the early 18th century by Thomas New-
omen (1663–1729), who was inspired by the earlier work of Denis
apin (1647–1712) and Thomas Savery (1650–1716).

James Watt (1736–1819) subsequently recognised that the
atmospheric” engine was very inefficient – energy was wasted by
aving to reheat the cylinder after each stroke of the piston. Watt
olved this problem using a separate condenser and driving the
ngine by the pressure of steam itself. Thus, in 1769, he patented
he first real “steam” engine, which offered superior performance
n terms of both energy efficiency and economy. By the early 19th
entury, steam was also replacing water to power cotton mills and
he Times newspaper was printed in London on a steam press as
arly as 1814. Thus, such engines turned steam into a universal
ource of power and heralded the beginning of the fossil-fuel age.
y the end of the 19th century, there were steam-driven cars in
ondon, Paris and New York as well as lorries and trams. These
ompeted with electric vehicles and petrol-driven vehicles. Even-
ually, the internal-combustion engine proved superior, and steam
ehicles were mostly phased out, although their use in agriculture
ontinued for at least another 20 years.

Coal was the first fossil fuel to be exploited to produce power. In
he 19th century, the pyrolysis of coal yielded coal gas (“town gas”),
hich was distributed in cities for lighting lamps and cooking, and

oal tar, which was the early raw material for the organic chem-
cals industry (explosives, dyes, drugs, etc.). As recently as 1937,
oal accounted for three-quarters of energy consumption world-
ide through its use as a fuel for space heating, cooking, industrial
rocesses, and transportation (steam trains and ships) [1].

In 1876, the four-stroke internal-combustion engine was built
y the German engineer, Nikolaus Otto (1832–1891), initiating the
etroleum (“oil”) industry. Otto’s engines ran at slow speed and it
as not until 1885 that a suitable power unit for motor cars (auto-
obiles) became available – the high-speed engine invented by
ottlieb Daimler (1834–1900). Shortly afterwards, in 1892, Rudolf
iesel (1858–1913) introduced the diesel engine. The success of

nternal-combustion engines operating on petroleum (“gasoline”)
as such that they rapidly replaced the steam engine (an external

ombustion engine) for almost all other applications although, of
ourse, steam turbines are still used in electricity generation.

Just how far the motor car has come in a little more than
00 years is quite remarkable, although on the pollution front we
ave merely replaced one environmental problem (horse manure)
ith another (tailpipe emissions). The 20th century saw the
idespread adoption of the internal-combustion engine for trans-
ort and power applications. The use of this engine has become
o extensive that a serious concern has arisen over the pollution
t causes in cities, and also over its contribution to global warm-
ng through enhancement of the “greenhouse effect”, which is
ttributable in part to the carbon dioxide (CO2) produced by com-
ustion [1].

Another major change that took place towards the end of the
9th century was the growth of the electrical industry, initiated
y the earlier research of Michael Faraday (1791–1867) on electro-
agnetic induction.
During the second half of the 20th century, there has been

holesale exploitation of natural gas – the third major fossil fuel.
ver the past decade or so, there has been a marked swing towards

he combustion of gas for the centralised generation of electricity.
his may be explained by the abundance, accessibility and rela-

ively low cost of natural gas, its convenience of transport and use,
nd the high efficiency of the combined-cycle gas turbine.

Energy from the three great fossil fuels – coal, petroleum and
atural gas – has provided the means by which our industry and
c IEA data have a rounding error of 0.1%.

our civilisation have steadily progressed since the Industrial Revo-
lution. In the long term, this is obviously an unsustainable situation
as fossil fuels are being extracted at a rate that grossly exceeds the
rate at which they are laid down. Moreover, the atmosphere will no
longer accept unlimited combustion of fossil fuels. Consequently, it
will be necessary to move away from fossil fuels, towards sustain-
able energy supplies of a non-polluting nature, while maintaining
the standard of living of the developed world and dramatically
improving that of developing nations.

Fortunately, nature has bestowed upon us a bountiful supply
of such benevolent energy, in the forms of hydro energy, wind
energy, wave energy, tidal energy, ocean thermal energy, solar
energy, geothermal energy, and biomass. The task, therefore, is to
capture and utilise greater amounts of these renewable energies in
an efficient and economical way so as to minimise the environmen-
tal impact of energy consumption by the industry, transportation,
agriculture, commerce and domestic sectors.

The European “World Energy, Technology and Climate Policy
Outlook (WETO)” predicted an average annual growth rate of 1.8%
for the period from 2000 to 2030, for primary energy worldwide
[2]. The International Energy Agency (IEA)’s forecast of the world
demand for primary energy in 2010 [3] and 2020 [4] is shown in
Table 1. Compared with the situation in 2001, the IEA predicted
a 21% increase in 2010 (12,100 Mtoe) (1 Mtoe is 1 million tonne
oil equivalent) and a 48% increase in 2020 (14,800 Mtoe) [5]. Fossil
fuels (oil, coal, natural gas) will continue to provide about 80–85%
of the world’s primary energy right through 2020. Oil, in the form of
petroleum, will be the dominant fuel and will meet 35–37% of global
energy needs. This will require an increase in production from
around 110 Mb d−1 in 2020 (Mb d−1 stands for million barrels per
day; 1 tonne of crude oil approximates to 7.4 barrels). This reflects
a substantial increase in the demand for transportation fuels. Shell
company, for example, has predicted that oil consumption by road
vehicles in 2020 will be 40% higher than today. But whether or
not such increased production will take place is, in part, a political
question. Nuclear power output will decline as a proportion of the
total energy supply as older reactors in Europe and North Amer-
ica are retired. The apparent increase in “renewables”, categorised
under “Other” in Table 1, is misleading. If the estimated contri-
bution from wood and dung in developing nations is deducted, the
expected contribution from “new” renewable sources (geothermal,

solar, wind, tidal, etc.) will increase from 0.5% to between 1% and
3% of the total primary energy supply [1].
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At the start of the Industrial Revolution, the world population
as only a few hundred million. Today, it stands at almost 6.9 billion
eople who collectively occupy around a billion dwellings, drive
00 million motor vehicles, and expend much effort to produce a
ide variety of industrial products to further their well-being. Of

he two billion people living without electric power, about one bil-
ion have no supplies of commercial energy in any form – not even
etroleum or diesel oil. These people operate entirely on wood fuels
nd other biomass resources. Moreover, the disparity will intensify.
t is generally expected that the world population will grow to an
stimated 7.7 billion in 2020, and 90% of the growth will take place
n the developing nations. Thus, over the next few decades, it is clear
hat global energy supply issues will move from the industrialised
o the developing countries, many of which have serious social,
conomic, and environmental problems. Those that have coal will
ish to burn it, despite the environmental consequences.

Of equal concern are the destructive effects of the growing
evels of energy conversion and usage on the earth’s biosphere.
n global terms, the energy sector is the single largest source of
nthropogenic greenhouse gases, with emissions of CO2, methane,
nd nitrous oxide. At the local level, energy use in motor vehi-
les is a major contributor to the degradation of urban air quality.
he exhaust pollutants include carbon monoxide, nitrogen oxides
NOx), and hydrocarbons. Energy use in large stationary applica-
ions such as power stations is also a serious source of both sulphur
xides (SOx) and NOx, which are the major precursors to “acid rain”.
ossil fuels are remarkable in the way that they are not just fuels, but
lso energy stores. Finding an economic means for storing energy,
articularly electricity, lies at the heart of the renewables problem.

One prime form of keeping energy is to store it as hydrogen,
hich may be used to produce electricity in a fuel cell. Aspects of
ydrogen storage and an overview of the chemical hydride tech-
ologies available for storing hydrogen are considered in the next
ection.

. Hydrogen storage

Hydrogen can be stored as a compressed gas, as a liquid, in a
hemical compound (e.g., chemical hydrides or metal hydrides), or
hysically held within nanoporous structures. A major element of
he cost of most of these storage modes (and a major consideration
n terms of their energy efficiency) is the energy required to get
he hydrogen in and out of the storage medium. Table 2 shows
he cost of a number of storage means, including liquefaction, gas
ompression above the ground and underground, and chemical and
etal hydrides.
In each case, the cost of the storage method is dependent
n the cost of the requisite energy to get the hydrogen into the
equired form for storage, as well as on the scale and throughput,
nd sometimes on the storage medium. The storage can add
nything from 0.1D to 3.5Dkg−1 to the price of hydrogen (Table 2),

able 2
osts for various hydrogen storage technologies [6].

