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A decision support system designed to enhance human–machine interaction in transportation

scheduling is proposed. We aim to integrate human factors and ergonomics from the beginning of

the design phase and to propose a system fitted with enough flexibility to be able to deal with the

characteristics of a dynamic context such as transportation scheduling. In this interdisciplinary

approach, a link is done between problem solving methods (operations research technics and data

classification algorithms) and human–machine interaction (solving control modes). A set of scheduler-

oriented algorithms favoring human–machine cooperation for problem solving is proposed. Some of

these algorithms have been efficiently tested on instances of the literature. Finally, an original

framework aiming to assist scheduler in constraint relaxation when the problem becomes infeasible

is proposed and evaluated.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, many firms emphasize the need to support routing
performance because of an increasingly competitive environment.
For this reason, routing problems have been a predominant
application area for decision support systems ever since they
were first introduced, as evidenced by bibliometric analyses (Eom
and Lee, 1990; Eom et al., 1998; Eom and Kim, 2006). The starting
point for these support systems is usually to tackle the hard
combinatorial problem arising from the numerous constraints
that have to be taken into account, then to allocate any remaining
components to the human planner. Sanderson noted back in 1989
that these support tools are not especially dominant in practice,
and very little has changed since then. Vehicle routing is often
performed by a single experienced individual or, more rarely, by a
small group of individuals (see Cegarra, 2008). In field studies,
humans appear to be crucial for taking the large set of constraints
into account and adapting to changes in the domain (Sanderson,
1989; Jackson et al., 2004). At the same time, the integration of
transportation technologies (GPS, EDI, GIS) is gradually changing
ll rights reserved.
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the nature of these decision-making processes, in that vehicle
routing systems now combine human planners and technologies.

In this paper, we begin by discussing constraint processing and
the importance of modeling the work domain in order to assess
planners’ constraint processing. After that, the work domain
analysis of the vehicle routing problem and the decision support
system architecture is introduced at the end of Section 2.

Typical support systems focus on supporting the ‘‘mechanical’’
process of generating the schedule. Algorithms therefore function
like a black box: the human has to provide the necessary
information and has to adapt the outcome if the route contains
errors, but during the actual generation process, s/he plays no role
whatsoever. In Section 3 we present how to take into account the
cooperative aspects between human and computer, which are
both participating in the decision-making process.

Support needs above all to consider how human perform tasks
and their performance. In the last section a model inversion
framework allowing to support the human in relaxing constraints
is presented.
2. Background

There have been a number of attempts to define the vehicle
routing task structure on the basis of hierarchical task analysis
(Rahimi and Dessouky, 2001) and cognitive task analysis (Wong
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and Blandford, 2002). However, when Cegarra and van Wezel
(2010) compared the amount of information produced by these
two methods, as well as by work domain analysis, they found that
the latter was far more exhaustive in identifying constraints, not
least because it provides a generic view of constraints and does
not focus on usual or known tasks.

Work domain analysis (WDA) was developed by Rasmussen
and colleagues (Rasmussen et al., 1994; Vicente, 1999). Instead of
focusing directly on the tasks being considered by the decision-
maker, it looks at the constraints imposed on behavior by the
environment. For an interface designer, this sometimes requires a
change of point of view, as Vicente (2000, p. 63) pointed out: ‘‘A
task can be defined as the set of actions that can or should be
performed by one or more actors to achieve a particular goal. In
contrast a work domain is the system being controlled, indepen-
dent of any particular worker, automation, event, task, goal, or
interface’’. As previously stressed, for the purposes of assessing
and supporting decision-making, completeness in identifying
domain constraints is highly desirable in a vehicle routing system.

WDA is usually performed using an abstraction hierarchy
which depicts the constraint space. The higher levels of the
abstraction hierarchy describe functional information about the
domain, whereas the lower levels describe physical information.
Moreover, WDA usually looks at five levels of abstraction (Naikar
et al., 2005): functional purposes, abstract functions, generalized
functions, physical functions, and physical forms. In addition to
this breakdown into physical and functional aspects, a part-whole
distinction can also be made, taking several levels of details into
account: system, subsystem and components. However, this part-
whole distinction is not always made, as we will see below.

Initially, WDA was applied to ‘‘causal’’ systems guided by
physical laws, as in nuclear power stations (Itoh et al., 1995),
conventional power stations (Burns, 2000) and cement milling
plants (van Paassen, 1995). In ‘‘causal’’ systems, the objective
reality is imposed on the human operator (Vicente, 1999), as
opposed to ‘‘intentional’’ systems, where the operator is the main
agent of the domain and there are fewer references to an external
environment. This is the case of routing problems, in which it is
difficult to enumerate the domain constraints because they result
from conventions, organizational objectives, formal or informal
rules and operators’ goal. Vicente (1999) stressed that WDA
should be performed independently of usual or known tasks,
the aim being to provide an exhaustive breakdown that is
resistant to changes in the situation. To this end, we sought to
enhance the identification of domain constraints by extending the
scope of the domain. More specifically, instead of focusing on
currently known or usual cases in one particular situation (which
inevitably leads to the inclusion of more details about the current
situation), we set out to identify constraints from different
situations documented in the literature. Each variant of the VRP
would allow us to increase the completeness of the constraint
space by considering constraints that might potentially help to
identify planners’ degrees of freedom. Our search for VRPs in
scientific databases yielded more than ten thousand articles.
However, only a few of them suggested genuinely new variants
of the generic VRP (see Toth and Vigo, 2001). Instead, researchers
tended to develop algorithms to solve known variants or design
algorithms for multiple variants (e.g., Pisinger and Ropke, 2007).

In the main, the variants extend the domain by providing
constraints related to a temporal perspective, including custo-
mers’ time windows (VRPTW) and vehicles with limited capacity
(CVRP), and more complex variants, such as trucks and trailers
(TTRP), pick-up and delivery (VRPPD), or ones related to multiple
depots (MDVRP), which are summarized in Table 1. As previously
indicated, the WDA abstraction hierarchy organizes the planners’
problem space in terms of different concepts that planners can
then use for reasoning within a work system. We also consider
that the classic five levels of the abstraction hierarchy are needed
to describe the constraint space. Fig. 1 summarizes the VRP
domain according to these different levels.

Details of the entities corresponding at each abstraction level
are presented in Gacias (2010). The decomposition remains very
generic according to studies and problem descriptions found in
the literature. Nevertheless, most of the vehicle routing problems
are covered and only some particular variants may required other
components not considered on our analysis (see Gacias, 2010, for
a scope analysis).

A support system architecture aiming to cover some of the
major issues concerning human–machine cooperation is pro-
posed. An important clue often pointed by researchers is the
advisability of sharing a unique reference system between the
human and the machine. To this purpose, the work domain
analysis has been considered crucial in order to identify the
information needed to solve the problem. In our support system,
as shown in Fig. 2, the human and the solving mechanism
manipulate both the same entities (physical objects and technical
constraints) identified in the analysis. The system is composed by
a set of human–machine interfaces seeking to efficiently assist the
scheduler to solve problem tasks (see Gacias et al., 2010b; Cegarra
et al., accepted for publication, for a detailed description of these
interfaces). The information displayed has been identified in the
work domain analysis. The idea is to connect these interfaces and
the human–system interaction tools to the user-oriented algo-
rithms presented in the next sections in order to favor human–
machine cooperation for problem solving.
3. Decision support system algorithms

The algorithms integrated in the solving mechanism are
presented in this section. The section starts with a formal
description of the vehicle routing problem and of the problem
constraints. The control modes for problem solving are then
presented. Finally, we describe the proposed algorithms.

