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aFacultad de Psicologı́a, Universidad de las Islas Baleares, Ctra. Valldemossa Km. 7,5, 07122 Palma de Mallorca, Spain
bJunta de Castilla y León. Consejerı́a de Hacienda, Dirección General de Estadı́stica, Calle José Cantalapiedra s/n, 47012 Valladolid, Spain
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Abstract

Statistical research carried out over the past few years evaluating important aspects of tourism has shown that supply and demand

for tourism products have risen. This study focuses on various methods of evaluating a fundamental variable of tourist expenditure:

average daily expenses per tourist. When analysing this variable, extreme values that invalidate the average location parameter are

not uncommon. The presence of skewed values and the asymmetry of distribution justify using alternative methods for parameter

estimation. Using data collected from the tourist expenditure survey taken in the Balearic Islands in 2001, this study presents results

obtained from different robust location estimators, placing special emphasis on Huber and one-step’s M-estimators, accompanied

by calculating confidence intervals. Additionally, results were obtained by using a resampling method called the bootstrap

estimation.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For the Spanish economy in the year 2001, tourism
and other directly associated activities accounted for
approximately 12.5% of the GNP. In labour terms, they
employ 13.5% of the country’s total workforce and
21.1% of those working in service industries. Of all the
world’s countries, Spain is the second most important
tourist destination, with a total of 49.5 million inbound
tourists in the year 2001.

Within the framework of this situation, one Spanish
region stands out particularly from the rest, and it is this
e front matter r 2004 Elsevier Ltd. All rights reserved.
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region that has been used in our study, given its
importance in the field of tourism.

Covering a surface area of 4,968.36 km2 with a
recorded population of 878,627 inhabitants in the year
2001, the Autonomous Community of the Balearic
Islands is considered one of the world’s exceptional
tourist destinations, with visitor numbers placing the
region on a par with countries that are international
leaders in tourism. In 2001 there were 9.7 million non-
resident tourists, of which 8.4 million were foreigners
(international tourism), giving a world market share of
1.2%, as can be seen in Table 1.

At the same time, given the actual size of the Balearic
Islands, the importance that inbound tourism represents
for the region’s economy can easily be understood. In
the year 2001, revenue from tourism amounted to 5096.2
million h, whilst in 1997 the tourism-added value (TVA)
accounted for 21.2% of the GDP of the Balearic Islands’

www.elsevier.com/locate/tourman
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Table 1

Market shares by destination

Leading world destinationsa International tourist arrivals

2001 Market share

World 693

1. France 76.5 11.0

2. Spain 49.5 7.1

3. United States 45.5 6.6

4. Italy 39.0 5.6

5. China 33.2 4.8

6. United Kingdom 23.4 3.4

7. Mexico 19.8 2.9

8. Canada 19.7 2.8

9. Austria 18.2 2.6

10. Germany 17.9 2.6

11. Hungary 15.3 2.2

12. Poland 15.0 2.2

13. Hong Kong (China) 13.7 2.0

14. Greece 12.8 1.8

15. Portugal 12.1 1.7

Balearic Islandsb 8.4 1.2

aSource: TO data for 2001 (in millions).
bSource: IBAE data for 2001.
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economy, whilst the value added of tourism industries
(VATI) was estimated as representing 31.2%.1

These figures highlight how necessary it is to explore
estimation methods that can help determine economic
realities, as well as contributing towards the formulation
of realistic policies for this key sector of the economy.

The main purpose of the Survey on Tourism Spending
and Stays in the Balearic Islands is to determine certain
socio-economic characteristics of visiting tourists, com-
pile quantitative information on tourism spending in the
Autonomous Community of the Balearic Islands and
obtain qualitative data on tourist attitudes.

The methodology used is a personal interview, based
on a carefully structured questionnaire. The reporting
unit is a tourist spending at least one night in the
Balearic Islands. This is a yearly survey, reflecting
seasonal activity (the high, mid and low seasons) and
each individual island.

