
The Journal of Systems and Software 82 (2009) 772–788
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
Searching for similar trajectories in spatial networks

E. Tiakas a, A.N. Papadopoulos a,*, A. Nanopoulos a, Y. Manolopoulos a, Dragan Stojanovic b,
Slobodanka Djordjevic-Kajan b

a Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece
b Department of Computer Science, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia

a r t i c l e i n f o
Article history:
Received 26 October 2007
Received in revised form 31 October 2008
Accepted 1 November 2008
Available online 21 November 2008

Keywords:
Spatial networks
Moving objects
Trajectories
Similarity search
0164-1212/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jss.2008.11.832

* Corresponding author. Tel.: +30 2310991918; fax
E-mail addresses: tiakas@delab.csd.auth.gr (E. Tiaka

(A.N. Papadopoulos), alex@delab.csd.auth.gr (A. Na
csd.auth.gr (Y. Manolopoulos), dragans@elfak.ni.ac.yu
elfak.ni.ac.yu (S. Djordjevic-Kajan).
a b s t r a c t

In several applications, data objects move on pre-defined spatial networks such as road segments, rail-
ways, and invisible air routes. Many of these objects exhibit similarity with respect to their traversed
paths, and therefore two objects can be correlated based on their motion similarity. Useful information
can be retrieved from these correlations and this knowledge can be used to define similarity classes. In
this paper, we study similarity search for moving object trajectories in spatial networks. The problem
poses some important challenges, since it is quite different from the case where objects are allowed to
move freely in any direction without motion restrictions. New similarity measures should be employed
to express similarity between two trajectories that do not necessarily share any common sub-path. We
define new similarity measures based on spatial and temporal characteristics of trajectories, such that the
notion of similarity in space and time is well expressed, and moreover they satisfy the metric properties.
In addition, we demonstrate that similarity range queries in trajectories are efficiently supported by uti-
lizing metric-based access methods, such as M-trees.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In location-based services it is important to query the underly-
ing objects based on their location in space, which may change
with respect to time. To support such services from the database
point of view, specialized tools are required which enable the
effective and efficient processing of queries. Queries may involve
the spatial or temporal characteristics of the objects, or both (spa-
tio-temporal queries) (Wolfson et al., 1998; Theodoridis et al.,
1998). Evidently, indexing schemes are ubiquitous to efficiently
support queries on moving objects, by quickly discarding non-rel-
evant parts of the database.

We distinguish between two different research directions to-
wards query processing in moving objects, which differ both in
the type of queries supported and the characteristics of the index-
ing schemes used in each case:

[I] Query processing techniques for past positions of objects,
where past positions of moving objects are archived and
queried, using multi-version access methods or specialized
access methods for object trajectories (Lomet and Salsberg,
ll rights reserved.

: +30 2310991913.
s), apostol@delab.csd.auth.gr

nopoulos), manolopo@delab.
(D. Stojanovic), sdjordjevic@
1989; Nascimento and Silva, 1998; Pfoser et al., 2000; Tao
and Papadias, 2001a,b). By studying the past positions of
objects, important conclusions can be obtained regarding
their mobility characteristics. The difficulty in this case is
that the database volume increases considerably, since
new positions are tracked and recorded.

[II] Query processing techniques for present and future posi-
tions of objects, where each moving object is represented
as a function of time, giving the ability to determine its
future positions according to the current motion characteris-
tics of objects (reference position, velocity vector) (Kollios
et al., 1999a,b; Wolfson et al., 2000; Saltenis et al., 2000; Laz-
aridis et al., 2002). These methods are mainly used to sup-
port queries according to the current positions and enable
predictions of their future locations. The difficulty in this
case is to perform effective predictions, which is difficult
taking into consideration that some positions will be invali-
dated, due to changes in the speed and direction of some
objects in the near future.

A data set of moving objects is composed of objects whose posi-
tions change with respect to time (e.g., moving vehicles). Since in
many cases only the position of each object is important, moving
objects are modeled as moving points in 2D or 3D Euclidean space.
Queries that involve a particular time instance are characterized as
time-slice queries, whereas queries that must be evaluated for
an interval ½ts; te� are characterized as time interval queries. The

mailto:tiakas@delab.csd.auth.gr
mailto:apostol@delab.csd.auth.gr 
mailto:alex@delab.csd.auth.gr 
mailto:manolopo@delab. 
mailto:dragans@elfak.ni.ac.yu 
mailto:sdjordjevic@ 
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788 773
research community has studied both types extensively. Examples
of basic queries that could be posed to such a data set include:

� Window query: given a rectangle R, which may change position
and size with respect to time, determine the objects that are
covered by R from time point ts to te.

� Nearest-neighbor query: given a moving point P determine the k
nearest-neighbors of P within the time interval ½ts; te�.

� Join query: given two moving data sets U and V, determine the
pairs of objects (o1,o2) with o1 2 U and o2 2 V such that o1 and
o2 overlap at some point in ½ts; te�.

Apart from the query processing techniques proposed for the
fundamental types of queries (i.e., window, k-NN and join), the is-
sue of trajectory similarity has been studied recently. The problem
is to identify similar trajectories with respect to a given query
trajectory.

The common characteristic of the aforementioned approaches
and research works is that objects are allowed to move freely in
2D or 3D space, without any motion restrictions. However, in a
large number of applications, objects are allowed to move only
on pre-defined paths of an underlying network, resulting in con-
straint motion. For example, vehicles in a city can only move on
road segments. In such a case, the Euclidean distance between
two moving objects does not reflect their real distance. Fig. 1
shows such an example which illustrates the differences between
restricted and unrestricted trajectories. Objects moving in a spa-
tial network follow specific paths determined by the graph topol-
ogy, and therefore arbitrary motion is prohibited. This means that
two trajectories which are similar regarding the Euclidean dis-
tance may be dissimilar when the network distance is considered.
The majority of existing methods for trajectory similarity assume
that objects can move anywhere in the underlying space, and
therefore do not support motion constraints. Most of the propos-
als are inspired by the time series case, and provide translation
invariance, which is not always meaningful in the case of spatial
networks. To attack this problem, the network is modeled as a di-
rected graph, and the distance between two objects is evaluated
by using algorithms for shortest paths between the nodes of the
graph.

Therefore, the challenge is to express trajectory similarity by
respecting network constraints, which is also a strong motivation
for the following real and practical applications:
Fig. 1. Trajectories in (a) 2D Euclidean s
[I] By identifying similar trajectories, effective data mining
techniques (e.g., clustering) can be applied to discover useful
patterns. For example, a dense cluster is an indication of
emerge traffic measures, future road expansions, traffic-
jam detection, traffic predictions, etc.

[II] Trajectory similarity can also help in several road network
applications such as, routing applications which support his-
torical trajectories, logistic applications, city emergency
handling, drive guiding systems, flow analysis, etc. In such
applications, efficient indexing and query processing tech-
niques are required.

[III] Trajectory similarity of moving objects resembles path sim-
ilarity of user click-streams in the area of web usage mining.
By analyzing the URL path of each user, we are able to deter-
mine paths that are very similar, and therefore effective
caching strategies can be applied. In web usage mining,
web pages and URL links are modeled as a graph. A node
in the graph represents a web page, and an edge from one
page to another represents an existing link between them.
The time spent by each user to a page is also recorded, and
it is used in expressing path similarity, in addition to the
number of common web pages along each path. In the exist-
ing approaches, two paths are considered similar only if they
share at least one common web page, or if the paths contain
web pages with similar concept. In trajectory similarity on
the other hand, two trajectories may be characterized simi-
lar even if they do not share any nodes. Therefore, the exist-
ing web usage mining techniques are not directly applicable,
and the detection of network trajectory similarities can
accelerate the web usage mining queries.

The rest of the article is organized as follows. In the next sec-
tion, we give the appropriate background, we present related work.
In Section 3, trajectory similarity search is presented by investigat-
ing effective similarity measures between trajectories in a spatial
network. Indexing and query processing issues are covered in Sec-
tion 4, whereas Section 5 offers experimental results. Finally, Sec-
tion 6 concludes the work.

2. Related work

In several applications, the mobility of objects is constrained by
an underlying spatial network. This means that objects cannot
pace, and (b) in a spatial network.



Fig. 3. Example of four trajectories in the 2D Euclidean space.

774 E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788
move freely, and their position must satisfy the network con-
straints. Network connectivity is usually modeled by using a graph
representation, composed of a set of vertices (nodes) and a set of
edges (connections). Depending on the application, the graph
may be weighted (a cost is assigned to each edge) and directed (each
edge has an orientation). Fig. 2 illustrates an example of a spatial
network corresponding to a part of a city road network, and its
graph representation.