Technology Transition scenarioa Cost rangeb, Dkg−1 H2

Liquefaction (>45 kg h−1) CHT, UH 0.8–1.2
Compressed gas (<1 week)c CHT, UH, ES 0.1–0.5d

Bulk underground CHT, UH 0.1–0.2
Chemical hydrides CHT, UH, ES 1.2–1.9e

Metal hydrides CHT, UH, ES 0.3–3.5
Methanolf SLF n/a

a Four scenarios: synthetic liquid fuels (SLF); central hydrogen for transport (CHT); ubi
b Assuming that 1D= 1.3 US$.
c Storage times of less than 1 week; cost rises with storage because H2 throughput is re
d One estimate is as high as 1.2Dkg−1 H2; storage pressure not given in source.
e INCLUDES some energy and costs which could be regarded as H2 production.
f NOT included in source table, but elsewhere in source.
inable Energy Reviews 15 (2011) 3980–4001

depending on the storage means and assumptions on these
associated variables.

Compressed gas and liquid hydrogen storage technologies are
the current state-of-the art, but more compact means of stor-
ing hydrogen are needed for portable and mobile applications.
Solid-state hydrogen storage materials would appear to be a very
promising solution. However, they have in general low gravimetric
capacity and, therefore, there has been a growing interest in the use
of complex hydrides of the type of Na+[AHx]−, where A represents
boron or aluminium.

Sodium and lithium borohydrides are well-known reducing
agents that are used in organic chemistry. For hydrogen storage,
the aluminium salts NaAlH4 and Na3AlH6 (the so-called “alanates”)
are the preferred reagents. Thermal decomposition of NaAlH4 takes
place in two steps, i.e.,

3NaAlH4 → Na3AlH6 + 2Al + 3H2 (1)

Na3AlH6 → 3NaH + Al + 3/2H2 (2)

These reactions are reversible at elevated temperatures and
pressures. The first step (Eq. (1)) at 323–373 K, corresponds to
the release of 3.7 wt.% hydrogen and the second step (Eq. (2)), at
403–453 K, to a further 1.9 wt.% hydrogen. Research has shown that,
in the presence of a titanium catalyst, the temperature for discharge
and recharge of hydrogen may be brought down to acceptable lev-
els. Titanium-catalysed Na[AlH4] has thermodynamic properties
that are comparable with those of classic low temperature hydrides
(e.g., LaNi5H6 and TiFeH). Moreover, even if only the first step (Eq.
(1)) can be utilised, the gravimetric hydrogen storage of NaAlH4 is
still more than that offered by AB, AB2 or AB5 hydrides. By contrast,
Na3AlH6 requires higher temperatures for hydrogen liberation and
might be useful to non-fuel applications such as pumping and heat
storage. There are also complex hydrides based on transition met-
als, e.g., Mg2FeH6. In most cases, they have low reversibility. The
possibility of overcoming this limitation through development of
efficient catalysts awaits further research.

Sodium borohydride, NaBH4, is stable until about 673 K and is,
therefore, not suitable for providing hydrogen through a thermal
activation process. It does release hydrogen, however, on reaction
with water, as described by Eq. (3).

NaBH4 + 2H2O → NaBO2 + 4H2 (3)

The borohydride hydrolysis reaction is irreversible, but has the
advantage that 50% of the hydrogen comes from the water – in
effect, NaBH4 is a “water-splitting” agent. Based on the mass of
NaBH4, the hydrogen released corresponds to 21 wt.% – a remark-
ably high figure. Several of these so-called “chemical hydrides”, e.g.,

CaH2, LiAlH4, LiH, LiBH4, KH, MgH2, NaH, are being evaluated for
their reactivity with water. One approach to preparing the stor-
age medium is to mix the hydride with light mineral oil and a
dispersant to form an “organic slurry”. The oil coats the hydride

Comments

Cost highly dependent on scale, efficiency, cost of electricity
For stand-alone (i.e., not on-board) storage only; strong economies of scale
Costs rise with increased storage time/reduced throughput
Large economies of scale, figures apply to 3.6 kto–9 Mto H2; on-board storage
For storage times of 1–14 days; on-board storage
Cost not calculated; methanol can be produced from sources other than H2

quitous hydrogen (UH); electricity stores (ES).

duced.
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articles and protects them from inadvertent contact with water,
nd also moderates the reaction rate of the hydride with water
hen desired.

The downside of using chemical hydrides is that the spent solu-
ion has to be returned to a processing plant for regeneration of the
ydride. From the standpoint of mass, volume and cost, however,
he system appears superficially to be attractive as a hydrogen-
torage scheme for fuel-cell vehicles (FCVs). For example, Daimler
G has demonstrated that a NaBH4 system, developed by Mille-
ium Cell in the USA, can provide a minivan (the “Natrium”) with a
ange of 480 km. Much will depend on the difficulty and cost of the
eprocessing operation. At the service station, instead of refuelling
ith hydrogen gas, the vehicle would have its tank emptied and

efilled with fresh hydride slurry. This is similar to the procedure
roposed for the zinc-air traction battery.

Organic liquids, such as cyclohexane or methanol, and nanos-
ructured materials are other possible approaches to chemical
torage of hydrogen, but borohydrides, namely sodium borohy-
ride, with their enormous potentialities as hydrogen storage
aterials and as fuels, are considered a topic requiring further

ttention. This is the main subject of the present paper, to be
etailed in the following sections.

. Synthesis of sodium borohydride

Borohydrides belong to a class of materials with the highest
ravimetric hydrogen densities. There are many types of borohy-
rides depending on the composition of M, B and H, e.g., M(BH4)n,
(B3H8)n, M(B6H6)n, M(B9H9)n and M(B12H12)n [7].
Here, we focus on sodium borohydride, NaBH4, which has a

ydrogen-rich anion, the borohydride, BH4
−, which is similar to

lH4
− (alanate) in NaAlH4. Moreover, NaBH4 has a higher gravi-

etric hydrogen density than NaAlH4, due to B being lighter than
l. On the other hand, NaBH4 does not release hydrogen by the
ame reaction pathways of alanate, e.g., NaAlH4 to Na3AlH6. There-
ore, confirmation of similarity and difference between NaBH4 and
aAlH4 is important.

NaBH4 is not a new compound since it was discovered in the
940s [8]. In fact, the first report of a pure alkali metal borohydride
ppeared in 1940 by Schlesinger and Brown who synthesised LiBH4
y the reaction of ethyllithium with B2H6 [9]. The direct reaction
f the corresponding metal/metal hydride with diborane in ethe-
eal solvents under suitable conditions produces high yields of the
orohydride compound [10–12]:

MH + B2H6 → 2MBH4 (M = Li, Na, K) (4)

Schlesinger and Brown also discovered NaBH4 in 1940, while
eading a team that developed metal borohydrides for wartime
pplications, but their work involving NaBH4 was classified and
ublished in a scientific journal only in 1953 [10,13,14], although a
atent had been granted 3 years before [15].

Thus far, about 100 methods for preparation of NaBH4 have been
uggested in the last 60 years. Fig. 1a shows that the number of
ublished papers concerning the synthesis of NaBH4 has seen a
onsiderable increase in the last decade [10,13,14,16–51], mainly
ue to the recent wave of interest on NaBH4 for energy systems.
esides the papers in scientific journals, and given the importance
f achieving a cheap method for NaBH4 production, it seems natural
hat many patents have also been published on this matter. Fig. 1b
hows that over 78 patents have been granted to processes that

laim the NaBH4 synthesis [12,15,52–127]. It is interesting to notice
he occurrence of two separate time periods with high number of
atents on the NaBH4 synthesis: the first one was in the sixties,
ollowing the NaBH4 discovery; the second peak was already in the
Fig. 1. Evolution of the number of publications regarding the synthesis of NaBH4:
(a) journal papers and (b) patents.

21st century, caused by the recent demand for alternative energy
power sources (Fig. 1b).