3.1. Formal problem statement

The vehicle routing problem has already been formally defined
(see for example Toth and Vigo, 2001 for a collection of linear
programs proposed in the literature for different variants of the
problem). Our problem is the vehicle routing problem taking into
account the constraints identified during the work domain
analysis (see Section 2).

A set fCigi ¼ 1...nc of customers has to be served by a set
fVjgj ¼ 1...nv of vehicles. A vehicle starts its route from a depot in
fDetgt ¼ 1...nde and ends at the same depot. To each vehicle is
assigned a driver in fDlgl ¼ 1...ndr . Each customer demands an
amount dk

i for each product in fPkgk ¼ 1...np and a time service tsi.
We describe here some characteristics of problem constraints.

First, the customer demands can be indifferently deliveries
(dk

i 40) or pick-ups (dk
i o0). Second, each vehicle j is capacity

constrained: a maximal weight capacity (Cw
j ), a maximal volume

capacity (Cv
j ) and a maximal authorized length (Cl

j). As the same
way, each product k is defined by a weight (Pk

w), a volume (Pk
v) and

a length (Pk
l ).

Let us define the variable xi
j to indicate if a customer i is served

by the vehicle j

xj
i ¼

1 if customer i is served by vehicle j

0 otherwise

�

Two different sets of constraints can be then defined, one for
the deliveries the other one for the pick-ups (depending on the



Table 1
Variants of the vehicle routing problem.

Variant Name Description Objectives, constraints under consideration Real-life example

VRP Vehicle routing

problem

A set of vehicles is to be routed from a single

depot to multiple customers

The objective is to minimize the number of

vehicles and total travel distance. Workload

balancing sometimes appears as a secondary

objective of the problem

See more specific cases below

Customers-related variants
DVRP Dynamic VRP A VRP where a subset of parameters of the

problem (new customers, etc.) evolve in real

time

The objective is to minimize deviations from

the original schedule (stability criterion) and

minimize total travel distance and the number

of vehicles

Traveling repairman, emergency services,

taxicab services (e.g., Rahimi and

Dessouky, 2001)

VRPTW VRP with time

windows

A time window is associated with each

customer (the interval at the depot is named

the scheduling horizon)

The objective is to minimize the size of the

vehicle fleet and of the total travel distance

and waiting time needed to supply all

customers at the required times

Waste collection (e.g., Kim et al., 2006)

VRPPD VRP with pick-

up and delivery

The demands of the customers are

indifferently pick-ups or deliveries. Some

variants of the problem are:

The objective is to minimize the size of the

vehicle fleet and total travel distance, with the

restriction that the vehicle must have

sufficient capacity for transporting the

commodities to be delivered and those picked

up from customers and taken back to the

depot. One of the most widely used strategies

for solving the problem is delivery first and

pick-up second

Beverage industry (where filled bottles are

delivered while the empty ones are

collected), on-demand transportation (in

reality, customer time windows are also

considered)

� Simultaneous PD: pick-up and delivery for

each customer must be carried out

simultaneously

� Mixed PD: customers either have a pick-up

or a delivery demand

ARP Arc routing

problem

The customers’ demands are on arcs The objective is to minimize the number of

vehicles and total travel distance

Trash collection (e.g., Santos et al., 2008)

Vehicle-related variants
CVRP Capacitated

VRP

The vehicles are identical and based at a single

depot, and only the capacity restrictions for

the vehicles are imposed

The objective is to minimize the number of

vehicles and total travel distance, with the

restriction that vehicle capacity must be

respected

Milk collection from supplier farms (e.g.,

Basnet et al., 1996)

DVRP Distance-

constrained

VRP

The length (or duration or cost or number of

customers) of each vehicle’s route is bounded

by a prescribed amount

The objective is to minimize the size of the

vehicle fleet and total travel distance

The traveling auditor (e.g., Mendoza et al.,

2009)

HVRP Heterogeneous

fleet VRP

There exist a number of heterogeneous vehicle

types (capacity, fixed cost, variable travel cost)

The objective is to minimize the total cost of

the routes. The best vehicle fleet composition

has to be determined

Feed compound delivery (e.g., Ruiz et al.,

2004)

TTRP Truck and

trailer RP

The fleet is made up of trucks and trailers.

Some customers can only be served by a single

truck but others can be served either by a

single truck or by a truck pulling a trailer

The objective is to minimize the total distance

traveled, or the total cost incurred by the fleet.

The truck’s uncoupling and re-coupling of its

trailer is authorized in some locations

Depot-related variants
MDVRP Multiple depot

VRP

If the customers are clustered around depots,

then the distribution problem should be

modeled as a set of independent VRPs.

However, if the customers and the depots are

intermingled, then a multi-depot VRP should

be solved

The objective is to minimize the size of the

vehicle fleet and total travel time, and the

total demand of commodities must be met

from several depots

Gas and oil station delivery, ready-mixed

concrete distribution (e.g., Matsatsinis,

2004)
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sign of the demand), as follows:

Xnc

i

Xnp

k

xj
i � 9dk

i 9� Pw
k rCw

j 8j¼ 1 . . .nv

Xnc

i

Xnp

k

xj
i � 9dk

i 9� Pv
k rCv

j 8j¼ 1 . . .nv

max
i
ðxj

i � Pl
kÞrCl

j 8j¼ 1 . . .nv ð1Þ

For each vehicle/route a limit for traveled distance (Vj
D), time

(Vj
T), and the number of customers (Vj

C) may also be defined. Let us
define Rj as the route of vehicle j, DðRjÞ and TðRjÞ are the traveled
distance and the duration of Rj, respectively. The following new
set of constraints is then defined:

DðRjÞrVD
j 8j¼ 1 . . .nv
TðRjÞrVT
j 8j¼ 1 . . .nv

Xnc

i

xj
i rVC

j 8j¼ 1 . . .nv ð2Þ

Then, time windows (TWCi ¼ ½ri,di�) are considered for each
customer. Each customer has to be served inside the interval of its
time windows. Besides, depot time windows (TWDet ¼ ½rt ,dt�) and
driver (TWDrl ¼ ½rl,dl�) time windows are also considered. The
vehicle departures and arrivals have to take place inside depot time
windows. Drivers cannot work outside their time windows. Pre-
cedence and immediate precedence constraints between customers
can be also defined. If customer i precedes customer i0 (i!i0),
customer i has to be served before customer i0, and if customer i

immediately precedes customer i0, customer i0 has to be served
immediately after customer i by the same vehicle. Finally, allocation



Solving
mechanism

solution

model

Ecological
Interface

Work
domain
analysis

Human CSP

VRP
algo.

Constraint
propagation

Decision
making

Problem
Data
Base

Fig. 2. Decision support system architecture.

