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Abstract-A snowball sampling procedure is simulated by computer. In snowball sampling, 
a small first-round sample of respondents, in this case editors of journals in several 
specialities, are asked to name second-round respondents to be contacted for a similar 
request for a third round, etc. In our survey, respondents were asked to nominate peer 
scientists for their contributions and expertise in their specialty. We used the simulation to 
estimate the effect of the number of rounds on the fraction of experts likely to be named, 
and to investigate the effect of other parameters. We found that it would take many rounds 
before every expert in a specialty is nominated. The simulation considered the effect of 
specialty subdivisions and showed how the distribution changes as the sample increases. 

1. INTRODUCTION 

A scientific community is intended to be more productive than a community whose 
members are producing independently. The structure of such communities plays a major role 
in their success. By structure, we mean the links among members of the community that are 
used for communication, coordination, propagation of influence, and control (Pool et al. [6]). 
In a scientific community, quality of research output is maintained by editors of scientific 
journals, who ask authors’ peers to evaluate the manuscripts submitted for publication. Cole 
et al. [3] have shown that in peer evaluation of proposals, whom journal editors think of as 
a possible referee for a manuscript depends upon their personal knowledge of experts in the 
field of the paper. They can expand the pool from which to select referees by asking experts 
they know to recommend others. This constitutes a peer network among editors, potential 
authors, and referees. It partially characterizes the structure of a scientific community. It 
accounts in large measure for the effectiveness and efficiency of that community in adding 
to knowledge in its speciality. 

To describe such networks, we selected several specialities and asked the editors of key 
journals to name the people in their field from whom they would most like to receive 
manuscripts or those whose judgment as referees they would greatly value. We then asked 
the people they named to submit their own nominations of experts in the field “whose work 
you try to keep up with, and whose competence, creativity, and judgment you respect.” 

The experts to whom the initial letters were sent out belong to seven different fields 
(information science, future studies, human systems management, general systems, polymer 
chemistry, differential geometry, and topology). Accordingly, all subsequent nominations 
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were separated into these fields. This procedure was repeated for four subsequent rounds. As 
a result, we obtained eight distributions of nominations: seven for seven different specialities 
and one aggregate which constituted the sum of all samples. We found that the distribution 
for some of the separate fields (differential geometry, topology, polymer chemistry, and 
general systems theory) fit well into a cumulative advantage distribution (CAD) which is often 
used to describe statistical processes with the so-called Matthew effect. The other fields and 
the overall distribution demonstrated a significant deviation from the CAD (Blaivas et al. [2]). 

The general problem of sampling a network to describe its structure is of considerable 
interest and challenge. The technique of a chain letter of the kind described above (Kadushin 

[4]) appears to be useful, but presents a number of questions that must be answered,before 
its validity can be assessed. Because of the considerable barriers to an approach via 
mathematical analysis, contrasted with the simplicity of simulating the process by computer, 
we decided to use the latter as a vehicle to answer some key questions. 

2. METHODS 

In order to formulate the key questions in language that the simulated procedure can be 
used to answer, we describe the simulation program first. We consider the following variables 

as input parameters to the program: 

N = the number of individuals in the population being sampled. We name these N individuals 
1,2,3,. , N, and denote the entire ordered set by P. The ordering is significant: we regard 1 
and 3 to be the immediate “neighbors” of 2, and the left and right “neighbors” of 1 are N and 
2, respectively. Thus, we consider our pool of nominees as a one-dimensional manifold, 
topologically similar to the ring (fig. 1). 

M = the number of individuals selected by an individual as experts he or she values (20 in most cases). 

RO = the number of rounds in the chaining procedure. 
RA = range of nominations. 

Each simulation run is specified by the following variables in addition to N, RA and M: 

K = The number of specialized communities, each characterized by a triangular distribution on 
the circle of N points (K = 2 for the most part). 

L, = The location of the mode or apex for triangular distribution i, i = 1, . . , K; 1 < Li < N. 
H, = The height of the triangle at location Li, i = 1,. . . , K. 

