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a b s t r a c t

In this paper, we present a novel semi-supervised dimensionality reduction technique to address the

problems of inefficient learning and costly computation in coping with high-dimensional data. Our

method named the dual subspace projections (DSP) embeds high-dimensional data in an optimal

low-dimensional space, which is learned with a few user-supplied constraints and the structure of

input data. The method projects data into two different subspaces respectively the kernel space and the

original input space. Each projection is designed to enforce one type of constraints and projections in

the two subspaces interact with each other to satisfy constraints maximally and preserve the intrinsic

data structure. Compared to existing techniques, our method has the following advantages: (1) it

benefits from constraints even when only a few are available; (2) it is robust and free from overfitting;

and (3) it handles nonlinearly separable data, but learns a linear data transformation. As a conclusion,

our method can be easily generalized to new data points and is efficient in dealing with large datasets.

An empirical study using real data validates our claims so that significant improvements in learning

accuracy can be obtained after the DSP-based dimensionality reduction is applied to high-

dimensional data.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

High-dimensional data are prevalent in a wide variety of areas
and have become a significant challenge for data mining, archiving,
indexing and downstream analysis. There are two major difficulties
in analyzing or learning from high-dimensional data. First, the
learning accuracy is low due to the redundancies in high-
dimensional feature spaces and the relatively small amount of
training available compared to the dimensionality [12]. Second, the
computational cost is so high that many techniques are not readily
applicable to handle large amount of high-dimensional data [28].

Dimensionality reduction is a technique that helps solving the
high dimensionality problem and has been extensively studied
and widely applied in text analysis [10], face recognition [3], and
microarray gene expression analysis [8] where data are usually
expressed as vectors of high dimension. Dimensionality reduction
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is also the key technique for data compression that enables
efficient information storage and retrieval [15], as well as for
data visualization, where high-dimensional data are mapped to
2D or 3D spaces helping the user gain a qualitative understanding
of the information [24].

A dimensionality reduction technique finds low-dimensional
structures of data hidden in high-dimensional observations.
Feature selection[16] and feature reduction[18,17] are 2D reduction
solutions. Feature selection reduces dimensionality by selecting a
subset of existing features. Thus, the physical interpretation of
each feature is preserved in the reduced space. However, in
removing many features prior to learning from the data, informa-
tion about the underlying data may be lost. Feature reduction
reduces dimensionality by combining features with linear or
nonlinear transformations. A feature reduction approach can
greatly reduce the feature space dimensionality while still pre-
serve discriminative information, although it does not retain
feature’s physical interpretations. In general, the choice between
feature reduction and feature selection depends on the applica-
tion domain. In this work, we focus on the feature reduction
technique because for many web-related data analysis problems
(such as web data clustering, indexing, collaborative filtering etc.),
efficient data representation that preserves discriminative infor-
mation is more critical for fast similarity comparison and search.
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Recently, semi-supervised dimensionality reduction has stirred
many research interests [2,14,1,13,25,30,5,6]. This is due to the
fact that supervision in the form of pairwise constraints is often
easier to get than labeled data, and is naturally available in many
real application domains. For example, it may be difficult, tedious
or costly for users to label thousands of images into pre-set class
labels. However, when users are presented with a few simple
binary questions of the form ‘‘are objects in image a and b the
same?’’, answering Yes/No to the questions is a lot easier. More-
over, for the task of web document clustering, documents which
share large number of similar hyperlinks, or a group of documents
with strong co-citation (i.e., co-reference) patterns can be viewed
as similar in content.

Constraints take two general forms: the must-links are pairs of
points that originate from the same class and thus should be
grouped together, and the cannot-links are pairs of points that
should be put into different groups. Compared to supervision in
the form of labeled data, constraints are more general, because
labeled data can be represented in the form of pairwise con-
straints but the inverse does not hold. The goal of semi-supervised
dimensionality reduction is to embed high-dimensional data into a
lower dimensional subspace with the help of pairwise constraints.
If the dimensionality reduction process can indeed benefit from
constraints, the data embedded in the subspace will show more
evident clustering structure than without using constraints. For
this reason, the performance of semi-supervised dimensionality
reduction can be measured by the clustering performance achieved
on the embedded low-dimensional data.

To incorporate constraints in dimensionality reduction, [2]
introduces relevant component analysis (RCA) that exploits
must-links only. Ref. [14] introduces discriminant component
analysis (DCA) that extends RCA by also exploring cannot-links.
Recently, [1] proposes to incorporate constraints using a modified
locality preserving projection (LPP) [13] cost function. All these
methods exploit constraints only and do not consider the useful-
ness of abundant unconstrained data. With limited constraints,
the methods face the overfitting problem. That is, the subspace
that best satisfies a few pairs of constraints does not necessarily
reveal the structure of the entire dataset. To this end, [30,5]
propose semi-supervised dimensionality reduction methods that
exploit both constraints and the structure of unconstrained data.
However, both methods need users to intuitively set parameters
to balance the constrained and the unconstrained data.

Besides, all the aforementioned existing methods for semi-
supervised dimensionality reduction have their kernel-space
equivalents to deal with nonlinearly separable data. However,
because the projection is done implicitly in the kernel space, the
transformation matrix that maps high-dimensional data to low
dimensions is not explicitly learned. The mappings are defined
only on the training data points. As a result, these methods do not
generalize well to new data points. To be specific, in order to
compute the projection of test points all the training points need
to be stored, and the inner product between the test points to all
the training points needs to be calculated and stored. Such extra
storage and computational cost limit their application to large
datasets.