The survey is conducted at airports and maritime
ports in the Autonomous Community of the Balearic
Islands with international and domestic passenger
traffic, i.e. Palma de Mallorca, Minorca and Ibiza
Airports and the maritime ports of Palma de Mallorca,
Minorca, Ibiza and San Antonio. The questionnaires are
completed by tourists at the end of their stay in the
Balearic Islands.
1Montserrat, A., Beltrán, M., Parra, F., & Cortiñas, P. (2001). Valor

Añadido de las Industrias Turı́sticas y Valor Añadido Turı́stico en

Baleares (The value added of tourism industries and tourism value added

in the Balearic Islands.). Congress on Tourism Satellite Accounts,

Vancouver.
In the year 2001, a sample of 10,178 individual
surveys was collected. The distribution of the inter-
viewees was based on the volume of international and
domestic passenger traffic at each of the survey points.

Since this paper focuses on a description and
comparison of different estimators for the calculation
of the average daily spending variable, to avoid
complicating the description, no weighting factor will
be used, unlike the original survey analysis, which does
so in order to take into account both the nationality of
the tourists and the island they visit.

One variable that is clearly of political and social
interest is average spending in a tourist destination per
person per day. This refers exclusively to expenditure
in the destination itself and not to any payment made in
the tourist’s country of origin. When the data used in
this study were being processed, the asymmetrical
behaviour of this variable was observed, with numerous
atypical values (444 outlying values) and a very
pronounced degree of asymmetry (see Fig. 1) with a
skewness value of 6.286 (SE=0.024), and a kurtosis
value of 93.09 (SE=0.049), meaning that the distribu-
tion of the average spending variable per person per day
was right-skewed and leptokurtic.

This behaviour, observed in Fig. 1 (Stem and Leaf
Plot), has a decisive influence on the way the estimation
of the total average spending variable is made, and
failing to take this into account can lead to incorrect
estimations and mistaken conclusions that do not reflect
reality.

As Table 2 shows, the mean value of the sample
group’s average tourism expenditure per person per day
is 9719.32 pesetas,2 with a standard deviation of
8797.39, which indicates a high variation in the
variable’s different values (with a variance of
77393881). Under such conditions of skewness, the
sample mean will be a bad measure of central location to
use. In other words, it is not a valid measure for the
intended calculation, since it is clearly affected by its
outlying (atypical) values in what is obviously a skewed
distribution, meaning that the arithmetical mean is a
non-resistant measure. This effect is attributable to the
circumstances of the variable under observation, which
has a minimum fixed limit (a minimum spending level of
0 pesetas) but no pre-established upper limit. In our
case, there is a small group of tourists who spend no
money at all during their stay (2.56%), whilst the highest
value that can be observed in our data set is an
expenditure figure of 216,000 pesetas. However, the
central 50% of the daily spending values range between
4741.26 and 12,317.86 pesetas.
2The expenditure figures are shown in pesetas: the official currency

when the survey was conducted. The exchange rate for euros is: 1

euro=166.386 pesetas.
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Frequency   Stem & Leaf 

355,00   0 .  00000000000006789&
361,00   1 .  0123344556667788899 
599,00   2 .  000111222334455556677788899 
688,00   3 .  0000111122233334455556667778888999 
712,00   4 .  0000111122233344455556666777888999 
722,00   5 .  0000001112223333444455566677778888999 
795,00   6 .  00000111222222333344444555666667778888999
729,00   7 .  000011112223334444555556667778888999
708,00   8 .  00001112222333334445556667777888999 
642,00   9 .  00000111222333344455556667788899 
616,00  10 .  000000112233444555666777888999 
544,00  11 .  001112222333444556667778899 
477,00  12 .  00011223344555566778899
371,00  13 .  00112233345667789 
263,00  14 .  0012233456789
253,00  15 .  00123456789
208,00  16 .  01234566789
169,00  17 .  01234579& 
156,00  18 .  012345677& 
 96,00  19 .  0236&&
 92,00  20 .  0&&&& 
 80,00  21 .  28&&& 
 57,00  22 .  15&&
 41,00  23 .  5&
444,00 Extremes   (>=23707) 

 Stem width: 1000,00 
 Each leaf:    20 case(s) 

 & denotes fractional leaves. 

