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Abstract--The purpose of this article is to study inequality measures with respect to their 
sensitivity to transfers. Sensitivity is studied by means of a particular directional derivative. 
We observe that inequality measures behave differently in the sense that the vectors for which 
this directional derivative is positive or negative differ according to the used inequality 
measure. It is shown that different averages, such as the arithmetic mean, the median, the 
harmonic mean and the geometric mean play an essential role in these investigations. We 
conclude that the use of this directional derivative introduces a battery of sensitivities in the 
class of inequality measures. This helps the information scientist to choose between otherwise 
acceptable measures. 
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1. INTRODUCTION 

Inequality measures (measures of  concentration or diversity) play an important role in several 
scientific domains such as the information sciences (Burrell, 1991; Rousseau, 1993), economics 
(Atkinson, 1970; Sen, 1973; Rousseau, 1992), sociology (Allison, 1978), demography (White, 
1986), linguistics (Herdan, 1966) and ecology (Magurran, 1991; Rousseau & Van Hecke, 1993). 
The field of  information science is especially characterized by a high degree of  inequality 
(Egghe, 1987). 

The purpose of  this article is to study inequality measures with respect to their sensitivity to 
transfers. Sensitivity is studied by means of  a part icular directional derivative. We observe that 
inequality measures behave differently in the sense that the vectors for which this directional 
derivative is positive or negative differ according to the used concentration or diversity measure. 
It is shown that different averages, such as the arithmetic mean, the median, the harmonic mean 
and the geometric mean play an essential role in these investigations. We conclude that the use 
of  this directional derivative introduces a battery of  sensitivities in the class of  inequality 
measures.  This helps the information scientist to choose between otherwise acceptable 
measures.  Before studying these sensitivity aspects, we will recall how concentration measures 

are defined. 
When  studying inequality of discrete situations the terminology of  cells and balls, to be 

deposited into cells, is often used; the words sources and items are also common. In practical 
situations cells and balls will be researchers and the number of  articles they publish, or books 
and the number of  loans during a fixed period, and so on. If  the number of  cells is N, we denote 
by x i, i = 1 . . . . .  N, the number of  balls in the ith cell. The assumption is that all xi are non- 
negative and that at least one x~ is different from zero. 

To every distribution of  items over sources, this is to every N-vector X =  (x~ . . . . .  XN) an 
inequality measure associates a positive number  characterizing the inequality (concentration or 
diversity) in this distribution. To qualify as an inequality measure a function from R N to R ÷ must 
satisfy the following axioms. 

511 
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(P ) Permutation invariance (anonymity rule) 

Let f b e  a function: RN-~R ÷ and let ~rbe a permutation of the set { 1 . . . . .  N}, then this axiom 
states that for every vector (xm, x2 . . . . .  :r~) in R N 

f ( x  1, X 2 . . . . .  XN)=f(xIr( I  ) . . . . .  X~(N)). (1) 

Equality (1) means that concentration and diversity are not properties of  individuals but of a 
group as a whole. 

(S) Scale invariance 

The function value characterizing concentration or diversity should not depend on the used 
units. Stated as an equality this axiom is: i f f i s  a function from R N to R ÷ thenf i s  said to be scale 
invariant if for every vector X = ( x .  x2 . . . . .  xN) and every c>0:  

f ( c x .  cx2 . . . . .  cxN)=f(x, x2 . . . . .  xN). (2) 

As we consider situations described in (P) and (S) as indistinguishable, we will say that two 
N-tuples are equivalent when they differ in the order of  their coordinates, or when one is a 
positive multiple of  the other, or one vector can be derived from the other by a permutation of 
the coordinates and a multiplication by a strictly positive constant. When vectors X and X' are 
equivalent, this is denoted as X - X ' .  As the value of  a function which satisfies (P) and (S) is the 
same for every vector of an equivalence class we will use the same notation for all and simply 
write f ( X ) = f ( x ,  x2 . . . . .  XN) for the value which f takes in any vector X = (x~, x2 . . . . .  XN), of this 
class. 