In this paper, we propose a novel semi-supervised dimension-
ality reduction technique named as DSP (dual subspace projec-
tions) which can simultaneously preserve the structure of original
high-dimensional data and the pairwise constraints specified by
users. Thus, the method does not overfit. Furthermore, the
method has a closed-form solution of an generalized eigenvalue
problem, and therefore can be solved efficiently in the training
phase. Moreover, the method uses kernel trick to handle non-
linearly separable data, yet the learned mapping is still linear.
Therefore, generalizing to test data is efficient.
2. Background and related work

Dimensionality reduction is the technique that extracts low-
dimensional structure in high-dimensional data. The algorithms
for dimensionality reduction can be broadly categorized as global

vs. local methods, and linear vs. nonlinear methods.
2.1. Global vs. local

Representative global methods include principal component
analysis (PCA), multidimensional scaling (MDS), and linear
discriminant analysis (LDA). PCA is an unsupervised method that
maximally preserves the variance of data; classical MDS finds an
embedding that preserves the inter-point distances; LDA is a
supervised method that achieves maximal class separation by
maximizing the ratio of between-class variance to the within-
class variance. The principal advantage of global approaches is
that they tend to give a more faithful representation of data global
structure. However, the local geometry of data maybe lost.

To overcome the drawbacks of global methods and their
variants, a number of local dimensionality reduction methods
have been proposed, such as locality preserving projections (LPP)
[13], locally linear embedding (LLE) [20], Laplacian eigenmaps [4].
These methods embed data in a low-dimensional space such that
nearby data points in the original space are still near to each other
in the embedded space.

Global structures and local structures of a dataset are both
important for learning from high-dimensional data. This leads to
work that combine the advantages of global approaches with the
advantages of local methods to get the best of both worlds [9,23].
The dimensionality reduction approach introduced in this paper
falls into this category and preserves both the global and local
structures of data.
2.2. Linear vs. nonlinear

Classical dimensionality reduction methods such as PCA, MDS,
LDA are linear methods. They are simple to implement, efficiently
computable, and perform well in general. However, when sever
nonlinearity is involved in data, linear methods are less effective.
Nonlinear dimensionality reduction methods, such as ISOMAP
[26], LLE, Laplacian eigenmaps, are proposed based on spectral
techniques.

Another common and effective solution to the nonlinearity
problem is to use the popular kernel technique [21]. Kernel
technique is based on the idea that nonlinearly separable data
can be separated linearly in some high-dimensional space. Data
are first mapped to a high-dimensional feature space by nonlinear
transformations, then can be separated in the kernel-space with
simple linear methods. Most dimensionality reduction methods
have their kernel space equivalents to deal with nonlinearities in
data, for example, kernel PCA, kernel LDA, kernel LPP, etc.

Given the ability to handle nonlinear data, nonlinear methods
also have certain drawbacks compared to linear methods. For
example, the mapping defined by nonlinear spectral methods are
defined only on the training data points and it is difficult, if not
impossible to evaluate the mapping for new test points. The same
observation holds for kernel-based methods. Moreover, kernel
machines easily overfit. Given pairwise constraints, it is always
possible to find a data partition that satisfies all the constraints in
certain high-dimensional space. Therefore, kernel machine will
overfit with limited constraints, since the nonlinear mapping that
satisfies a few pairs of constrains does not necessarily best reveal
the structure in data.
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3. Method overview

The motivation in this paper is to enforce a set of pairwise
constraints in dimensionality reduction such that the intrinsic
structure of data in the reduced space can be easily captured by
following data analysis phases, such as clustering and classifica-
tion. Without loss of generality, we evaluate our dimensionality-
reduction technique for clustering tasks, although the technique
is equally applicable to classification problems too.

The two types of constraints often lead to conflicting data
partitions, even if constraints by themselves are consistent. This is
because data are not linearly separable in the input space. The
problem can be solved by using the kernel technique. It is always
possible to find a data partition that satisfies all the constraints in
the high-dimensional space. However, kernel machine will overfit
with limited constraints.

Our proposed method alleviates the conflicting constraints
problem by exploiting two types of constraints separately in two
different subspaces. First, data points are projected to a high-
dimensional kernel space, where we further embed data to a
subspace such that two data points constrained by a must-link
will be mapped to a single point. This idea originates from [27],
where must-link constraints are explored to improve kernel Mean
Shift clustering performance. Second, the pairwise distances of
embedded data are further explored in the original input space. In
particular, we enforce the cannot-link constraints and the intrin-
sic structure of the input data at this step. We embed data into the
second subspace such that nearby/far-away data points in the
original input space are still near-to/far-from each other. Besides,
cannot-linked data points are also projected to be well separated.
The second subspace is therefore a desirable projection direction
since it embodies both types of constraints as well as the original
data structure. The proposed method exploits kernel techniques
to handle nonlinearly separable data. However, the learned
transformation is still linear, and thus can be easily generalized
to new data points.

Through the paper, we use the following notation conventions.
A matrix is represented by a capitalized boldface letter; a vector is
represented by a lowercase boldface letter; a scalar is represented
by an italic lowercase letter, and a function is represented by an
italic letter. In particular, Table 1 lists major symbols and their
meaning.
Table 1
Major symbols and meaning.

Symbol Meaning

T Matrix transpose

# Matrix pseudo-inverse

I Identity matrix

OM The set of must-links

OC The set of cannot-links

X Matrix of input data

xi The ith data point

Y Matrix of embedded data

Z Transformation matrix to be learned

dðxi,xjÞ Distance between xi and xj in the input space

d̂fðxi ,xjÞ
Distance between xi and xj after kernel null

space projection

fð�Þ Implicit nonlinear mapping function

Kðxi ,xjÞ Kernel functionbK ðxi ,xjÞ
Kernel function after kernel null space projection

M Must-link constraint matrix

S Adjacency matrix

R Disjoint matrix
~R Disjoint matrix after incorporating cannot-links
4. Main proposal

4.1. Problem setting

We therefore consider the following problem. Given a high-
dimensional dataset X¼ ðx1, . . . ,xnÞ of input patterns where xiARf ,
how can we compute n corresponding output patterns yiARr , r5 f ,
that provide a ‘‘faithful’’ low-dimensional representation?