Customer
service time

Driver time
window

satisfaction

Volume
satisfaction

Weight
satisfaction

Customer time
windows

satisfaction

Physical
objects

constraints

Route
constraints

Functional
purpose

Values
and priority
measures

Purpose
related
functions

Physical
objects

Physical
functions

Routing
network

Vehicles

Availability Demands

Costs
minimization

Time
management

Capacity
management

Good customer
service

Drivers Goods Depots Customers

Fig. 1. Work domain analysis of the generic vehicle routing problem.

B. Gacias et al. / Engineering Applications of Artificial Intelligence 25 (2012) 801–813804



B. Gacias et al. / Engineering Applications of Artificial Intelligence 25 (2012) 801–813 805
constraints between physical objects (depot-vehicle, customer vehi-
cle, product-vehicle, etc.) are also considered.

Two different interfaces are proposed for problem modeling
(see Fig. 3). These interfaces are designed from the physical levels
(purpose-related functions, physical functions, and physical
objects) of the abstraction hierarchy.

3.2. User-oriented algorithms: control modes

The role of the human in problem solving has traditionally
been a conflict issue between operations research and human
factors researchers. Indeed, the latest claimed the advisability of
give scheduler a more important role on problem solving process.
Function allocation to humans and algorithms in planning and
scheduling has been recently raised in van Wezel et al. (2010).
The authors propose principles for function allocation based on
the analysis of problem subtasks, human capabilities, and the
characteristics of the available algorithms to solve the problem.

In that context, a solving mechanism with different control
modes to perform the problem tasks is proposed. Problem solving
has been divided into three subtasks: vehicle selection, customer
allocation, and route selection. This task division is justified in
Gacias (2010) after the interview of two different companies
transportation planners. In van Wezel et al. (2010), the authors
propose five control modes: manual, advisory, interactive, super-
visory, and automatic. The control mode specifies the degree of
user participation in problem solving process. In the manual
Fig. 3. User interfaces for problem modeling. The scheduler specifies the problem comp

goods, depot, and customers), their appearance characteristics (capacity availability an

constraints (driver and customer time windows and customer service times), and the

(a) User interface for objects information. (b) User interface for physical objects constr
control mode, all decisions are made by the human (none
algorithmic assistance is provided). In the advisory control mode,
human makes the decisions and an algorithm checks the deci-
sions feasibility. In the interacting control mode, the decision-
making process is shared between the human and the algorithms.
In the supervisory control, the algorithm is first executed, then
necessarily informs the user, deciding to accept or reject the
algorithm decisions. Finally, in the automatic control mode, the
decisions are completely made by the algorithm (the user is then
completely out of the decision-making process).

For problem solving, we think that problem tasks require both
scheduler and algorithms participation. Indeed, the complex
nature of problem constraints, some of them cannot even be
considered on problem modeling phase, demands scheduler
participation in order to ensure their satisfaction. On the other
hand, problem complexity and the huge amount of computing
requirements demands the articulation of transportation technol-
ogies (GPS, EDI, GIS) with efficient algorithms inn order to obtain
satisfactory solutions in a reasonable time. In a real-life context,
the full-manual control mode is unreasonable in front of too
many items to manage. Indeed, it involves exceeding the cogni-
tive capacities of humans, especially for decision-making under
stress. Moreover, a dynamic environment implies painful re-
computing. On the other hand, the consideration of the automatic
control mode falls out of the scope of our paper focusing on
user-oriented algorithms. In that context, we propose a three-
phase solving mechanism with different control modes (advisory,
onents identified by the work domain analysis: physical objects (vehicles, drivers,

d capacity required), their location characteristics (routing network), the temporal

problem constraints between the objects (allocation and precedence constraints).

aints.
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interactive, and supervisory) facilitating scheduler participation
in decision-making process and integrating efficient algorithms
for problem solving and constraint satisfaction.

3.2.1. Vehicle selection algorithms

The goal of vehicle selection algorithms is to assist scheduler
to select the vehicles serving customers. Let us define yj as the
variable to define if a vehicle j is used to serve customers

yj ¼
1 if vehicle j is used to serve customers

0 otherwise

�

Advisory control mode: user solution checking: The advisory
control mode consists in a user solution checking. It verifies
whether a solution proposed by the user is a feasible solution.
To this purpose, global capacity constraints (weight, volume, and
length) are first verified (Eq. (3)–(5)). Then, allocation constraints
involving vehicles such as vehicle–customer or vehicle–product
are checked in order to ensure the presence of a given class of
vehicle necessary to satisfy customer demands. Finally, the
number of vehicles proposed by the user to serve customers
(
Pnv

j ¼ 1 yj) is compared with a lower bound of minimal number of
vehicles required to solve the problem (LBnv). The lower bound is
computed from different problem information. Customer and
depot time windows and route constraints such as maximal route
time, distance or number of customers are therefore considered to
compute LBnv. Further details about lower bound computation are
described in Gacias (2010)

Xnc

i ¼ 1

Xnp

k ¼ 1

dk
i � Pp

k r
Xnv

j ¼ 1

yj � Cp
j ð3Þ

Xnc

i ¼ 1

Xnp

k ¼ 1

dk
i � Pv

k r
Xnv

j ¼ 1

yj � Cv
j ð4Þ

max
i,dk

i a0
ðPl

kÞrmax
yj 40
ðCl

jÞ ð5Þ

If capacity and allocation constraints are satisfied and the
number of vehicles proposed by the user is greater than LBnv, the
solution is then accepted. If it is not the case, a constraint
relaxation assistance based on model inversion mechanisms is
proposed to the scheduler (see Section 4).

Supervisory and interactive control mode: vehicle number mini-

mization: Both control modes focus on vehicle number minimiza-
tion. In that context, several solutions satisfying capacity and
allocation constraints and minimizing the number of vehicles are
proposed to the scheduler. Besides, the lower bound LBnv has to
be also respected by these solutions.

The problem can be defined as a linear program as follows:

min
Xnv

j ¼ 1

yj ð6Þ

subject to

Xnc

i ¼ 1

Xnp

k ¼ 1

dk
i � Pw

k r
Xnv

j ¼ 1

yj � Cw
j ð7Þ

Xnc

i ¼ 1

Xnp

k ¼ 1

dk
i � Pv

k r
Xnv

j ¼ 1

yj � Cv
j ð8Þ

Xnv

j ¼ 1

yjZLBnv ð9Þ

yjAf0;1g ð10Þ
An exact and polynomial algorithm to solve the problem when
either one of the capacity constraints (weight or volume) are
relaxed is proposed. Algorithm 1 illustrates volume constraint
relaxation. First, a solution satisfying the weight constraint and
minimizing the number of vehicles is proposed. Then, the satis-
faction of the lower bound is checked. The algorithm starts
selecting the vehicle with the biggest capacity among the avail-
able vehicles except for the last vehicle (when the sum of vehicle
capacities is enough to satisfy the constraint) where the vehicle
with the smallest capacity satisfying the constraint is selected.