Industrial production of NaBH4 using the Brown–Schlesinger
process is carried out by the reaction of extremely fine sodium
hydride with trimethyl borate in high boiling hydrocarbon oil at
about 523–553 K [14,15]:

4NaH + B(OCH3)3 → NaBH4 + 3NaOCH3 (5)

The other industrial NaBH4 synthesis process was developed
by Bayer and uses finely grounded borosilicate glass, sodium and
hydrogen [17]:

Na2B4O7 + 7SiO2 + 16Na + 8H2 → 4NaBH4 + 7Na2SiO3 (6)

The NaBH4 material is then extracted from the
borohydride–silicate mixture with liquid ammonia under pressure.

Different approaches to the synthesis of NaBH4 have recently
been reviewed by Santos and Sequeira [51]. They consider syn-
thetic processes that are or have been in operation on an industrial
scale; potential routes based on direct use of carbon, hydrocar-
bons, or hydrogen reducing agents; multi-step thermochemical
reaction pathways that were developed to address the inadequa-
cies of the former direct reactions, and which take advantage

of the characteristic disproportionation chemistry of boron com-
pounds; reaction pathways that use metals as reducing agents;
and alternative energy sources such as microwaves and nuclear
radiation.
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Table 3
Physical and chemical properties of sodium borohydride.

Appearance White to grey-white microcrystalline
powder or lumps

Odour Odourless
Solubility Soluble in water; reacts with hot water
Specific gravity 1.074
984 D.M.F. Santos, C.A.C. Sequeira / Renewable and

In essence, the Brown–Schlesinger and Bayer processes are both
lectrochemical in nature, given that the majority of the energy
eeded to make NaBH4 is introduced into the system in the form
f electricity used to make sodium metal.

As done for the thermal reaction processes, it makes sense
o discuss the most desirable electrochemical reactions for the
aBH4 synthesis, and then examine their flexibility. Cooper [87],
ale and Sharifian [89], Sharifian and Dutcher [90], Sun and
iang [100], and Guilbault et al. [106] are among those who have
eported the electrochemical conversion of borate to borohydride
n aqueous media, but studies by Gyenge and Oloman [18] and
y Calabretta and Davis [28] failed to verify that any borohy-
ride was synthesised in the electrochemical systems used by
ooper, Hale and Sharifian [87,89,90]. NaBH4 electrosynthesis
ttempts in aqueous media, molten salts, and ionic liquids have
lso been carried out in our laboratory [51], as briefly summarised
ereinafter.

The electrosynthesis of NaBH4 in aqueous media has been
ttempted in a two-compartment electrolytic cell using alkaline
atholyte solutions containing sodium metaborate (NaBO2), or
odium tetraborate (Na2B4O7), with and without hydrogen poisons
e.g., thiourea), sodium hydroxide aqueous anolyte solutions, and
afion 117 and other permselective membranes to separate the

wo compartments. Platinum, palladium, cadmium, nickel, gold,
inc, lead, mercury, graphite, stainless steel and other materials,
ere tested as cathodes. As for the anode material, nickel, platinum,

raphite and stainless steel, were used. The polarisation behaviour
f the electrodes was controlled to guarantee that cathode poten-
ials more negative than the discharge potential required for the
orohydride production (≤−1.46 V vs. SHE) were attained during
he electrolytic operation [51].

The aqueous electrosynthesis of NaBH4, starting from NaBO2, is
escribed by the overall reaction shown in Eq. (7),

aBO2 + 2H2O → NaBH4 + 2O2 (7)

with the cathodic and anodic partial reactions being given by
qs. (8) and (9), respectively.

aBO2 + 6H2O + 8e− → NaBH4 + 8OH− (E0 = −1.24 V vs. SHE)

(8)

OH− → 2O2 + 4H2O + 8e− (E0 = 0.40 V vs. SHE) (9)

Assuming that the applied cathodic overpotential is sufficient
o achieve complete conversion of the NaBO2 into NaBH4 within
he test solution, and there are no side reactions (e.g., hydrogen
volution and/or borohydride hydrolysis), the integrated charge
s expected to rise asymptotically with time towards a value of
nF (z is the number of moles of transferred electrons – 8 – per
ole of NaBO2, n is the number of moles of NaBO2 present and F

s Faraday’s constant).
Regarding the NaBH4 electrosynthesis attempts in molten

alts, the analysis of the most suitable electrolytes for the reac-
ion medium revealed that NaOH should be part of the molten
lectrolyte. NaOH provides the OH− ions for the oxidation at the
node, the Na+ ions for the ionic conduction through the separator,
tabilises the produced NaBH4 in the catholyte, and enables
he preparation of low melting point eutectic compositions for
he NaBO2 electrolysis. A eutectic mixture composed of NaOH
51%) + KOH (49%) (in molar%), having a melting point of 443 K, was
sed as the molten electrolyte medium for the NaBH4 synthesis.

his system showed problems concerning the electrodes’ stability,
eed for controlled atmosphere, nature of the metal electrocata-

yst, the type of the separator material, and water contamination,
mong others.
% Volatiles by volume at 294 K 0
Melting point 778 K (10 atm H2)
Vapour density (air = 1) 1.3

The NaBH4 electrosynthesis reaction has also been studied in
ionic liquids medium. Two ionic liquids (octamethylimidazolium
and 1-butyl-1-methylpyrrolidinium trifluoromethanosulphonate)
were selected and characterised as possible electrolyte medium
for the synthesis. However, both ionic liquids displayed low ionic
conductivity. Moreover, the tested ionic liquids displayed good
solubility for NaOH and NaBH4 but high insolubility for NaBO2.
Experience gained with available ionic liquids does not make them
particularly attractive for bulk electrolysis. Nevertheless, our group
at TU Lisbon is developing ways to minimise present limitations,
namely by: (i) increasing the working temperature to decrease the
ionic liquid viscosity; (ii) using ultrasonication to assist mass trans-
port; (iii) bubbling nitrogen gas through the solution to enhance
mass transport; (iv) minimising the volume of bulk electrolysis
cell; (v) using a high area working electrode to optimise the area to
ionic liquid volume ratio; (vi) using a flow cell or other hydrody-
namic methods (e.g., stirring) to enhance mass transport; and (vii)
employing a mixture of an ionic liquid and a low viscosity highly
volatile organic solvent (e.g., dichloromethane) to lower the vis-
cosity. The volatile organic solvent may then be removed under
vacuum conditions after completion of the bulk electrolysis exper-
iment. It is believed that the recent advances in the chemistry of
ionic liquids will soon render an effective electrolytic medium for
NaBO2 conversion to NaBH4 [128].

Based on the obtained results, it is anticipated that much work is
still required to fully understand how the electrochemical approach
can be used in the synthesis of NaBH4.

4. Properties of sodium borohydride

4.1. General

Sodium borohydride, also known as sodium tetrahydridobo-
rate (or tetrahydroborate), has the chemical formula NaBH4 (CAS
16940-66-2). It is a white solid, usually available as a powder or
confectioned in pellets, that melt at 778 K and 10 atm H2. NaBH4
is hygroscopic, decomposing slowly at temperatures above 673 K
[129].

NaBH4 is a selective speciality reducing agent used in the man-
ufacture of pharmaceuticals, intermediates and fine chemicals.
NaBH4 converts aldehydes and ketones into alcohols but, unlike
LiAlH4 (also widely used as a reductant), NaBH4 does not react with
esters, amides, or carboxylic acids.

Table 3 presents some general physical and chemical properties
of NaBH4, and Table 4 shows its stability conditions.

Fig. 2 gives an idea of the number of published journal papers
devoted to the characterisation of NaBH4 [130–178]. The number
of papers per decade has been relatively constant until the 21st
century, with a natural increase in recent years.

Industrially, NaBH4 is an important starting material for the pro-
duction of other borohydrides. For example, KBH4 is produced on
an industrial scale by the following metathesis reaction:
NaBH4 + KOH → KBH4 + NaOH (10)

Alkaline-earth borohydrides, trivalent and tetravalent borohy-
drides, M(BH4)n (M = alkaline-earth, groups 3–14 in the periodic
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Table 4
Stability of sodium borohydride.