Several research efforts have been performed towards efficient
spatial and spatio-temporal query processing in spatial networks.
In Sankaranarayanan et al. (2005) nearest-neighbor query process-
ing is achieved by using a mapping technique. This mapping
transforms the graph representation of the network to a high-
dimensional space, where Minkowski metrics can be used. Near-
est-neighbor queries in road networks have been also studied in
Jensen et al. (2003), where a graph representation is used to model
the network. In Papadias et al. (2003) authors study query process-
ing for stationary data sets, by using both a graph representation
for the network and a spatial access method. It is shown that the
use of Euclidean distance retrieves many candidates, and instead
they propose a network expansion method to process range, near-
est-neighbor and join queries. In-route nearest-neighbor queries
have been studied in Yoo and Shekhar (2005), where given a trajec-
tory source and destination the smallest detour is calculated.

The above contributions deal with efficient spatial or spatio-
temporal query processing of fundamental queries like range,
nearest-neighbor and join. However, the issue of trajectory similar-
ity has not yet been studied adequately in the case of moving ob-
jects in spatial networks. Let Ta and Tb be the trajectories of moving
objects oa and ob, respectively, and DðTa; TbÞ a function that ex-
presses their dissimilarity in the range [0,1]. If the two objects
have similar trajectories we expect the value DðTa; TbÞ to be close
to zero. On the other hand, if the two trajectories are completely
dissimilar, we expect the value DðTa; TbÞ to be close to one.

An example is illustrated in Fig. 3, where four trajectories are
depicted in the 2D Euclidean space. A circle denotes the position
of each moving object at the corresponding time instance
ðt1; . . . ; t8Þ. It is evident that one expects that the two gray-colored
trajectories be very similar, in contrast to the two black-colored
trajectories.

In several research proposals, trajectory similarity is viewed as
the multidimensional counterpart of time series similarity. In Lee
et al. (2000), the authors study the problem of similarity search
in multidimensional data sequences, to determine similarities in
image and video databases. A similarity model based on the Min-
kowski distance is defined, and each sequence is partitioned to
subsequences by means of MBRs, to enable efficient indexing. This
work can be viewed as an extension of the method proposed in
Faloutsos et al. (1994) for time series data.

In Yanagisawa et al. (2003) a similarity distance between trajec-
tories is defined, which is invariant to translation, rotation and
Fig. 2. A road network and i
scaling. Again, the distance calculation is based on the Minkowski
distance. Objects are allowed to move freely in the address space.

In Meratnia and de By (2002), an approach is studied to aggre-
gate similar trajectories using a grid-based spatial unit aggrega-
tion. The notion of spatial similarity lies on the neighboring cells
of the grid in a standard two-dimensional Euclidean space. Many
problems can be arisen with how the grid must be defined,
what the cell dimensions must be, and in objects and clusters
identification.

In Laurinen et al. (2006), an efficient algorithm for trajectories
similarity calculation is presented. But all distance calculations
through trajectories are based on Euclidean metrics and spaces
(Lp norms).

The method proposed in Vlachos et al. (2002a,b) employs a sim-
ilarity distance based on the longest common subsequence (LCS)
between two trajectories. This approach proposes a distance mea-
sure, which is more immune to noise than the Minkowski distance,
but does not satisfy the metric space properties, and therefore it is
difficult to exploit efficient indexing schemes. Instead, hierarchical
clustering is used to group trajectories. Moreover, the similarity
measure depends heavily on two parameters, namely d and �,
which must be known in advance, and cannot be altered dynami-
cally without reorganization. These values determine the maxi-
mum distance between two locations of different trajectories, in
time and space, respectively, to be characterized as similar. Trajec-
tories that differ more are characterized as dissimilar and therefore
their similarity is set to zero. This approach does not permit the use
of ranking or incremental computation of similarity nearest-neigh-
bor queries.

To the best of the authors’ knowledge, the only research work
studying trajectory similarity on networks is the work in Hwang
et al. (2005, 2006). The authors propose a simple similarity mea-
sure based on POIs (points of interest). They retrieve similar trajec-
tories on road network spaces and not in Euclidean spaces. They
ts graph representation.



E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788 775
propose a filtering method based on spatial similarity and refining
similar trajectories based on temporal distance. In order to deter-
mine the spatial similarity between trajectories, they define that
two trajectories are similar in space by a set of pre-defined points
of interest P if all points of P lie in both trajectories, otherwise they
define the two trajectories as dissimilar. There are several draw-
backs using this approach:

� The set of points of interest must be pre-defined and controlled
by the user which is very restrictive.

� A simple wrong point selection in P can harm trajectory spatial
similarity and the derived similarity clusters, so points in P must
be selected very carefully and by an expert of the used road
network.

� The similarity in space with such definition (1 = similar, 0 = dis-
similar) does not take into account any notion of similarity per-
centage or similarity range. Therefore, we cannot determine
how similar two trajectories are in space.

� The spatial similarity of two trajectories is based only into the
fact that they share common points, and not into the general
network space. Therefore, many similarities excluded. For exam-
ple, trajectories that have parallel edges with only a city block
distance and no common points, are considered completely
dissimilar.

In addition, no details are given with respect to the access
methods required to provide efficient similarity search. Moreover,
no discussion is performed regarding the metric space properties
of the proposed distance measures. Our approach avoids all these
drawbacks.

In the sequel, we study in detail the proposed similarity model
for trajectory similarity search in spatial networks aiming at: (i)
the definition of similarity and distance measures between trajec-
tories that satisfy the metric space properties, (ii) the exploitation
of the distance between two graph nodes, which is used as a build-
ing block for the definition of trajectory similarity, (iii) the incorpo-
ration of time information in the similarity metric, and (iv) the
efficient support of similarity queries by exploiting appropriate
indexing schemes and applying fast processing algorithms.

3. Trajectory similarity measures

Let T be a set of trajectories in a spatial network, which is rep-
resented by a graph GðV ; EÞ, where V is the set of nodes and E the
set of edges. Each trajectory T 2 T is defined as:
Table 1
Basic notations used throughout the study.

Symbol Description

T Set of trajectories
S Set of sub-trajectories
T, Ta , Tb Trajectories
Tq A query trajectory
m Trajectory description length
GðV ; EÞ Graph representation of the spatial network
DG Graph diameter
DEG Maximum Euclidean node distance
v i A node in the graph representation
ti Time instance that the object reached node v i

e An edge of the graph
T½i�:v The ith node of the trajectory
T½i�:t The time instance that the object reached the ith node
dðv i;v jÞ Network-based distance between two nodes
deðv i; v jÞ Euclidean distance between two nodes
DnetXðTa; TbÞ Network-based distance between trajectories
DtimeðTa; TbÞ Time-based distance between trajectories
Enet Query radius for network-based similarity
Etime Query radius for time-based similarity
T ¼ ððv1; t1Þ; ðv2; t2Þ; . . . ; ðvm; tmÞÞ ð1Þ

where m is the trajectory description length, v i denotes a node in
the graph representation of the spatial network, and ti is the time
instance (expressed in time units, e.g., seconds) that the moving ob-
ject reached node v i, and t1 < ti < tm, 81 < i < m. It is assumed that
moving from a node to another comes at a non-zero cost, since
at least a small amount of time will be required for the transition.
Table 1 gives the most important symbols and the corresponding
definitions that are used in our study.

3.1. Expressing trajectory similarity

We will follow a step-by-step construction of the similarity
measure by first expressing similarity taking into account only
the visited path, ignoring time information. Time information will
be considered in a subsequent step.

We begin our exploration by assuming that any two trajectories
have the same description length. This assumption will be relaxed
later. Let Ta and Tb be two trajectories, each of description length
m. By using our trajectory definition and ignoring the time infor-
mation, we have: Ta ¼ ðva1;va2; . . . ; vamÞ and Tb ¼ ðvb1;vb2; . . . ;

vbmÞ, where 8i, vai 2 V and vbi 2 V .
Note that, to characterize two trajectories as similar it is not

necessary that they share common nodes. Therefore, the similarity
measure must take into account the proximity of the trajectories
(how close is one trajectory with respect to the other).

Due to motion restrictions posed by the spatial network, mea-
suring trajectory proximity by means of the Euclidean distance is
not appropriate. Instead, it is more natural to use the cost associ-
ated with each transition from a graph node to another. For exam-
ple, in Fig. 4 we observe that two trajectory parts can be similar
regarding the Euclidean distance, but may be dissimilar regarding
the shortest path distance (network distance). Thus, for every pair
of points between these two trajectory parts, the Euclidean dis-
tance is small, but the corresponding network distance is large be-
cause the long edges must be crossed. Therefore, it is important in
network applications to use the network distance metric instead of
the Euclidean metric.