Let X be the input space containing n data points in f

dimensions, fxig
n
i ¼ 1AX . We are given two types of pairwise

constraints organized in two sets. Let OM ¼ fðxi,x
0
iÞg

m
i ¼ 1 be the

set of m pairs of must-link constraints, and OC ¼ fðxi,x
0
iÞg

c
i ¼ 1 be the

set of c pairs of cannot-link constraints. Let r be a desired
subspace dimensionality. We want to embed the f-dimensional
data in an r-dimensional subspace, s.t. r5 f by learning a linear
data transformation ZARf�r , such that y¼ ZT x where y is the
low-dimensional embedding of x. The Euclidean distance
between two points y1 and y2 in the reduced space can be
expressed as

dðy1,y2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�x2Þ

T ZZT
ðx1�x2Þ

q
ð1Þ

which only depends on the original data points and the learned
transformation matrix.

4.2. Integrating must-link constraints

Given a pair of must-link constraint ðx,x0Þ, following the idea
presented in [27], we can project the input space onto the null
space of the difference vector ðx�x0ÞT , which is the direction
orthogonal to the difference vector. Hence, x and x0 will be
mapped to the same point, and the must-link constraint is
maximally satisfied. This method does not scale well with the
increasing number of must-links. For data with f-dimensional
features, if the number of must-link constraints exceeds f�1 all
the data points will collapse to a single point. For this reason, we
first map data to an enlarged feature space, and then apply the
same technique to exploit must-link constraints. We call this
method kernel null space projection. Fig. 1 illustrates this idea
using a 1D dataset.

Formally, let K : X � X/R be a positive definite kernel func-
tion satisfying for all x,x0AX

Kðx,x0Þ ¼fðxÞTfðx0Þ ð2Þ

where f is a nonlinear mapping function

f : X/H

that maps input space X into the ff-dimensional feature space H.
Define the m� ff must-link constraint matrix M as follows

M¼

ðfðx1Þ�fðx01ÞÞ
T

^

ðfðxmÞ�fðx0mÞÞ
T

2664
3775 ð3Þ

Then, the projection matrix

P¼ Iff�U ð4Þ

where

U¼MT
ðMMT

Þ
#M

projects data in H to the null space of M, and is the desired
projection. # stands for the pseudo-inverse. One can prove that in
the null space of M, every pair of must-linked data points collapse
to a single point, and thus the must-link constraints are maxi-
mally satisfied (see Appendix).

Given the data points and must-link constraints, the kernel
null space projection maps the data points in the feature space to
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Fig. 1. Illustration of must-link constraints enforcement. (a) Input space. 36 one-dimensional data points originated from two clusters (18 points each, differentiated by

markers) that are not linearly separable. Black crosses mark the must-link constraint pair ðm1 ,m2Þ. (b) The input space is mapped to the two-dimensional feature space via

quadratic mapping fðxÞ ¼ ½x x2�T . The blue arrow is the difference vector ðfðm2Þ�fðm1ÞÞ
T . The dotted line is the null space. (c) The feature space is projected to the null

space of the difference vector. Constrained points collapsed to a single point and a clustering algorithm trivially groups them together. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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projection result in (c) clearly demonstrates that although the constrained points are mapped to a single point, points from different clusters are mixed together too and

leads to clustering mistakes.
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the null space of the must-link constraint matrix by

f̂ðxÞ ¼ PfðxÞ ð5Þ

Since the implicit nonlinear mapping function fð�Þ is unknown,
the projection cannot be performed explicitly. A closer look at the
kernel function after the kernel null space projection reveals that
the projection can be performed implicitly in the kernel space.
That is, the kernel function after subspace projection has the formbK ðx,x0Þ ¼ f̂ðxÞTf̂ðx0Þ ¼fðxÞT PT Pfðx0Þ ¼fðxÞT Pfðx0Þ

¼fðxÞT ðI�MT W#MÞfðx0Þ

¼ Kðx,x0Þ�KðfðxÞ,MÞT W#Kðfðx0Þ,MÞ ð6Þ

The identity PT P¼ P follows from the fact that P is a projection
matrix. KðfðxÞ,MÞ denotes the m-dimensional vector

Kðx,x1Þ�Kðx,x01Þ

^

Kðx,xmÞ�Kðx,x0mÞ

264
375 ð7Þ

and

Wi,j ¼ Kðxi,xjÞ�Kðxi,x
0
jÞ�Kðx0i,xjÞþKðx0i,x

0
jÞ ð8Þ

Since all the computations of bK ðx,x0Þ can be expressed in terms
of Kðx,x0Þ, the subspace projection is performed implicitly in the
kernel space.

Note that, the null space projection P is the optimal projection
in the sense that it preserves the variance along the orthogonal
directions to the projection direction. Therefore, the original
distance measure is best preserved.

4.3. Integrating cannot-link constraints and data structure

The kernel null space projection introduced in the last section
guarantees the enforcement of must-link constraints by pulling data
from the same class close to each other. Thus, the pairwise distances
of the embedded data dðf̂ðxÞ,f̂ðx0ÞÞ fit the intra-class structure
better than the pairwise distances in the original space dðx,x0Þ.
However, the kernel null space projection can also mistakenly pull
data points from different clusters close to each other, thus leading
to clustering mistakes. Fig. 2 illustrates this issue using the same
data as in Fig. 1 but with a different pair of must-link constraint. As a
result, the pairwise distances of embedded data dðf̂ðxÞ,f̂ðx0ÞÞ do not
capture the inter-class structure well.

