
R

E
D

K
I
R
G
C
B

1

t
n
B
a
d
N
e
T
i
w

(
o
l
t
n
n
t
t
o
t
fl

m

0
h

Social Networks 35 (2013) 460– 469

Contents lists available at SciVerse ScienceDirect

Social  Networks

jo ur n al hom epa g e: www.elsev ier .com/ locate /socnet

esistance  distance,  closeness,  and  betweenness

nrico  Bozzo,  Massimo  Franceschet ∗

epartment of Mathematics and Computer Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy

a  r  t  i  c  l  e  i  n  f  o

eywords:
nformation
esistance distance
eodesic distance
loseness centrality
etweenness centrality

a  b  s  t  r  a  c  t

In  a  seminal  paper  Stephenson  and  Zelen  (1989)  rethought  centrality  in networks  proposing  an
information-theoretic  distance  measure  among  nodes  in  a  network.  The  suggested  information  distance
diverges  from  the  classical  geodesic  metric  since  it is  sensible  to  all  paths  (not  just  to  the  shortest  ones)
and it  diminishes  as  soon  as  there  are  more  routes  between  a  pair  of  nodes.  Interestingly,  information
distance  has  a  clear interpretation  in  electrical  network  theory  that  was  missed  by  the  proposing  authors.

When  a  fixed  resistor  is  imagined  on  each  edge  of  the  graph,  information  distance,  known  as  resistance
distance  in  this  context,  corresponds  to the  effective  resistance  between  two  nodes  when  a  battery  is
connected  across  them.  Here,  we review  resistance  distance,  showing  once  again,  with  a  simple  proof,
that  it  matches  information  distance.  Hence,  we interpret  both  current-flow  closeness  and  current-flow
betweenness  centrality  in  terms  of  resistance  distance.  We  show  that  this  interpretation  has  semantic,
theoretical,  and  computational  benefits.
. Introduction

A large volume of research on networks has been devoted to
he concept of centrality, in particular closeness and between-
ess centrality measures. Historical references are Shimbel (1953),
eauchamp (1965), Sabidussi (1966) and Freeman (1977), which
re all based on early intuitions of Bavelas (1948). An up-to-
ate account on centrality measures on networks is Chapter 7 of
ewman (2010). Typically, geodesic (shortest) paths are consid-
red in the definition of both closeness and betweenness centrality.
hese are optimal paths with the lowest number of edges or,
f the graph is weighted, paths with the smallest sum of edge

eights.
The use of shortest path has, however, some drawbacks

Newman, 2005). In many cases, shortest paths form a small subset
f all paths between two nodes; it follows that paths even slightly
onger than the shortest one are not considered at all in the defini-
ion of centrality. Furthermore, the geodesic distance between two
odes – the length of the shortest path between the nodes – does
ot consider the actual number of (shortest) paths that lie among
he two vertices: two nodes that are separated by a single path have
he same distance of two nodes that are separated by many paths

f the same length. In many applications, however, paths longer
han geodesic ones are also relevant, since information or whatever
ows on the networks does not necessarily choose an optimal path.
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E-mail addresses: enrico.bozzo@uniud.it (E. Bozzo),
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In a social network, for instance, a fad does not know the optimal
route to move among actors, but it simply wanders around more
or less randomly. Moreover, nodes separated by many pathways
are often perceived closer than nodes separated by few pathways,
even if the paths have all the same length. This because commu-
nication between nodes is typically enhanced as soon as more
routes are possible (Stephenson and Zelen, 1989; Klein and Randić,
1993).

To overcome these limitations, alternative notions of closeness
and betweenness that are not based on the notion of short-
est path, or on that of optimal path is some other sense, have
been proposed, independently, by Newman (2005) and Brandes
and Fleischer (2005). These alternative centrality measures can
be explained both in terms of electric current flowing trough a
resistor network or using the notion of random walk through the
graph. In this work we use the current-flow analogy and hence we
refer to these measures as current-flow closeness and current-flow
betweenness. The idea is to view a network as a resistor network in
which the edges are resistors and the nodes are junctions between
resistors. Each edge is possibly assigned with a positive weight
indicating the conductance (the reciprocal of the resistance) of the
edge. Hence, the distance between two nodes i and j is defined
as the potential difference of nodes i and j when a unit of cur-
rent is injected in source i and removed from target j; since the
current is equal to unity, the potential difference is also the effec-
tive resistance between nodes i and j. A high resistance (potential

difference) between nodes indicates that the two  nodes are far
away, while low resistance between nodes means that the nodes
are close points. Current-flow closeness centrality of a node is
defined as the reciprocal of the mean distance of the node from

dx.doi.org/10.1016/j.socnet.2013.05.003
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:enrico.bozzo@uniud.it
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Since G is symmetric it has real eigenvalues. Moreover, all rows
of G sum to 0, that is Ge = 0, where e is a vector of all ones. Hence 0
is an eigenvalue of G, having the vector e as associated eigenvector.
It can be shown, see for example (Ghosh et al., 2008), that the other