(T) The transfer principle (concentration form) 

This principle, proposed by Dalton (1920), states that a strictly positive transfer from a poorer 
source to a richer one, must lead to a strict increase in concentration. Put in a mathematical 
framework (T) becomes: for every N-vector (x.  x 2 . . . . .  xN), x~ < xj and 0 < h < x~, we have: 

f ( x .  x2 . . . . .  x i -  h . . . . .  x~ + h . . . . .  XN) > f ( X l ,  X 2 . . . . .  X i . . . . .  Xj  . . . . .  XN).  (3) 

In our opinion, the set { (P), (S), (T) } forms a minimum set of  requirements a concentration 
measure must satisfy. Thus we will use the following definition. 

DEFINrnON 1: A concentration measure 

A function f :  RN---~R ÷ is termed a type I concentration measure i f f  satisfies the axioms (P), 
(S) and (T). 

Note. The addition "of  type I" refers to the fact that we have introduced [see Egghe & 
Rousseau (1991)] measures of  type II and type III. These measures, however, will play no role 
in this article. 

DEFINITION 2: The Lorenz dominance order 

Let X=(xl  . . . . .  xu) and X' =(x'~ . . . . .  x~) be N-vectors. The vector X' is said to majorize the 
vector X in the Lorenz dominance order (Hardy et al., 1952, p. 45) when the following three 
requirements are satisfied: 

(i) x~<~x2<~ . . .  <-XN;X'I<~X'2<~ " "  <~X'N; (4) 

(ii) for every i= 1 . . . . .  N we have: 
i i 

x; (5) 
j f l  j f l  
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N N 

(iii) ~ x j = ~  x~. (6) 
j= l  j= l  

The Lorenz dominance order compares vectors with a different concentration. When X is 
majorized by X' this is denoted as X ~ X ' .  The relation ~ determines a partial order in the set 
of all N-vectors. The partial order ~ restricted to a fixed N has a smallest element, namely 
0=(x, x , x  . . . . .  x), x~O. This vector denotes the equality situation. The monopoly situation 
1=(0 . . . . .  0, y), y>0,  represents the largest element for ~ .  When N-vectors are comparable 
with respect to the Lorenz dominance order, we will say that they are intrinsically comparable. 

When X ~  X' this means that the Lorenz curve of X' lies nowhere above the Lorenz curve of 
X. Of course, these curves may coincide over some region. [For a description of the Lorenz 
curve and its construction the reader is referred to Rousseau (1993).] 

Every inequality measure imposes on the set of all N-vectors an order which is strictly finer 
than the Lorenz dominance order. Indeed, crossing Lorenz curves will usually have different 
values for a given inequality measure. Moreover, different measures often rank crossing Lorenz 
curves differently. Stated otherwise, the choice of an inequality measures involves a decision 
regarding the concentration or diversity order of situations that are not intrinsically comparable. 
To make this decision, one often considers the sensitivity of inequality functions with respect to 
an elementary transfer (Atkinson, 1970). In this article we will study another sensitivity aspect, 
related to more realistic transfers, with the aim to have more information by which to choose 
between different, otherwise acceptable, inequality functions. 

In the following section we will moreover assume that all concentration measures we will 
study are differentiable in every direction. 

2. A DIFFERENT KIND OF TRANSFER 

In Egghe and Rousseau (1990) we made the following simple observation. 

PROPOSITION 1 (Egghe & Rousseau, 1990; Proposition 5.5) 

Let f b e  a concentration measure and let x N be the largest of all the components xi. Then: 

if 0<h < min (N-1)xi the following inequality holds: 
i 

f (X ' )>  f (X) ,  where X =(x 1 . . . . .  XN) and 

X'=  x l -  ,x2 XN-1 N _ I , X N + h  • (7) 

This inequality is an immediate consequence of the transfer principle. Now, one may rightly 
observe that the requirements of this proposition are rather artificial. What happens if the second 
richest person becomes richer at the cost of all the others? Or another person? Note that this is 
a realistic question. Moonlighting, for instance, leads to the enrichment of the moonlighter but 
is, by not paying taxes, detremental to all other citizens. For this reason, we will consider more 
general transfers. 