Stability Hygroscopic; stable in dry air up to 573 K;
decomposes slowly in moist air or vacuum
above 673 K

Hazardous decomposition
products

Sodium oxide and hydrogen gas

Incompatibilities Reacts with water to evolve hydrogen;
excessive heat decomposes it to sodium
metaborate, releasing hydrogen gas; may react
slowly or vigorously with acids or certain
transition metal catalysts to liberate hydrogen;
incompatible with oxidising agents, sulphuric
acid, ruthenium salt and metal salts
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Table 5
Solubility of sodium borohydride in various solvents (g/100 g solvent at 298 K).

Tb of solvent (K) NaBH4 solubility

Water 373.0 55
Methanol 310.7 16.4a

Ethanol 351.5 4.0a

Isopropylamine 307.0 6.0b

Diethyl ether 309.0 Insol.
THF 338.0 0.1c

Diglyme 435 5.5
Toluene 384 Insol.
Ammonia 239.7 104
DMF 426 18.0d

Adapted from [129].
a 293 K, decomposition.
Conditions to avoid Moisture, heat, flame, ignition sources, air and
incompatibles

able, n = valence of M) are synthesised by the metathetical reaction,
s follows:

NaBH4 + MXn → M(BH4)n + nNaX (11)

Here, X = halogen, such as F, Cl, Br, I. These metathetical reactions
ccur with certain elements of M, e.g., group 2 (magnesium, etc.)
179–181], groups 4, 13, etc. For example, Konoplev and Bakulina
179] have synthesised Mg(BH4)2 by reaction of NaBH4 and MgCl2
n molar ratio 2.7–3.8:1 in diethyl ether (2:1 stoichiometry). After
rogression of the metathetical reaction (Eq. (11)), the precipitated
aCl is filtered, and then the Mg(BH4)2 ether solution is evacuated
t 453 K in order to remove diethyl ether.

Multi-cation borohydrides, MM′(BH4)n (M = alkaline metals,
′ = other metals) have been synthesised by the reaction described

n Eq. (12) [182].

MBH4 + M′Cln → Mm–nM′(BH4)m + nMCl (12)

There are many kinds of multi-cation borohydrides with coor-
inated solvents. For example, multi-cation compounds, such as
i3(BH4)(NH2)2 have been reported [183]. Those borohydrides
ight be useful for controlling the thermodynamic stability, sim-

lar to the conventional “alloying” method for hydrogen storage
aterials [182].
The solubility of NaBH4 in various solvents is summarised in

able 5. In protic solvents, solvolysis occurs for NaBH , and hydro-
4
en is released as follows:

aBH4 + 4ROH → NaB(OR)4 + 4H2 (13)

ig. 2. Evolution of the number of publications regarding sodium borohydride prop-
rties.
b 301 K, decomposition.
c 293 K, decomposition.
d Dangerous decomposition possible at higher temperature.

Here, ROH is, for example, methanol or ethanol. Because NaBH4
decomposes up to 80% after 1 h in methanol at 273 K (and 6% after
1 h in ethanol), excess NaBH4 is used for this synthesis reaction (Eq.
(13)).

4.2. Crystal structure

There have been many recent works devoted to the study of the
crystal structure of NaBH4 (and other borohydrides) [161,172,176].
Some data on the crystal structure of NaBH4 [151] is summarised
in Table 6.

NaBH4 shows NaCl-type structure at ambient conditions
[130,151,184]. The lattice constants and distances between Na and
B depend, of course, on the Na atomic number. However, the dis-
tances between B and H, i.e., the size of the BH4

− tetrahedra, are
almost the same, independent of the alkali metal (Na, Li, K, Rb,
Cs). NaBH4 shows structure transition at low temperature; it crys-
tallises in tetragonal P42/nmc below 190 K [152]. At 6.3 GPa, NaBH4
has a structure transition to tetragonal P421C, with lattice constants
a = 4.0864(1) Å, c = 5.5966(7) Å, and to orthorhombic Pnma, with
a = 7.33890(1) Å, c = 5.6334(5) Å, at a pressure of 6.3 and 8.9 GPa,
respectively [185].

4.3. Electronic structure

The electronic structure of NaBH4 has been investigated by first-
principles calculations. The electronic structure is non-metallic
with the calculated energy gap of 6.8–7.0 eV [152]. Because there
is little contribution of Na orbitals to the occupied states, Na atoms
are thought to be ionised as Na+ cations. The occupied states split
into two peaks: the low energy states are composed of B-2s and
H-1s orbitals and the high-energy states consist of B-2p and H-1s
orbitals. A boron atom constructs sp3 hybrids and forms cova-
lent bonds with surrounding four H atoms. The charge from the
extra electron needed to form these bonds is compensated by a

+
Na cation. This character is also confirmed experimentally by syn-
chrotron X-ray diffraction measurement and maximum entropy
method (MEM) analysis [152]. The calculated total density of state
(DOS) for NaBH4 is displayed in Fig. 3 [152]. The compound has

Table 6
Crystal structure of sodium borohydride at room temperature [151].

Structure Cubic
Space Fm−3m
Group No. 225
Lattice constants (Å) a = 6.1506 (6)
Na–B distance (Å) 3.0753 (3)
B–H distance (Å) 1.17078 (6) × 4



3986 D.M.F. Santos, C.A.C. Sequeira / Renewable and Sustainable Energy Reviews 15 (2011) 3980–4001

F
a

A

fi
H
∼

5

n
[
[
n
m

d
p
w
(
s
r
s
a
m
o
e

o
i
v
a

o

F
m

Fig. 5. Experimental setup used for the gasometric measurements of the hydrogen
ig. 3. Calculated ground-state total DOS for NaBH4. Fermi level is set at zero energy
nd marked by the vertical dotted line; occupied states are shaded.

dapted from [152].

nite energy gap between the valence and conduction bands.
ence it is a proper insulator with an estimated band gap of
5.5 eV.

. Methods for sodium borohydride monitoring

Most existing methods for borohydride determination are
either easy nor fast [186]. These include hydrogen evolution
132,187], acid–base titration [132], iodate [188], hypochlorite
189], and voltammetric procedures [191]. Fig. 4 shows that the
umber of published papers devoted to methods for the NaBH4
onitoring is not very large [132,188–210].
The development of simpler and faster methods for NaBH4

etermination, either from a quantitative or from a qualitative
oint of view, would be very helpful for the scientific community
orking in any applications involving NaBH4, e.g., energy systems

direct borohydride fuel cells, NaBH4 for hydrogen production and
torage), in NaBH4 synthesis, for electrodeposition purposes, as
educing agent in organic synthesis, etc. Our group has studied
everal typical analytical methods for NaBH4 monitoring, as well
s a quick and simple potentiometric technique for the in situ
onitoring of small NaBH4 concentrations. Most of these meth-

ds were initially tested in our laboratory for application in NaBH4
lectrosynthesis studies (Section 3).

The well known iodate method [189] is based on the reaction
f NaBH4 with KIO3. Addition of KI and acid convert the excess
odate into iodine, which is then titrated with thiosulphate. This

olumetric method was proven to be extremely time-consuming
nd leading to erroneous results, being promptly abandoned.

A new “hydride hydrolysis” test (Fig. 5) was developed based
n the gasometric measurements of the hydrogen generated

ig. 4. Evolution of the number of publications regarding the borohydride
onitoring.
generated on product sample hydrolysis and example of calibration curve used for
NaBH4 determination.

by the decomposable borohydride product resulting from the
electrosynthesis experiments (Section 3), being assisted by a
calibration curve for pure NaBH4. This new method shows good
reproducibility but requires further design optimisation to reduce
its detection limit [51].

The use of infrared (IR) spectroscopy analysis (Fig. 6) has shown
that the three B–H bond stretching vibration bands observed in the
NaBH4 electrosynthesis reaction products [51] are in good agree-
ment to the ones obtained for pure NaBH4 and with the values
found in the literature [146,160,191].

Table 7 presents data taken from the IR spectra of the electrosyn-
thesis product and of a sample of NaBH4 p.a. The values obtained
experimentally are compared to previous data available in the
open literature. Although this method is able to detect the presence
of borohydride in the electrosynthesis products, IR spectroscopy
analysis has the disadvantage of taking excessive time. In fact, it
requires full drying of the reaction products and preparation of a
KBr/sample pellet suitable for the IR spectrophotometer [51].