This problem can be solved by further exploiting cannot-link
constraints based on the kernel null space projection result. The goal
of adopting cannot-link constraints is to embed data in a subspace
where data points from different classes are further pushed away
from each other while the intra-class distance measure is still best
preserved. Before presenting how to find such a subspace, let us first
make the following declaration and define a few concepts.

Without loss of generality, we assume all the distances have
been normalized to [0, 1] in our discussion. Then the similarity
between any two points xi and xj is evaluated as 1�dðxi,xjÞ. Let
NðxiÞ denotes the set of k-nearest neighbors of point xi for a given
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k. Let S be the adjacency matrix, such that

Si,j ¼
1�d̂fðxi,xjÞ xiANðxjÞ3xjANðxiÞ

0 otherwise

(
ð9Þ

where d̂fðxi,xjÞ is the kernel distance defined as

d̂fðxi,xjÞ ¼ dðf̂ðxiÞ,f̂ðxjÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibK ðxi,xiÞþ
bK ðxj,xjÞ�2bK ðxi,xjÞ

q
ð10Þ

and satisfies d̂fðxi,xjÞ ¼ 0, if ðxi,xjÞAOM . We adopt the kernel
distances in the adjacency matrix because they fit the intra-class
structure better.

Let NðxiÞ
? be the set of k points that are farthest from xi for a

given k. In consequence, points in NðxiÞ
? tend to originate from a

different class than xi. Let R be a matrix which is called the
disjoint matrix, such that

Ri,j ¼
1�dðxi,xjÞ xiANðxjÞ

?3xjANðxiÞ
?

0 otherwise

(
ð11Þ

Because the disjoint matrix mostly encodes the inter-class struc-
ture, the distance measure of the original input space preserves
the structure better.

Let Z¼ ½z1 � � � zr� be the matrix containing r transformation
vectors zi9

r

i ¼ 1 that embed data points in the f-dimensional input
space in the r-dimensional subspace by yi ¼ ZT xi, xiARf , yiARr .
In order to preserve both the intra and inter-class structures, we
minimize the following objective function

min

P
i,jðyi�yjÞ

2Si,jP
i,jðyi�yjÞ

2Ri,j

ð12Þ

The numerator incurs heavy penalties if nearby data points (i.e. Si,j is
big) are mapped far apart. Therefore, minimizing it is an attempt to
ensure that if xi and xj are close then yi and yj are close as well. The
denominator assigns big rewards if nearby data points from
different classes (i.e. Ri,j is big) are mapped far away. Therefore,
maximizing the denominator has the effect of pushing different
classes farther away. Overall, minimizing Eq. (12) both preserves the
structure of data and makes the structure more evident.

Similarly, the goal of pushing apart cannot-linked data points
is achieved by maximizing the following objective function

max
X

ðxi ,xjÞAOC

ðyi�yjÞ
2
ð1�dðxi,xjÞÞ ð13Þ

If we modify the disjoint matrix R to incorporate cannot-link
constraints as

~R i,j ¼

1�dðxi,xjÞ xiANðxjÞ
?3xjANðxiÞ

?

3 ðxi,xjÞAOc

0 otherwise

8><>: ð14Þ

then the two objectives in Eqs. (12) and (13) can be integrated
into a single optimization problem as

z� ¼ arg min
z

P
i,jðz

T xi�zT xjÞ
2Si,jP

i,jðz
T xi�zT xjÞ

2 ~R i,j

¼ arg min
z

zT XLSXT z

zT XL ~R XT z
ð15Þ

where LS ¼DS
�S and L ~R ¼D

~R
� ~R are the graph Laplacians [7]

related to the adjacency matrix S and the disjoint matrix ~R
respectively, and DS and D

~R are diagonal matrices with DS
i,i ¼P

jSi,j and D
~R
i,i ¼

P
j
~R i,j. For dimensionality reduction, we pick the r

optimal transformation vectors zn

i 9
r

i ¼ 1 to compose the transforma-
tion matrix ZARf�r .

Note that Eq. (15) is the expression of the generalized Rayleigh

quotient [11]. The solutions can be found by solving a generalized
eigenvalue problem. To see this, let us denote

gðzÞ ¼
zT XLSXT z

zT XL ~R XT z
¼

zT Az

zT Bz
ð16Þ

where

A¼XLSXT , B¼XL ~R XT
ð17Þ

The construction of matrices XLSXT and XL ~R XT ensures both are
symmetric and positive semi-definite. We determine the extre-
mum points of gðzÞ, i.e., the points zn satisfying rgðzÞ ¼ 0. The
gradient rgðzÞ is calculated as

rgðzÞ ¼
2AzðzT BzÞ�2ðzT AzÞBz

ðzT BzÞ2
ð18Þ

rgðzÞ ¼
2Az�2 gðzÞBz

zT Bz
ð19Þ

By setting rgðzÞ ¼ 0, we have

Az¼ gðzÞBz ð20Þ

which is the form of the generalized eigenvalue problem. Thus,
the extremum points zn (with the corresponding extreme values
gðznÞ) of Eq. (15) are obtained as the eigenvectors (eigenvalues) of
the corresponding generalized eigenproblem

XLSXT z¼ lXL ~R XT z ð21Þ

In particular, the r eigenvectors related to the r smallest nonzero
eigenvalues are the solution.

Obviously, the performance of the above optimization problem
strongly depends on the pairwise distances of data points, which
are encoded in matrices LS and L ~R . By adopting the kernel
distance d̂fðxi,xjÞ, and distances dðx,x0Þ of the original input space,
the modification to the feature space in the kernel null space
projection step is incorporated. Therefore, the final optimal
projection direction is determined by both types of constraints
as well as the intrinsic structure of data.