Bi = Half the base of the triangle. (Frequently, W, = RA). Generally, the weights in the triangular 
distribution are positive integers. Points not covered by any triangular distribution are given 
weight 1. 

Another input to the program is an a prim ’ “distribution of visibility,” which is reflected 

by the distribution of weights assigned to different individuals. At first, we started simulations 
with the simplest distribution, that is, weights equal to 1 for each individual in the pool; hence, 
if a randomly chosen nominator were allowed to nominate anyone in the pool, the probability 
of each being named would be exactly l/N. 

The procedure for simulating the choice of nominees is as follows. A random sample of 
initial respondents is chosen, say #7 and #45. For each one, say for #7, a subpopulation 
of P is selected by including all individuals within RA to the left and RA to the right of the 
respondent. Thus, if R4 = 5, then for #7 the subpopulation consisting of 2, 3, 4, 5, 6, 8, 
10, 11, 12, 13 is sampled; the respondent him- or herself is excluded. A nominee is chosen 
at random from that subpopulation with no nominee chosen more than once by the same 
nominator until M individuals have been nominated. 
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For example, for respondent #7, the set of nominees that results may be {5,9, IO> for 
:M = 3. This is now repeated for all other respondents. Suppose that, for #45, it is 
{38 41.431, again for b1 = 3. If the respondents were closer together, say # 15 instead of 
#45. then the nominees of # 15 might be (10, 14, 161 with i: 10 overlapping si 7’s nominees. 
Each individual may serve only once as respondent, regardless of how often he or she is 

nominated. 
To simulate a simple population whose members enjoy unequal prominence, affecting the 

likelihood of their being nominated by others, we introduce non-uniform distributions, the 
simplest being a triangular distribution, as shown in Fig. 1. The reader can observe.two 
triangular distributions close to each other, covering people with numbers l-5 and 23-27. 

Distribution of prominence or visibility among scientists has often been found to resemble 
a cumulative advantage distribution, perhaps explained with reference to a Matthew Effect 
(Merton [5]) or Law of Cumulative Advantage (Price [7]). The distribution of nominations 
in our actual sample has been compared to the theoretical cumulative advantage distribution 
in an earlier paper (Blaivas et al. [2]). To compare the results of our simulations, with and 
without weights representing unequal prominence, the program also calculated the cumu- 
lative advantage distribution for each simulation run, according to the formula, 

f*(n) = (m + l)B(n, m + 2), where B(x, y) = 
J-(XV(Y) 

T(x + Y) 

s cc 

and T(x) is the gamme function, T(x) = t”-’ ee’dt. 
0 

3. RESULTS 

The questions we wanted to answer with this program were: 1) how many rounds are 
required before everybody in the population is named; and 2) how is the distribution of 

Fig. I. Schematic representation of nomination pool as a ring with assigned weight of prominence to two groups 
of nominees in the form of two triangle distributions. 
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nominations affected by pool size, sample size, and the assumption that members of the pool 
are not all equally prominent? 

A first question we explored with our model is the number of rounds required for everyone 
in the population to be named. 

For a simulation in which RA = + 50 and M = 20, and all weights are uniform, Fig. 2 
shows the percentage of the population covered after each round for populations of 500 and 
1000. The number of rounds required to approach complete coverage is large. After 12 
rounds, 99.2% of the pool of 500 had been nominated, and 91.7% of the pool of 1,000 had 
been nominated. 

Figure 3 shows the effect of introducing uneven weights for prominence into this 
population (K = 2, L, = 11, 4 = 40, H, = 20, H, B, = 10, B, = 10) (see Methods). Here, after 
12 rounds, 94.8% of the pool of 500 and 82.4% of the pool of 1000 had been nominated. 