The experience gained on the monitoring of the NaBH4 elec-
trosynthesis indicated that electrochemical methods should be
appropriate to follow the reaction process.

In 1999, Amendola et al. [204] reported the non-destructive
in situ detection of relatively low NaBH4 concentrations by an
undemanding method that is in essence a potentiometric titra-
tion technique. The method was simply based on the change of
the open circuit potential (OCP) of a given metal with the NaBH4
concentration.

In the majority of potentiometric measurements, the potential
of one electrode is kept constant, with this electrode being referred
to as the reference electrode. The second electrode responds to the
activity or concentration of the species contained in the solution

under investigation and is referred to as the indicator electrode.
Amendola et al. [204] used platinum, rhodium, and cobalt as metal
indicator electrodes.

Table 7
B–H bond stretching vibrations for sodium borohydride.

� (B–H)/cm−1

Electrosynthesis product 2225, 2293, 2359
NaBH4 p.a. 2224, 2290, 2387
NaBH4 [191] 2229, 2305, 2400
NaBH4 [146] 2217, 2284, 2404
NaBH4 [160] 2216, 2282, 2396
NaBH4·2H2O [160] 2221, 2268, 2380
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ig. 6. Infrared spectra taken for NaBH4 p.a. (a), and for the electrosynthesis reaction
roduct obtained in aqueous medium (b).

In order to develop the method originally proposed by Amen-
ola et al. [204], several materials (e.g., Pt, Pd, Cd, Au, Cu, Ni, Fe,
ISI 304 stainless steel, Zn, Mo, Nb, graphite, and Si) were tested as

ndicator electrodes for NaBH4 monitoring [209]. It was shown that
he materials whose OCP is significantly different when immersed
n NaOH supporting electrolyte with or without NaBH4 may be
andidate indicator electrodes for application in a novel borohy-
ride microelectrode sensor. The potentiometric procedure for a
old (Au) indicator electrode led to the curve shown in Fig. 7.

Fig. 7 shows that the Au OCP starts to decrease for NaBH4 con-
entrations above 10−2 M, with an OCP response range of about
V. Similar curves were recorded for other tested indicator elec-

rode materials [209] and available thermodynamic data [211–213]
elped in the analysis of the obtained OCP–[NaBH4] plots. Accord-

ng to the NaBH4 concentration ranges where the OCP changes take
lace, the six selected materials presented in Fig. 8 can be classi-
ed as the top indicator electrode materials for each specific NaBH4
oncentration range.

. Sodium borohydride hydrolysis and dehydriding
In 1954, Schlesinger et al. [10] reported that NaBH4 reacts
lowly with water to liberate four moles of hydrogen per mole
f NaBH4, equivalent to 2.5 l of hydrogen per gram of NaBH4, at

ig. 7. OCP change as a function of the NaBH4 concentration for an Au electrode in
M NaOH solution at 298 K [209].
Fig. 8. Top materials displaying steeper OCP changes for specific borohydride con-
centrations [209].

room temperature. The reaction (Eq. (3)) could be accelerated by
rising the temperature or by adding acids/catalysts. By then, the
Schlesinger group had tested the catalytic effects of more than 20
acids and of certain metal salts (manganese (II), iron (II), cobalt
(II), nickel (II), and copper (II) chlorides) [214]. Historically, their
observations have been crucial because they have introduced two
features that are central today: NaBH4 generates hydrogen; and
this hydrogen generation can be catalytically accelerated.

Nowadays, many papers entirely devoted to the NaBH4 hydroly-
sis have been published [38,214–426]. Fig. 9 shows that the focus on
the borohydride hydrolysis suffered an almost exponential increase
in the beginning of the 21st century, showing a maximum of 47
publications during the year of 2008.

Levy et al. [215] reported that the CoCl2-catalysed hydrolysis is
a first-order reaction with respect to the NaBH4 concentration and
that an application of kinetic data should allow a precise selection
of the catalyst concentration required to give the desired hydrogen
generation rates. Brown and Brown [216] showed that many of the
heavy metals exerted a powerful catalytic effect on the hydrolysis
of NaBH4. The platinum family metals were unusually effective,
following the order Ru, Rh > Pt > Co > Ni > Os > Ir > Fe � Pd, at 298 K.
NaBH4 reduced the platinum metals to the elementary state, in
a form which exhibited high catalytic activity for the hydrolysis
reaction. Davis et al. [217] focused on the hydrolysis catalysed by
general acids (Eq. (14)).
BH4
− + H3O+ + 2H2O → H3BO3 + 4H2 (14)

Fig. 9. Evolution of the number of publications regarding the borohydride hydrol-
ysis.
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The reaction order was unitary in relation to the NaBH4 concen-
ration and unitary to the concentration of the acid. Many studies
ttempting to understand the NaBH4 hydrolysis reaction kinetics
nd mechanisms were then published [217–220].

The hydrogen generation in other solvents, like alcohols
403,427,428], was also assessed. Davis and Gottbrath [428] inves-
igated the reaction of NaBH4 with methanol (methanolysis).
ydrogen gas is produced according to Eq. (15), which is, as
xpected, of the same type as Eq. (13).

aBH4 + 4CH3OH → NaB(OCH3)4 + 4H2 (15)

The reaction order vs. the NaBH4 concentration was found to be
f one. It was besides reported that the addition of an acid increased
he rate of methanolysis while basic materials decreased it.

The generation of hydrogen by complete dehydriding of NaBH4
s described by Eq. (16) [156].

aBH4 → NaH + B + 3/2H2 (16)

The dehydriding reaction of NaBH4 liberates 8 wt.% H2 at above
he boiling temperature (838 K) and decomposes into NaH and
. The enthalpy change of the dehydriding reactions, �Hd, is
6 kJ mol−1 H2 [156,429,430]. The heat of formation of NaBH4,
Hboro, may be estimated from the difference of the total energies

etween the left and right-hand sides of Eq. (17).

a + B + 2H2 → NaBH4 (17)

The bonding character between Na+ and BH4
− in NaBH4 is

onic, and the charge transfer from Na+ to BH4
− is responsible

or the stability of NaBH4. The ability of the charge transfer can
e measured by the electronegativity. There is a good correlation
etween �Hboro and the Pauling electronegativity of the metal
ation. This is 0.9 for Na, so the predicted heat of formation for
aBH4 is given by Eq. (18).

Hboro = 253.6 × 0.9 − 398.0 = −169.8 kJ mol−1 (18)

The estimation of �Hd for NaBH4 not only takes into account
he stability of NaBH4 but also the stability of the products. There-
ore, �Hd is estimated using predicted �Hboro and known values
f �Hproduct [431] (Eq. (19)).

Hd = �Hboro − �Hproduct (19)

o, as reported above, �Hd for NaBH4 is 66 kJ mol−1 H2 and the
ecomposition temperature, Td, is 838 K, which is the boiling tem-
erature. A thermodynamic unstable borohydride is expected only
or metal cations for which the Pauling electronegativity is larger
han 1.5.

In the hydriding and dehydriding reactions of NaBH4, not only
ydrogen but also other elements should be diffused. This is not
he same as conventional metal hydride alloys in which diffusion
f hydrogen and expansion of lattice for the alloy is dominant. Gen-
rally, the fast diffusion of elements is very difficult in the solid
tate at much lower than the melting temperature. Therefore, the
bserved Td during heating process seems to become higher than
hat predicted. Moreover, a hydrogen pressure (generally more
han 10 MPa) higher than that predicted for �Hd is required for
ydriding of NaBH4. This is why a high temperature is required

or diffusion of elements, at which high hydrogen pressure should
e applied for hydriding. Therefore, solving the kinetic problem is
n important area of research in the use of complex hydrides as
ydrogen storage materials.
In order to improve the reaction kinetics, ball milling and addi-
ion effects (doping) have been investigated. Barkhordarian et al.
27] reported that the kinetic barriers for the formation of NaBH4
re drastically reduced when MgB2 is used instead of B as the
Fig. 10. Evolution of the number of publications regarding the borohydride oxida-
tion.

starting material for the hydriding reaction, with simultaneous
reduction of the reaction enthalpy in ∼10 kJ mol−1 H2.