Fig. 1. Stem and leaf plot.

Table 2

Mean, standard deviation, standard error, confidence interval

Mean Standard

deviation

Standard error

of mean

95% confidence

interval of mean

9719.32 8797.39 87.2 9548.39–890.25
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Fig. 2. Box plot of spending in the Balearic Islands per person per day.
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The box plot, Fig. 2, shows the distribution of the
observed values, detecting, as commented above, the
presence of outlying values with a strong influence on
the distribution of the average spending variable per
person per day.

Due to the behaviour of the variable under analysis,
alternative estimators that could avoid the effects of
these outliers were deemed necessary. In literature,
numerous estimators that fulfil these requirements are
contemplated (Andrews et al., 1972; Tukey, 1977;
Wilcox, 1997). Among them are the following methods
for the calculation of measures of central location:
(a)
 The first consists of using the median to estimate the
central value. The main problem with the median is
the fact that its calculation is based on the number
of sample observations, with a resulting value that is
midway between them. It is considered the simplest
robust estimator.
(b)
 The second is the use of the trimmed mean. This is
the mean of the observations which remain after
eliminating a certain percentage (a) of the observa-
tions at each extreme of the distribution, and its
efficiency as an estimator is generally good. Another
method uses the winsorised mean, whereby instead
of eliminating the a percentage of observations
at each extreme they are replaced by the value of
the most extreme observation remaining in the
distribution.
(c)
 The third group comprises what are known as
robust means. Of these, the M-estimators based on
maximum-likelihood estimations are used in this
study. These involve the calculation of the values’
weighted mean in such a way that the weightings
decrease as the values move away from the centre of
the data set. These calculation methods are relatively
valid for distributions with a very high variance, and
statistically they are more efficient than the median
method, since they include the real values of the
observed samples in their calculations together with
any influences derived from them. Robust estimators
were introduced by Huber (1964) and developed by
Hampel (1968), who introduced the concept of the
influence function.
At the same time, each of the above methods provides
a specific point estimate for the distribution, and it is
crucial to provide the said estimator’s confidence
interval (CI) in order to discover the true measure of
central location for the population.

The bootstrap method can be used for this purpose.
This is a technique developed by Efron (1979, 1987), and
is now a commonly used resampling method. The
technique (Efron & Tibshirani, 1993) consists of a
simulation whereby a large number of samples B of size
n are removed from the same sample of size n, with the
replacement of the removed elements. In each of these
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simulated samples, the value of the statistic of interest is
calculated.

With this technique, conclusions on the population
from which the data have been obtained can be reached
by repeatedly sampling the said data. Each time a
bootstrap sample is extracted, a different estimate
results.

For example, if x=(x1,y,xn) represents the vector of
the data and Tn(x) represents the statistic to be
calculated, this method consists of extracting a
sufficiently large number of random samples with
replacements. The number of bootstrap samples to be
used varies according to the type of statistics to be
estimated. Each one of the samples is called a bootstrap
sample,

x� ¼ ðx�
1; x

�
2; . . . ;x

�
nÞ:

If x*1, x*2,y, x*B represents B bootstrap samples, the
values of the statistic under analysis Tn in each of them,
Tn(x

*1), Tn(x
*2),y, Tn(x

*B), are called bootstrap repli-
cations.