Both Figs. 2 and 3 show a steady levelling off in the curve as the sample approaches 
complete coverage of the population and new names become less frequent. For comparison, 
Fig. 4 shows results of our actual sampling procedure involving seven scientific fields. Since 
size of the population is unknown here, absolute numbers rather than percentages of the total 
are represented. The simulation does not duplicate all features of our actual study. Hence, 
a strict comparison is not possible. It is clear, however, that in the real sample as in the 
simulation, the proportion of new names to old names submitted in each round should 
decrease as the sample approaches complete coverage of the population. This effect can be 
seen in two of the fields studied: topology and differential geometry. Between our third and 
fourth rounds, the proportion of new to old names received dropped from 66.5% to 5% in 
topology and from 71.9% to 29.2% in differential geometry. We had earlier characterized 
these fields as tightly bounded, and these results suggest our sample is beginning to approach 
complete coverage in these fields. This effect does not appear in any of the other fields. There 
is a slight decrease for general systems theory, but increases of 11.7% for information science, 
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12.6% for human systems management, and 33.3% for future studies. An increase in the 
proportion of new names to old could be explained on the assumption that these are weakly 
bounded fields: early rounds might begin with a central group of workers among whom 

mutual recognition is higher, later rounds include more nominations by peripheral numbers 
each reaching into areas not closely related to, or likely to be named by, other nominators. 
This is consistent with our earlier characterization of these fields as diffuse and weakly 
bounded. 

Distribution of nominations 

In our study, some people by the end of four rounds had received many nominations while 
most had been named only once. The actual distribution of nominations in each speciality 
field is presented in Fig. 5. 

As we expected, the distribution of nominations approximates, and for certain fields fits, 
the theoretically derived cumulative advantage distribution. These results have been discussed 
(Blaivas et al. [l]; Blaivas et al. [2]) and interpreted with reference to the “Matthew Effect” 
(Merton [5]), and discussions of cumulative advantage distribution by Price [7] and others. 

For comparison, Fig. 6 presents the distribution of nominations obtained in our simulation 
after four rounds, for the population of 500 and 1000. This does not resemble either the 
cumulative advantage distribution or any actual distribution obtained in our study. 

When weights signifying differences in prominence are added to the simulation (see Fig. 
3), the distribution of nominations shown in Fig. 7 does approximate those we actually 
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obtained. By adjusting the weights, we have found that we can obtain a distribution to match 

the cumulative advantage distribution, or any of the actual distributions we obtained in Fig. 
4. 

Effect of pool size and number of rounds on distribution 

Figure 8 shows the distribution of nominations after 2,4,8 and 12 rounds for populations 

of 500 and 1000, displaying the effect on distribution as the sample begins to approach full 
coverage of the population. As this happens, the peak of the distribution begins to shift. For 

example, by round 8 when 90% of the pool of 500 have been nominated, the number who have 
been named only once is smaller than the number with two nominations. This effect will of 
course be automatic as the sample approaches complete coverage of the population. It must 
be taken into account when results are interpreted (e.g., where distributions in two 
populations of very different size are compared). 

While precise conclusions cannot be drawn from the simulation, it is clear that a similar 
shift in frequency distribution should appear as the sample approaches full coverage of the 
population: this is the other side to the change noted already, that the proportion of new to 
old names received in each round should decrease. Again it is topology and differential 
geometry which seem to show signs of approaching the limit of their populations, with 60% 
and 64% of the nominees receiving only one nomination, considerably lower than the other 

fields (see Fig. 5). 

Effect of increasing the number of specialties in the pool 

In reality, the same field may be partially subdivided into various speciality groups, 
individuals gaining prominence in one or another specialty. To approximate this situation, 
our simulation of differing degrees of prominence assumed two specialties as described under 
“simulation.” Because specialty divisions or their equivalent are relevant to any actual study, 
we have examined the effect which the number of specialty divisions in the pool has on the 

distribution of nominations. It turns out that increasing the number of specialties does affect 
the frequency distribution, although not as dramatically as an increase in the number of 
rounds. An increase in the number of specialties primarily affects the first column of the 
distribution (see following tables) and decreases the number of persons having exactly one 
nomination, which is to be expected. 