Let cðv i;v j) denote the cost function to travel from a source
node v i to a destination node v j. As we have already mentioned,
this cost for the most network-based applications is defined as
the shortest path distance (network distance) between the two
nodes. In this paper we fix this cost to be the network distance.
We also fix the following requirements for the graph representa-
tion of the network G: G must be a directed or non-directed, positive
Fig. 4. Trajectory proximity.



776 E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788
weighted and strongly connected graph. These cases represent suc-
cessfully the most real network applications (road networks, etc.).

The cost function (network distance) satisfies the following
properties:

Property I. The cost function cðv i;v jÞ gives zero values if and only if
v i � v j.

It is obvious that cðv ;vÞ ¼ 0 for any node v in the graph
representation. It also holds that cðv i;v jÞ ¼ 0) v i � v j, because it
has been assumed that any transition between nodes comes at a
non-zero cost (positive weighted graphs).

Property II. The cost function cðv i;v jÞ, definitely satisfies the positiv-
ity property and the triangular inequality:

� cðv i;v jÞP 0;

� cðv i;v jÞ 6 cðv i;vxÞ þ cðvx;v jÞ:

Property III. The cost function cðv i;v jÞ, does not satisfy in general the
symmetric property, therefore it is not definitely a metric function:

� cðv i;v jÞ–cðv j;v iÞ:

But how does this reflect reality? Consider a directed road net-
work with many one-way road segments, which is quite common.
Then, it is clear that if a car goes from a source node v i to a desti-
nation node v j, it will cover a distance generally different than its
way back from v j to v i, as it has to pass through different nodes
with different weights.

3.1.1. Network distance measure 1
The first network distance measure Dnet1 that we propose uses

network-based computations. The distance dðv i;v jÞ between any
two nodes v i and v j, belonging to trajectories Ta and Tb, respec-
tively, is given by the following definition.

Definition 1. The distance dðv i;v jÞ between two graph nodes v i

and v j is defined as follows:

dðv i;v jÞ ¼
0; if v i ¼ v j;

cðv i; v jÞ þ cðv j;v iÞ
2DG

; otherwise;

8<
: ð2Þ

where DG ¼maxfcðv i; v jÞ;8v i;v j 2 VðGÞg is the diameter of the
graph G of the spatial network and is a global constant for the appli-
cations. Its value can be computed taking the overall maximum of
possible values of the cost function.

Proposition 1. The distance function dðv i;v jÞ assumes values in the
interval [0,1].

Proof. This is obvious when the function returns a zero value.
Otherwise it returns the ratio cðv i ;v jÞþcðv j ;v iÞ

2DG
. But, clearly we have:

cðv i;v jÞ 6 DG and cðv j;v iÞ 6 DG, and by summation we get:
cðv i;v jÞ þ cðv j;v iÞ 6 2DG. Therefore, by division we get: dðv i;v jÞ ¼
cðv i ;v jÞþcðv j ;v iÞ

2DG
6 1. In addition, we have always cðv i;v jÞP 0 and

cðv j;v iÞP 0 (positivity), thus dðv i;v jÞP 0. h

Proposition 2. The distance function dðv i;v jÞ satisfies the metric
properties.

Proof. We need to prove the following properties for every graph
nodes v i, v j, vx:

(i) dðv i;v jÞP 0;

(ii) dðv i;v jÞ ¼ dðv j;v iÞ;
(iii) dðv i;v jÞ 6 dðv i;vxÞ þ dðvx;v jÞ:
Clearly, property (i) is true by Proposition 1. Property (ii) is
always true if v i ¼ v j. Otherwise, if v i–v j, we have:

dðv i;v jÞ ¼
cðv i;v jÞ þ cðv j;v iÞ

2DG
¼ cðv j;v iÞ þ cðv i; v jÞ

2DG
¼ dðv j;v iÞ

Thus, it is true in any case.
Property (iii) is obvious if v i ¼ v j or v i ¼ vx or v j=vx. Otherwise,

if v i–v j–vx by substitution we get:

cðv i; v jÞ þ cðv j;v iÞ
2DG

6
cðv i;vxÞ þ cðvx; v iÞ

2DG
þ cðvx;v jÞ þ cðv j;vxÞ

2DG
ð3Þ

Due to the fact that the cost function satisfies the triangular
inequality, we have:

cðv i;v jÞ 6 cðv i;vxÞ þ cðvx;v jÞ
cðv j;v iÞ 6 cðv j;vxÞ þ cðvx;v iÞ

By summation and by division with 2DG we take inequality (3), thus
property (iii) has been proven. h

Definition 2. The network distance Dnet1ðTa; TbÞ between two tra-
jectories Ta and Tb of description length m is defined as follows:

Dnet1ðTa; TbÞ ¼
1
m

Xm

i¼1

ðdðvai;vbiÞÞ ð4Þ

Proposition 3. The distance measure Dnet1ðTa; TbÞ assumes values in
the interval [0,1].

Proof. Omitted. h

Proposition 4. The distance measure Dnet1ðTa; TbÞ satisfy the metric
properties.

Proof. We need to prove the following properties for every trajec-
tories Ta, Tb, Tx of description length m:

(i) Dnet1ðTa; TbÞP 0;

(ii) Dnet1ðTa; TbÞ ¼ Dnet1ðTb; TaÞ;
(iii) Dnet1ðTa; TbÞ 6 Dnet1ðTa; TxÞ þ Dnet1ðTx; TbÞ:

Clearly, property (i) is true by consulting Proposition 3. Property
(ii) is true because is also true for the distance function d
(Proposition 2), so:

DnetðTa; TbÞ ¼
1
m

Xm

i¼1

ðdðvai; vbiÞÞ ¼
1
m

Xm

i¼1

ðdðvbi;vaiÞÞ ¼ DnetðTb; TaÞ

Property (iii) is written equally by substitution:

1
m

Xm

i¼1

ðdðvai;vbiÞÞ 6
1
m

Xm

i¼1

ðdðvai;vxiÞÞ þ
1
m

Xm

i¼1

ðdðvxi;vbiÞÞ

()
Xm

i¼1

ðdðvai;vbiÞÞ 6
Xm

i¼1

ðdðvai;vxiÞÞ þ
Xm

i¼1

ðdðvxi;vbiÞÞ ð5Þ

From Proposition 2, we have the following inequalities:

dðvai; vbiÞ 6 dðvai;vxiÞ þ dðvxi; vbiÞ 8i 2 f1;2; . . . ;mg

By summation we get (5). h

Fig. 5 shows two trajectories Ta; Tb for which we are interested
to calculate their distance. Assuming that DG ¼ 100, we have the
following calculations:

dðvai; vbiÞ ¼
17

200
;

16
200

;
9

200
;

7
200

; 0;
5

200
;

13
200

� �



Fig. 5. Trajectory similarity example.

E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788 777
Dnet1ðTa; TbÞ ¼
1
7

17
200
þ 16

200
þ 9

200
þ 7

200
þ 0þ 5

200
þ 13

200

� �

¼ 1
7

67
200

¼ 0:047857
Fig. 6. Time similarity calculation example.
3.1.2. Network distance measure 2
The second distance measure, Dnet2, that we propose uses an

Euclidean-based distance function (de) in combination with the
previous global constant DG (the graph diameter by the network
distance).

It can be used for fast calculations only for graphs where the
coordinates of the nodes are available. In fact, in many cases the
Euclidean distance results in poor performance regarding the qual-
ity of results. However, as it will be described later, it offers a
‘‘quick-and-dirty” view of the results.

Definition 3. The distance deðv i;v jÞ between two graph nodes v i

and v j is defined as follows:

deðv i;v jÞ ¼
euclideanðv i; v jÞ

DG
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxv i
� xv j

Þ2 þ ðyv i
� yv j

Þ2
q

DG
ð6Þ

where xv i
; yv i

are the coordinates of node v i, and xv j
; yv j

are the
coordinates of node v j.

Proposition 5. The distance function deðv i;v jÞ assumes values in the
interval [0,1].

Proof. Let DEG be the maximum Euclidean distance between all
nodes of the graph representing the spatial network:
DEG ¼maxfeuclideanðv i;v jÞ;8v i;v j 2 VðGÞg. Then it is obvious
that:

euclideanðv i; v jÞ 6 DEG 6 DG 8v i; v j 2 VðGÞ

The last inequality holds because all network distances are always
greater than or equal to the corresponding Euclidean distances.
Therefore, we have:

euclideanðv i; v jÞ
DG

6 1() deðv i; v jÞ 6 1

Moreover, as all distances are positive (or zero when v i ¼ v j), we
have always: deðv i;v jÞP 0. h

Proposition 6. The distance function deðv i;v jÞ satisfies the metric
properties.