If Tn( � ) represents the estimated parameter, e.g. the
mean, then:

Tnð�Þ ¼
1

B

XB

b¼1

Tnðx
�bÞ:

Similarly, the bootstrap estimator of the sample error
can be calculated by using the following expression:

ŝeboot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB

b¼1
ðTnðx�bÞ � Tnð�ÞÞ

2

r
:

Thus, with the bootstrap method, the confidence
interval of the parameter estimated from the distribution
generated by the bootstrap replications of the said
parameter can be calculated.
1.1. Robust estimations of the mean using Huber’s M-

estimator

As commented above, in this type of study the
sample mean has a highly variable behaviour. Conse-
quently, the classic estimator that is normally used is not
appropriate, and so calculations must be based on
robust estimators. M-estimators use an iterative calcula-
tion process, whereby an estimate is obtained with
each iteration by weighting the observations according
to their distance from the core of the data set.
Huber’s estimator is an M-estimator possessing the
characteristics of robustness and efficiency. It has
a lineal C function in the centre and is constant at
the extremes, being the most efficient estimator of
those which limit their sensitivity to large errors.
Likewise, it reaches the maximum possible breakage
point.
The relative distance between each observation and
the centre of the distribution is expressed thus:

ui ¼
yi � T

s
;

where s is the normalised median absolute deviation
from the median (MADN), which is a robust measure-
ment of dispersion, defined as the median of the
absolute deviations from each observation to the
median and divided by 0.6745, and T, a measure of
central location (in the first iteration, the median).

The weighting function, which is dependent on a
single constant k, is expressed thus:

oðuiÞ ¼
1; juijpk;

k
ui

sgnðuiÞ; juij4k:

(

For weighting constant k the value 1.28 has been
used. This corresponds to the value of percentile 90 in a
normal standard distribution. As the weighting function
shows, Huber’s M-estimator only weights those ob-
servations situated at a relative distance from the centre
of the distribution with a value higher than constant k.
For observations closer to the centre, the original value
is retained.
2. Results

In order to ensure a clear description of the average
spending variable per person per day in the Balearic
Islands, we will now outline the results obtained for the
different robust techniques mentioned above.

2.1. Estimations of the median

For the original data set, the classic median (i.e.
quantile 50 of the data distribution) gave a figure of

M ¼ 8177:66:

This value has been criticised, as it uses very little
information contained in the data set, since only the
central value intervenes in its calculation, in the event of
an odd number of observations, or the two central
values, in the case of an even number of observations.
Table 2 shows the value of the Harrell–Davis estimator
of the median (Harrell & Davis, 1982). Unlike the classic
median value, this estimator uses all the observations,
weighting them according to a beta distribution.

Thus, the Harrell–Davis estimator is obtained from
the expression:

M ¼
Xn

i¼1

oiX ðiÞ;

where the weightings of the order statistics are
dependent on the cumulative probability of two possible
values for variable Y, which follows a beta distribution
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with parameters a=b=0.5(n+1)�1:

oi ¼ P
i � 1

n
pYp

i

n

� �
:

All measures of central location must be accompanied
by a coefficient of variation. A standard error estimator
(EE) for the median is the Maritz–Jarrett error
estimator (Maritz & Jarrett, 1978), which also uses
beta-weighted observations. It is expressed thus:

EEðMÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � C2

1

q
;

where

Ck ¼
Xn

i¼1

oiX
k
ðiÞ:

Finally, when a location is being described, an interval
estimation of the said coefficient is needed, providing a
certain degree of confidence that the value of the
corresponding parameter will actually fall within
the limits obtained. Thus, in Table 3 the 95% CI of
the Harrell–Davis median is provided, using the
Maritz–Jarrett standard error.

The similarity can be observed between the value of
the median achieved via classic methods (= 8177.66)
and that obtained by the Harrell–Davis technique
(= 8166.02).

Another way to obtain both the standard error of the
median and its 95% CI is to use bootstrap resampling
techniques, in this case B=100 bootstrap samples,
whose results are shown in Table 4.