Algorithm 1. Number of vehicles minimization.
Step 1: Compute the weight to transport,

weight’
Pnc

i

Pnp

k

dk
i � Pw

k

if capacity weight is bigger than weight to transport,Pnv

j

Cw
j Zweight, then

while ðweight40Þ do

Step 2: Select the vehicle Vs with a maximal

weight capacity

if Cw
Vs
oweight then

9Step 3: Add vehicle Vs to the solution

else
Step 4: Select vehicle Vs with a minimal weight

capacity but greater than weight

Step 5: Add vehicle Vs to the solution

66664
Step 6: Update the weight, weight’weight�Cw

Vs

666666666666666666664

��������������������������
else
bNot feasible problem
if number of vehicles of the solution is less than BInv then

Step 7 : Select a vehicle Vs

Step 8 : Add vehicle Vs to the solution

$

No polynomial algorithm exists when all constraints (weight
and volume constraints) have to be considered. Actually, the
problem is known to be NP-hard (Garey and Johnson, 1979). In
that case, the idea is to solve both relaxations separately in order
to find a solution satisfying all capacity constraints. Note that
when no feasible solution is found after solving both relaxations
(on volume and weight constraints) using Algorithm 1, the
integer linear problem ((6)–(10)) has then to be solved.

Finally, a list of interesting solutions with a minimal number of
vehicles is proposed to the scheduler. This set of feasible solutions
is found by trying to replace in the solution each vehicle of the
original solution by a new vehicle with smaller capacity. Of
course, the solution after replacing vehicles has to satisfy the
capacity constraints of the problem. The list of solutions proposed
is not a complete enumeration; still, a list of interesting solutions
is provided to the planner.

The interactive control mode follows the same principle. The
vehicle number minimization begins instead from a partial
solution proposed by the scheduler. The algorithms propose a
set of solutions taking into account the decisions already made by
the scheduler.

Again, in case of infeasibility because not enough vehicles are
available to satisfy the problem constraints, a constraint relaxa-
tion assistance is then proposed (see Section 4).
3.2.2. Customer allocation algorithms

The goal here is to determine for each customer of the problem
an allocation on a vehicle. The system offers the possibility to
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manually allocate the customers to vehicles (advisory control
mode); in this case the feasibility of each decision is checked by
an algorithm. An algorithm for customer allocation is also
integrated in solving mechanism. The goal of the algorithm is to
propose a complete solution for supervisory control mode and to
complete a partial solution proposed by the scheduler for inter-
active control mode.

Advisory control mode: scheduler decision checking: An algo-
rithm checking allocation feasibility is proposed. The idea is to
verify after each allocation decision that it exists a feasible
solution. The algorithm is divided in two parts: a constraint
satisfaction checking and a feasible solution searching. A feasi-
bility test using energetic reasoning (Lopez and Esquirol, 1996)
principles is proposed for the first part. In a scheduling context,
Gacias et al. (2010a) have proposed an algorithm integrating
setup times in the feasibility test. Indeed, travel times between
customers in vehicle routing problem can be seen as sequence-
dependent setup times. A limited discrepancy search (LDS) algo-
rithm (Harvey and Ginsberg, 1995) is used to find a feasible
solution. If no solution is found, the scheduler has to backtrack to
her/his previous choices or has to modify her/his last decision.
Further details of the algorithm are described in Gacias (2010).

Supervisory and interactive control mode: customer allocation

algorithm: In the supervisory control mode, a complete solution is
proposed by the system. The scheduler can however modify the
decisions of the algorithm. The sweep algorithm (Gillet and
Miller, 1974) principle is used for customer allocation. First,
customers that have to be allocated to a specific vehicle because
of allocation constraints are allocated. Then, each customer
(selected from the sweep algorithm order) is allocated on the
Fig. 4. User interfaces for route selection. One of the interfaces is a geographical represe

information about the problem constraints. User interaction tools are also available fa
non-empty vehicle with the smallest mean distance between the
customer and the already allocated customers. If there is not a
not-empty available vehicle to allocate a customer, then the
customer is allocated to a new vehicle.

The interactive control mode uses the same algorithm to
complete a solution partially proposed by the scheduler. The
scheduler specifies here the allocation for some of the customers
and the algorithm ends the customer allocation from the partial
solution.

3.2.3. Route selection algorithms

The goal of route selection is to determine for each route a
sequence of customers. Besides the control modes proposed here
to solve the problem, the system also integrates several algo-
rithms for solution optimization.

Fig. 4 shows the proposed user interfaces for route selection.
Advisory control mode: scheduler decision checking: The sche-

duler can manually propose a sequence for each vehicle through
the human–machine interaction tools. Once again, an algorithm
tests the feasibility of the scheduler decisions. First, different
dominance rules are tested to verify that the proposed sequence
is not inconsistent. After that, if the sequence is correct, a tree
search algorithm based on limited discrepancy search is launched
to find a feasible sequence with all the customers allocated to the
vehicle respecting the subsequence proposed by the scheduler. If
no solution is found, the scheduler has to backtrack to her/his
previous choices or has to modify her/his last decision.

Supervisory and interactive control mode: customer allocation

algorithm: The idea here is to propose a feasible complete solution
for the problem. To this purpose, different algorithms are
ntation allowing the scheduler to visualize routes on a map and displaying relevant

cilitating the scheduler participation on problem solving.
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proposed: the first algorithm is based on classical customer
insertion technics traditionally used in the literature and the
other two algorithms are proposed for solution optimization. The
goal is to propose first a feasible solution with the first algorithm
(a solution with a structure respecting schedulers’ criteria). The
scheduler may then use the optimization algorithms to try to
improve the quality of the solution. The use of metaheuristics and
constraint programming has already been proposed efficiently to
solve the vehicle routing problem (Pesant and Gendreau, 1999;
Caseau et al., 1999; De Backer et al., 2000).

Once customer allocation is performed, the algorithm uses the
principle of savings and regrets algorithms proposed by Clarke and
Wright (1964) and Liu and Shen (1999), respectively. Each
customer is inserted in the position of the sequence that mini-
mizes route length. If a customer cannot be inserted in a
sequence, a tree search based on LDS is launched in order to find
a feasible sequence. The drawback of the savings algorithm is to
find a feasible solution when the problem is over-constrained
(Kilby et al., 2000). It is worth remarking the importance of having
an efficient insertion algorithm, thus each time a customer cannot
be inserted, a feasible sequence has to be found and the tree
search may be time consuming. We then propose to integrate in
the algorithm the regrets criterion favoring first the sequence of
the most conflicting customers. The proposed algorithm then
sequences the customer following the savings criterion except
when it exists a customer with only two or less feasible positions
into the sequence; in that case the conflicting customer is
sequenced first.

Two solutions optimization algorithms are also proposed. The
goal of one of them is to independently optimize the routes of the
solution. The second algorithm is a local search algorithm for
complete solution optimization. The execution time for each
algorithm is specified by the scheduler.

The first algorithm is a Climbing Discrepancy Search (local
search method using a limited discrepancy search for neighbor-
hood exploration) (Milano and Roli, 2002). The goal of the
algorithm is to optimize the customer sequence for one route.
Customer allocation cannot be therefore modified during the
optimization process. The main advantage of the approach is that
problem solution may be improved by optimizing only some
routes and keeping the same structure for the remaining part.
Indeed, in the process of solving problem the scheduler may
define a solution structure according to her/his criteria; it is then
advisable to propose optimization algorithms disturbing as less as
possible the solution structure.