Proof. Due to the fact that the Euclidean distance euclideanðv i;v jÞ
satisfies the metric properties and deðv i;v jÞ is the Euclidean dis-
tance divided by the positive constant DG, it is evident that
deðv i;v jÞ also satisfies the metric properties. h
Definition 4. The network distance Dnet2ðTa; TbÞ between two tra-
jectories Ta and Tb of description length m is defined as follows:

Dnet2ðTa; TbÞ ¼
1
m

Xm

i¼1

ðdeðvai; vbiÞÞ ð7Þ

Proposition 7. The distance measure Dnet2ðTa; TbÞ assumes values in
the interval [0,1].

Proof. Omitted. h

Proposition 8. The distance measure Dnet2ðTa; TbÞ satisfy the metric
properties.

Proof. Omitted. h
3.2. Incorporating time information

The similarity measures defined in the previous section take
into consideration only the traveling cost information, which de-
pends on the spatial network. In applications such as traffic analy-
sis, the time information associated with each trajectory is also
very important.

Definition 5. Given two trajectories Ta 2 T and Tb 2 T of descrip-
tion length m, their distance with respect to time DtimeðTa; TbÞ is
given by

DtimeðTa; TbÞ

¼ 1
m� 1

Xm�1

i¼1

jðTa½iþ 1�:t � Ta½i�:tÞ � ðTb½iþ 1�:t � Tb½i�:tÞj
maxfðTa½iþ 1�:t � Ta½i�:tÞ; ðTb½iþ 1�:t � Tb½i�:tÞg

Essentially, the time similarity between two trajectories, as it
has been defined, measures their resemblance with respect to
the time required to travel from one node to the next (inter-arrival
times).

Fig. 6 depicts some examples for the time similarity calcula-
tions, where we have three trajectory parts Ta, Tb, Tc with the same
description length and the inter-arrival times appear next to their
directed edges.

With the previous definition we have the following
calculations:

DtimeðTa; TbÞ ¼
1
4

1
5
þ 0

7
þ 1

4
þ 0

2

� �
¼ 0:1125

DtimeðTa; TcÞ ¼
1
4

0
5
þ 4

7
þ 2

6
þ 2

4

� �
¼ 0:35119



778 E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788
We observe that Ta is more similar to Tb than Tc and this happens
because the corresponding inter-arrival times of the pair Ta, Tb

are much closer.

Proposition 9. The distance measure DtimeðTa; TbÞ assumes values in
the interval [0,1].

Proof. Omitted. h

Proposition 10. The distance measure DtimeðTa; TbÞ satisfy the metric
properties.

Proof. We need to prove the following properties for any trajecto-
ries Ta, Tb, Tx of description length m:

(i) DtimeðTa; TbÞP 0;

(ii) DtimeðTa; TbÞ ¼ DtimeðTb; TaÞ;
(iii) DtimeðTa; TbÞ 6 DtimeðTa; TxÞ þ DtimeðTx; TbÞ:

Clearly, property (i) is true by Proposition 9. Let us denote the
inter-arrival times of all trajectory parts of Ta, Tb and Tx as follows:
dai ¼ Ta½iþ 1�:t � Ta½i�:t, dbi ¼ Tb½iþ 1�:t � Tb½i�:t and dxi ¼ Tx½iþ 1�.
t � Tx½i�:t, for all i ¼ 1;2; . . . ;m� 1. Then, property (ii) is true
because we have:

DtimeðTa; TbÞ ¼
1

m� 1

Xm�1

i¼1

jdai � dbij
maxfdai; dbig

¼ 1
m� 1

Xm�1

i¼1

jdbi � daij
maxfdbi; daig

¼ DtimeðTb; TaÞ

By substitution, property (iii) is written as

1
m� 1

Xm�1

i¼1

jdai � dbij
maxfdai; dbig

6
1

m� 1

Xm�1

i¼1

jdai � dxij
maxfdai; dxig

þ 1
m� 1

Xm�1

i¼1

jdxi � dbij
maxfdxi; dbig

()
Xm�1

i¼1

jdai � dbij
maxfdai; dbig

6

Xm�1

i¼1

jdai � dxij
maxfdai; dxig

þ
Xm�1

i¼1

jdxi � dbij
maxfdxi; dbig

ð8Þ

It is sufficient to prove the following inequalities 8i ¼ 1; . . . ;m� 1:

jdai � dbij
maxfdai; dbig

6
jdai � dxij

maxfdai; dxig
þ jdxi � dbij

maxfdxi; dbig
ð9Þ

To prove (9) it is enough to prove that for every positive numbers a,
b, c the following inequality holds:

ja� bj
maxfa; bg 6

ja� cj
maxfa; cg þ

jc � bj
maxfc; bg ð10Þ

But, this inequality is obvious if a ¼ b, or a ¼ c, or b ¼ c, and for
all other ordering cases of the numbers a; b; c also holds:

� If a < b < c then it gives:

b� a
b
6

c � a
c
þ c � b

c
() cðb� aÞ 6 bðc � aÞ þ bðc � bÞ
() ðbþ aÞðc � bÞP 0

which it holds as a; b are positive and b < c.
� If a < c < b then it gives:

b� a
b
6

c � a
c
þ b� c

b
() cðb� aÞ 6 bðc � aÞ þ cðb� cÞ
() ðc � aÞðb� cÞP 0

which it holds as a < c and c < b.
� If b < a < c then it gives:

a� b
a
6

c � a
c
þ c � b

c
() cða� bÞ 6 aðc � aÞ þ aðc � bÞ
() ðaþ bÞðc � aÞP 0

which it holds as a; b are positive and a < c.
� If b < c < a then it gives:

a� b
a
6

a� c
a
þ c � b

c
() cða� bÞ 6 cða� cÞ þ aðc � bÞ
() ðc � bÞða� cÞP 0

which it holds as b < c and c < a.
� If c < a < b then it gives:

b� a
b
6

a� c
a
þ b� c

b
() aðb� aÞ 6 bða� cÞ þ aðb� cÞ
() ðaþ bÞða� cÞP 0

which it holds as a; b are positive and c < a.
� If c < b < a then it gives:

a� b
a
6

a� c
a
þ b� c

b
() bða� bÞ 6 bða� cÞ þ aðb� cÞ
() ðaþ bÞðb� cÞP 0

which it holds as a; b are positive and c < b.

Therefore, inequality (10) is true, and property (iii) has been
proven. h
3.2.1. Spatio-temporal similarity measures and methods
We have at hand different distance measures, Dnet and Dtime, that

can be used to compare trajectories of the same length in space and
time. Several applications may require both similarity measures to
extract useful knowledge.

There are three different methods in order to retrieve similar
trajectories in space–time as proposed in Hwang et al. (2005): (i)
searching similar trajectories with direct application of spatio-
temporal distance measures, (ii) filtering trajectories based on
temporal similarity and refining similar trajectories based on spa-
tial distance, (iii) filtering trajectories based on spatial similarity
and refining similar trajectories based on temporal distance.

Here we suggest the methods (i) and (iii), due to the fact that
method (ii) can hardly be found in practical applications.

To implement method (i) we can combine the two distance
measures Dnet and Dtime into a single one. For example, the two dis-
tances may be weighted with parameters Wnet and Wtime such that
Wnet+Wtime=1. The total (combined) distance can then be expressed
as follows:

DtotalðTa; TbÞ ¼Wnet � DnetðTa; TbÞ þWtime � DtimeðTa; TbÞ

It is evident that the distance measure Dtotal satisfies the metric
space properties. However, this approach poses a significant lim-
itation, since the values of Wnet and Wtime must be known in
advance.

Consequently we propose method (iii) using Dnet and Dtime sep-
arately, where the distance Dnet making the filtering step in space
and the distance Dtime making the refinement step in time. In this
way, two parameter distances are required to be posed by the
query. The distance Enet expresses the desired similarity with
respect to the Dnet distance measure, whereas the distance Etime ex-
presses the desired similarity regarding the Dtime distance measure.



E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788 779
If the user wishes to focus only on the network distance, then the
value of Etime may be set to 1. Otherwise, another value is required
for Etime, which determines the desired similarity in the time do-
main. By allowing the user to control the values of Enet and Etime a
significant degree of flexibility is achieved, since the ‘‘weight” of
each distance can be controlled at will.

4. Indexing and query processing issues

In this section, we study some important issues regarding tra-
jectory similarity. Firstly, we discuss the problem of handling tra-
jectories of different description length, by decomposing a
trajectory to sub-trajectories. Then, we study the use of indexing
schemes for sub-trajectories. Finally, we study some fundamental
query processing issues.