In this case, it can be seen that the bootstrap standard
error of the median is slightly higher than the value of
the Maritz–Jarrett standard error. This implies that the
bootstrap CI is wider than the corresponding CI
obtained with Maritz–Jarrett procedures.
Table 3

HD estimation of the median, MJ standard error and its 95% CI

Harrell–Davis

estimator of the

median

Maritz-Jarrett

estimate of the

standard error of the

median

95% confidence

interval of the median

8166.02 69.98 8038.53–8312.85

Table 4

Bootstrap estimator of the standard error

Harrell–Davis

estimator of the

median

Bootstrap estimator

of the standard error

of the median

95% bootstrap

confidence interval

8166.02 72.99 8019.27–8312.76
2.2. The winsorised mean

One solution to the problem of widely differing values
is to winsorise the data. This entails replacing a
percentage of outlying values with the value immediately
prior to them. The winsorised mean is obtained by
winsorising a certain proportion of data (a) from each
end of the distribution:

W ðaÞ ¼
1

n

Xn

i¼1

X i;

where the winsorised values of the variable take the
following pattern:

X i ¼

X gþ1; i ¼ 1; . . . ; g;

X i; i ¼ gþ 1; . . . ; n � g;

X n�g; i ¼ n � g� 1; . . . ; n;

8><
>:

where g is the whole part of an.
The standard error of a winsorised mean is obtained

by calculating the square root of the variance in the
winsorised values:

EE W ðaÞ½ 
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½X i � W ðaÞ
2

n � 1

s

Table 5 shows the values of the winsorised mean for
different percentages of winsorised data, together with
the values of their associated standard errors.

The table shows how the value of the winsorised mean
drops as greater percentages of data are winsorised, due
to the distribution’s right-skewed shape. This means that
each time the data are winsorised, the variable’s high
values are winsorised, with the replacement of those
values that tended to increase the mean.

One problem with winsorised means is the high degree
of variability they entail (see the standard errors in
Table 5) due to the considerable accumulation of data at
the winsorised extremes.

2.3. The trimmed mean

Instead of winsorising the data, a more drastic
solution consists of eliminating the same percentage of
observations a from each end of the distribution and
obtaining the mean value of the remaining ones. This is
Table 5

Winsorised means

% Winsorised Winsorised mean Standard error

0.05 9145.42 5645.33

0.10 8867.79 4836.25

0.15 8663.49 4220.53

0.20 8492.20 3600.69

0.25 8401.66 3074.66

0.30 8324.75 2516.26
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Table 6

Trimmed means

% Trimmed Trimmed mean Effective sample size Standard error 95% confidence interval

0.05 8826.87 9162 62.18 8704.99–8948.74

0.10 8572.66 8144 59.92 8455.19–8690.12

0.15 8422.15 7126 59.76 8304.99–8539.30

0.20 8332.24 6108 59.48 8215.63–8448.85

0.25 8273.81 5090 60.95 8154.32–8393.31

0.30 8232.73 4072 62.35 8110.49–8354.98

Table 7

Bootstrap confidence interval for the trimmed mean

% Trimmed 95% bootstrap confidence interval for the

trimmed mean

0.05 8705.49–8951.83

0.10 8456.92–8690.71

0.15 8299.93–8538.11

0.20 8207.13–8448.67

0.25 8145.32–8391.63

0.30 8104.40–8352.48
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the trimmed mean, achieved using the following expres-
sion:

TðaÞ ¼
X gþ1 þ � � � þ X n�g�1

nð1 � 2aÞ
:

The standard error of a trimmed mean is obtained
using the standard error of the corresponding winsorised
mean, as follows:

EE TðaÞ½ 
 ¼
EE W ðaÞ½ 


ð1 � 2aÞ
ffiffiffi
n

p :

Table 6 shows the trimmed mean values of different
percentages of trimmed data. Each time the data are
trimmed, the new effective sample size, the standard
error of each trimmed mean and the 95% CI are all
shown.

As greater percentages of data are trimmed, the value
of the trimmed mean can be seen to fall, thanks to the
distribution’s right-skewed shape. This means that, with
each trim, what are eliminated are the variable’s high
values (i.e. the ones that inflated the value of the mean).