7. Oxidation of sodium borohydride

The oxidation of NaBH4 was studied for the first time in 1953, by
Pecsok [426], who proposed the net reaction for the polarographic
oxidation of the borohydride ion, BH4

−, described by Eq. (20).

BH4
− + 8OH− → BO2

− + 6H2O + 8e− (20)

The standard electromotive force, E0, of this half reaction was
calculated as being 1.21 V vs. the standard hydrogen electrode
(SHE) and it was observed that the BH4

− oxidation was irreversible.
Two years later, Stockmayer et al. [133] calculated an E0 value of
1.24 V vs. SHE. In 1962 [432,433] and 1992 [434] three more pub-
lications dealt with the BH4

− oxidation, but it was only from 2003
onwards that a large number of papers were published on the sub-
ject (Fig. 10).

In fact, during the last 7 years more than 80 papers have been
published on exploratory fundamental research on the NaBH4
electrooxidation [133,165,426,432–514]. In our laboratory, we
have undertaken systematic studies on the BH4

− electrooxida-
tion in several catalytic and noncatalytic electrode materials,
using various concentrations of NaBH4 and NaOH, and at different
working temperatures [495–497]. Well-established electrochem-
ical methods, namely chronopotentiometry, chronoamperometry,
chronocoulometry, and cyclic voltammetry, were used to better
understand the BH4

− anodic process. As electrode material, Au was
selected because of its high catalytic activity for the BH4

− oxidation
reaction (with a number of exchanged electrons, n, close to the the-
oretical value of 8) and because of its relatively low catalytic activity
for the concurrent detrimental BH4

− hydrolysis reaction.
Potential step experiments [495] were carried out at tempera-

tures ranging from 298 to 338 K and imposed potentials from 0.05
to 0.45 V vs. SHE. The supporting electrolyte was 2 M NaOH and
the NaBH4 concentrations varied from 0.03 to 0.12 M. The Cottrell
equation was applied to the obtained chronoamperometric curves,
where diffusion prevailed, to determine the diffusion coefficient, D.
Arrhenius plots of the D values led to diffusion activation energies,
Ed, of 16.6, 15.6 and 20.5 kJ mol−1, and maximum diffusion coef-
ficients, D0, of 1.55 × 10−2, 9.56 × 10−3, and 5.13 × 10−2 cm2 s−1,

respectively, for the tested NaBH4 concentrations of 0.03, 0.06 and
0.09 M. Chronocoulometric experiments [495] led to Anson plots (q
vs. t1/2), from which it was possible to calculate accurate apparent
rate constants for electron transfer. Activation energies for charge
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ig. 11. Typical CV obtained at 1 V s−1 on a Au electrode in 2 M NaOH + 0.09 M NaBH4

olution, at 298 K.

ransfer could then be obtained. The analysis of the i − t transients in
he mixed control region allowed extending the Tafel plots to deter-

ine exchange current densities, j0, anodic transfer coefficients, ˛,
nd consequently, the standard heterogeneous rate constants, ks.
rom the ln ks vs. T−1 plots, it was found that the standard activa-
ion energies for charge transfer, E0

ct, in the Au/NaBH4 system were
0.8, 25.2, 37.2 and 43.3 kJ mol−1, for the NaBH4 concentrations of
.03, 0.06, 0.09 and 0.12 M, respectively [495].

Using the same experimental conditions, applied current den-
ities in the range of 10–1000 mA cm−2 were carefully selected
o guarantee that the chronopotentiometric data [496] are col-
ected in a domain where the Sand equation is valid. A single
xidation wave was always observed for concentration ratios
NaOH]/[NaBH4] > 4.4.

From our chronopotentiometric results and complementary
hronoamperometric data [437], the overall BH4

− oxidation pro-
ess was shown to be irreversible involving a number of electrons
lose to the theoretically expected value of 8. Linear E vs.
og (�1/2 − t1/2) plots, where � is the transition time, were obtained,
nd this well-known diagnostic criterion enabled concluding that
or the studied potential and NaBH4 concentration ranges (i.e.,
0.25 to +1.75 V vs. SHE; 0.03 to 0.12 M), the rate-determining step

s an irreversible, diffusion-controlled, one-electron oxidation step
or which several key kinetic parameters (˛, ks, E0

ct) were calculated
496].

Further studies of the BH4
− electrooxidation on a Au disc

acroelectrode in 2 M NaOH solutions were performed by cyclic
oltammetry [497]. Voltammograms were obtained for NaBH4
olutions of various concentrations, working temperatures, and
otential scan rates ranging from 0.02 to 20 V s−1, over a wide
otential range (−0.7 to 1.0 V vs. SHE). A typical CV for the borohy-
ride oxidation in a Au electrode is shown in Fig. 11.

Basically, there is a well-defined anodic peak (a1) around 0.1 V
vs. SHE), followed by a broad oxidation hump (a2) around 0.55 V,
hich is visible in the region of the Au oxides [439]. The Au elec-

rode deactivates positive to peak a2 above 0.65 V, which reveals
hat Au oxides are relatively inactive towards the BH4

− oxidation
eaction. On the reverse scan, a well defined, sharp, anodic peak (c1),
s observed around 0.3 V, a potential value where it is expected that
he Au oxides are reduced and the electrode surface is reactivated.
his peak tails off at about 0.15 V, as the potential is scanned into the

− −
ange where the conversion, BH4 → BO2 , is no longer favourable.
eak a1 is characteristic of an irreversible electrochemical step (E).
he other two peaks, a2 and c1, correspond also to irreversible elec-
rochemical steps, but deeper analysis of the results suggests that a
inable Energy Reviews 15 (2011) 3980–4001 3989

CE or EC mechanism is actuating, where C denotes coupled chemical
reaction (e.g., adsorption). The ˛ coefficients for the purely electro-
chemical step (E) varied between 0.77 and 0.89, for temperatures
ranging from 298 to 338 K, and NaBH4 concentrations between 0.03
and 0.12 M. The number of exchanged electrons, n, for the E step
involved less than 8 electrons per BH4

− anion (n = 6.8 ± 0.7), which
is consistent with the proposed [497] overall oxidation process
(leading to n between 3 and 8).

8. Sodium borohydride for fuel cells

There are two types of fuel cell systems using NaBH4 aque-
ous solution as the fuel: the proton exchange membrane fuel cell
(PEMFC), which uses H2 generated in situ in a NaBH4 hydrolysis
reactor connected to a conventional PEMFC; and the direct boro-
hydride fuel cell (DBFC) system, which also belongs to the PEMFC
class, but it is fed directly by a NaBH4 aqueous solution as an anodic
fuel.

While the fuel for both these two systems is the same NaBH4
aqueous solution, they have one major difference. In the regular
PEMFC, it is necessary to maximise the H2 generation from the BH4

−

hydrolysis, whereas in the DBFC system, the production of H2 must
be suppressed as much as possible for adequate cell performance.

Accordingly, NaBH4, which was previously known mostly for
being a specialty reducing agent in the manufacture of pharma-
ceuticals and a bleaching agent in the manufacture of paper, is now
acquiring increasing importance as an energy/hydrogen carrier. It
is an energy carrier when it directly powers a DBFC. It works as
a hydrogen carrier when it stores and releases hydrogen that is
intended to power a regular PEMFC. In other words, NaBH4 can
directly or indirectly power a PEMFC.

8.1. PEMFC systems based on NaBH4

The concept behind this system is based on the PEMFC use of H2
generated in situ via the NaBH4 hydrolysis reaction (Eq. (3)) [253].
As indicated by the stoichiometry of Eq. (3), half of the H2 produced
in the hydrolysis reaction is derived from the solution water, which
accounts for the large amount of H2 generated in this reaction.

NaBH4 solutions rendered basic with NaOH become chemically
stabilised and do not generate significant amounts of H2 under
ambient conditions. However, upon the addition of certain hetero-
geneous catalysts, the NaBH4 hydrolysis rate can be dramatically
accelerated. Many conventional catalysts have been proposed for
the reaction, of which ruthenium-based catalysts are known to be
the most effective for promoting H2 generation [253].

The H2 produced in the hydrolysis reactor is then used as the
gaseous fuel for the coupled PEMFC, to generate electricity via the
general reactions described by Eqs. (21)–(23).