4.1. Trajectory decomposition

Up to now we have handled the case where all trajectories are
of the same description length. We proceed now to relax this
assumption, by considering trajectories of different lengths. In fact,
this is the more general case that reflects reality. First of all, two
trajectories may involve a different number of visited nodes, and
therefore their description length will be different. Furthermore,
we cannot always guarantee that moving objects report their posi-
tions at fixed time intervals. Due to noise, several measurements
may be lost, or different moving objects report their positions at
different time intervals. In these cases, two trajectories may have
different description lengths.

Let T be a trajectory of description length m. Moreover, let l de-
note an integer such that l 6 m. T is decomposed into m� lþ 1
sub-trajectories, by using a window of length l, and progressively
moving one node at a time from left to right. Each of the resulting
sub-trajectories has a length of l. Fig. 7 illustrates an example of
the decomposition process, where m ¼ 6 and l ¼ 3.

By following the same process for all trajectories T 2 T we get a
new set of sub-trajectories S, all of description length l. Moreover,
we have already defined a distance measure for trajectories of the
Fig. 7. Trajectory decomposition example for m = 6 and l ¼ 3.
same description length in the previous section given by either Dnet

or Dtime which both satisfy the metric space properties.

4.2. Indexing schemes

Our next step involves indexing the set S of sub-trajectories, en-
abling efficient query processing. Towards this direction, we pro-
pose two schemes, which are both based on the M-tree access
method (Ciaccia et al., 1997). Note that since a vector representa-
tion of each sub-trajectory is not available, techniques like R-trees
(Guttman, 1984) and its variants are not applicable. Recall that, the
M-tree is already equipped by the necessary tools to handle range
and nearest-neighbor queries, as it has been reported in Ciaccia et
al. (1997). The only requirement for the M-tree to work properly is
that the distance used must satisfy the metric space properties.
Since both Dnet and Dtime satisfy these properties, they can be used
as distance measures in M-trees. Note that, among the metric
indexing schemes we choose the M-tree because of its simplicity.
However, other secondary memory schemes for metric spaces or
any other metric access method can been applied equally well
(e.g., SlimTrees; Traina et al., 2000). Two alternatives are followed
towards indexing sub-trajectories:

� M-treeI method. In this scheme, only the NET-M-tree is used to
check the constraint regarding Enet . Then, in a subsequent step
the candidate sub-trajectories are checked against the time con-
straints. This way, only one M-tree is used.

� M-treeII method. In this scheme, two M-trees are used to handle
Dnet and Dtime separately. These trees are termed NET-M-tree and
TIME-M-tree, respectively. Each M-tree is searched separately
using Enet and Etime, respectively. Then, the intersection of both
results is determined to get the sub-trajectories that satisfy
the network and time constraints.

4.3. Query processing fundamentals

A user query is defined by a triplet hTq; Enet; Etimeiwhere Tq is the
query trajectory, Enet is the radius for the network distance and Etime

is the radius for the time distance. For the query processing to be
consistent with the proposed framework, each query trajectory
Tq must be of at least description length l. If this is not true, pad-
ding is performed by repeating, for example, the last node of the
trajectory several times, until the description length l is reached.
In the general case where the description length of Tq is greater
than l, the decomposition process is applied to obtain the sub-tra-
jectories of Tq. Finally, if the description length of Tq is equal to l,
then only one sub-trajectory is produced.

Let p denote the number of sub-trajectories of Tq determined by
the trajectory decomposition process. The next step depends on
the indexing scheme we utilize, i.e. either M-treeI or M-treeII as
they have been described previously. A trajectory is part of the an-
swer if there is at least one of its sub-trajectories that satisfy the
network and time constraints for at least one query sub-trajectory.
In the sequel, we analyze the whole process in detail:

� Having a query trajectory Tq of description length l and the Enet ,
Etime parameters, we decompose Tq into p ¼ l� lþ 1 sub-trajec-
tories (if l > l) with the window method and then we construct
their set QSðTq).

� For every query sub-trajectory qs 2 QSðTqÞ, we execute a simple
range query to NET-M-Tree with radius Enet and collect related
sub-trajectories into the set Cnet .

� If M-treeII method is used then we execute another simple range
query to TIME-M-Tree with radius Etime and collect related sub-
trajectories into the set Ctime.



780 E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788
� If M-treeI method is used then we check every sub-trajectory in
Cnet against Etime and from the selected results we construct the
set AS. Otherwise, If M-treeII method is used, the results’ set AS
is constructed with the common sub-trajectories of the sets Cnet

and Ctime. In both cases, the set AS contains the resulted sub-tra-
jectories ID’s.

� From the set AS we take the corresponding trajectories ID’s and
we construct the final result set AT.

In any case, a trajectory T 2 T will appear in the result set, if and
only if there exists at least one sub-trajectory ts of T which is sim-
ilar to at least one sub-trajectory qs of the query trajectory Tq, and
also satisfies the network and time constraints. More formally:

T is similar to Tq () 9ts # T; 9qs # Tq : Dnetðts; qsÞ
6 Enet ^ Dtimeðts; qsÞ 6 Etime

Fig. 8 presents an outline of the algorithm. Taking into account that
the consecutive sub-trajectories of Tq have ðl� 1Þ common nodes,
most calculations and requests can be already in the memory, as we
check one sub-trajectory after another, so it is strongly recom-
mended to use an LRU memory buffer.

4.4. Distance buffering

The distance measure Dnet1 uses the shortest path distance be-
tween graph nodes. These computations can be performed more
efficiently by using an LRU buffer. The LRU buffer maintains a con-
stant amount of distance values into main memory. In the experi-
mental results section we show that only a relatively small buffer
size is adequate to accelerate performance, offering a good hit
ratio.
Fig. 8. Outline of similari
If the network graph has at most a few thousand nodes, it is
suggested to precompute all distances cðv i;v jÞ between nodes
and to put them into a hash-based file. Then, the LRU memory buf-
fer can cooperate with this file during the request procedure for
even better performance. Later, we discuss the alternative of stor-
ing only a subset of precomputed distances on the disk, to handle
large graphs.

The algorithm in Fig. 9 illustrates the process of retrieving a dis-
tance cðv i;v jÞ. The variables requests, hits, and misses are used to
test buffer performance.

It is important to remind that the LRU memory buffer and the
precomputed distances disk file, are used only with Dnet1. They
are not necessary for Dtime calculations and in Dnet2 measure which
does not use network distances at all.

4.5. Combining measures Dnet1 and Dnet2 (filtering and refinement)

Due to network restrictions, a similarity range query using the
Dnet2 distance measure may return some trajectories that are not
similar regarding distance measure Dnet1 (false alarms). This effect
is more significant when the shortest path distance between nodes
is considerably higher than their Euclidean distance. Therefore, we
need to detect these trajectories using another measure, which re-
spects the network restrictions in space, and use it in a refinement
step during query processing. For this reason, we can select the dis-
tance measure Dnet1 to handle false alarm detection. This procedure
will give correct results if and only if we prove that every trajectory
that appears in the result set of Dnet1 measure, appears also in the
result set of Dnet2, when we apply an Enet range query.

Proposition 11. For every two trajectories Ta; Tb the following
inequality always holds:
ty search algorithm.



Fig. 9. Outline of distance retrieval algorithm.

E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788 781
Dnet2ðTa; TbÞ 6 Dnet1ðTa; TbÞ

Proof. As the shortest path distance cðv i;v jÞ between two graph
nodes v i; v j is always greater than or equal to their corresponding
Euclidean distance, it always holds that:

euclideanðv i; v jÞ 6 cðv i;v jÞ 8v i; v j 2 V

By dividing with the constant DG we get:

euclideanðv i; v jÞ
DG

6
cðv i;v jÞ

DG
() deðv i; v jÞ 6 dðv i;v jÞ 8v i; v j 2 V

Therefore, for every two trajectories Ta ¼ ðva1;va2; . . . ;vamÞ and
Tb ¼ ðvb1;vb2; . . . ; vbmÞ, where vai 2 V and vbi 2 V ð8i ¼ 1; . . . ;mÞ,
we have the following inequalities:

deðvai; vbiÞ 6 dðvai;vbiÞ 8i ¼ 1; . . . ;m

By summation, we get:

Xm

i¼1

ðdeðvai;vbiÞÞ 6
Xm

i¼1

ðdðvai;vbiÞÞ ()
1
m

Xm

i¼1

ðdeðvai; vbiÞÞ

6
1
m

Xm

i¼1

ðdðvai;vbiÞÞ () Dnet2ðTa; TbÞ 6 Dnet1ðTa; TbÞ

and the proposition has been proven. h

Following Proposition 11, when we have a query trajectory Tq

and a network query range Enet , all trajectories returned by Dnet1

measure will appear in the result set of Dnet2, because:

Dnet2ðTq; TÞ 6 Dnet1ðTq; TÞ 6 Enet 8T 2 T

Fig. 10 illustrates the outline of the similarity search algorithm
including the refinement step. Dnet2 is used as the filtering distance
measure, whereas Dnet1 is used for refinement, to eliminate false
alarms. An important observation is that this scheme can be applied
to both M-treeI and M-treeII methods, and moreover, it can be used
with any well-defined distance measure, as long as the following
lower-bounding property holds:

DfilteringðTa; TbÞ 6 DrefinementðTa; TbÞ 8Ta; Tb 2 T
5. Performance evaluation

In this section, we give information about the implementation
of the proposed approach in C++ and the results of experiments
that confirm and evaluate all previous algorithms, procedures
and techniques. All experiments have been conducted on a Pen-
tium IV running Windows XP, with 1 GB of RAM, and a 320 GB-
SATA2-16 MB hard disk. First, we present the construction of used
spatial network and trajectory data set. Then, we present the con-
struction of M-Trees for each defined measure and how the pro-
posed measures express well the notion of similarity in space
and time. At the main part, we present the evaluation results of
all proposed methods for similarity range queries.
5.1. Spatial network data

All experiments have been conducted using a real-world spatial
network, the road network of Oldenburg city (Brinkhoff, 2002). The
cost function cðv i;v jÞ between two nodes of the graph representa-
tion is the shortest path distance. The number of vertices in the
Oldenburg data set is 6105. Therefore, the total number of precom-
puted distances among all possible pairs of vertices is 37,271,025.
These distances are stored in a hash-based file on disk (DISTfile),
using the Hilbert space filling curve as a hashing function. The
Hilbert curve values are derived from the corresponding source
and target node ID’s of the distances, which are integers into the



Fig. 10. Outline of similarity search algorithm with refinement step.

782 E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788
interval ½0; jVGj � 1�, (e.g., for the distance cðv i;v jÞ the value
HilbertðIDðv iÞ; IDðv jÞÞ is calculated). For the selected road network,
the total time required for all precomputations and creation of
DISTfile is 3,180.581 s. The record length has been set to 16 bytes,
so the final file capacity is 596,336,400 bytes (285 MB zipped).

An in-core LRU buffer has been used to keep a number of pre-
computed distances in main memory (we initialized the buffer
selecting some top-used distances through calculations which
actually are distances between nodes that included in the most tra-
jectory parts). The size of the buffer has been set to 2000, which is a
relatively small value compared to the total number of pair-wise
distances. We have computed the average number of network dis-
tance calculation requests, the average number of hits and misses,
in simple range queries in space using Dnet1 and Dnet2. The results
show that almost 85% of the distance requests are absorbed by
the main memory buffer and therefore, we avoid fetching them
from the disk. The more buffer pages are available, the higher the
hit ratio becomes.

The fast retrieval of shortest path distances is the most time
consuming factor affecting the performance of network-based dis-
tance calculations, the construction of M-Trees and finally in the
performance of similarity range queries.

5.2. Construction of trajectories and sub-trajectories

The trajectory data set T we have used for the experiments con-
sists of 3797 trajectories of objects moving on the road segments of
Oldenburg city, using the generator developed in Brinkhoff (2002).
Each trajectory has a minimum description length of 10 and max-
imum description length of 100 nodes. A sliding window of
description length l ¼ 10 has been used to generate the sub-tra-
jectories of each trajectory. Therefore, the total number of sub-tra-
jectories produced (set S) is 75,144.

Moreover, it is important to study the distribution of the con-
structed trajectory data set among the nodes of the road network.
This will help to evaluate if the data set represents well a real-
world trajectory set of this town. So, we record in a new file all
node ID’s used by the trajectories, with the frequency that are
being used (how many trajectories pass through) in a descending
order. Fig. 11a gives the recorded distribution and Fig. 11b depicts
the top-100 most used nodes in the network by the trajectories.

It is evident that we have a skew distribution of nodes in trajec-
tories and this reflects reality: there are some nodes that are being
used very often which are center points of this town or hard traffic
points, and the most peripheral nodes are being used much rarely.
Therefore, our trajectory data set is a good representative of a real
traffic condition.
5.3. M-tree construction

We have constructed four different M-trees. The NET-M-trees
which are implemented based on the Dnet1,2,3 measures and the
TIME-M-tree implemented based on the Dtime measure. Recall that,



Fig. 11. (a) Distribution of nodes in trajectories; (b) top-100 most frequent nodes.

E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788 783
all M-trees handle the same set S of sub-trajectories of description
length l ¼ 10 and not the complete trajectories of moving objects.

We have utilized the bulk-loading method for the construction
of all M-trees, and the following parameters values have been
used: a page size of 4 KB, 5% minimum node utilization, minimum
overlaps promote part and root functions, a general hyper-plane
split strategy, and radius function by average. Table 2 shows the to-
tal number of network distances computed during the construc-
tion, the number of zero distances, the final file capacity of M-
trees on disk and the total construction time. Note that we have
exploited precomputed distances (LRU buffer and DISTfile) during
the construction procedure.

We observe that Dnet2 gives the smallest capacity and construc-
tion time, because network distance computations are not
required.

5.4. Evaluation of similarity measures

We have randomly selected several trajectories from different
areas of Oldenburg and we have performed similarity range que-
ries by using all measures.

Figs. 12 and 13 show the results of range queries with radius
Enet ¼ 0:01, 0.05, 0.10, in a random selected query trajectory from
our data set, using the available network distance measures. By
studying these figures we observe that:

� In all metrics, the resulted trajectories firstly appeared in the
closest neighbor of query trajectory and as the radius Enet

increases, they expand into connected and almost rounded
areas, in which the query trajectory takes a central position.

� All query trajectory results of Dnet1 metric (using a constant Enet

range) are included in the results of Dnet2 metric, according to
Proposition 11.
Table 2
Information regarding the construction of M-trees.

M-tree Distances Zeros Capacity (MB) Time

Dnet1 1,574,890 38,309 32.5 13 min + 7 s
Dnet2 1,494,416 37,761 32.1 35 s
Dtime 4,013,864 40,461 30.9 1 min + 46 s
5.5. Performance evaluation of M-treeI and M-treeII methods

In this section, we study the performance of M-treeI,II methods
using all the proposed metrics. We selected randomly 100 trajecto-
ries from our data set and from different parts of the town and we
performed similarity range queries using the M-treeI,II methods.
We gave all combination values into the interval [0,1] with a step
of 0.05 in Enet , Etime parameters. The final reported results corre-
spond to the average values of these 100 queries. The basic param-
eters that are studied are summarized in Table 3.

Fig. 14a depicts the number of similar sub-trajectories found
using all available network-based distance measures. Recall, that
the results are the same for both M-treeI and M-treeII methods.
As the Enet radius increases, Dnet2 first reaches the upper limit
(75,144), followed by Dnet1. Evidently, the distance measure
Dnet2 gives more results than Dnet1 due to the lower-bounding
property.

Fig. 14b depicts the total time spent for network-based compu-
tations using all network-based distance measures. It is evident
that Dnet2 is the less time consuming measure since distances are
computed by using the Euclidean distance of the nodes. The results
are similar for both M-treeI and M-treeII methods.

Fig. 15 illustrates the memory LRU buffer activity using Dnet1.
Note that Dnet2 does not use the LRU buffer, since no network dis-
tance computations are performed. In both cases, the total number
of distance hits is about 85%, so with only 2000 buffer pages we
have a satisfactory hit ratio. Again, the results are similar for M-
treeI and M-treeII methods.

Fig. 16 depicts the number of time-based distance computa-
tions for M-treeI and M-treeII methods. We observe that in M-tree-
II method the number of time-based distance computations
depends only on the Etime radius, whereas in M-treeI method this
value depends on both Enet and Etime parameters, because in this
case the total number of computed distances is equal to the num-
ber of sub-trajectory results returned by the NET-M-tree. There-
fore, we expect less time-based computations in the M-treeI
method than in the M-treeII method. This results in slightly better
performance for the M-treeI method regarding time-based dis-
tance computation overhead, as it is illustrated in Fig. 17.

Fig. 18 depicts the percentage of false alarms for Dnet2þ1, for var-
ious values of parameters Enet and Etime. In the left part of the figure,
these parameters change freely, whereas in the right part always



Fig. 12. Preview of range queries using distance measure Dnet1.

Fig. 13. Preview of range queries using distance measure Dnet2.