Table 6 shows that trimming the data eliminates the
variability problem we came across when they were
winsorised. As a result, the standard errors of the
trimmed means are small.

Using the bootstrap procedure with B=599 bootstrap
samples, the CI of a trimmed mean can be obtained.
Table 7 shows the 95% bootstrap CI for the trimmed
means of different percentages of trimmed data.

The 25% trimmed mean is called the midmean as it
represents the mean of the central 50% of the
observations. In our case, this midmean value is 8273.81.

The question users ask is: What percentage of
trimmed data should be used?

For a general guideline, we can look at Figs. 3a–d,
which provide the distributions of daily spending after
trimming 0%, 5%, 10%, and 15% of the data
respectively.

When the data are trimmed by 5% (Fig. 3b), it can be
observed that the shape of the distribution does not
change in comparison with the original (Fig. 3a), but it
can also be seen that there are still outlying values on the
right of the distribution. Consequently, the trimmed
mean will still be influenced by these values, which must
be removed.

When the data are trimmed by 10% (Fig. 3c), no
outliers can now be seen. As a result, the trimmed mean
will be resistant. Furthermore, the distribution of the
data still has a shape similar to the original one,
although it is trimmed on the right-hand side.

After trimming 15% of the data (Fig. 3d), it can be
seen that the resulting distribution has a very homo-
genous shape, meaning that too many values have been
removed from the distribution, causing it to lose its
original form.

From these graphs and their interpretations, we can
get an idea of the percentage of data that must be
trimmed if the estimator is to be resistant and not lose
relevant information. In our case, a 10% trim is the best
choice.

2.4. Huber’s M-estimator

The results for Huber’s M-estimator will now be
described. In the calculations, the normalised MAD has
been used as a robust measurement of dispersion:
MADN=5511.225.

Table 8 shows the value of the M-estimator. Likewise,
it also provides two estimates of the standard error of
the M-estimator. The first value was obtained by using
the influence function of the M-estimator, whilst the
second was obtained by using the bootstrap procedure
with B=100 bootstrap samples. Finally, the 95%
bootstrap confidence interval is provided for the value
of the M-estimator.
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Stem & Leaf

 0 . 00000000000006789&
 1 . 0123344556667788899 
 2 . 000111222334455556677788899 
 3 . 0000111122233334455556667778888999
 4 . 0000111122233344455556666777888999
 5 . 0000001112223333444455566677778888999 
 6 . 00000111222222333344444555666667778888999 
 7 . 000011112223334444555556667778888999
 8 . 00001112222333334445556667777888999 
 9 . 00000111222333344455556667788899
10 . 000000112233444555666777888999
11 . 001112222333444556667778899 
12 . 00011223344555566778899 
13 . 00112233345667789 
14 . 0012233456789 
15 . 00123456789 
16 . 01234566789 
17 . 01234579& 
18 . 012345677&
19 . 0236&&
20 . 0&&&& 
21 . 28&&& 
22 . 15&&
23 . 5&

 444,00 Extremes (>=23707) 

(a) 

Stem & Leaf

 1 . 56667788899 
 2 . 000111222334455556677788899 
 3 . 0000111122233334455556667778888999
 4 . 0000111122233344455556666777888999
 5 . 0000001112223333444455566677778888999 
 6 . 00000111222222333344444555666667778888999 
 7 . 000011112223334444555556667778888999
 8 . 00001112222333334445556667777888999 
 9 . 00000111222333344455556667788899
10 . 000000112233444555666777888999
11 . 001112222333444556667778899 
12 . 00011223344555566778899 
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14 . 0012233456789 
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(b) 

Stem & Leaf
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 6 . 00000111222222333344444555666667778888999 
 7 . 000011112223334444555556667778888999
 8 . 00001112222333334445556667777888999 
 9 . 00000111222333344455556667788899
10 . 000000112233444555666777888999
11 . 001112222333444556667778899 
12 . 00011223344555566778899 
13 . 00112233345667789 
14 . 0012233456789 
15 . 00123456789 
16 . 01234566789 
17 . 012345