The second algorithm for problem solution optimization is
described in Algorithm 2. The idea is to integrate the algorithm for
route optimization in a classical local search scheme. For each
iteration, a customer reallocation based on geographical criteria is
first proposed and then the modified routes are optimized using
the CDS algorithm. We define now the reallocation operators used
in the algorithm. We find some interesting operators in the
literature such as the Relocation and the Exchange proposed by
Savelsbergh (1992) or the CROSS-exchange defined by Taillard
et al. (1997). Our goal is to find as soon as possible the best
customer allocations. The idea is to focus on geographical criteria
to define our neighborhoods. The first operator uses the distance
between the customers and the gravity center of the routes to
define the new allocations. The distance between a customer and
the gravity center of its route is compared with the distance
between the customer and the centroid of the rest of routes. The
idea is to determine the customers (Ci) nearer of the centroid of
another route (GRj

) than its own route centroid (GRq
). If it is the

case, the customer Ci is then selected to be allocated to route Rj.
The second operator compares for each customer the distance
between the customer and the other customers of the problem
with the distance between the customer and its own route
centroid. If it exists a customer Ci of route Rq nearest of the
customer Ci0 of route Rj than its own route centroid GRq

, the
customer Ci is then selected to be allocated to route Rj. Each new
allocation can be defined as fCi,Rq,Rjg, where Ci specifies the
customer that will be reallocated from route Rq to route Rj. We
propose then to explore the next neighborhoods:
�
 Each new reallocation. The neighborhood consists in allocating
customer Ci on the vehicle of the route Rj.

�
 Each allocation exchange between two customers. If it exists

an allocation defined as fCi,Rq,Rjg and another allocation with
this form fCi0 ,Rj,Rqg, then allocations of both customers are
modified at the same time. The customer Ci is allocated to the
vehicle of route Rj and the customer Ci0 is allocated to the
vehicle of route Rq.

It is worth to note our neighborhoods are sub-neighborhoods of
Relocation and Exchange operators proposed by Savelsbergh
(1992).

Algorithm 2. Solution optimization algorithm.

Step 1: An initial solution Sol is proposed by scheduler
or solving mechanism algorithms
foreach route of Sol do

Step 2 : Optimize routes independently using the

CDS algorithm ðauthorised discrepancies are limitedÞ

if a better solution BetterSol is found then

bStep 3 : Update the solution, Sol’BetterSol

66666664
while execution time defined by the scheduler is not achieved do

Step 4 : Determine all reallocations fCi,Rq,Rjg defined

for each operator

foreach new reallocation defined by neighborhood

ð1Þ and ð2Þdo

Step 5 : Optimize route Rq using the CDS algorithm

Step 6 : Optimize route Rj using the CDS algorithm

if a better solution BetterSol is found then

Step 7 : Update solution and go back to Step 4,

Sol’BetterSol

�

6666666664

666666666666666666664

3.3. Computational results

The efficiency of the solution optimization algorithm
(Algorithm 2) is evaluated here. The algorithm was coded in
Cþþ and run on a 2.8 GHz personal computer with 3.8 Go of RAM
under the Linux Debian operating system (Version 5.0.7). The
algorithm was tested for the well-known instances of the litera-
ture (25, 50, and 100 customers) proposed by Solomon (1983) for
the VRPTW.

Table 2 shows the results of the comparison between our
algorithm (called LSþCDS) and the best-known solutions for
distance minimization. The best-known solutions are the optimal
solutions for most of the small instances (25 and 50 customers).
Computation time is limited to 120 s for small instances (25 and
50 customers) and it is increased to 300 s for the instances with
100 customers. The first column NV specifies the average number
of vehicles, DIST defines the average traveled distance, MeanDev is
the mean deviation to the best-known solutions, NBest is the
number of instances where our algorithm reaches the best-known
solution and finally TimeBest indicates the average time to find
the best solution.



Table 2
Comparison of solution optimization algorithm with the best-known results.

Instances Best-Known LSþCDS

NV DIST NV DIST MeanDev (%) NBest TimeBest

C1-25 3 190.59 3 190.59 0.00 9 (9) 0.56

R1-25 4.92 463.37 5 474.58 3.70 4 (12) 0.58

RC1-25 3.25 350.24 3.25 354.99 9.24 7 (8) 0.15

C1-50 5 361.69 5 361.69 0.00 9 (9) 15.38

R1-50 7.75 766.13 8.5 805.2 5.24 0 (12) 15.03

RC1-50 6.5 730.31 6.87 768.86 7.19 3 (8) 2.21

C1-100 10 826.7 10 873.98 7.36 4 (9) 49.56

R1-100 13.25 1173.61 14.50 1305.32 11.87 0 (12) 184.10

RC1-100 11.12 1341.33 13.37 1410.14 5.39 0 (8) 42.67
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These results show that the algorithm is very efficient for
small-size instances. Indeed, in most cases good or even optimal
solutions are reached very quickly for the instances with 25 and
50 customers. Besides, the mean deviation with the best-known
solutions is also acceptable for all instances. It is clear that the
performance of the algorithm decreases with instances size.
However, the goal of the algorithm is to propose a good perfor-
mance to optimize a given solution (sometimes defined by the
scheduler). Our algorithm is then hardly dependent on the initial
solution contrarily to the most efficient metaheuristics of the
literature. Anyway, it is always interesting for robustness to keep
as much as possible the structure of the initial solution, specially
if the scheduler participates in the design of the solution.
4. Model inversion: a new approach for constraint relaxation

One of the weak aspects of decision support systems is the lack
of mechanisms proposed to deal with infeasible problems.
Obviously, an infeasible problem is unsolvable, that means it
does not exist a solution satisfying all the problem constraints. It
is then necessary to relax some constraints in order to find a
solution. It is important to stress the advisability of involving the
scheduler in constraints relaxation process. Indeed, in planning
and scheduling context, the scheduler has a wide knowledge of
problem constraints and, more importantly, s/he also has the
ability to negotiate constraints relaxation with other problem
actors (customers, drivers, etc.). In the literature few approaches
have been proposed to deal with infeasible problems. On the one
hand, human–machine interaction experts propose to focus the
research on the way the problem constraints are presented in
order to facilitate constraint relaxation process to the scheduler
(Higgins, 1996, 2001). On the other hand, Jussien (2001) proposes,
in a fully automated context, algorithmic mechanisms based on
the concept of ‘‘explanation’’ to determine the constraints to relax
to get a feasible problem.

In the next section, an original framework is proposed aiming
to support scheduler by offering a list of interesting possibilities
for constraint relaxation making the problem feasible.

4.1. Model inversion principles

The study is focused on how to manage constraint relaxation
when the problem is not satisfiable. The idea is to propose model
inversion mechanisms in order to identify the constraints to relax
and how these constraints have to be modified. The model
inversion consists in the exchange of roles between the decision
variables and the problem fixed parameters. In model inversion,
decision variables become parameters restricting decision space
and parameters become decision variables that can be used to
deduce inferences. The main idea is then to determine how
problem parameters have to be relaxed in order to get a feasible
problem.