The details of the DSP method is listed in Algorithm 1.
Algorithm 1. Dual Subspace Projections (DSP)

Input
a set of n data points in f dimensions: fxig

n
i ¼ 1AX;

two sets of constraints:

must-links: OM ¼ fðxi,x
0
iÞg

m
i ¼ 1;

cannot-links: OC ¼ fðxi,x
0
iÞg

c
i ¼ 1;

desired subspace dimension: r;
Output

optimal transformation matrix ZARf�r that maps
f-dimensional features to r-dimensional subspace;

embedded data points: y¼ ZT x,
1 Kernel null space projection:
2 Compute Kðx,x0Þ by Eq. (2);

3 Compute KðfðxÞ,MÞ by Eq. (7);
4 Compute W by Eq. (8);

5 Compute bK ðx,x0Þ by Eq. (6);
6 Dual subspace projection:
7 Compute kernel distances by Eq. (10)
8 Normalize the kernel distances
9 Compute S by Eq. (9);

10 Compute ~R by Eq. (14) ;

11 Compute Zn by solving GeneralizedEigenProblem(S, ~R , X, r)
(Eq. (21));

12 Embed input data by Y¼ ZT X.
Transformation matrix Z;

embedded data Y.
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4.4. Computation

Like many other dimensionality reduction algorithms (i.e. LPP,
LDA etc.), the DSP method is formulated as a generalized eigen-
value problem, as shown in Eq. (20). Well-established algorithms
in numerical linear algebra have been developed. The generalized
eigenvalue problems usually take Oðn3Þ flops (1 ‘‘flop’’ corre-
sponds to 1 floating-point multiplication and addition), where n

is the number of data points in DSP method. Depending on the
special structure of the matrices A and B, the order constant
varies in a large range. The DSP problem is solved as a symmetric

positive definite generalized eigenvalue problem [22], which has a
modest order constant.

For our DSP problem, both A and B are positive semi-definite.
The simultaneous diagonalization algorithm [19,29] is adopted to
solve the DSP problem efficiently. In particular, we starts the
algorithm by diagonalizing B. If B is nonsingular, the algorithm
proceeds with no modifications. If B is singular, after B is
diagonalized, the 0 (or close to 0) eigenvalues and corresponding
eigenvectors should be discarded for the algorithm to proceed.
The effect of this step is to discard the null space of B1 to make it
nonsingular. The reason to discard the null space of B is that the
null space of B¼XL ~R XT carries no discriminative information, but
the null space of A¼XLSXT carries most of the discriminative
information, and therefore should be preserved. To see this, for a
projection direction z, if Az¼ 0, and Bza0, Eq. (16) is minimized
since all solutions are non-negative. Detailed explanation to the
simultaneous digitalization algorithm for singular matrices can be
found in [29].

Moreover, in DSP, the transformation matrix Z is learned
offline. During the online reduction phrase, the number of data
points n does not impact the performance of dimensionality
reduction.

4.5. Subspace kernel K-means (SKK-means)

In this section, we present a novel semi-supervised clustering
method, subspace kernel K-means (SKK-means), which incorpo-
rates must-link constraints in the kernel space by adopting the
kernel null space projection method introduced in Section 4.2.
The objective of presenting SKK-means is twofold. First, the
performance of SKK-means can validate the effectiveness of
kernel null space projection in exploring supervision in the form
of must-links. Second, since DSP further explores cannot-links as
well as the intrinsic structure of the input data on top of kernel
null space projection, comparing DSP to SKK-means allows us to
check whether or not dual subspace projections provide a better
data representation than kernel null space projection alone.

SKK-means is a simple extension to kernel K-means, which
enhances the standard K-means clustering algorithm to identify
nonlinearly separable clusters by the use of a kernel function. Let
pi denote the ith cluster of the total k clusters, and a partitioning
of data points be fpig

k
i ¼ 1. Kernel K-means generates a data

partition by minimizing the following objective function

Dðfpig
k
i ¼ 1Þ ¼

Xk

i ¼ 1

X
xApi

JfðxÞ�miJ
2

ð22Þ

where

mi ¼
1

9pi9

X
tApi

fðtÞ ð23Þ

represents the centroid of cluster pi in the kernel space, and 9pi9 is
the size of cluster pi. With the same idea of the standard K-means,

S. Yan et al. / Neurocom
1 Null space of B¼ fx9Bx¼ 0,xARn
g.
kernel K-means assigns a data point to the nearest cluster, where
the point to cluster distance is measured as the point to cluster
centroid distance in the kernel space.

To assign a data point to a cluster at each iteration, the
Euclidean distance from the point fðxÞ to centroid mi needs to
be calculated and is given by

JfðxÞ�miJ
2
¼ Kðx,xÞ�

2

9pi9

X
tApi

Kðx,tÞþ
1

9pi9
2

X
t,t0Api

Kðt,t0Þ

The evaluation of the right-hand side of the above equation only
involves the kernel function Kð�,�Þ and the input data points, and
thus can be solved in the kernel space.