(c) 

Stem & Leaf

 3 . 22333333334444455555556666667777777888888899999 
 4 . 000000001111111122222223333333444444555555555666666667777777888888899999
 5 . 0000000000001111122222233333333444444455555556666666777777788888888999999 
 6 . 000000000111111222222222222333333344444444455555566666666666777778888888899999
 7 . 0000000111111112222222333334444444455555555556666667777777888888888999999 
 8 . 00000000111111122222222333333333344444555555666666677777777888888899999 
 9 . 000000000111111222222333333334444445555555566666677778888889999 
10 . 0000000000011111222223333344444555555666666677777788888899999 
11 . 000001111112222222333333444444555566666677777888889999
12 . 000000111112222233334444555555556667777788888999
13 . 000011112222333333445556666777788899
14 . 00001122233334455666788899
15 . 0000111&

(d) 

Trimmed by 0% Trimmed by 5%

Trimmed by 15%Trimmed by 10%

Fig. 3. Trimmed by: (a) 0%; (b) 5%; (c) 10%; and (d) 15%.

Table 8

Huber’s M-estimator (k=1.28)

Huber’s M-estimator Standard error Bootstrap standard error 95% bootstrap confidence

interval

8557.28 59.42 61.34 8446.64–8658.47
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2.5. The one-step estimator

One problem with the trimmed mean is the fact
that the same proportion of observations is trimmed
from each end of the distribution of ordered values,
even if the outliers are only on one side of the
distribution.

One way of overcoming this drawback is to determine
empirically the percentage of data that must be trimmed
from each side of the distribution. This is precisely what
a one-step estimator does.

The one-step estimator used follows the methodology
of the Huber estimator, meaning that it eliminates those
observations that lie outside the thresholds �1.28 and
1.28: the value of Huber’s constant. It is this that then
determines the number of observations to be eliminated
from each end of the distribution.
This estimator is the result of the first iteration
of the M-estimator. Consequently, Huber’s one-step
estimator (Staudte & Sheather, 1990) is expressed
thus:

osHuber ¼
1:28 � ðMADNÞ � ði2 � i1Þ þ

Pn�i2
i¼i1þ1X ðiÞ

n � i1 � i2
;

where i1 and i2 represent the number of values to be
eliminated, as obtained below:

i1 represents the number of observations that complies
with ðX i � MÞ=MADNo� 1:28; and i2 the number
that complies with ðX i � MÞ=MADN41:28:

Table 9 shows the value of the one-step estimator for
the data set under analysis, together with its 95%
bootstrap confidence interval, calculated with B=399
bootstrap samples.
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Table 9

One-step estimator

Huber’s one-step estimator 95% bootstrap confidence interval

8557.00 8446.84–8658.33

Table 10

Central value estimation results, using different methods

Estimation of the central value

Sample mean 9719.32

Harrell–Davis median 8166.02

10% trimmed mean 8572.66

Midmean 8273.81

Huber’s M-estimator 8557.28

One-step estimator 8557.00

MEAN

MEDIAN

HUBER

1000095009000850080007500

Fig. 4. Confidence interval of the mean, median and Huber estimator.
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3. Conclusions

Clearly, if one is to obtain realistic information on a
variable like average spending per person per day, the
best-suited statistical tool must be chosen, since realistic
initiatives can only be implemented on the basis of
realistic results.

In a recent, as yet unpublished3 bibliometric study,
based on 12 relevant tourism journals covering the
period 1998–2002 and a total of 1790 articles, not one
single article was found that used robust or bootstrap
methods. This indicates the existence of a large gap in
tourism research, from the perspective of descriptions of
variables with an asymmetric behaviour, as always
occurs if, for example, a region’s tourism spending is
analysed.