H2 → 2H+ + 2e− (Anode) (21)

½O2 + 2H+ + 2e− → H2O (Cathode) (22)

H2 + ½O2 → H2O (Overall) (23)

The development of the PEMFC system based on borohydride
can be divided into two steps [253]. The first is the development
of a hydrolysis mechanism of NaBH4 with a high reaction conver-
sion and a H2 generation rate sufficient to provide enough fuel for
the PEMFC. The second is the establishment of an effective sys-
tem design for connecting this H2 supply source to the PEMFC
system. The former step is generally accepted as being the key
issue. While much research has already been devoted to the H2

generation via the NaBH4 hydrolysis, it is still somewhat doubtful
if the amount of produced H2 and the reaction rate are sufficiently
high to provide the fuel for a PEMFC system. Recently, these tech-
nological issues have been partially overcome, both theoretically
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nd experimentally, by the development of various catalyst sys-
ems [232–239]. As a result, the conversion rate of the hydrolysis
eaction has been increased to almost 100% at room temperature
nd the H2 generation rate has been raised to a level sufficient for a
EMFC. Subsequently, PEMFCs based on borohydride are presently
eing evaluated by many researchers.

Although most of the research confirms the technological avail-
bility of this PEMFC system, in order to NaBH4 be regarded as a
romising hydrogen storage material there are some issues that
ust be solved first [166]. One is the high price of NaBH4 (ca.

0Dkg−1). Another issue is that the hydrolysis reaction does not
lways follow the ideal route given by the general reaction shown
n Eq. (3), but it is rather described by Eq. (24).

aBH4 + (2 + x)H2O → NaBO2·xH2O + 4H2 (24)

The reaction byproduct is hydrated with x molecules of water,
ecreasing the gravimetric hydrogen storage capacity from about
1 wt.% to 4–7 wt.%. Attempts should be made to improve these low
apacity values. The third issue is the catalyst efficiency, including
ts reactivity and resistance to deactivation. The performance of the
atalysts has received much attention but although their reactiv-
ty has been largely studied, little research can be found regarding
heir resistance. The last issue is the post treatment of the hydrolysis
yproducts (anhydrous and hydrated NaBO2). NaBH4 is currently a
on-reversible chemical hydride. Hence, a way for recycling NaBO2

nto NaBH4 is being investigated, a task with great significance. If
aBO2 cannot be recycled, NaBH4 cannot be regarded as a sustain-
ble or renewable (or rather recyclable) material what will then
mply an inevitable problem of boron resources depletion. Further-

ore, NaBO2 recycling would greatly contribute to the reduction
f the NaBH4 cost up to a projected price of 1Dkg−1. Investigations
re in progress [48–51], namely in our Laboratory [51].

.2. DBFC systems

The direct borohydride fuel cell (DBFC) system uses a NaBH4
queous solution as the fuel, which is continuously supplied to the
nodic chamber of the fuel cell.

In a DBFC, borohydride, BH4
−, is oxidised in strong alkaline

edia (pH >12) to metaborate, BO2
−, and water, generating eight

lectrons according to Eq. (20). With the BH4
− oxidation at the

node, humidified oxygen or air is electrochemically reduced at the
nterface between the cathode catalyst and the aqueous electrolyte,
nd the eight electrons are consumed according to Eq. (25)

O2 + 4H2O + 8e− → 8OH− (E0 = 0.40 V vs. SHE) (25)

Coupling of Eqs. (20) and (25) leads to the overall cell reaction
escribed by Eq. (26).

H4
− + 2O2 → BO2

− + 2H2O (E0 = 1.64 V) (26)

The DBFC theoretical cell voltage of 1.64 V is about 0.4 V higher
han that of the ordinary PEMFC. It is also very high when com-
ared to the methanol, formic acid, and hydrazine systems, with
heoretical cell voltages of 1.19, 1.45 and 1.56 V, respectively.

The performance of fuel cells that operate on NaBH4 as the
uel and oxygen or hydrogen peroxide (H2O2) as oxidants has
een investigated in several laboratories [253,433,486,515–619].
lthough the initial suggestion of using NaBH4 as an anodic fuel
ates from 1962 [433], there was a hiatus of almost 40 years until
he idea deserved a renewed interest. Fig. 12 shows that over 100
apers on the DBFC have been published since 2003.
The focus of research on the direct borohydride/peroxide fuel
ell (DBPFC) is in developing a high energy density power source
or space applications, underwater vehicles, and specific terres-
rial applications. One of the major advantages of the DBPFC is
Fig. 12. Evolution of the number of publications concerning the DBFC.

the use of reactants that are liquid at ambient temperature. The
use of liquid reactants greatly simplifies the storage, thermal man-
agement and internal processing. The minimum energy content of
the NaBH4/H2O2 reactants is 2600 Wh kg−1 (based on total fuel
weight), which is comparable to that of H2/O2 (3660 Wh kg−1),
without the need for cryogenic storage. In addition, high power
densities can be achieved in the DBPFC due to the ability of provid-
ing a high concentration of reactants to the fuel cell.

In the DBPFC, the BH4
− anodic oxidation proceeds through Eq.

(20) whereas at the cathode H2O2 is decomposed into oxygen and
water at the catalyst/electrode interface according to Eq. (27), with
the produced oxygen being subsequently reduced through Eq. (25).

4H2O2 → 4H2O + 2O2 (27)

H2O2 may also be directly electrochemically reduced according
to Eq. (28).

4H2O2 + 8e− → 8OH− (E0 = 0.87 V vs. SHE) (28)

When the pH of the H2O2 catholyte solution is low (pH <1), two
reactions may take place: decomposition of H2O2 to O2 (Eq. (27))
followed by O2 reduction to water (Eq. (29)); or the direct H2O2
electroreduction described by Eq. (30).

2O2 + 8H+ + 8e− → 4H2O (E0 = 1.23 V vs. SHE) (29)

4H2O2 + 8H+ + 8e− → 8H2O (E0 = 1.77 V vs. SHE) (30)

Accordingly, the net cell reaction in such an alkaline DBPFC is
given by Eq. (31)

BH4
− + 4H2O2 → BO2

− + 6H2O (31)

The cell voltages for this DBPFC are 1.64, 2.11, 2.47, and 3.01 V
for cathode reactions described by Eqs. (25), (28), (29) and (30),
respectively. The cell voltage of 3.01 V is 0.9 V higher than that for
H2O2 reduction in alkaline solution and assumes the direct elec-
troreduction of H2O2 at low pH. Therefore, an appropriate cathode
material should promote the reaction shown in Eq. (30), avoiding
heterogeneous reactions and surface decomposition to oxygen (Eq.
(27)).

Recent studies at our Laboratory have suggested that zinc (Zn)
may be a good anode for DBPFCs [209]. A single DBPFC, employ-
ing a Zn anode and a Pt cathode, was then assembled and its
performance was evaluated [616]. The cell voltage of this DBPFC

was lower (2.14 V) than the equilibrium cell voltage, and a sta-
bility test showed that the cell was able of stable operation for
not more than 6 h. DBPFC discharge curves led to power densities,
specific capacities, and energy densities as high as 528 mW cm−2,
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Fig. 13. Sodium borohydride energy system with integrated recharging.
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ig. 14. Division among the number of journal papers devoted to energy-related
odium borohydride research areas.

577 Ah kg−1, and 2799 Wh kg−1, respectively. A poor rate capabil-
ty of the cell was demonstrated, being shown that for cell voltages
ower than ∼1.4 V, the cell may no longer be useful. Polarisation
ata showed anode limitations (for short-time operation) caused by
hmic losses, particularly at high cell currents. Cathode limitations
ere only observed for longer operation periods.

It was concluded that to achieve a functional system, several
roblems need to be overcome. These include the need to alter
he Zn anode material (by modification of its metal surface and/or
y alloying), to reduce the ohmic losses at the Nafion 117 cation
xchange membrane (or testing alternative membrane materials),
o chose a more effective electrocatalyst for the direct electrochem-
cal reduction of H2O2, to adjust the electrolyte compositions, and
o work at temperatures in the range of 313–333 K [495].

Among the remaining challenges to develop practical DBFC
ystems, a key issue is the inhibition of the NaBH4 crossover.
mprovements on the membrane electrode assembly (MEA) or in
he liquid diffusion layer, which is more resistant to crossover,
ould help solving this problem. In addition, an enhancement of
he power density of the DBFC should be achieved, which implies

decrease in the effective area of the cell to reduce the NaBH4
rossover.