In SKK-means, in order to incorporate must-links, the objective
is to assign a data point after kernel null space projection f̂ðxÞ
to the nearest cluster, and the cluster centroid m̂ i is also
evaluated in the projected subspace. By simple algebra formula-
tion, the SKK-means objective function is given by

Dðfpig
k
i ¼ 1Þ9SKK_means ¼

Xk

i ¼ 1

X
xApi

Jf̂ðxÞ�m̂iJ
2

ð24Þ

and the Euclidean distance from a point to a cluster centroid after
the kernel null space projection has the following form

Jf̂ðxÞ�m̂ iJ
2
¼ bK ðx,xÞ�

2

9pi9

X
tApi

bK ðx,tÞþ
1

9pi9
2

X
t,t0Api

bK ðt,t0Þ ð25Þ

where bK ð�,�Þ is given by Eq. (6), and m̂i denotes the cluster
centroid of cluster pi in subspace. As the above equation shows,
the evaluation of the point to cluster distance only involves bK ð�,�Þ
which is the kernel function after null space projection and the
input data points, and thus can be solved implicitly in the
kernel space.
5. Experiment

5.1. Datasets

We use multiple real datasets from different domains to
evaluate our proposal. Datasets are summarized in Table 2. The
datasets used are very diverse in terms of size of data, size of
feature space and number of clusters. In particular, 11 datasets
are gathered from the UCI machine learning database2 because
of their popularity in the field of machine learning. We use the
COIL-20 database,3 which is widely used in 3D object recognition
research. This database contains gray-scale images of 20 objects.
Each object has 72 images taken at different orientations. Thus,
the entire database contains 1440 images. Each image is of size
128�128¼16,384 pixels. We further perform bicubic interpola-
tion to downsize every image to 16�16 pixels. This is a
commonly used technique to achieve tradeoff between complex-
ity and accuracy. Thus, each image is represented as a vector of
dimension 256. Samples of the COIL-20 database are listed in
Fig. 3. Moreover, we evaluate our proposals with the KDD-Cup-
994 data for intrusion detector learning. Detailed processing of
this dataset is introduced later for easy reference.

5.2. Competitive techniques

The standard K-means clustering method is adopted as the
baseline. K-means results show that the clustering performance
one can achieve in the original input feature space without
2 http://archive.ics.uci.edu/ml/.
3 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
4 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

http://archive.ics.uci.edu/ml/
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Table 2

Datasets summary (n: # samples; f: # features; k: # clusters; d: kernel parameter).

Dataset n f k d

Wine 178 13 3 0.6

Vehicle 846 18 4 0.9

Iris 150 4 3 0.3

Balance 625 4 3 0.7

Ionosphere 351 34 2 1

Glass 214 9 6 0.3

Breast 682 10 2 1

Sonar 208 60 2 0.8

Multiple features 2000 649 10 0.2

Isolet 7797 617 26 7

Pendigit 10,992 16 10 46

COIL-20 1440 16,384 20 0.4

Intrusion detection 494,021 41 23 0.7

Fig. 3. COIL-20 database. Left: six random samples; right: six orientations of one

object.
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dimensionality reduction and without exploring supervision in
the form of constraints. SKK-means is evaluated to show how
effective the kernel null space projection in exploring must-links.
Our main proposal, DSP, is then evaluated to show its ability of
exploring both must-links and cannot-links, as well as the
intrinsic structure of the input data to achieve better data
representation in a much reduced subspace.

Our proposal has been compared to four state-of-the-art and
representative semi-supervised and unsupervised dimensionality
reduction techniques. LPPSI [1] is a recent semi-supervised
dimensionality reduction method that has been successfully
applied to solve face recognition problem. We compare to the
kernel version of LPPSI since it is reported to have better
performance than the non-kernel version. LPP [13] is an unsu-
pervised dimensionality reduction technique that preserves the
local structures of data, and has been widely adopted in visualiza-
tion and text indexing. SLPP is the supervised version of LPP. PCA
is the classical unsupervised dimensionality reduction technique.
We test the dimensionality reduction performance achieved by
each method in a clustering setting. A better dimensionality
reduction technique should reveal the intrinsic structure of the
data, and thus leads to higher clustering accuracy. The standard
K-means is used as the underlying clustering model for all the
dimensionality reduction techniques.
5.3. Evaluation

We use two metrics, F-score and rand index (RI), to evaluate
clustering accuracy. Let T denote the set of pairs of data items
that belong to a same cluster according to ground truth and R

denote the set of pairs of data items that have been assigned to a
same cluster by the clustering algorithm. Then, precision and recall

are defined as

precision¼
9R \T9
9R9
recall¼
9R \T9
9T9

F-score is a harmonic mean of precision and recall defined as

F-score¼
2� precision� recall

precisionþrecall
ð26Þ

The Rand Index (RI) measures the degree of similarity in terms
of pairwise co-assignments between the cluster membership C

from the ground truth and the solution Ĉ generated by a
clustering algorithm. It is defined as

RIðC,Ĉ Þ ¼
9ci ¼ cj4ĉ i ¼ ĉ j9þ9ciacj4ĉ ia ĉ j9

nðn�1Þ=2
ð27Þ

where ci and ĉ i are the cluster membership of item i according to
C and Ĉ , and n is the number of data items being clustered.
Obviously, RI penalizes both the false positive and false negative
decisions during clustering.

Both F-score and RI take value in the range of [0,1], where
1 means 100% clustering accuracy. We also define the ‘‘clustering
error rate’’ is as 1-F-score. All the reported results are based on
the average of 20 independent runs.

5.4. Parameter setting

For all the kernel methods, we use the RBF kernel, which is
defined as

Kðx,x0Þ ¼ exp �
Jx�x0J2

2d2

 !
ð28Þ

The parameter d often significantly influences the performance of
kernel methods. With the help of constraints, we choose the d
value by a simple grid search. For a given d, we perform the kernel
null space projection only, and cluster the projected data using
SSK-means. Since the kernel null space projection guarantees that
all must-linked data points will be trivially clustered together, we
pick the d value that achieves the maximal clustering accuracy on
cannot-link constraints. Empirical results show that this method
works very well even with a few pairs of constraints. The d values
chosen for each dataset are listed in Table 2. The number of
nearest neighbors used in constructing the adjacency and disjoint
matrices is set to 5 and is kept the same for all the methods and
all the datasets.

5.5. Exploiting constraints

In this experiment, we evaluate how effective the proposed
subspace projection method is in exploring different types of
constraints and data structures. The real-world intrusion detec-
tion data of KDD-Cup-99 is used for this experiment. The dataset
was originally provided for supervised classification tasks. We use
the provided labels of training data as ground truth to generate
pairwise constraints and to evaluate the performance of dimen-
sionality reduction techniques.