1 Paul Erdős was  an eccentric Hungarian mathematician who is currently the most
prolific and the most collaborative among mathematicians. He wrote more than
E. Bozzo, M. Franceschet / So

he other nodes of the network: a low average distance means
igh centrality, while nodes with a high average distance have low
entrality (Brandes and Fleischer, 2005). Both Newman (2005) and
randes and Fleischer (2005) propose also a current-flow version
f betweenness centrality. For a given node, current-flow between-
ess measures the current flow that passes through the vertex
hen a unit of current is injected in a source node and removed

rom a target node, averaged over all source–target pairs. Further-
ore, they provide effective algorithms to compute current-flow

entrality measures.
Current-flow closeness and betweenness are strongly related

o an interesting, but, to our assessment, underestimated, notion
f distance on graphs, known as resistance distance. It is defined,
ndependently, by Stephenson and Zelen (1989), following an
nformation-theoretic approach, and by Klein and Randić  (1993),
ollowing an electrical-theoretic approach. In this paper we exten-
ively review, with the aid of many examples, the notion of
esistance distance, comparing it with the alternative notion of
hortest-path distance. We  then interpret both current-flow close-
ess and betweenness centrality in terms of resistance distance,
hat is, we rewrite the formulas that define these centrality meas-
res in terms of the resistance distance matrix. This interpretation
as some advantages. Semantically, it provides an alternative inter-
retation to current-flow centrality measures, in particular to
etweenness centrality. Computationally, it allows to compute, or
o approximate, both centrality measures in terms of the same
esistance distance matrix. Mathematically, given the deep the-
retical understanding of resistance distance, it allows to prove
ew statements, or to demonstrate old theorems in a shorter
nd simpler way, about current-flow closeness and between-
ess.

The outline of the paper is as follows. In Section 2 we review the
elated literature. In Section 3 we recall the notions of graph Lapla-
ian and of its generalized inverse, which are the building blocks
o define resistance distance. The notions of resistor networks and
esistance distance are reviewed in Section 4. In Sections 5 and

 we interpret current-flow measures in terms of resistance dis-
ance, highlighting the semantic, computational, and mathematical
enefits of this approach. We  draw our conclusions in Section
.

. Related work

The notion of information centrality has been originally defined
y Stephenson and Zelen (1989) using an information-theoretic
pproach, while resistance distance was proposed by Klein and
andić (1993) in an electrical-theoretic context. As shown by
randes and Fleischer (2005) and also later in this paper, these two
otions are intimately connected.

The notion of information centrality has been reviewed in
orgatti (2005), Brandes and Erlebach (2005) and Borgatti and
verett (2006). The most thorough mathematical study about resis-
ance distance is provided by Ghosh et al. (2008). The authors
how that the resistance distance notion satisfies many interesting
athematical properties and it has different intriguing interpre-

ations. For instance, resistance distance is a metric on the graph
nd in particular the resistance distance matrix is an Euclidean
istance matrix. Furthermore, the resistance distance is a mono-
one decreasing function as well as a convex function of the edge
eight (conductance) vector of the graph. Resistance distance has

n easy interpretation in terms of random walks on graphs. The

esistance distance between nodes i and j of a graph is propor-
ional to the average commute time of nodes i and j of the Markov
hain defined by the graph, which is the average number of steps
t takes to return to node i for the first time after starting from i
etworks 35 (2013) 460– 469 461

and passing through j. Curiously, resistance distance has been also
used in the context of bibliometrics to express a rational version
of the popular Erdős number, a measure of collaboration distance
from mathematician Paul Erdős1(Erdős, 1972; Balaban and Klein,
2002).

Brandes and Fleischer (2005) define the notions of current-
flow closeness and betweenness centrality using resistor networks
and show that current-flow closeness centrality corresponds to
information centrality. Independently, Newman (2005) defines
current-flow betweenness centrality using both random walks
and resistor networks and shows that the two approaches corre-
spond. Both papers propose effective methods to compute the exact
value of current-flow centrality measures. Bozzo and Franceschet
(2012) devise methods for finding approximations of the general-
ized inverse of the graph Laplacian matrix, which arises in many
graph-theoretic applications. In particular, they apply the devised
methods to the problem of approximating current-flow between-
ness centrality on a graph and experimentally demonstrate that the
approximations are both efficient and effective. In fact, the notion
of (edge) current-flow betweenness centrality can be found already
in Newman and Girvan (2004), where the authors propose and
study a set of algorithms for discovering community structure in
networks based on the idea of interactively removing edges with
high betweenness scores.

Noh and Rieger (2004) investigate random walks on com-
plex networks and derive an exact expression for the mean
first passage time between two  nodes. Moreover, they intro-
duce the notion of random walk centrality, which determines the
relative speed by which a node can receive information from else-
where in the network. The defined measure bears some similarity
to current-flow closeness centrality (and hence to information
centrality)2.

Finally, it is worth noticing that current-flow betweenness
(Brandes and Fleischer, 2005; Newman, 2005) is intrinsically dif-
ferent from the notion of flow betweenness defined by Freeman
et al. (1991). Indeed, current-flow betweenness considers all
paths between nodes, while flow betweenness counts only edge-
independent paths between nodes.

3. The graph Laplacian and its generalized inverse

Let G = (V, E, w) be an undirected weighted graph with V the
set of nodes, E the set of edges, and w a vector such that wi > 0 is
the positive weight of edge i, for i = 1, . . .,  |E|. We  denote by n the
number of nodes and m the number of edges of the graph. We  will
assume throughout the paper that the graph G is connected.