Before proceeding we note that, because of the anonymity rule, we may assume without loss 
of generality that the main transfer, i.e. +h, occurs at the first component. Whenever possible 
we will make this assumption. Now, putting x=(x~ . . . . .  XN) and X ' = ( x ~ + h , x ~ - h /  
( N -  1) . . . . .  xN--M(N-- 1)), with 0<h<min i (N-  1)x~ it seems plausible to require that for a good 
concentration measure f ,  f (X ' )> f (X) ,  i.e. concentration increases, if the person who increases his 
income, i.e. x ,  had already an income above average. Therefore we could define a new transfer 
principle for concentration measures as follows: if x~ > N(X) then f (X ' )>f (X) ,  with X' as above. 
Similar definitions can be formulated with N(X) replaced by HM(JO, GM(JO, Md(JO (the 
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harmonic mean, respectively the geometric mean, respectively the median of X). We will, 
however, go one step further. 

3. A NEW TRANSFER PRINCIPLE AND A MEASURE OF SENSITIVITY FOR INEQUALITY 
MEASURES 

The transfer principle defined above, as well as the "classical" transfer principle as defined in 
Section 1, only compare two situations: X (before the transfer) and X' (after the transfer). In 
these cases a total transfer of h>0 is involved. Inequalities change if h<0 and any "small" Ihl 
can be used. This boils down to calculating (for every "small" h) 

f(X')-f(X) (8) 

and examining the sign of this number. Instead of using slopes of cords we could as well use 
the slope of a tangent in X, i.e. a directional derivative. This approach is similar to the one 
followed in (Egghe, 1994), where a theory of "continuous rates" has been presented. 

DEFINITION 3: A directional derivative 

Let Y denote the following N-vector: 

. (1 ,__  1 , l )  
' N - 1  . . . . .  N - l '  N - 1  . . . . .  N - 1  " (9) 

Then we consider the directional derivative of a measuref  at the point X in the direction Y [cf. 
Protter & Morrey (1977), 16.61; 

f'(X; Y)-- lim f(X + hY)-f(X), 
h~O h 

N 

of 
=E~ix i  (X)yi 

i=l 

N 
= o: E 

OXl i=20xi 

Putting gx : R ~ R  : h~f(X+hY), we observe that f ' (X; Y)=g'x(0). 

(10) 

( l l )  

DEFINITION 4: A new transfer principle 

Let f be a concentration measure. Then we say that f satisfies the transfer principle (Tu) if 
x I >M(X) implies 

f'(X; Y)>0, 

where M(X) represents any "reasonable" average (such as the arithmetic, geometric or harmonic 
mean, or even the median). 

Note that, we will only consider N-vectors with a fixed arithmetical average, equal to /z. 
Indeed, Iz(X)=la,(X+hY), for every h. The following two propositions show that the above 
definition leads to a meaningful transfer principle. 

PROPOSmON 2 

Let Y = ( 1 , - 1 / ( N - l )  . . . . .  - 1 / ( N - I ) , - 1 / ( N - l )  . . . . .  - 1 / ( N - I ) ) ,  and assume that Vk, 
0 ~ k<mini~.2(xi):f'(X+ kY', Y)>0, then for all h, O<h < mini;.2(x~) 
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f xl+h'x2 N - 1  . . . . .  XN-- >f(xl . . . . .  XN). 

or gx(h) >g~(O). 

Proof. As gx is differentiable (because f is), there exists a point k, k E ]0, h[ (by the mean 
value theorem) such that 

g~(h)-g.~(O)=g'~(k)h. 

Now, g'~(k)>0 if and only if 

lim g~(k + t)-gx(k) > 0 
t~O t 

lira f (X + ( k + t )Y) - f (X  + kY) > 0 
~ o  t 

f ' (X  +kY; Y)>0, 

which is true by assumption. This shows that g~(h)>g~(O) or 

f xl+h'x2 N - 1  . . . . .  X N - - ~  >f(xl . . . . .  XN). 

Similarly, we state without proof. 

PROPOSITION 3 

Let 

and assume that 

then for all 

1 1 1 1 )  
Y= 1' N - 1  . . . . .  N - I '  N - 1  . . . . .  N - I  ' 

Vk: 0~<k<min (xi):f'(X+kY; Y)<0, 
i ~ 2  

h, 0<h  ~< min (x~) 

f xl+h, x2 N - I  . . . . .  XN--~-~ <f(xi . . . . .  XN), 

or g,(h) <g,(O). 