As can be observed from the results achieved using
different mean parameter estimation methods, shown in
Table 10, there are serious discrepancies between the
result of the arithmetical mean and those of different
robust estimators, due to the influence of the data set’s
outlying values.

As seen previously, the median values obtained with
the classic method or the Harrell–Davis method are
practically the same, with a difference of 11.64 pesetas.
In turn, they are both very different from the value of
the arithmetical mean, showing a difference of 1550
pesetas in the estimation of average spending per person
per day. However, in the case of the median, because the
distribution is right-skewed, it gives a lower value than
the mean, tending to underestimate the distribution’s
measure of central location.

It can also be seen that the one-step estimator, based
on Huber’s methodology, is practically identical to
Huber’s M-estimator. It is also virtually the same as the
10% trimmed mean (the most appropriate trim for this
data set, as mentioned above). Compared to the
arithmetic mean, all these values show a difference of
about 1160 pesetas in the estimation of average daily
spending per person per day.

Thus, while all the robust estimators are relatively far
removed from the value given by the arithmetic mean,
with a difference of between 1445 (midmean) and 1162
(Huber) pesetas per day, when compared with the
median they show a difference of between 107 and 406
pesetas.
3Palmer, A., Sesé A., & Montaño J.J. (2004). Tourism and statistics:

bibliometric study 1998–2002. (currently being revised).
In summary, the arithmetic mean gives an excessively
high figure for tourist spending of 9719.32 pesetas, given
the positive skewness of the variable’s distribution. In a
situation such as this, another more realistic estimation
of spending must be found that is better adjusted to the
data set under analysis. This can be obtained by using
different robust estimators. In this case, the figure
obtained ranges somewhere between 8166.02 pesetas
(the median value) and 8572.66 pesetas (the value of the
10% trimmed mean, with a Huber’s M-estimator of
8557). This is between 12% and 16% less than the
spending figure given by the arithmetical mean.

Next to the value given by each estimator, it is also
important to provide the parameter’s confidence inter-
val. This can be obtained by classic methods or by the
bootstrap resampling technique.

Nowadays there are statistical programmes (S-Plus,
R) capable of using robust estimations and bootstrap
methods, as well as ready-made macros with all these
capacities. In addition, these platforms allow users to
create the statistical applications they require. Conse-
quently, these robust techniques can be used by any
researcher working in the field of tourism, and it is
hoped that the results of the study presented here
(obtained using the R statistical system) will help to
increase people’s awareness of their importance.

The difference between the arithmetic mean (normally
used as a distribution’s measure of central location), the
median (used typically for asymmetric distributions) and
Huber’s M-estimator (as an example of a robust
measurement) can clearly be seen in Fig. 4.
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The confidence interval for the mean
(9548.39–9890.25) provides a set of very high values
for average spending per person per day in the Balearic
Islands during the year 2001, whilst that of the median
(8019.27–8312.76) falls below the said values. Huber’s
confidence value (8446.64–8658.47) is situated some way
between them, overcoming the problems the two former
systems present and giving values that are more in line
with the reality.

As a numerical example, if one uses the arithmetic
mean as a measure of daily spending then for example,
the 10,178 tourists interviewed spent almost 99 million
pesetas per day, or 832 million pesetas if the median is
used. On the other hand, if one uses a robust
measurement of spending, like Huber’s M-estimator,
the more realistic conclusion is that 87 million pesetas
were spent per day. As illustrated, there is a difference of
plus 12 million pesetas daily expenditure, signifying a
difference of 12.1% between the more realistic spending
figure and the arithmetic mean, and a difference of
minus 3.8 million pesetas between the Huber and the
median. In assessing how relevant it is to use a carefully
selected, appropriate measure for estimating tourism
spending, this difference speaks for itself.

The final conclusion is that if there is asymmetry, a
good estimator method is Huber’s M-estimator, which
should be accompanied with its corresponding boot-
strap confidence interval.
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