The weighted Laplacian of graph G is the symmetric matrix

G = D − A,

where A is the weighted adjacency matrix of the graph and where
D is a diagonal matrix such that the i-th element of the diagonal
is equal to

∑
jAi,j, that is, the (generalized) degree of node i. An

example is shown in Fig. 1.
1400 papers cooperating with more than 500 co-authors.
2 We conjecture that random walk centrality and current-flow centrality are, in

general, different measures, and they coincide for the class of graphs such that all
nodes have the same (generalized) degree (in the unweighted case, these graphs are
called regular).
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the current flow through edge (i, j) is the quantity Ai,j(v
(s,t) − v(s,t)),
ig. 1. A network and its Laplacian matrix. Edge weights are all equal to 1. Nodes
re  labelled with their degree (the number of incident edges).

igenvalues are positive so that, if we denote them with �i, for i = 1,
 . .,  n, they can be sorted as follows:

 = �1 < �2 ≤ . . . ≤ �n.

Having 0 as an eigenvalue, G is singular and cannot be inverted.
s a substitute for the inverse we use the Moore–Penrose gener-
lized inverse of G, that we simply call generalized inverse of G
Ben-Israel and Greville, 2003). As customary, we denote this kind
f generalized inverse with G+. It is convenient to define G+ starting
rom the spectral decomposition of G. Given a vector v, the square
iagonal matrix whose diagonal entries are the elements of v is
enoted with Diag(v). Actually, since G is symmetric it admits the
pectral decomposition

 = V�VT ,

here � = Diag(0, �2, . . .,  �n) and VVT = I = VTV. The columns of V
re eigenvectors of G normalized in a such a way their length is
ne. In particular the first column of V is e/

√
n. By using the spec-

ral decomposition of G, its generalized inverse can be defined as
ollows

+ = VDiag(0,
1

�2
, . . . ,

1
�n

)VT . (1)

hus G+ is also symmetric and it has 0 as eigenvalue associated
ith the eigenvector e. The eigenvalues of G+ different from the

mallest one are the reciprocal of the eigenvalues of G. Since
e = 0 = G+e by using the symmetry of the two matrices it follows

hat eTG = 0T = eTG+. If we set J = eeT, that is J is a matrix of all ones
hen
J = JG = G+J = JG+ = O, (2)
etworks 35 (2013) 460– 469

where O is a matrix of all zeros. Moreover, from the definitions it
follows that

GG+ = G+G = I − 1
n

J. (3)

and that

G+ =
(

G + 1
n

J
)−1

− 1
n

J, (4)

a formula that can be found in Ghosh et al. (2008) and is used implic-
itly in Brandes and Fleischer (2005). Hence, the generalized inverse
G+ of G can be obtained by inverting a suitable perturbed version
of G and then subtracting the perturbation.

The generalized inverse of the graph Laplacian G is particularly
useful to represent the solution of a linear system of the form Gv = b
for some known vector b. It can be shown that the system has solu-
tions if b sums up to zero, and if this is the case v∗ = G+b is a solution.
Any other solution of the system can be obtained by adding to v∗ a
multiple of e. Since Jv* = JG+b = 0, the entries of v∗ sum up to zero as
well, and this characterizes v∗ in the set of solutions. For the sake
of completeness we mention that in the case where b does not sum
up to zero then the system Gv = b has no solution. However in this
case v∗ = G+b can be shown to minimize the length of the residual
b − Gv*.

4. Resistance distance

In this section we  first introduce resistor networks, which are
functional to the definition of resistance distance. We  then survey
the notion of resistance distance, illustrating some of its interesting
mathematical properties with the aid of some examples. In par-
ticular, we introduce and discuss the notion of mean resistance
distance between nodes in a network, a measure of the largeness
of a network in terms of resistance distance.

4.1. Resistor networks

Consider a network in which the edges are resistors and the
nodes are junctions between resistors. Each edge is possibly
assigned with a positive weight indicating the conductance of the
edge. The resistance of an edge is the inverse of its conductance.
Outlets are particular nodes where current enters and leaves the
network. A vector u called supply defines them: a node i such that
ui /= 0 is an outlet; in particular if ui > 0 then node i is a source and
current enters the network through it, while if ui < 0 then node i is a
target and current leaves the network through it. Since there should
be as much current entering the network as leaving it, we have that∑

iui = 0. We  consider the case where a unit of current enters the
network at a single source s and leaves it at a single target t. That
is, u(s,t)

i
= 0 for i /= s, t, u(s,t)

s = 1, and u(s,t)
t = −1. We are interested

in how current flows through the network, for an arbitrary choice
of source and target outlets.

Let v(s,t)
i

be the potential of node i, measured relative to any
convenient reference potential, for source s and target t outlets.
Kirchhoff’s law of current conservation states that the current that
enters in a node is equal to the current that flows out. This implies
that the node potentials satisfy the following equation for every
node i:∑

j

Ai,j(v
(s,t)
i

− v(s,t)
j

) = u(s,t)
i

, (5)

where A is the weighted adjacency matrix of the network. Actually,
i j

that is, the difference of potentials between the involved nodes
multiplied by the conductance of the edge: a positive value indi-
cates that the current flows in a direction (say from i to j), and
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A
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0.3

C
0.23

D
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E
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F
0.03

G
−0.37

H
−1.37

A B C D E F G H
A 0.50 0.07 0.06 −0.06 −0.07 −0.09 −0.14 −0.26
B 0.07 0.27 −0.01 −0.13 0.09 0.04 −0.11 −0.23
C 0.06 −0.01 0.25 0.13 −0.11 −0.10 −0.05 −0.17
D −0.06 −0.13 0.13 1.00 −0.24 −0.22 −0.17 −0.30
E −0.07 0.09 −0.11 −0.24 0.55 0.14 −0.11 −0.24
F −0.09 0.04 −0.10 −0.22 0.14 0.35 0.00 −0.12
G −0.14 −0.11 −0.05 −0.17 −0.11 0.00 0.35 0.23
H −0.26 −0.23 −0.17 −0.30 −0.24 −0.12 0.23 1.10