Fig. 5 shows the proposed user interface for vehicle selection
implementing model inversion mechanisms.

The first step for model inversion development is the identi-
fication of the parameters integrating the constraints. Once the
parameters have been identified, it is then necessary to propose a
model inversion mechanism adapted to each parameter for each
problem constraint. These mechanisms are launched after a
constraint is violated (see Fig. 5). First, it is necessary to deter-
mine the parameters susceptible to be relaxed. Indeed, there
always exist parameters having a more important influence on
the violated constraint. In a second phase, an algorithm computes
how the parameters have to be relaxed in order to satisfy the
violated constraint.

We stress that the complicated part of model inversion frame-
work are the design of efficient algorithms to deal with a set of
parameters. For instance, it is sometimes difficult to select
between a set of customers which one has to be postponed for
another day or to decide the customer which its forecasted
service time has to be modified in order to get a feasible solution.
In that context, model inversion technics based on data classifica-
tion methods in order to determine the most suitable constraints
to relax in priority are proposed. However, these generic algo-
rithms need to be adapted to each problem constraint to increase
their efficiency.
4.2. Data classification based algorithms

In this section, the generic data classification methods with
different constraint adapted criteria used to propose to the
scheduler a list of options for constraint relaxation are described.

Data analysis offers a set of methods designed to structure
data information in order to identify connections between indi-
viduals. The goal of data classification methods is to propose sets
of homogeneous individuals. A similarity measure is often used to
group individuals. The goal of the measure is to quantify the
similarity between two individuals. The groups of individuals are
then proposed trying to maximize the similarity between the
individuals.

Two data classification methods to group the customers
following a geographical and a temporal criterion are considered.
When a constraint is violated, an analysis of the groups of clients
in order to determine the most suitable constraints to relax is
proposed. However, we remark that these methods can be easily
extended to other relevant properties of individuals, in our case
the customers, in order to adapt the algorithms to each problem
constraint.
4.2.1. Geographical criterion

We propose the k-means algorithm (Forgy, 1965; Lloyd, 1982)
to group customers following a geographical criterion. The
k-means algorithm is used to group the nc customers into K

clusters (P¼ P1 [ P2 [ . . . [ PK ) as homogeneous as possible in
relation to a similarity measure defined for each couple of
customers. In the context of a geographical criterion, the custo-
mer location is selected as similarity criterion. The properties
defining customers are then their location (xi,yi). The number of
clusters is the number of vehicles of the solution. Thus each
cluster may be seen as a route.



Fig. 5. Model inversion user interface for vehicle selection. The scheduler selects the family of parameters authorized to be modified for constraint relaxation when the

problem is infeasible (in that case, the weight-capacity constraint is violated).
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The similarity measure is then the distance between the
customers

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ

2
þðyi�yjÞ

2
q

ð11Þ

The k-means algorithm is an iterative algorithm (see Algorithm 3).
First, the K-means are created. The initial means are uniformly
spread along the longest axis of the problem taking the centroid of
the customers as the center point. Then, at each iteration the
distance between the customers and the means is computed. Each
customer is allocated to the cluster with the nearest mean. Finally,
the K-means are updated as the centroid of the new clusters. The
algorithm stops when no more changes between the clusters of
two successive iterations are observed.

Algorithm 3. k-means algorithm for geographical customer
classification.

Step 1: Select a set of K means
repeat
Step 2: Compute distances between each customer and the

meansðEquationð11ÞÞ

Step 3: Allocate each customer to the cluster with

the nearest mean

Step 4: Update the means of each cluster Pk

������������
until no changes are observed between the clusters of two

successive iterations;

Once the sets of customers are performed, an analysis of the
clusters in order to determine the best constraints to relax is
performed. This analysis has however to be adapted to the
constraint being violated.
Case study: postpone a customer delivery. We study here the
case when a customer delivery has to be postponed because the
problem constraints cannot be satisfied. In the geographical
criterion context, the customers being part of the same cluster
have a high probability to be served by the same vehicle. In that
case, a parameter allowing to identify the less homogeneous
customers for the clusters is proposed. This parameter (dmi) is
calculated using the mean distance between the customer and the
other customers of its cluster and the distance between the
customer and the nearest depot in order to penalize the custo-
mers not located close of the depots

dmi ¼
minlADepotdilþ

P
jAPk

dij

9Pk9
ð12Þ

The customer can be then classed according to this parameter.
A priority list of customers to postpone based on geographical
information can be proposed to the scheduler.
4.2.2. Temporal criterion

A temporal-based customer classification is also proposed. In
that case, the clustering approach uses the Dynamic Cluster
Algorithm (DCA) introduced by Diday (1971). DCA is an extension
of k-means algorithm. The similarities here can no longer be
shown as an Euclidean distance; an allocation function (a dissim-
ilarity measure) and also a new way to represent the clusters (the
centroid does not exist anymore) need to be defined. A dissim-
ilarity measure based on customer time windows (Levy, 1996) is
proposed. The parameter measures the degree of centering
between two time windows. Fig. 6 displays the main relations
between two time windows and the value of the dissimilarity
measure (d) for each configuration.
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Fig. 6. Main configurations between two time windows.
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The dissimilarity measure is defined as follows:

dði,jÞ ¼

1�
minðdj�ri ,di�rjÞ

maxðdj�ri ,di�rjÞ
if minðdi,djÞZmaxðri,rjÞ,

1�
minðdj�ri ,di�rjÞ

1

n

Pn

i ¼ 1
ðdi�riÞ

otherwise

8>>><
>>>:

An allocation and a representation function are also necessary.
The core of a cluster Pk is the customer Ck, which its release date rk

is the nearest to the middle of the time interval
½minjAPk

rj,maxjAPk
rj�. At each iteration, a customer Ci is allocated

to the cluster Pk with a core Ck minimizing d. The algorithm is very
similar to k-means algorithm (Algorithm 3); at each iteration the
distances between the customer and the core of the K clusters
(dðCk,CiÞ,8k¼ 1 . . .K) are computed for each customer, each cus-
tomer is then allocated to the cluster with a minimal distance
(minimize d) and finally the core of the new clusters are updated.

To initialize the cores, Algorithm 4 is proposed. The cores are
uniformly distributed all along the release times scale.

Algorithm 4. Core initialization for temporal-based classification.

Step 1: Compute temporal horizon TH, TH’ max
i ¼ 1: :nc

ri� min
i ¼ 1: :nc

ri

Step 2: Compute step, step’TH
K

Step 3: Compute rough time for first core, t1’ min
i ¼ 1: :nc

riþ
step

2

Step 4: Determine the core of the first cluster C1, C1’

customer i with ri nearest to t1

Step 5: Initialize cluster counter, k’2

for (krK) do
Step 6 : Compute rough time for cluster k, tk’tkþstep

Step 7 : Determine the core of cluster k, Ck’customer

i with ri nearest to tk and the

customer is not already a core of a cluster

Step 8 : Increase cluster counter, k’kþ1
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Case study: postpone a customer delivery. The dissimilarity
measure groups together customers with time windows interac-
tion. Once the groups of customers are performed, the clusters are
analyzed in order to identify the most conflicting customers. For
each cluster, a parameter called critical index (CIk) is defined. This
parameter is computed as the ratio between the number of
customers of the cluster and the number of vehicles. The critical
index gives an idea of how critical the cluster is. Indeed, a big
value for the CIk means that the planner may have some troubles
to serve the customers of the cluster because of customers time
windows incompatibilities. The CIk is then used as a parameter to
point the customers to postpone in case of infeasibility.
Algorithm 5. Identification of a customer to postpone the deliv-
ery for a temporal-based criterion.