In particular, we use the 10% subset of labeled data provided
by KDD-Cup, which contains 494,021 data items. This subset has
23 unique intrusion types. The distribution of the intrusion types
is highly uneven, with the most common type of intrusion
observed 280,790 times while the most uncommon intrusion
observed two times only. Clustering imbalanced data is beyond
the scope of this paper. We pick intrusion types that have more
than 200 observations and for types that contain more than 300
hundred observations, we randomly sampled 300 observations
for our experiment. This end up with 3195 data items from 11
distinct intrusion types. Note that the purpose of this experiment
is not to propose and evaluate an accurate intrusion detector, but



Table 3
Performance on intrusion detection data (r¼10).

Unsupervised 20 pairs constraints 5 pairs

Metric K-means PCA LPP SSK-means SLPP LPPSI DSP SSK-means SLPP LPPSI DSP

F 0.6793 0.7170 0.6475 0.7156 0.6186 0.2955 0.8183 0.6404 0.6148 0.2838 0.7880
RI 0.9335 0.9449 0.9177 0.9396 0.9184 0.6778 0.9645 0.9251 0.9139 0.6694 0.9575

Table 4
F-score on half-size feature spaces.

Unsupervised 20 pairs 5 pairs

Dataset PCA LPP SLPP LPPSI DSP SLPP LPPSI DSP

Wine 0.9415 0.9541 0.9563 0.8198 0.9588 0.5962 0.7381 0.9322
Vehicle 0.3070 0.3383 0.6024 0.4092 0.6042 0.3417 0.3306 0.3604
Iris 0.8112 0.7716 0.8920 0.6982 0.9498 0.8471 0.6244 0.9405
Balance 0.5075 0.4754 0.5789 0.5800 0.6068 0.5749 0.5845 0.5693

Ionosphere 0.6050 0.6050 0.7061 0.6205 0.7211 0.6108 0.5992 0.7145
Glass 0.3950 0.3903 0.4032 0.4023 0.3833 0.3849 0.3058 0.4131
Breast 0.9307 0.9307 0.9027 0.9352 0.9202 0.7478 0.9292 0.9288

Sonar 0.5012 0.5423 0.5293 0.5379 0.5873 0.5364 0.5472 0.5493
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to use the real-world dataset to evaluate semi-supervised dimen-
sionality reduction techniques.

Table 3 lists the results achieved by each algorithm on the
intrusion detection dataset. For each cluster, we run the experi-
ments by alternatively generating 5 and 20 random pairs of must-
link and cannot-link constraints each based on class labels. This
end up with 2� k�5 (20) pairs of constraints in total for the
dataset, where k is the number of clusters. For easy reference, we
refer to them as ‘‘5(20) pairs’’ of constraints hereafter.

As shown in the table, SSK-means is able to improve clustering
performance, compared to the baseline K-means, by using must-
links constraints when 20 pairs of must-links are available. This
means that the kernel null space projection is effective in
exploring must-links. However, when only five pairs of must-
links are available, the performance of SSK-means is inferior to
K-means. This may be due to the overfitting of this kernel method
given small amount of constraints. On the other hand, DSP
significantly improves the clustering accuracy in all the cases,
and no overfitting is observed with five pairs of constraints. These
results empirically validate that DSP is able to further explore
cannot-link constraints as well as the intrinsic data structure to
learn a robust optimal low-dimensional embedding with even a
very small amount of supervision. Furthermore, DSP notably
outperforms other competitive dimensionality reduction methods
for this dataset.

5.6. Fixed subspace dimensions

In this experiment, we test the dimensionality reduction
performance on datasets with moderate sizes. The purpose is to
learn the best projection direction by using all the available data
and evaluate the performance. Follow the experiment design in
the last experiment, 5 and 20 pairs of constraints are alternatively
generated for each cluster and each dataset. We fix the subspace
dimension to be half of the original dimension. Table 4 shows the
evaluation result measured in F-score. We observed that although
F-score and RI have different absolute values, they show overall
similar patterns for different algorithms, as evidently shown in
Table 3. We thus only report results in F-score for clean presenta-
tion. On six out of eight datasets, DSP achieves the best F-scores.
For the remaining two datasets, DSP still shows satisfactory
F-scores. Most importantly, when the number of constraints is
small (i.e. the five pairs case), the performance of DSP is still
robust and is better than or similar to the performances of the
two unsupervised method PCA and LPP. This means that DSP does
not suffer from overfitting, unlike competing methods.

5.7. Various subspace dimensions

In this experiment, we evaluate the dimensionality reduction
techniques for various subspace dimensions. For each dataset
5/10/20/30 pairs of constraints per cluster are generated follow-
ing the same experiment design in previous experiments. The
reduced dimensions range from 2 to 200. Figs. 4 and 5 show
the results on the COIL-20 database for 3D object recognition and
the multiple features dataset for handwritten digit recognition
respectively. The rest datasets show similar patterns. DSP
significantly outperforms other dimensionality reduction techni-
ques for both datasets under all experiment settings. The stable
performance of DSP given a few constraints and very low
subspace dimensionality is particularly impressive. It is interest-
ing to notice that although LPPSI and SLPP perform well for the
COIL-20 dataset, their performances on the digit dataset are
worse than the unsupervised LPP for low dimensions and small
number of constraint pairs. This effect could be the result of
overfitting due to few training data.