Fig. 2. A resistor network with all resistances equal to unity. Each node is identified with a letter and is labelled with the value of its potential when a unit current is injected
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n  node A and removed from node H. Each edge is labelled with the absolute curr
olumns A and H of the generalized inverse matrix of the Laplacian of the network, w
f  two  digits.

egative value means that the current flows in the opposite direc-
ion. It is interesting to observe that, if i /= s, t then Eq. (5) can be
ewritten as

(s,t)
i

=
∑

jAi,jv
(s,t)
j∑

jAi,j
,

o that the potential of a non-outlet node is the weighted mean
f the potential of its neighbors. This implies that the potential of

 non-outlet lies between the minimum and the maximum of the
otential of its neighbors.

In matrix form, Eq. (5) reads:

D − A)v(s,t) = Gv(s,t) = u(s,t). (6)

Recall that G = D − A is the graph Laplacian matrix. As noticed
n Section 3, if G+ is the Moore–Penrose generalized inverse of the
aplacian matrix G, then a solution of Eq. (6) is given by:

(s,t) = G+u(s,t). (7)

his means that the potential of node i with respect to source s and
arget t outlets is given by:

(s,t)
i

= G+
i,s

− G+
i,t

. (8)

Therefore, the generalized inverse matrix G+ contains informa-
ion to compute all node potentials for any pair of source–target
odes.

An example of resistor network with node potential solution is
rovided in Fig. 2. Notice that Kirchhoff’s law is satisfied for each
ode. For instance, the current entering in node B is 0.47 (from
ode A) which equals the current leaving node B, which is again

.47 (0.13 to E, 0.27 to F, and 0.07 to C). Moreover, the current

eaving the source node A is 1, and the current entering the target
ode H is also 1. Notice that there is no current on the edge from C
o D, since both nodes have the same potential. Moreover, observe
wing on it. Each node potential can be obtained as difference between entries of
is shown below the network. Notice that all values are approximated with precision

that the potential of non-outlets is the mean of the potential of their
neighbors. The effective resistance between A and H is the potential
difference between A and H, which is 2.14. We  will see briefly that
this can be considered as a (resistance) distance between nodes A
and H. Any other potential vector obtained from the given solution
by adding a constant is also a solution, since the potential differ-
ences remain the same, and hence Kirchhoff’s law is satisfied. The
given potential vector is, however, such that its entries sum up to
zero.

4.2. Resistance distance

Typically, distance on graphs is defined in terms of the length
(or weight) of the geodesic – the shortest path – between two
nodes. This distance, which is in fact a metric on the graph, is called
geodesic or shortest-path distance. Geodesic distance, however,
has a couple of drawbacks: (i) paths longer than the shortest one
give no contribution to the measure, and (ii) the number of paths
lying between two  nodes is irrelevant. An alternative notion of dis-
tance that takes account of these issues is defined, independently,
by Stephenson and Zelen (1989) and by Klein and Randić (1993).
The new distance, which is called resistance distance in Klein and
Randić (1993), has the following characteristics:

• Multiple paths. The existence of multiple paths between two
nodes reduces the distance: two  nodes separated by many paths
are closer than two  nodes separated by fewer paths of the same
length. Using an information-theoretic perspective (Stephenson
and Zelen, 1989), the information contained in many paths is
higher of the information contained in fewer ones, and commu-

nication is enhanced among more informative channels. Using
a current flow analogy (Klein and Randić, 1993), many resistors
in parallel offer less effective resistance than fewer resistors in
parallel;
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Fig. 3. Four graphs with increasing dens

Path redundancy. Two nodes separated by a set of edge-
independent paths – paths that taken in pairs do not share edges
– are closer than two nodes divided by redundant paths – paths
that taken in pairs share some edges. In a way, highly redundant
paths are closer to a single route, while edge-independent paths
are actually different routes;
Path length. Two nodes separated by a shorter path – a path
with less edges – are closer than two nodes set apart by a longer
path. In terms of information, the noise along a longer route is
higher, hence information is lower, and communication is hin-
dered (Stephenson and Zelen, 1989). Similarly, the resistance of
a long series of resistors is higher than that of a short chain of
resistors (Klein and Randić,  1993).

These characteristics are effectively illustrated in Fig. 3, where
our graphs A, B, C, and D, with increasing densities, are depicted.
otice that the first graph A is a acyclic (it is a tree), hence each
air of nodes is connected by exactly one path, while the last graph

 is complete, thus each pair of nodes is connected by an edge.
he corresponding resistance distance matrices are given below the
raphs. In the acyclic case, graph A, geodesic distance and resistance
istance correspond. In graph B, nodes 1 and 3 are separated by two
aths of length 2. The geodesic distance between them remains 2 as

n graph A, but the resistance distance reduces to 1. Similarly, nodes
 and 2 are separated by two paths of lengths 1 and 3: their geodesic
istance is 1, and their resistance distance is 0.75. In graph C, nodes

 and 3 are reachable via three edge-disjoint paths of lengths 1,

, and 2. Their resistance distance still decreases to 0.5, while the
eodesic distance is 1. Nodes 1 and 2 are now reachable via three
aths of lengths 1, 2 and 3, two of them share an edge. Their resis-
ance distance is 0.625, a bit larger than the equivalent distance for
nd the corresponding distance matrices.

nodes 1 and 3, and still smaller than their geodesic distance of 1.
Finally, in the complete graph D, all pairs of nodes are reachable
via five paths of length 1, 2, 2, 3, and 3, which however share some
edges. The resistance distance is equal to 0.5 and the geodesic dis-
tance is equal to 1 for each pair of nodes. Notice that this distance
is exactly that of nodes 1 and 3 in graph C, which are reachable via
three edge-disjoint paths of lengths 1, 2, and 2: the larger num-
ber of paths among two  nodes in graph D is balanced by the larger
redundancy of these paths.