In the applications we will show that, for example, for the variation coefficient V: if 
x~>/z(X) then V'(X; Y)>0. Then, clearly, for k>0, xj+k>xl>l~(X)=iz(X+kY), hence also 
V'(X + kl~ Y)> 0, so that the above proposition is applicable. 

As measures of inequality are ordinal, any monotonic transformation of such a measure will 
preserve the ranking. If now ~b is such a monotonic transformation andf~ is type I measure then 
the directional derivatives of the functions f~ and f2 = ~b o f~ are related through the following 
proposition. 

PROVOSrnON 4 (Proner & Morrey, 1977, 16.8) 

If ~b : R--}R is a differentiable function a n d f i s  a differentiable scalar field then VX e RN: 

(4,. y)'(x; r)=¢'(f(x))f'(x; Y). 
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Proposition 4 allows us to restrict our investigations to one function of  a family of  equivalent 
ones (i.e. functions which can be derived from each other by a monotonic transformation). 

The use of  directional derivatives instead of  values off(X'), for fixed h, has another important 
consequence. Not only the sign of  f(X; Y) can be used, but also the value itself. This value 
represents the sensitivity o f f  with respect to the transfer X-~X', X' =X+hY, with Y as in (9). 
Therefore we define: 

DEFINITION 5: a measure of sensitivity 

For any inequality measure f, the value f'(X; Y) is defined as the sensitivity o f f  in X with 
respect to the transfer X-*X + hY, with Y as in (9). 

Note: This approach could be compared with the use of  Pearson's correlation coefficient, r, 
in statistics: the sign of  r determines the kind of  relation between two variables and r itself 
measures the degree of correlation. 

4. THE DIRECTIONAL DERIVATIVE OF SOME WELL KNOWN INEQUALITY MEASURES 

In this section we will study a number of  well known concentration measures with respect to 
their sensitivity to transfers. We will find remarkable necessary and sufficient conditions for 
f (X;  Y) to be positive or negative. Recall that in all our calculations ~ is treated as a constant. 

(A) The coefficient of variation (V) 

o r  
V = - -  (12) 

/.t 

where or denotes the standard deviation and ~ denotes the arithmetic mean. 
As 

N 

2 1 or =~ E (xi-t*)2' 
i = l  

we find, by eqn (11) 

v'(x; Y)= . l :  .3, 
(xi-/x) 2 = 

Hence V'(X; Y)>0 if and only i fx  I >/z. This is: this directional derivative is positive if and only 
if xl is larger than the arithmetic mean. 

(B) Theil's first entropy measure (Th) (Theil, 1967) 

T h = I E  In . 
i=l  

Then 

N 

Y 1 

(14) 

(15) 



Sens i t i v i ty  a spec t s  o f  inequa l i ty  m e a s u r e s  517  

Now, Th'(X; Y)>0 

) 1 In +/z 
• ~ In +/z>~--~ i=2 

In >~  In 
i=1 

N 
1 

'¢~ ln(Xl)>N E In(x/) 
i=l 

N 

x,> 1-Ix~ ~N 
i=1 

This is: to have a strictly positive directional derivative, it is necessary and sufficient that x~ is 
larger than the geometric mean of X. 

(C) Theirs second entropy measure (L) (Theil, 1967) 

where ai = x i /~N .  
N o w ,  

Hence: 

( ~LI ,) 
L = -  In(N)+ ln(ai 

i=1 

1(1 L'(X; r)=-~ ;q 

L'(X; Y)>0 

N-1  i=2 

¢¢" N t N - 1  i=2 

N 
1 1 .~j  1 

.= 

(16) 

N 
,.> x ~ > - w ~ = H M ( X  ). 

1 

i=1 

This shows that for Theil's second entropy measure, the directional derivative is strictly positive 
if and only if xl is larger than the harmonic mean of X, denoted as HM(JO. 

(D) The Gini index (G) 

Assume that the components of the vector X are placed in increasing order. Then G is defined 
a s :  

N 

G =N+__~I _ 2  E (N+ 1 -- i)a i. (17) 
N N 

i=l  

IPH 31-4-E 
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Here we will  assume that the main transfer occurs at the ith component. Then G'(X; Y) 

2(N+ 1 - i )  2 
÷ 2,~ (N+ 1 - j ) .  tzN 2 l, tNE(N - 1) j~i 

Hence: G'(X; Y)>0 

1 N(N+  1) 
• ~> i >  

N 2 

¢:> x~ > median of  X. 