Table 3
Basic variables measured throughout experiments.

Variable Description

Nnet Number of similar sub-trajectories found in NET-M-tree
Dnet Number of network-based distance computations
Tnet Total searching time in NET-M-tree (s)
MBFR Memory LRU buffer total requests
MBFH Memory LRU buffer total hits
MBFM Memory LRU buffer total misses
DBFR Disk LRU buffer total requests
DBFH Disk LRU buffer total hits
DBFM Disk LRU buffer total misses
Ntime Number of similar sub-trajectories found in TIME-M-tree
Dtime Number of time-based distance computations
Ttime Total searching time in TIME-M-tree (M-treeII) or in time calculations (M-treeI) (s)
TT Total query time
AS Total number of common (M-treeII) or accepted (M-treeI) sub-trajectories found (Net&Time)
AT Total number of similar trajectories found (final results)
FA False alarms for sub-trajectories in Dnet2þ1 method

784 E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788
Enet equals Etime. It is evident, that the existence of false alarms can-
not be avoided, due to the distance lower-bounding. However, the
percentage of false alarms is relatively small, and therefore effec-
tive filtering is performed by applying the Euclidean distance prior
to network distance computations. The maximum number of false
alarms (around 25%) appears when Enet ¼ 0:25 and Etime ¼ 0:30.

Fig. 19a and b depict some representative results regarding the
performance of M-treeI and M-treeII methods for Enet = Etime, using
all network distance measures. Dnet2 is the most efficient tool but
needs validation of correctness, and Dnet2þ1 method is the most
attractive alternative that can be used for trajectory similarity
search, if efficiency is important. However, care should be taken
since the usage of Dnet2þ1 involves determination of false alarms.
If the number of false alarms is large, performance degradation
may appear.

In all the experiments conducted, the method that uses only
one M-tree performs marginally better than the method that uti-
lizes two M-trees (one for Dnet and one for Dtime). However, the
existence of two M-trees offers a higher degree of flexibility during
query processing, since we can search for similar trajectories
based: (i) only on network distance Dnet , (ii) only on time distance
Dtime and (iii) both on network and time distances Dnet and Dtime.
Moreover, different clustering schemes can be applied. More spe-
cifically, using the two separate M-trees, a clustering algorithm
can provide clusters for Dnet or Dtime. Finally, more choices for query
optimization are available if both indexes are utilized, since the



Fig. 14. Number of sub-trajectories (a) and search time (b) for NET-M-tree.

Fig. 15. Memory buffer activity for Dnet1.

E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788 785
query execution engine can form an efficient query execution plan
according to the selectivities of the search distances Enet and Etime,
and traverse the M-trees accordingly.
Fig. 16. Number of time-based distance compu
5.6. Impact of precomputed distances

The previous experiments have been conducted by having all
network distances precomputed and stored on disk. It has been
observed that the precomputation reduces the required computa-
tional costs during network-based distance calculations. How-
ever, the precomputation assumption may not be realistic in
very large spatial networks containing many thousands of nodes.
However, even for small spatial networks, if the main memory
buffer fails to achieve an acceptable hit ratio, many distance
computations will be invoked, resulting in performance
degradation.

Figs. 20 and 21 show some interesting results regarding the per-
formance of trajectory similarity queries, when only a subset of the
total distances are precomputed. The performance of Dnet1 measure
is illustrated in Fig. 20, which depicts the activity of the memory-
based (a) as well as the disk-based buffer (b). It is evident that by
increasing the number of precomputed distances the total running
time of trajectory similarity queries decreases but the cost is still
significant, raising problems for ad-hoc query processing. On the
other hand, the use of the Euclidean distance for filtering purposes
results in a much more efficient scheme, as it is illustrated in
Fig. 21.
tations in M-treeI and M-treeII methods.



Fig. 17. CPU time (in s) required for time-based distance computations in M-treeI and M-treeII methods.

Fig. 18. Percentage of false alarms for Dnet2þ1 method.

Fig. 19. Total running time (in s) for M-treeII and M-treeI methods.

786 E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788



Fig. 20. Memory and disk buffer activity for variable disk buffer sizes.

Fig. 21. Total running time for Dnet2þ1 for variable query radius and disk buffer sizes.

E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788 787
6. Conclusions

Although there is significant research work performed on tra-
jectory similarity on moving objects trajectories, the vast majority
of the proposed approaches assume that objects can move freely
without any motion restrictions. In this paper, we have studied
the problem of trajectory similarity query processing in network-
constrained moving objects. We have defined two concepts of sim-
ilarity. The first is based on the network distance and the second is
based on the time characteristics of the trajectories. By using these
concepts, we have defined distance measures Dnet to capture the
network similarity and a distance measure Dtime to capture the
time-based similarity of trajectories. All proposed measures satisfy
the metric space properties, and therefore, metric-based access
methods can be used for efficient indexing and searching.

To support trajectories of different description lengths, a
decomposition process is applied. Each trajectory is split to a num-
ber of sub-trajectories, which are then indexed by M-trees. The
NET-M-tree is used for the Dnet measure, whereas the TIME-M-tree
is used for the Dtime measure. Two methods have been studied: (i)
the M-treeI method, which uses only the NET-M-tree and (ii) the
M-treeII method, which utilizes both trees. Performance evaluation
results show that trajectory similarity can be efficiently supported
by these schemes. In all the experiments conducted, the method
that uses only one M-tree performs marginally better than the
method which utilizes two M-trees. However, the existence of
two M-trees offers a higher degree of flexibility during query
processing.
Future research may involve: (i) the investigation of alternative
indexing schemes, (ii) the study of approximate processing, (iii) the
efficient support of trajectory-based k-nearest-neighbor process-
ing, and (iv) the utilization of the proposed similarity measures
for data mining (e.g., trajectory clustering).
References

Brinkhoff, T., 2002. A framework for generating network-based moving objects.
Geoinformatica 6 (2), 153–180.

Ciaccia, P., Patella, M., Zezula, P., 1997. M-tree: an efficient access method for
similarity search in metric spaces. In: Proceedings of the 23rd International
Conference on Very Large Databases (VLDB).

Faloutsos, C., Ranganathan, M., Manolopoulos, Y., 1994. Fast subsequence matching
in time-series databases. In: Proceedings of the ACM SIGMOD Conference.

Guttman, A., 1984. R-trees: a dynamic index structure for spatial searching. In:
Proceedings of the ACM SIGMOD Conference, p. 4757.

Hwang, J.-R., Kang, H.-Y., Li, K.-J., 2005. Spatio-temporal similarity analysis between
trajectories on road networks. In: ER Workshops, pp. 280–289.

Hwang, J.-R., Kang, H.-Y., Li, K.-J., 2006 Searching for similar trajectories on road
networks using spatio-temporal similarity. In: Proceedings of the 10th East
European Conference on Advances in Databases and Information Systems
(ADBIS), pp. 282–295.

Jensen, C.S., Kolarvr, J., Pedersen, T.B., Timko, I., 2003. Nearest neighbor queries in
road networks. In: Proceedings of the 11th ACM International Symposium on
Advances in Geographic Information Systems (ACM GIS).

Kollios, G., Gounopoulos, D., Tsotras, V.J., 1999a. Nearest neighbor queries in a
mobile environment. In: Proceedings of the International Workshop on Spatio-
temporal Database Management, pp. 119–134.

Kollios, G., Gunopoulos, D., Tsotras, V., 1999b. On indexing mobile objects. In: ACM
PODS, pp. 261–272.

Laurinen, P., Siirtola, P., Roning, J., 2006. Efficient algorithm for calculating similarity
between trajectories containing an increasing dimension. In: Proceedings of the



788 E. Tiakas et al. / The Journal of Systems and Software 82 (2009) 772–788
24th IASTED International Conference on Artificial Intelligence and
Applications, pp. 392–399.

Lazaridis, I., Porkaew, K., Mehrotra, S., 2002. Dynamic queries over mobile objects.
In: EDBT, pp. 269–286.

Lee, S.-L., Chun, S.-J., Kim, D.-H., Lee, J.-H., Chung, C.-W., 2000. Similarity search for
multidimensional data sequences. In: Proceedings of the 16th International
Conference on Data Engineering (ICDE).

Lomet, D., Salsberg, B., 1989. Access methods for multiversion data. In: ACM
SIGMOD, pp. 315–324.

Meratnia, N., de By, R.A., 2002. Aggregation and comparison of trajectories. In:
Proceedings of the 10th ACM International Symposium on Advances in
Geographic Information Systems (ACM GIS).