Tables 1, 2a-d give a dynamic representation of changes which occurred in the distribution 
when we introduced new specialties one by one. Each specialty was represented by a triangle 
distribution of weights: 1, 2, 3,4, 6, 10, 8, 6, 4, 2, 1. Only starting positions varied for different 
specialties. The first specialty always started from place # 1, the second from place # 31. 

Tables 2a, b, c and d represent the result of nominations with 2, 3, 4, and 5 specialties, 
respectively. 

It is clearly seen that the introduction of new specialties produces a distribution further 
removed from the cumulative advantage. 

Effect of the width of the specialties upon the distribution 

Table 3a represents the results of a run under the same conditions as the experiment 
in Table 2d (with 5 specialties) with the distinction that widths and heights have been 
increased. Now they look like this: 

1,2,4, 6, 8, 10, 12, 14, 16, 14, 12, 10,8, 6,4,2, 1. 



Simulating a nominating procedure 17 

No veighc pool=500 

12345678 9 10 1 23 45678 9 10 

701 

CT- T : +--; 

12345678 9 10 

‘-+. 
-4 : ? 

12 3 4 5 6 7 8 9 10 

Fig. 8. 



18 hf. KOCHEN. A. BLAIV.G, R. BRUMBAUGH, AXD R. CRICPMAN 

80 

70 

60 

50 

40 

30 

20 

13 

So veiqht p00l=1000 Weiehted 

12 3 4 5 6 7 8 9 10 

12 3 4 5 6 7 8 9 10 

l? 3 4 5 6 7 8 9 10 

f 
'56 7 8 9 10 

Fig. 8. (cont.) 



Simulating a nominating procedure 19 

Thus, each specialty consists of 15 members with weights higher than others in the pool. 
Table 3b gives this for 5 specialties with the following distribution of weights within each 

one: 

1,2,4, 6, 8, 10, 12, 14, 16, 18,20, 18, 16, 14, 12, 10,8, 6,4,2, 1. 

Comparing these three tables we can see that there is no dramatic change in distribution with 
variation of this parameter. 