An interesting property of the resistance distance, which is
useful to illuminate its meaning, is that, given any undirected,
unweighted, and connected graph with n nodes, the sum of resis-
tance distances between pairs of nodes connected by an edge is
n − 1, independently of the number of edges of the graph (we
assume here that each pair defining an undirected edge is consid-
ered only once in the sum) (Klein and Randić,  1993). Notice that,
the geodesic distance of two  nodes connected by an edge is 1, and
hence the sum of geodesic distances on a graph is the number of
edges of the graph. If, for instance, the graph is acyclic, hence it is
a tree, then resistance and geodesic distances are the same. This
because in a tree there is a unique path between any two nodes,
and the resistance distance for two  nodes is the length of this path,
that is, the geodesic distance. Since a tree of n nodes has n − 1 edges,
we have that the sum of distances on edges is the number of edges,
that is n − 1. However, the presence of cycles in the graph reduces
the resistance distances in comparison with the geodesic counter-
parts, since, in general, more paths are available between pairs of

nodes when loops are introduced in the graph. For a graph with the
maximum number of cycles, a complete graph in which any pair
of nodes is linked by an edge, each of the n(n − 1)/2 pairs of nodes
linked by an edge are distant 2/n  in the resistance case, which is
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ess than their geodesic distance of 1 as soon as n > 2. Notice that
he sum of resistance distances on edges is again n − 1. In summary,
he denser the graph, the more paths there are between nodes, and
he smaller is resistance distance compared to geodesic distance.
his can be seen on the sequence of graphs of increasing density
epicted in Fig. 3.

Finally, we provide the formal definition of resistance distance.
e view a network as a resistor network as described in Section

.1. Given nodes i and j, the resistance distance Ri,j between i and
 is the effective resistance between i and j, that is, the potential
ifference of nodes i and j when a unit of current is injected from
ource i and removed from target j:

i,j = v(i,j)
i

− v(i,j)
j

. (9)

he matrix R whose entries are Ri,j is the resistance distance matrix.
t is useful to express resistance distance in terms of the elements of
he generalized inverse matrix of the Laplacian of the graph. Recall
hat, from Eq. (8), the potential of node i with respect to source s
nd target t is given by v(s,t)

i
= G+

i,s
− G+

i,t
. Therefore, we  have that:

i,j = v(i,j)
i

− v(i,j)
j

= (G+
i,i

− G+
i,j

) − (G+
j,i

− G+
j,j

) = G+
i,i

+ G+
j,j

− 2G+
i,j

.

(10)

n matrix form, we have that:

 = e diag(G+)T + diag(G+)eT − 2G+, (11)

here e is a vector with all components equal to 1, and diag(G+) is
he diagonal of matrix G+.

.3. Average resistance distance of a network

One property of large-scale networks that is frequently inves-
igated is the average geodesic (shortest-path) distance between
airs of nodes in the network. One of the most discussed net-
ork phenomena is the small-world effect: in most real network the

ypical geodesic distance is surprisingly short, in particular when
ompared with the number of nodes of the network. This result, in
he context of social networks, is the origin of the idea of the six
egrees of separation, the popular belief that there are only about
ix steps between any two people in the world (Milgram, 1967),
nd even less (four) on online social networks such as Facebook
Backstrom et al., 2012). One might find interesting to investigate
he average distance between nodes in a network in terms of resis-
ance distance:

 = 1
n2

∑
i,j

Ri,j. (12)

otice that, by Eq. (2), the elements of G+ sum to 0. Exploiting this
bservation and Eq. (10) we have:

 = 1
n2

∑
i,j

Ri,j = 1
n2

∑
i,j

(G+
i,i

+ G+
j,j

− 2G+
i,j

)

= 1
n2

2 n Tr(G+) = 2
n

Tr(G+).

But the trace of a matrix is the sum of its eigenvalues, and the
igenvalues of the generalized inverse G+ are 0 and 1/�i, for i = 2,

 . .,  n, where �i are the eigenvalues of the Laplacian G. It follows

hat:

 = 2
n

n∑
i=2

1
�i

.
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Hence the typical resistance distance between two nodes in a net-
work is proportional to the arithmetic mean of the eigenvalues of
G+, which is the reciprocal of the harmonic mean of the eigenvalues
of G. Recall that �2, the second smallest eigenvalue of the Lapla-
cian, is known as the algebraic connectivity of the network and it
is a measure of how easily a network can be divided into two dis-
connected components: the closer �2 to 0, the easier the network
can be divided (in particular, if �2 = 0, then the network is not con-
nected). However, if �2 is close to 0, then 1/�2 is much larger than 0,
and hence the average resistance distance is also large. Reasonably,
networks that are easily separable are networks with large average
(resistance) distances among nodes.