The development of means of obtaining the complete eight
lectron reaction, by restraining the BH4

− hydrolysis, is vital for

mproving DBFC technologies. Employing electrode materials with
igh H2 overpotential and the use of surface treatment technol-
gy are considered to be the best way to meet these challenges.
n addition, for portable applications, where the cell volume is a
inable Energy Reviews 15 (2011) 3980–4001 3991

critical parameter, it is required a drastic reduction in the volume
of the NaBH4 aqueous solution.

9. Conclusions

Apart from its established use for hydriding and reduction
processes in the chemical industry, NaBH4 is being, particularly
in the present decade, converted to electricity in fuel cells and
other energy systems. This is particularly evidenced by specialist
journals, like the International Journal of Hydrogen Energy, that
are devoting much attention to the subject of NaBH4 as a clean
fuel.

NaBH4 can be produced by many ways, as discussed in the
present paper, and has many attractive features to generate elec-
tricity directly. However, there are many practical engineering and
economic considerations that explain why NaBH4 does not already
find extensive use as a fuel. A different future in which NaBH4 is
produced by electrolytic means seems to be not too much away,
and this paper reports some steps towards this direction. Traces
of NaBH4 have been detected in the products resulting from elec-
trosynthesis tests in aqueous media and it is suggested that this
embryonic study should be pursued. Methods to analyse NaBH4
are described and a newly developed potentiometric technique is
suggested for in situ monitoring of small NaBH4 concentrations.

The successful utilisation of NaBH4 in energy systems is highly
dependent on the reduction of its present price. A substantial
decrease in the NaBH4 cost can only be achieved by finding an effec-
tive method of recycling NaBO2 back to NaBH4. Of course, if it would
be possible to develop a fully reversible system as schematically
shown in Fig. 13, interest in NaBH4 would increase exponentially.

The present paper has focused several important aspects con-
cerning the use of NaBH4 for energy systems. Fig. 14 accounts
for the total number of papers published on borohydride topics
that are relevant for its application in energy systems. Over 300 of
these papers have been published very recently, that is, from 2008
onwards, which testify the importance of borohydride as a clean
fuel.

Specifically, the uses of NaBH4 as energy carrier for DBFC sys-
tems or as hydrogen carrier for conventional PEMFCs have been
discussed in detail in this paper. If the problems related to the
extent of the NaBH4 crossover, the high cost of the membranes,
and the reuse/regeneration of NaBH4, can be overcome, the DBFC
option for the renewable energies scenario would be highly enthu-
siastic. But, as evidenced in Fig. 14, a more promising technology,
which may be soon commercialised, is based on the reaction of
water and NaBH4 releasing hydrogen that can fuel a fuel cell
or be fed into a combustion engine. Following this avenue, it
would be possible to develop low cost PEMFCs, without the need
for hydrogen storage, and other concerns which may be quickly
squelched.

References

[1] Rand DAJ, Dell RM. Clean energy, RSC clean technology monographs. Cam-
bridge, UK: Royal Society of Chemistry; 2004.

[2] Price L, de la Rue du Can S, Sinton J, Worrell E, Zhou N, Sathaye J, et al.
Sectoral trends in global energy use and greenhouse gas emissions. USA:
Energy Analysis Department, Environmental Energy Technologies Division,
Lawrence Berkeley National Laboratory; 2006.

[3] Key world energy statistics from the IEA. 2003 ed. Paris, France: International
Energy Agency; 2003.

[4] Key world energy statistics from the IEA. 2002 ed. Paris, France: International
Energy Agency; 2002.

[5] World energy outlook 2001 insights. Paris, France: International Energy
Agency; 2001.
[6] Hawkins S. Technological characterisation of hydrogen storage and distribu-
tion technologies, UKSHEC social science working paper no. 21. London, UK:
Policy Studies Institute; 2006.

[7] Nido-Heteroboranes, Wegner PA, editors. Boron hydride chemistry. New
York: Academic Press; 1973 (Chapter 12).



3 Susta
992 D.M.F. Santos, C.A.C. Sequeira / Renewable and

[8] Lancaster M. Green chemistry: an introductory text. Cambridge, UK: RSC
Paperbacks, RSC; 2002.

[9] Schlesinger HI, Brown HC. Metallo borohydrides. III. Lithium borohydride. J
Am Chem Soc 1940;62:3429–35.

[10] Schlesinger HI, Brown HC, Hoekstra HR, Rapp LR. Reactions of diborane
with alkali metal hydrides and their addition compounds. New synthe-
ses of borohydrides. Sodium and potassium borohydrides. J Am Chem Soc
1953;75:199–204.

[11] Brown HC, Mead EJ, Rao BCS. A study of solvents for sodium borohydride and
the effect of solvent and the metal ion on borohydride reductions. J Am Chem
Soc 1955;77:6209–13.

[12] Chamberlain DL. Preparation of sodium or potassium borohydride. US Patent
3029128; 1962.

[13] Schlesinger HI, Brown HC, Finholt AE. The preparation of sodium borohydride
by the high temperature reaction of sodium hydride with borate esters. J Am
Chem Soc 1953;75:205–9.

[14] Schlesinger HI, Brown HC, Abraham B, Bond AC, Davidson N, Finholt AE, et al.
New developments in the chemistry of diborane and the borohydrides. I.
General summary. J Am Chem Soc 1953;75:186–90.

[15] Schlesinger HI, Brown HC. Methods of preparing alkali metal borohydrides.
US Patent 2534533; 1950.

[16] Brown HC, Mead EJ, Tierney PA. The reaction of sodium hydride with methyl
borate in solvents. Convenient new procedures for the synthesis of sodium
borohydride. J Am Chem Soc 1957;79:5400–4.

[17] Büchner W, Niederprüm H. Sodium borohydride and amine-boranes, com-
mercially important reducing agents. Pure Appl Chem 1977;49:733–43.

[18] Gyenge EL, Oloman CW. Electrosynthesis attempts of tetrahydridoborates. J
Appl Electrochem 1998;28:1147–51.

[19] Zaluska A, Zaluski L, Strom-Olsen J. Hydrogenation properties of complex
alkali metal hydrides fabricated by mechano-chemical synthesis. J Alloys
Compd 1999;290:71–8.

[20] Wu Y, Brady JC, Kelly MT, Ortega JV, Snover JL. Synthesis of sodium
borohydride for energy applications. ACS Div Fuel Chem Prepr 2003;48:
938–9.

[21] Li ZP, Morigazaki N, Liu BH, Suda S. Preparation of sodium borohydride by
the reaction of MgH2 with dehydrated borax through ball milling at room
temperature. J Alloys Compd 2003;349:232–6.

[22] Li ZP, Liu BH, Arai K, Morigazaki N, Suda S. Protide compounds in hydrogen
storage systems. J Alloys Compd 2003;356–357:469–74.

[23] Kojima Y, Haga T. Recycling process of sodium metaborate to sodium boro-
hydride. Int J Hydrogen Energy 2003;28:989–93.

[24] Suda S, Morigasaki N, Iwase Y, Li ZP. Production of sodium borohydride by
using dynamic behaviors of protide at the extreme surface of magnesium
particles. J Alloys Compd 2005;404–406:643–7.

[25] Kelly MT, Ortega JV, Randall TJ, Wu Y. New electrolytic synthesis of borohy-
dride anions from boron oxide in a molten salt melt. ACS Div Fuel Chem Prepr
2005;50:444–5.

[26] Atiyeh HK, Davis BR. Separation of sodium metaborate from sodium borohy-
dride using nanofiltration membranes for hydrogen storage application. Int J
Hydrogen Energy 2007;32:229–36.

[27] Barkhordarian G, Klassen T, Dornheim M, Bormann R. Unexpected kinetic
effect of MgB2 in reactive hydride composites containing complex borohy-
drides. J Alloys Compd 2007;440:L18–21.

[28] Calabretta DL, Davis BR. Investigation of the anhydrous molten Na–B–O–H
system and the concept: electrolytic hydriding of sodium boron oxide species.
J Power Sources 2007;164:782–91.
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