Nascimento, M.A., Silva, J.R.O., 1998. Towards historical R-trees. In: ACM SAC.
Papadias, D., Zhang, J., Mamoulis, N., 2003. Query processing in spatial network

databases. In: Proceedings of the 29th International Conference on Very Large
Databases (VLDB).

Pfoser, D., Jensen, C.S., Theodoridis, Y., 2000. Novel approaches to the indexing of
moving object trajectories. In: Proceedings of the 26th International Conference
on Very Large Databases (VLDB), pp. 395–406.

Saltenis, S., Jensen, C.S., Leutenegger, S., Lopez, M., 2000. Indexing the positions of
continuously moving objects. In: ACM SIGMOD, pp. 331–342.

Sankaranarayanan, J., Alborzi, H., Samet, H., 2005. Efficient query processing on
spatial networks. In: Proceedings of the 13th ACM International Symposium on
Geographic Information Systems (ACM GIS).

Tao, Y., Papadias, D., 2001a. Efficient historical R-trees. In: Proceedings of the
International Conference on Scientific and Statistical Database Management
(SSDBM).

Tao, Y., Papadias, D., 2001b. MV3R-tree – a spatio-temporal access method for
timestamp and interval queries. In: Proceedings of the 27th International
Conference on Very Large Databases (VLDB), pp. 431–440.

Theodoridis, Y., Sellis, T., Papadopoulos, A.N., Manolopoulos, Y., 1998. Specifications
for efficient indexing in spatio-temporal databases. In: Proceedings of the
International Conference on Scientific and Statistical Database Management
(SSDBM).

Traina, C., Traina, A.J.M., Seeger, B., Faloutsos, C., 2000. Slim-trees: high performance
metric trees minimizing overlap between nodes. In: Proceedings of the Seventh
International Conference on Extending Database Technology (EDBT), pp. 51–65.

Vlachos, M., Gunopulos, D., Kollios, G., 2002a. Robust similarity measures for mobile
object trajectories. In: Proceedings of the Fifth International Workshop on
Mobility in Databases and Distributed Systems.

Vlachos, M., Kollios, G., Gunopulos, D., 2002b. Discovering similar multidimensional
trajectories. In: Proceedings of the 18th IEEE International Conference on Data
Engineering (ICDE).

Wolfson, O., Xu, B., Chamberlain, S., Jiang, L., 1998. Moving objects databases: issues
and solutions. In: Proceedings of the International Conference on Scientific and
Statistical Database Management (SSDBM), pp. 111–122.

Wolfson, O., Xu, B., Chamberlain, S., 2000. Location prediction and queries for
tracking moving objects. In: Proceedings of the 16th IEEE International
Conference on Data Engineering (ICDE), pp. 687–688.

Yanagisawa, Y., Akahani, J.-I., Satoh, T., 2003. Shape-based similarity query for
trajectory of mobile objects. In: Proceedings of the Fourth International
Conference on Mobile Data Management (MDM), pp. 63–77.

Yoo, J.S., Shekhar, S., 2005. In-route nearest neighbor queries. Geoinformatica 9 (2),
117–137.

Eleftherios Tiakas was born in Thessaloniki, Greece in 1972. He received a B.Sc. in
Mathematics (1994), a B.Sc. in Computer Science - Informatics (2006) and a M.Sc. in
Information Systems (2006) from the Departments of Mathematics and Informatics
of Aristotle University of Thessaloniki, Greece. Currently, he is a Ph.D. candidate at
the Department of Informatics of Aristotle University. His research interests
include: Spatial & Spatio-Temporal Databases, Information Retrieval, Algorithm
Design and Analysis.

Apostolos N. Papadopoulos was born in Eleftheroupolis, Greece in 1971. He
received his 5-year Diploma degree in Computer Engineering and Informatics from
the University of Patras and his Ph.D. degree from Aristotle University of Thessa-
loniki in 1994 and 2000 respectively. He has published several research papers in
journals and proceedings of international conferences. From March 1998 to August
1998 he was a visitor researcher at INRIA Research Center in Rocquencourt, France,
to perform research in spatial databases. His research interests include databases,
data stream processing, data mining and information retrieval. His research work
has over 350 citations in scientific journals and conference proceedings. He has
served as a track co-chair of ACM SAC DTTA (Database Technologies Techniques and
Applications) Track 2005, 2006, 2007 and 2008. He is a member of the Technical
Chamber of Greece. Currently, he is a Lecturer in the Department of Informatics of
Aristotle University of Thessaloniki.

Alexandros Nanopoulos was born in Craiova, Romania, in 1974. He graduated from
the Department of Informatcis, Aristotle University of Thessaloniki, Greece, on
November 1996, and obtained a Ph.D. from the same institute, on February 2003.
The subject of his dissertation was: ‘‘Techniques for Non Relational Data Mining”.
He is co-author of more than 30 articles in international journals and conferences.
He has also co-author the monograph ‘‘Advanced Signature Techniques for Multi-
media and Web Applications” and ‘‘R-trees: Theory and Applications”. His research
interests include data mining, web information retrieval, and spatial database
indexing.

Yannis Manolopoulos was born in Thessaloniki, Greece in 1957. He received a
B.E. (1981) in Electrical Eng. and a Ph.D. (1986) in Computer Eng., both from the
Aristotle Univ. of Thessaloniki. Currently, he is Professor at the Department of
Informatics of the latter university. He has been with the Department of Computer
Science of the University. of Toronto, the Department of Computer Science of the
University of Maryland at College Park and the Department of Computer Science of
the University of Cyprus. He has published about 200 papers in refereed scientific
journals and conference proceedings. He is co-author of the following books:
‘‘Advanced Database Indexing” and ‘‘Advanced Signature Indexing for Multimedia
and Web Applications” by Kluwer, as well as ‘‘Nearest Neighbor Search: a Database
Perspective” and ‘‘R-trees: Theory and Applications” by Springer. His published
work has received over 1700 citations from over 450 institutional groups. He
served/serves as General/ PC Chair/Cochair of the 8th National Computer Confer-
ence (2001), the 6th ADBIS Conference (2002) the 5th WDAS Workshop (2003), the
8th SSTD Symposium (2003), the 1st Balkan Conference in Informatics (2003), the
16th SSDBM Conference (2004) and the 8th ICEIS Conference (2006), the 10th
ADBIS Conference (2006). His research interests include Databases, Data mining,
Web and Geographical Information Systems, Bibliometrics/Webometrics, Perfor-
mance evaluation of storage subsystems. Further information can be found at
http://delab.csd.auth.gr/manolopo.

Dragan Stojanovic is an Assistant Professor at the Computer Science Department,
Faculty of Electronic Engineering, University of Nis, Serbia. He received his Ph.D.,
M.Sc., and B.Sc. degrees in Computer Science from the University of Nis, in 2004,
1998 and 1993, respectively. His research and development interests encompass
context-aware and location-based services, mobile objects and spatio-temporal
data management, mobile/Web information systems and services, and geographic
information systems. He has published widely in those and related topics. He
successfully participates in several international and national R&D projects in
cooperation with academic partners and industry.

Slobodanka Dordevic-Kajan is a full professor of computer science and the head of
the CG&GIS Lab at the Computer Science Department, Faculty of Electronic Engi-
neering, University of Nis, Serbia. She received her Ph.D., M.S., and B.S. degrees in
Computer Science from the Faculty of Electronic Engineering, University of Nis,
Serbia, in 1987, 1980 and 1968, respectively. Her current professional and scientific
interests include context-aware and location-based services and systems, spatio-
temporal and multimedia databases, and application of ontologies to geographic
information systems and control and command systems.

http://delab.csd.auth.gr/manolopo

	Searching for Similar Trajectories similar trajectories in Spatial Networksspatial networks
	Introduction
	Related Workwork
	Trajectory Similarity Measuressimilarity measures
	Expressing Trajectory Similaritytrajectory similarity
	Network Distance Measure distance measure 1
	Network Distance Measure distance measure 2

	Incorporating Time Informationtime information
	Spatio-temporal Similarity Measures similarity measures and Methodsmethods


	Indexing and Query Processing Issuesquery processing issues
	Trajectory Decompositiondecomposition
	Indexing Schemesschemes
	Query Processing Fundamentalsprocessing fundamentals
	Distance Bufferingbuffering
	Combining Measures measures {D}_{net1} and (Filtering {D}_{net2} (filtering and Refinement)refinement)

	Performance Evaluationevaluation
	Spatial Network Datanetwork data
	Construction of Trajectories trajectories and Sub-trajectoriessub-trajectories
	M-tree Constructionconstruction
	Evaluation of Similarity Measuressimilarity measures
	Performance Evaluation evaluation of M-treeI and M-treeII Methodsmethods
	Impact of Precomputed Distancesprecomputed distances

	Conclusions
	References