In general, the typical resistance distance of a network is mainly
determined by the magnitude of the small eigenvalues of G, which
correspond to the large eigenvalues of G+. Zhan et al. (2010) showed
that, for many network models including scale-free networks, there
are strict similarities between the Laplacian eigenvalue distribution
and the node degree distribution. Since the distribution of node
degrees in a scale-free network is a power law, the same long-tailed
distribution is expected for the Laplacian eigenvalues of a scale-free
network. This means that most of the eigenvalues of the Laplacian
have small values (the trivial many), and a significant few of them
have very large values (the vital few). Interestingly, the magnitude
of the typical resistance distance of a network is mainly determined
by the trivial many eigenvalues of the Laplacian.

5. Current-flow closeness centrality

Closeness measures the mean distance from a node to other
nodes of the network. A central node with respect to this measure
is a vertex that is separated from others by only a short distance
on average. Such a vertex might have better access to information
(or to whatever else flows on the network) at other nodes or more
direct influence on other nodes. For instance, in a social network,
the opinions of a central actor might reach others in the commu-
nity more quickly and, similarly, the viewpoints of the community
actors might arrive earlier to the central actor.

The definition of closeness is parametric in terms of that of
distance among nodes. Current-flow closeness centrality uses the
notion of resistance distance discussed in Section 4.2. Hence, given
two  nodes i and j, the distance between them is the resistance dis-
tance Ri,j. The mean distance di of node i from the other nodes is
then defined by:

di =
∑

jRi,j

n
, (13)

and current-flow closeness centrality for node i is:

ci = 1
di

= n∑
jRi,j

. (14)

The lower the distances from a node to the other nodes, the
higher the centrality of than node. Using Eq. (10) to express the
resistance distance in terms of the generalized inverse of the Lapla-
cian, we  have that the sum of all distances from node i is equal
to:∑

j

Ri,j = nG+
i,i

+ Tr(G+) − 2
∑

j

G+
i,j

= nG+
i,i

+ Tr(G+). (15)

In the above equality we  have used the fact that all rows of the
generalized inverse G+ sum to 0 (Eq. (2)). It follows that the mean
distance of node i is given by:
di = G+
i,i

+ Tr(G+)
n

= G+
i,i

+ ı

2
, (16)

where we recall from Section 4.3 that ı = 2Tr(G+)/n is the mean resis-
tance distance of the network. The above formulation of the average
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istance di of a node in a network is interesting since it distinguishes
wo contributions: a node-level component G+

i,i
, which indicates

ow close node i is within the given network, and a network-level
omponent proportional to ı, which is symptomatic of how large
s the network overall, independently of the particular node i.

Eq. (16) turns out to be useful to provide a precise interpreta-
ion of the elements of the generalized inverse G+ of the Laplacian

atrix. The diagonal element G+
i,i

tells us about how close is node i,
n terms of resistance distance, with respect to the rest of the graph.

hat about the off-label elements G+
i,j

? From Eq. (10) we  have that:

i,j = G+
i,i

+ G+
j,j

− 2G+
i,j

≥ 0.

It follows that G+
i,j

tells us something about the resistance prox-
mity of nodes i and j: it is high (in particular positive) when the
odes i and j are close (their resistance distance is low), it is low (in
articular negative) when they are distant (their resistance distance

s high). See Fig. 2 for an example.
It is worth noticing that only the diagonal of matrix G+ is nec-

ssary to compute all closeness centrality scores. By virtue of Eq. 4,
he diagonal of G+ can be obtained by computing the diagonal of the
nverse of a perturbed Laplacian matrix. The problem of computing
he diagonal of the inverse of a matrix is well studied in the liter-
ture; for an up to date overview see Tang and Saad (2012). One
f the most promising approaches, in our view, is the use of Gauss
uadrature formulas in order to obtain lower and upper bounds on
he sought diagonal entries (Golub and Meurant, 2010).

We  next show that the notion of information centrality
roposed by Stephenson and Zelen (1989) is exactly that of current-
ow closeness defined above. To be sure, this has been already
hown by Brandes and Fleischer (2005), but, we think, using a
onger and harder proof. Stephenson and Zelen (1989) define the
nformation between nodes i and j as:

i,j = 1
Ci,i + Cj,j − 2Ci,j

, (17)

here C = (G + J)−1, with G the Laplacian of the graph and J a matrix
aving all elements unity. Furthermore, they define the information
entrality Ii of node i as the harmonic mean of information between

 and other nodes in the network:

i = n∑ . (18)

j1/Ii,j

heorem 1. Information centrality is the same as current-flow close-
ess centrality.

Current−flow  closeness Sh 

ig. 4. A dolphin social network. The size of the nodes is proportional to the current-flow
f  the node. Black nodes are the top-3 leaders of the closeness rankings (only one is share
etworks 35 (2013) 460– 469

Proof. We have to show that, for each node i of a graph, informa-
tion centrality Ii defined by Eq. (18) equals current-flow closeness
centrality ci defined by Eq. (14). To this end, we prove that
Ri,j = Ci,i + Cj,j − 2Ci,j, that is Ii,j = 1/Ri,j, from which the thesis follows
by definition of information centrality and current-flow closeness
centrality.