The influence of  this kind of  transfer on the Gini index turns out to depend on the rank of the 
source where the main transfer occurs, and not on its actual value. 

(E) The generalized Gini index: G(r), r ~ N o (Allison, 1978) 

( l, 
G(r)= i=1 j=l 

IX 

Then, 

(18) 

I 1 [Xi__xjlr 
G(r)'(X; Y)= ~ , v , - l j  ill  jr1 

1 r 
2N(N--  1) 2 ((xl --Xj)2)(r-2)12 4(xi-x)  

1 4r 
2N(N-  1)2 /=2 ~ (xi-x)((xi-x)2)(r-2)n " 

Now, the second term of  the second factor is zero, because the summation ranges over every i 
and every j ,  so with every term containing (x i -x)  there is also a term containing ( xFx  3. 
Hence 

N N 

G(r)'(X;Y)= 2 N ( N - 1 )  _ J=, 

/.t 

1 2 ((Xi--Xj)2)(r-2)[2 4(xi-x~ . 
2 N(f~ - 1 ) 

Consequently: G(r)'(X; Y)>0 

N 

¢:" E (x~-x)((x~-x) 2)~r-2)~>0 
j=l 

E (Xl--Xj)r-l~ E (Xj--x|)r-l" 
xt>xj xt<xj 

Here a special kind of  average is involved. Note that for r =  1 we once more find Gini 's  index. 
This is left to the reader. 
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(F) Atkinson' s indices." A(e) (Atkinson, 1970) 

A(e)=l-(l~=~(~)'-') '/(L-e) 
where e>0 and e,~ 1. 

If all x~0 ,  A(1) is defined as lim,~, A(e), what can be shown to be equal to 

p -G M(x 3  
/z 

(19) 

In this expression GM denotes the geometric mean. 
N o w ,  

1 ]--e - 

A(e)'(X; Y)=-]-~-e 

/ ~ ( N -  1) i=2 

Then, if e> 1, A(e)'(X; Y)>0 if and only if 
N 

1 x;e>~ ~ (X,)-< 
i l l  

On the other hand, if 0<e< 1: A(e)'(X; I")>0 
N 

X--a 

x, <U 2., (x , ) - ' .  

i=1 

Again, the requirement to obtain a strictly positive directional derivative yields a relation 
involving a generalized mean. The special case A(1) will involve a more familiar average. 

(x~ . . .  XN) ~/N 
A(1)= 1 (20) 

/.t 

Hence: 

r~ - _ 1  x"- 'W~'x . . .  x J  ''N A(1)'(X; ,- N/'t I ~ 2 

N 

1 . XN)~/N" N(N-1) / . t  E ~I-U)/N(Xl " "" Xi-lXi÷l . .  
i=2 

A(1)'(X; Y)>0 

N/z ~J ~2 

N 

1 E ,m-m/N, . . .  XN)Im > N(N-1)/z i=2  Ai t X l "  " ' X i - l X i ÷ l  

N 

N E  x[l 
iffil 

N 
¢~" xl > N = H M ( X ) .  

E 
iffil Xi 
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/ :a3 

Z : a2 i i 

~ - I  Y~ _ _ t 

.i"~. ~ 1 =' I I 
1 2 3_ 4 
5 g s g 

Fig. I. The Lorenz curve of the vector X = ( l ,  2, 4, 6, 7), showing that 

X t a~ 
s i n ( f l , ) = ~ - -  . 

a5 

(G) The length of the Lorenz curve." (LOR) (Dagum, 1980) 

N 

E 
i ffi l 

LOR,(X;y)= 1 _ ~ (  x ~  1 E xi " 
NN N -  1 i=2 

Hence, LOR'(X; Y)>0 
N 

X l 1 E xi 
N - 1  ,=2 X/-~i + t z~ 

N 

1 
<~ sin(°)0>N E sin(~°i) 

i=1 

where 

(21) 