Table I 

No weight 

Distribution: 
210 77 12 0 0 0 

Number of observations = 299 
Average = 1.34 

Standard deviation = 0.30 

Frequencies: 
0.70 0.26 0.04 

Cumulative advantage: 
0.80 0.13 0.04 

0.00 0.00 0.00 0.00 

0.01 0.01 0.00 0.00 

Table 2a 

2 specialties 
2 rounds, 500 people 

Distribution: 
176 66 I6 2 I 2 0 0 1 I 

Number of observations = 265 
Average = I.51 

Standard deviation = I.10 

Frequencies: 
0.66 0.25 0.06 0.01 0.00 0.01 0.00 0.00 

Cumulative advantage: 
0.75 0.15 0.05 0.02 0.01 0.01 0.00 0.00 

Table 2b 

3 specialties 
2 rounds, 500 people 

Distribution: 
173 53 13 7 0 I 3 1 1 

Number of observations = 253 
Average = 1.58 

Standard deviation = I .62 

Frequencies: 
0.68 0.21 0.05 0.03 0.00 0.00 0.01 0.00 

Cumulative advantage: 
0.73 0.15 0.05 0.02 0.01 0.01 0.00 0.00 

- 

1 
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Table 2c 

4 specialties 
2 rounds. 500 people 

Distribution: 
162 60 13 7 3 2 1 1 I 0 

Number of observations = 250 
Average = 1.60 

Standard deviation = 1.33 

Frequencies: 
’ 0.65 0.24 0.05 

Cumulative advantage: 
0.73 0.16 0.06 

0.03 0.01 0.01 0.00 0.00 

0.02 0.01 0.01 0.00 0.00 

Table 2d 

5 specialties 
2 rounds, 500 people 

Distribution: 
147 54 16 7 2 5 3 I 0 0 

Number of observations = 235 
Average = 1.70 

Standard deviation = 1.61 

Frequencies: 
0.63 0.23 0.07 

Cumulative advantage: 
0.71 0.16 0.06 

0.03 0.01 0.02 0.01 0.00 

0.03 0.01 0.01 0.01 0.00 

Table 3a 

5 specialties 
Width = I5 

Distribution: 
134 39 16 II 9 5 3 0 

Number of observations = 217 
Average = 1.84 

Standard deviation = 1.96 

Frequencies: 
0.62 0.18 0.07 0.05 0.04 0.02 0.01 0.00 

Cumulative advantage: 
0.69 0.16 0.06 0.03 0.02 0.01 0.01 0.00 

Separation of specialties 

We have found that separating specialties in the pool significantly affects the distribution 
of nominations. For example, one can compare these two runs (I and II). Both were 
performed upon a pool of 500 nominees with 10 nominations allowed for each nominee. We 
had 4 specialties in each run, and each specialty was represented by a 1, 2, 4, 6, 10, 8, 6, 4, 
2, 1 triangular distribution of weights. All other nominees outside of these 4 specialties had 
equal (= 1) weight assignments. In the first run, the starting points of the specialties were 1, 
3 1, 51, 71; in the second, 1, 51, 101, 151. The difference is seen in Tables 4a and 4b. 
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Table 3b 

5 specialties 
Width = 20 

Distribution: 
127 34 16 IO I2 4 3 

Number of observations = 207 
Average = 1.91 

Standard deviation = 2.24 

Frequencies: 
0.61 0.16 0.08 0.05 0.06 0.02 0.01 0.00 

Cumulative advantage: 
0.68 0.17 0.06 0.03 0.02 0.01 0.01 0.01 

Table 4a 

Run I 
2 rounds, 500 people 

Distribution: 
I48 65 18 5 

Number of observations = 244 
Average = 1.64 

Standard deviation = 1.20 

Frequencies: 
0.61 0.27 0.07 0.02 

Cumulative advantage: 
0.72 0.16 0.06 0.03 

4 I 2 100 

0.02 0.00 0.01 0.00 

0.01 0.01 0.01 0.00 

Table 4b 

Run 11 
2 rounds, 500 people 

Distribution: 
184 53 12 3 

Number of observations = 262 
Average = 1.53 

Standard deviation = I .32 

Frequencies: 
0.70 0.20 0.05 0.01 

Cumulative advantage: 
0.74 0.15 0.05 0.02 

5 1 2 110 

0.02 0.00 0.01 0.00 

0.01 0.01 0.00 0.00 

It is seen from the comparison that the second distribution more closely 
cumulative advantage distribution. 

resembles the 

Dependence of the simulations upon the statktical procedure for generating random numbers 

It is obvious that, since the nominations are “made” by the random number generator, 
we may expect some fluctuation in the resulting values with different choices of the initial 
seed or selection of another random number generator. A special experiment was conducted 
to ensure that the fluctuation range was small enough to be ignored. 
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For two simulations (R: = 500, two weighted specialties, R = 2 and R = lo), we ran the 
same experiment 25 times. Each time the initial seed was selected from an independent table 
of random numbers created by a different random number generator. It turned out that 
fluctuations for the histogram values were small. For example, for x = 0.67 the standard 
deviation was 0.025. The variance did not grow with the increasing number of rounds. 

4. CONCLUSION 

The simulation procedure we explored in this publication has proved a useful tool for 

examining the important type of sampling procedure we used in our earlier study. Basically, 
the program showed that we can easily simulate the most fundamental properties of the 
nomination procedure: the relatively open character of choosing the nominee, and uneven 
degrees of prominence which lead to an observed distribution closely related to the cumulative 
advantage distribution. We discovered that we needed a surprisingly large number of rounds 
to have everyone nominated. Our simulation has considered the effect of specialty sub- 

divisions in the population and showed how distribution begins to change as the sample 
extends to a larger proportion of the total population. 
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