5.8. Generalization

In this experiment, we evaluate how well DSP handles new
data points on four large-scale datasets. For each dataset, we do
five-fold cross validation. Four folds of data are used for training,
which includes generating 20 pairs of constraints and learning the
best subspace embedding. Then the one-fold test data points are
projected to the learned subspace for further clustering evalua-
tion. Table 5 shows the generalization performance, compared to
the clustering result of test data without dimensionality reduc-
tion. Because the subspace dimensions are significantly smaller
than the dimensions of the full feature space, clustering in the
subspace will most of the time sacrifice accuracy for efficiency.
With the help of constraints, for three out of four datasets, the
clustering accuracy after DSP reduction is in fact being improved.
This indicates that DSP is effective in exploiting constraints and
generalizing to new data points.
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Fig. 4. Error rate vs. reduced dimensions for 3D object recognition. (a) 5 pairs, (b) 10 pairs, (c) 20 pairs, (d) 30 pairs.
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Fig. 5. Error rate vs. reduced dimensions for handwritten digit recognition. (a) 5 pairs, (b) 10 pairs, (c) 20 pairs, (d) 30 pairs.
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5.9. Running time

We evaluate the running time of DSP and compare to competing
algorithms. Because DSP learns a linearly transformation matrix, the
learning can be performed offline in the training phase. In the online
dimension reduction phase, the learned transformation matrix is
adopted by a simple matrix multiplication operation. The superv-
ised method SLPP works in the same manner. The competing



Table 5
F-score for generalization (r: subspace dimensionality).

Dataset Full feature DSP-generalize (r)

Multiple features 0.7101 0.9459 (20)

Isolet 0.5311 0.4740 (20)

Pendigit 0.5502 0.5873 (5)

COIL-20 0.5732 0.7872 (20)

Table 6
CPU time comparison (s).

Offline training Online reduction

Semi Supervised Unsupervised Semi Supervised

Dataset DSP SLPP PCA LPP LPPSI DSP SLPP

Multiple features 26.359 9.453 11.125 11.469 14.203 0.031 0.031

COIL-20 5.031 3.266 1.516 3.531 29.406 0.000 0.000

Isolet 22.938 14.125 20.984 129.656 235.828 0.063 0.063

Pendigit 6.375 2.047 0.078 182.125 17.016 0.000 0.000
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semi-supervised method LPPSI as well as the unsupervised methods
perform the learning online. All the algorithms are implemented in
Matlab and are evaluated on a 32bit Windows server with 3.75 GB of
ram. For each dataset, one-fifth of the data are used for training and
all the data are used for online reduction. Evaluation results are listed
in Table 6. As the table shows, DSP and SLPP achieve the minimum
online reduction time, and the saving of running time is significant.
The training time for DSP is longer than the training time for SLPP.
This is due to difference in the size of matrices involved in the
eigenvalue problems of the two algorithms. As long as the training in
performed offline, a little slowdown is training is tolerable.
6. Conclusion

We present a novel semi-supervised dimensionality reduction
technique, named dual subspace projections (DSP), to cope with the
learning deficiencies and computational difficulties incurred by high-
dimensional data. We study two types of constraints that indicate
whether or not pairs of data points originate from the same class. The
method projects data into two different subspaces, one in the kernel
space and one in the original input space, each is designed for
enforcing one type of constraints. Projections in the two spaces
interact and data are embedded in an optimal low-dimensional
subspace where the intrinsic structure of data is more evident, and
thus eases the subsequent data analysis. The method handles
nonlinearity of data using kernel techniques, but is able to learn a
linear transformation matrix. Thus, generalization to new data points
is straightforward and efficient. This method is also robust to over-
fitting and can benefit from constraints when only a few are available.
We also present a new semi-supervised clustering technique, named
subspace kernel K-means (SSK-means), which extends traditional
kernel K-means by exploring must-link constraints as an intermediate
step. Experiments on real datasets from multiple domains clearly
demonstrate that significant improvement in learning accuracy can
be achieved after our dimensionality reduction technique is employed
with only a few user-supplied constraints.
Appendix A

We prove that in the null space of M, every pair of must-linked
data points collapse to a single point, and thus the must-link
constraints are maximally satisfied.
Proof. Let ðfðxiÞ,fðx0iÞÞ be the ith pair of must-link data points in
the kernel space H. For any data point fðxÞAH, its embedding in
the null space of M is given by

f̂ðxÞ ¼ PfðxÞ ð29Þ

Given P as defined in Eq. (4), we then have

f̂ðxiÞ�f̂ðx0iÞ ¼ PðfðxiÞ�fðx0iÞÞ ¼ ðI�UÞðfðxiÞ�fðx0iÞÞ
¼ ðfðxiÞ�fðx0iÞÞ�UðfðxiÞ�fðx0iÞÞ

¼ ðfðxiÞ�fðx0iÞÞ�ðfðxiÞ�fðx0iÞÞ ¼ 0 & ð30Þ

The identity UðfðxiÞ�fðx0iÞÞ ¼ ðfðxiÞ�fðx0iÞÞ follows from the fact
that ðfðxiÞ�fðx0iÞÞ is in the row space of M. Since P is not null, we get

f̂ðxiÞ ¼ f̂ðx0iÞ ð31Þ

Thus the two points are mapped to the same point.

References

[1] S. An, W. Liu, S. Venkatesh, Exploiting side information in locality preserving
projection, in: Conference on Computer Vision and Pattern Recognition
(CVPR), 2008, pp. 1–8.

[2] A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall, Learning distance functions
using equivalence relations, in: International Conference on Machine Learn-
ing (ICML), 2003, pp. 11–18.

[3] P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, Eigenfaces vs. fisherfaces:
recognition using class specific linear projection, European Conference on
Computer Vision (ECCV), vol. 1064, 1996, pp. 45–58.

[4] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and
data representation, Neural Computation 15 (6) (2003) 1373–1396.

[5] H. Cevikalp, J. Verbeek, F. Jurie, A. Kläser, Semi-supervised dimensionality
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