By virtue of Eq. (10) we  know that Ri,j = G+
i,i

+ G+
j,j

− 2G+
i,j

. Since,
as we are going to prove below, matrices C and G+ differ by a con-
stant matrix, and this constant cancels in the sum G+

i,i
+ G+

j,j
− 2G+

i,j
,

then we  have that Ri,j = Ci,i + Cj,j − 2Ci,j. To see that matrices C and G+

differ by a constant, we  show that C = G+ + 1/n2J, hence C − G+ is the
constant matrix with elements equal to 1/n2. Using Eqs. (2) and (3),
we  have:

(G+ + 1/n2J)(G + J) = I − 1/nJ + O + O + 1/nJ = I,

and hence G+ + 1/n2J = (G + J)−1 = C.
�

We conclude this section by computing closeness centrality on
a real network. The instance is a social network of dolphins (Tur-
siops truncatus) belonging to a community that lives in the fjord
of Doubtful Sound in New Zealand. The unusual conditions of this
fjord, with relatively cool water and a layer of fresh water on the
surface, have limited the departure of dolphins and the arrival of
new individuals in the group, facilitating a strong social relation-
ship within the dolphin community. The network is an undirected
unweighted graph containing 62 dolphins and 159 non-directional
connections between pairs of dolphins. Two dolphins are joined by
an edge if, during the observation period lasted from 1994 to 2001,
they were spotted together more often than expected by chance.
This network has been extensively studied by David Lusseau and
co-authors, for instance see (Lusseau and Newman, 2004).

Fig. 4 depicts the dolphin social network where the size of the
node is proportional to its current-flow closeness (graph on the
left) or to its shortest-path closeness (graph on the right). The net-
work can be broadly divided into two communities of different
size, linked by a bridge of nodes. Each community is composed
of a cluster of densely interconnected nodes and a periphery of
more isolated nodes. As expected, both types of closeness give
more importance to nodes in the core of the communities with
respect to the peripheral ones. Furthermore, nodes lying in the
bridge between the two communities are also central. However,

there are also differences between the rankings corresponding to
the two  notions of closeness, as witnessed by the following basic
statistics. The top-3 rankings according to the two  closeness meas-
ures share only one dolphin, and the top-10 share 6 dolphins (but

ortest−path  closeness

 closeness (graph on the left) or to the shortest-path closeness (graph on the right)
d).
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to H go through F and these paths are generally longer than for G),
and the flow through E is 0.13 (a proper subset of the paths from A
to H go through E and these paths are generally longer than for F).
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ig. 5. A network with two clear communities linked together by a closed triad of
hile  in the graph on the right with their shortest-path betweenness (in this calcul

nly one with the same rank). The mean change of rank between the
wo entire rankings is 6.4 (10% of the ranking length), with a maxi-

um  rank change of 27. Only 4 dolphins maintain the same rank in
he two compilations. The Pearson correlation coefficient between
he two rankings is 0.88, and the association between current-flow
loseness and node degree (0.89) is higher than the association
etween shortest-path closeness and node degree (0.71).

. Current-flow betweenness centrality

Betweenness measures the extent to which a node lies on paths
etween other nodes. Nodes with high betweenness might have
onsiderable influence within a network by virtue of their con-
rol over information (or over whatever else flows on the network)
assing between others. They are also the ones whose removal from
he network will most disrupt communications between other ver-
ices because they lie on the largest number of paths between other
odes.

Typically, only geodesic paths are considered in the defini-
ion, obtaining a measure that is called shortest-path betweenness.
ere, we study current-flow betweenness, which includes contrib-
tions of all paths, although longer paths give a lesser contribution
Newman, 2005; Brandes and Fleischer, 2005). For a given node,
urrent-flow betweenness measures the current flow that passes
hrough the vertex when a unit of current is injected in a
ource node and removed from a target node, averaged over all
ource–target pairs. Equivalently, it is equal to the number of times
hat a random walk starting at a source node and ending at a tar-
et node passes through the node on its journey, averaged over all
ource–target pairs.

The difference between shortest-path and current-flow
etweenness is well illustrated in the example depicted in Fig. 5,
hich is borrowed from Newman (2005). The network depicts

wo communities (cliques) linked together by a closed triad of
odes. Let us call A the node of the triad that is not part of any
ommunity, and B and C the other two nodes of the triad. In the
hortest-path case, the betweenness of A is clearly null. Indeed,
o shortest path goes trough A, since the way through B and C

s shorter. On the other hand, the current-flow betweenness of A
s significant, although smaller than that of B and C, since paths
hat include A are longer than path that include B or C. Similarly,
he shortest-path betweenness of nodes in the communities that
re not in the triad is null, while their current-flow counterpart is

ositive.

We next give the precise definition of current-flow between-
ess centrality. As observed in Section 4.1, given a source s and a
arget t, the absolute current flow through edge (i, j) is the quantity
. In the graph on the left nodes are labelled with their current-flow betweenness,
 the end-points of a path are not considered part of the path).

Ai,j|v(s,t)
i

− v(s,t)
j

|. By Kirchhoff’s law the current that enters a node is
equal to the current that leaves the node. Hence, the current flow
F (s,t)

i
through a node i different from the source s and a target t is

half of the absolute flow on the edges incident in i:

F (s,t)
i

= 1
2

∑
j

Ai,j|v(s,t)
i

− v(s,t)
j

|. (19)

Moreover, the current flows F (s,t)
s and F (s,t)

t through both s and t
are set to 1, whenever end-points of a path are considered part of
the path (this is our choice in the rest of this paper), or it is set to 0
otherwise. Fig. 6 gives an example. Notice that the flow from A to H
through node G is 1 (all paths from A to H pass eventually through
G), the flow through F is 0.4 (a proper subset of the paths from A
Fig. 6. A resistor network with all resistances equal to unity (this is the same net-
work  of Fig. 2). Each node is now labelled with the value of flow through it when a
unit current is injected in node A and removed from node H. Each edge is labelled
with the absolute current flowing on it. Values are approximated with precision of
two digits.
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Finally, the current-flow betweenness centrality bi of node i is
he flow through i averaged over all source–target pairs (s, t):

i =
∑

s<tF
(s,t)
i

(1/2)n(n − 1)
. (20)