(22) 

sin(toi) = xi ai 
Vx, ~ + ~ - V a ,  ~ + (1 /~  ~" 

Here a special kind of average plays a role. Yet, it is easy to see where those sines come from. 
The Lorenz curve is built up by ranking the components in increasing order and connecting the 
points with coordinates 

i ,  
aj , i= 1 . . . . .  N. (23) 

Note that, as the components of X are now ordered, the main transfer does not anymore occur 
at the first component. We have denoted (see Fig. 1) the angles which the Lorenz segments make 
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with the horizontal axis by the letter ft. Then Fig. 1 clearly shows that sin(fli) is nothing but the 
sine of the angle which the ith segment of the Lorenz curve makes with the horizontal axis. 

We further note that the use of a trigonometric function in condition (22) is not as strange as 
it might seem at first. Indeed, Fig. 1 also shows that the familiar condition x~>/z can also be 
expressed by a trigonometric function, as x,>/x is equivalent to 

N 

1 
tg(fl~) > ~  Z tg(flj). (24) 

j=l 

We conclude this section by observing that indeed all kinds of averages play a role in this 
description of transfer sensitivity. 

5. COMMENTS 

(1) It is well known (Hardy et al., 1952, 2.9) that for - oo < r < s < + o o  

x, 
i=1  ) ~N i=l 

where the x~ are positive and not all are equal. In particular, for r= 1 we have the arithmetic 
mean, for r~ ,0  the expression tends to the geometric mean (GM) and for r = -  1 we have the 
harmonic mean (HM). This collection of averages leads to a battery of sensitivities. Indeed, if, 
for example, Xl >/z, V'(X; Y)>0, but, as/x>GM, Xl >GM(X), hence also Th'(X; Y)>0. 

(2) The opposite, of course, does not hold. Consider, for example, the following example: 
X=(6, 2, 4, 5, 16); /z(X)=6.6, GM(X)=5.2. Taking now x~=6, for the main transfer we find 
that 

but 

Th'(X; Y) =0.005345 >0 

V'(X; Y)=-0.022727<0.  

These inequalities hold for every x~ satisfying GM(X)=5.2<x~ </.t(X)=6.6. 
(3) The case of LOR, involving sine functions, can also be compared with other measures. 

Indeed, if xj >/.t then also 
N 

x~ 1 ~ xi 
~ > ~  2_, ~ / z 2  (25) 

~1 I "~ i=l 

N 
1 

• ~ sin(w~)>~ Z sin(to/) 
i=l 

where 

Xi ai 
sin(wi) = 

X/x2 +/z 2 N/a~ + (l/N) 2 

This follows from the fact that if x t >/z> 0 

x I 1 

Further (/z . . . . .  /z)~(x~, x2 . . . . .  xN) and as the function 

t 
t ---~. _ _  

N/7~/z  2 
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is concave, it follows by (Hardy et al., 1952, p. 89) that 

N 

1 1 v~>~, ~ x, 
= ~ +/.L 2 

Note however that this implication holds only in one direction! 

(4) The transfer principle (TM) is independent of the classical transfer principles (7). Consider 
for example the relative mean deviation, denoted as D: 

N 

;2,x:., 
D = i=1 (26) 

2/.t 

This function is not a proper, i.e. type I, concentration measure (Dalton, 1920). Yet, if Xl>~, 
D'(X; Y)>0. This can be seen as follows: 

D'(X; Y)>O 

1 { x j - t z  1 u 
" \W'-(~l-'-'---~) 2 N - 1  E x i - i~  ~ > 0  

,=~ V(x,-g)~/ 
N 

1 
¢¢, x~>~l E xi=/z. 

i=l 

(5) We have done similar calculations, and obtained similar results, for a number of diversity 
measures (such as Simpson's index). In this case conditions are obtained for the directional 
derivative to be negative. 

6. CONCLUSION 

It is shown how different inequality measures behave with respect to the directional derivative 
we have introduced. We have shown that different averages, such as the arithmetic mean, the 
median, the harmonic mean and the geometric mean, but also more general averages, play an 
essential role in studying sensitivities to transfers. We conclude that the use of this directional 
derivative introduces a battery of sensitivities in the class of inequality measures. This will help 
the scientist to choose between otherwise acceptable measures. 
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