Step 1: Core initialization for temporal-based classification
(Algorithm 4)
repeat

Step 2 : Compute d between each customer and the K cores

Step 3 : Allocate each customer on a cluster which its

core minimizes d
Step 4 : Update cores of each cluster Pk

����������
until no changes are observed between two successive iterations

Step 5: Identify clusters of conflicting customers (CIk4 limit)
for each conflicting cluster do

Step 6 : Launch algorithm for geographical classification

ðAlgorithm3Þ

Step 7 : Save into a list L the customer with the

most important dmi
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Step 8: Propose the customer of the list L with the biggest

dmi as the first customer to postpone

We observe that travel time between customers is not con-
sidered in temporal-based classification. To cover this lack, both
classification criteria (geographical and temporal) are mixed in
order to increase efficiency. In that case, the idea is first to target a
set of critical customers using the CIk index and then the k-means
algorithm is used to select a customer between the critical
customers. Algorithm 5 describes the mechanism to propose a
priority list of customers to be postponed based on temporal
information.

4.3. Computational results

The algorithms based on data classification methods proposed
to select the best customer to postpone the delivery are evaluated
in this section. These algorithms are first compared on a set of
small-size instances (nine customers) where a complete enu-
meration of all feasible solutions can be performed in a reason-
able time. The number of feasible solutions is used to evaluate the
flexibility provided by the criteria. Indeed, a larger number of
feasible solutions widen planners’ degrees of freedom facilitating
the construction of real-world adapted solutions. The instances of
the second set are more realistic instances with 25 customers.
Model inversion criteria have been compared considering a
geographical optimization function: travel distance minimization.

The small-size instances (nine customers) of the capacitated
vehicle routing problem with customer time windows (CVRPTW)
are optimally solved. Indeed, each instance is solved nine times
suppressing each time one customer from the set of customers.
The results obtained taking out of the problem the customer for
which the criteria give the priority are compared: the GDC

criterion (mean distance between customers of the same cluster
after the geographical-based clustering), the GDD criterion (lar-
gest distance with the nearest depot), and the TDC criterion (mean
distance between customers of the same cluster after the tem-
poral-based clustering).

To generate the instances, customers have to be eliminated of
the CVRPTW small-size instances of Solomon (1983). Depending
on the customer locations, Solomon’s instances are classified in
three groups: clustered customers (C), random customers (R), and
mixed customers (RC).

In Table 3, the first column NbOptDist specifies the number of
instances the optimal solution for distance minimization is reached
when the problem is solved without the customer proposed by the



Table 3
Results for distance optimization and the number of feasible solutions.

56 instances

nc¼9 NbOptDist AvgDev (%) AvgPos NbSol

GDC-C 13 (17) 8.73 2.7 6

GDC-R 9 (23) 5.99 3.5 17

GDC-RC 9 (16) 5.01 3.2 5

TDC-C 5 (17) 14.98 4.5 7

TDC-R 3 (23) 11.46 5.4 7

TDC-RC 4 (16) 9.30 5.3 7

GDD-C 8 (17) 15.76 4.3 8

GDD-R 5 (23) 10.97 4.7 11

GDD-RC 3 (16) 9.12 4.5 4

All criteria 37 5.81 38

Table 4
Results for distance optimization.

56 instances

nc¼25 NbOptDist AvgDev (%) AvgPos Nb5Best

GDC-C 6 (17) 2.74 6.55 9

GDC-R 4 (23) 4.48 6.84 15

GDC-RC 3 (16) 11.35 9.85 6

TDC-C 1 (17) 7.88 7.69 9

TDC-R 1 (23) 5.70 9.05 6

TDC-RC 0 (16) 10.81 11.31 3

GDD-C 0 (17) 10.43 13.94 0

GDD-R 6 (23) 5.36 8.76 13

GDD-RC 5 (16) 8.67 7.36 10

All criteria 17 (56) 4.68 42

B. Gacias et al. / Engineering Applications of Artificial Intelligence 25 (2012) 801–813812
criterion. The total number of instances is put in brackets. The
second column (AvgDev) specifies the average deviation from the
optimal solution for the instances where the optimal solution is
reached when the suppressed customer is not the customer
selected by the criterion. AvgPos indicates the average position of
the solution when the solutions are sorted in a non-decreasing
order of the objective function. For example, if the solution reached
when the problem is solved without the customer selected by the
criterion is the second best solution, then its position is 2. Finally,
the last column (NbSol) represents the number of instances the
decision of the criterion is the decision providing a bigger number
of feasible solutions.

These results show that GDC is the most efficient criterion for
small instances: it reaches the best suitable solution over a half of
the instances. The AvgPos is around 3 for the GDC criterion that
means that when the criterion decision is not the best suitable
decision, the proposition of the criterion keeps being a good
proposition. The GDC and GDD criteria outperform the TDC

criterion, which is not a surprise because the objective (distance
minimization) used to evaluate the algorithms is a geographical-
based function such as GDC and GDD, contrarily to TDC which is a
temporal-based criterion. The last line shows that all criteria
together are really efficient. Indeed, the most suitable choice is
selected for 37 over 56 instances by one of the three criteria when
distance minimization is considered. It is interesting to note that
following the advices of the criteria generally (38 over 56
instances) leads to a problem accepting a greater number of
feasible solutions, thus increasing planners’ opportunities for
their behavior in order to find better real-world suited solutions.

Table 4 displays the results for the instances with 25 custo-
mers. A complete enumeration of solutions in a reasonable time is
not possible here, the instances have been therefore solved using
Algorithm 2. The last column of Table 3 calculated from the
complete enumeration of feasible solutions has no longer any
sense in Table 4. For this reason, the column NbSol has been
replacing by Nb5Best indicating, in that case, the number of
instances the decision proposed by the criterion is among the
five best decisions considering distance optimization.

The results are very similar than for the instances with only
nine customers. The GDC criterion proves to be the most efficient
criterion, especially for instances with clustered and randomized
customers, type C and type R, respectively. Nevertheless, these
results show that GDD criterion is the best criterion for the
instances of type RC. It can be due to a possible loss of efficiency
of the k-means algorithm for this type of problems (the clusters of
customers after the k-means algorithm do not correspond exactly
with the vehicle routes determined by the problem-solving
algorithm). However, it is worth remarking that the efficiency of
all criteria considered together is really good. Indeed, for most of
instances (42 over 56) there is a criterion that proposes a decision
reaching one of the five best solutions for distance minimization
and the average deviation is less than 5% meaning that the criteria
complement each other.
5. Conclusions

In this paper, a decision support system for transportation
scheduling has been proposed. An interdisciplinary approach has
been followed for the system design; a link has been done
between problem solving methods (operations research technics
and data classification algorithms) and cognitive engineering
technics (interfaces design, decision sharing between human
and machine). The paper focuses on the solving mechanism and
scheduler-oriented algorithms integrating the decision support
system.