Since, by Eq. (8), the potential v(s,t)
i

= G+
i,s

− G+
i,t

, with G+ the gen-
ralized inverse of the graph Laplacian, Eq. (19) can be expressed
n terms of elements of G+ as follows:

F (s,t)
i

= 1
2

∑
j

Ai,j|G+
i,s

− G+
j,s

+ G+
j,t

− G+
i,t

|. (21)

Notice that F (s,t)
i

= F (t,s)
i

. We  can also rewrite Eq. (19) in terms
f the resistance distance matrix R. Let us denote with ei the i-th
anonical vector such that ei(i) = 1 and ei(j) = 0 if j /= i. Then Eq. (21)
an be rewritten as:

(s,t)
i

= 1
2

∑
j

Ai,j|(ei − ej)
T G+(es − et)|.

Using Eq. (11) and the fact that (ei − ej)Te = eT(es − et) = 0, it fol-
ows that

ei − ej)
T R(es − et) = −2(ei − ej)

T G+(es − et),

nd hence Eq. (19) can be expressed in terms of the resistance
istance matrix as follows:

(s,t)
i

= 1
4

∑
j

Ai,j|Ri,s − Rj,s + Rj,t − Ri,t |. (22)

The above formulation gives an original interpretation of the
ow through the edge (i, j) in terms of resistance distance among
odes i and j with respect to s and t. If the resistance distances of
odes i and j with respect to s (or with respect to t) are close, that is,

 and j are almost equi-distant from s (or from t), then the potentials
f i and j are also near, and hence there is a small potential difference
etween the nodes, which means that there is a small flow through
he edge linking them. On the other hand, if nodes i and j have
ifferent distances from s (or from t), then their potential difference

s high, which induces a large flow through the edge connecting

hem.

The computational complexity of current-flow betweenness
entrality is as follows. Matrix G+ can be computed by invert-
ng a perturbed Laplacian matrix as given in Eq. (4). This costs
betweenness (graph on the left) or to the shortest-path betweenness (graph on the
ared).

O(n3) operations and uses O(n2) memory locations. Once we have
matrix G+, we can solve Eq. (20); this costs O(n2(n + m)). This com-
plexity can be improved to O(mn log n), as shown in Brandes and
Fleischer (2005). Hence, computing current-flow betweenness cen-
trality costs O(n3 + mn log n) operations (O(n3) if the graph is sparse)
and uses O(n2) memory locations. These costs are prohibitive if the
network is relatively large. Bozzo and Franceschet (2012) devise
methods for finding approximations of the generalized inverse of
the graph Laplacian matrix, and hence of the resistance distance
matrix, using only few eigenpairs of the Laplacian matrix. The few
eigenpairs that are necessary to run the methods can be stored
with a linear amount of memory in the number of nodes of the
graph and, in the realistic case of sparse networks, they can be
efficiently computed using one of the many methods for retriev-
ing few eigenpairs of sparse matrices that abound in the literature.
The devised approximations can be applied to estimate current-
flow betweenness centrality scores when the exact computation is
unfeasible.

We conclude this section by discussing Fig. 7, which depicts the
already mentioned dolphin social network where the size of the
node is proportional to its current-flow betweenness (graph on the
left) or to its shortest-path betweenness (graph on the right). Notice
that current-flow betweenness gives a high centrality to all nodes
on the bridge between the two  main communities of the network;
on the other hand, shortest-path betweenness awards only those
nodes on the bridge that belong to the shortest paths between the
two communities (the lower side of the bridge). Moreover, current-
flow betweenness attributes centrality to highly interconnected
nodes of the two communities, since these nodes lie on many (non-
shortest) paths between other nodes. The mean change of rank
between the two  rankings is 3.7 (6% of the ranking length), with
a maximum rank change of 21. The Pearson correlation coefficient
between the two rankings is 0.89, and, as observed for close-
ness, the association between current-flow betweenness and node
degree (0.81) is higher than the association between shortest-path
betweenness and node degree (0.59).

7. Conclusion

We  have interpreted current-flow closeness and betweenness

centrality in terms of resistance distances among nodes of the
graph, which can be expressed in terms of the generalized inverse
of the Laplacian matrix of a graph. This interpretation provided a
simple proof that current-flow closeness and information centrality
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re the same measure. The computation of current-flow centralities
s intensive and not feasible if the graph is large. Our interpretation
llows to approximate current-flow centralities using approxi-
ations of the generalized inverse of the Laplacian (Bozzo and

ranceschet, 2012). On the other hand, our investigation sheds
ome light on the graph-theoretic meaning of entries of the gener-
lized inverse of the Laplacian matrix.

Current-flow centralities are relevant when information (or
hatever else) flows on the network without following an opti-
al  path. However, when information is spread on the network
inimizing the length of the journey, geodetic centralities are to

e preferred, also because they are less intensive to compute both
n terms of time and space required.

We  think that resistance distance is an interesting (and
aybe still underestimated) metric on networks. It has a strong
athematical background and persuasive interpretations in both

nformation and electrical network theory. In this contribution,
e also made an attempt to revitalize resistance distance in

he context of (social) network analysis. We  are convinced that
inking seemingly unrelated concepts is part of the research
ndeavor.
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