First, a work domain analysis using an abstraction hierarchy
for the vehicle routing problem has been described. A new
approach is proposed, based on the study of the different variants
of the problem detailed in the literature. This approach facilitates
to reach completeness in domain constraints identification at the
same time that the abstraction hierarchy remains event- and
device-independent. The main advantage of the approach is that
the problem representation after the analysis does not restrict
strategies for scheduler behavior. The domain constraints
revealed by the analysis make up the reference system shared
by the human and the machine. In that context, a decision
support system architecture has been then defined around the
work domain analysis.

The solving mechanism designed to assist the scheduler to
perform each problem subtask has been presented. To this
purpose, different solving control modes seeking to facilitate
scheduler participation in problem solving processes have been
proposed. The idea behind control modes, contrarily to a fully
automated approach, is that system, through user-interaction
tools, gives the schedulers the possibility to built solutions
according to their preferences, letting to take into consideration
new constraints and/or occasionally violating some of the con-
straints in order to find better real-world adapted solutions. In
that context, a set of useful user-oriented algorithms to assist the
scheduler to solve the problem have been proposed and effi-
ciently tested on instances of the literature.

Finally, an original framework aiming at supporting problem
constraints relaxation when this becomes infeasible has been
proposed. Constraint relaxation support is a topic barely dis-
cussed in the literature. In this paper, the principles of a
methodology for constraint relaxation seeking to support the
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scheduler by proposing a list of interesting possibilities for action
have been defined. In that context, model inversion mechanisms
using data classification algorithms have been proposed and
efficiently tested on instances of the literature. The results show
the interest of such a Human–Machine cooperation in terms of
number of feasible solutions obtained and their quality. Besides, it
is worth remarking that the proposed model inversion mechan-
isms are generic enough to be used on different kinds of problems
others than vehicle routing. Indeed, spatial and temporal decom-
position methods suit and can be easily adapted for planning and
scheduling problems.
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Levy, M.-L., 1996. Méthodes par décomposition temporelle et probl�emes d’ordon-
nancement. PhD Thesis. Institut National Polytechnique de Toulouse.

Liu, F.-H.F., Shen, S.-Y., 1999. A route-neighborhood-based metaheuristic for
vehicle routing problem with time windows. Eur. J. Oper. Res. 118 (3),
485–504.

Lloyd, S.P., 1982. Least square quantization in PCM. IEEE Trans. Inf. Theory 28 (2),
129–137.

Lopez, P., Esquirol, P., 1996. Consistency enforcing in scheduling: a general
formulation based on energetic reasoning. In: Fifth International Workshop
on Projet Management and Scheduling (PMS’96), Poznan, Poland, pp. 155–158.

Matsatsinis, N.F., 2004. Towards a decision support system for the ready concrete
distribution system: a case of a Greek company. Eur. J. Oper. Res. 152 (2),
487–499.

Mendoza, J.E., Medaglia, A.L., Velasco, N., 2009. An evolutionary-based decision
support system for vehicle routing: the case of a public utility. Decis. Support
Syst. 46 (3), 730–742.

Milano, M., Roli, R., 2002. On the relation between complete and incomplete
search: an informal discussion. In: Fourth International Workshop on Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CP-AI-OR’02), Le Croisic, France.

Naikar, N., Hopcroft, R., Moylan, A., 2005. Work Domain Analysis: Theoretical
Concepts and Methodology. Technical Report. Australian Government, Depart-
ment of Defence, Defence Science.

Pesant, G., Gendreau, M., 1999. A constraint programming framework for local
search methods. J. Heuristics 5, 255–279.

Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems.
Comput. Oper. Res. 34 (8), 2403–2435.

Rahimi, M., Dessouky, M., 2001. A hierarchical task model for dispatching in
computer-assisted demand-responsive paratransit operation. ITS J. 6,
199–223.

Rasmussen, J., Pejtersen, A.M., Goodstein, L.P., 1994. Cognitive Systems Engineer-
ing. Wiley, New York.

Ruiz, R., Maroto, C., Alcaraz, J., 2004. A decision support system for a real vehicle
routing problem. Eur. J. Oper. Res. 153 (3), 593–606.

Sanderson, P.M., 1989. The human planning and scheduling role in advanced
manufacturing systems: an emerging human factors domain. Human Factors
31, 635–666.

Santos, L., Coutinho-Rodrigues, J., Current, J.R., 2008. Implementing a multi-vehicle
multi-route spatial decision support system for efficient trash collection in
Portugal. Transport. Res. 42 (Part A), 922–934.

Savelsbergh, M.W.P., 1992. The vehicle routing problem with time windows:
minimizing route duration. INFORMS J. Comput. 4 (2), 146–154.

Solomon, M.M., 1983. Vehicle Routing and Scheduling with Time Window
Constraints: Models and Algorithms. PhD Thesis. University of Pennsylvania,
USA.

Taillard, E., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y., 1997. A tabu search
heuristic for the vehicle routing problem with soft time windows. Transport.
Sci. 31 (2), 170–186.

Toth, P., Vigo, D., 2001. The Vehicle Routing Problem Society for Industrial and
Applied Mathematics, Philadelphia, USA.

van Paassen, R., 1995. New visualisation techniques for industrial process control.
In: Sixth IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design and Evaluation
of Man–Machine Systems. Pergamon Press, Oxford, Cambridge, MA, USA,
pp. 457–492.

van Wezel, W., Cegarra, J., Hoc, J.-M., 2010. Allocating function to humans and
algorithms in scheduling. In: Fransoo, J.C., Waefler, T., Wilson, J.R. (Eds.),
Behavioral Operations in Planning and Scheduling, Springer.

Vicente, K.J., 1999. Cognitive Work Analysis: Toward Safe Productive, and Healthy
Computer-Based Work. Lawrence Erlbaum Associates Inc., Mahwah, NJ, USA.

Vicente, K.J., 2000. Work domain analysis and task analysis: a difference that
matters. In: Schraagen, J.M., Chipman, S.F., Shalin, V.L. (Eds.), Cognitive Task
Analysis. Lawrence Erlbaum Associates, Mahwah, NJ, pp. 101–118.

Wong, B.L.W., Blandford, A., 2002. Analysing ambulance dispatcher decision
making: trialing emergent themes analysis. In: Vetere, F., Johnston, L.,
Kushinsky, R. (Eds.), Human Factors 2002, the Joint Conference of the
Computer Human Interaction Special Interest Group and The Ergonomics
Society of Australia, HF2002 (CD-ROM Publication). Melbourne, Australia.


	Scheduler-oriented algorithms to improve human-machine cooperation in transportation scheduling support systems
	Introduction
	Background
	Decision support system algorithms
	Formal problem statement
	User-oriented algorithms: control modes
	Vehicle selection algorithms
	Customer allocation algorithms
	Route selection algorithms

	Computational results

	Model inversion: a new approach for constraint relaxation
	Model inversion principles
	Data classification based algorithms
	Geographical criterion
	Temporal criterion

	Computational results

	Conclusions
	Acknowledgments
	References




