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When a research infrastructure is funded and implemented, new information and new publications are created.
This new information is the measurable output of discovery process. In this paper, we describe the impact of in-
frastructure for physics experiments in terms of publications and citations. In particular, we consider the Large
Hadron Collider (LHC) experiments (ATLAS, CMS, ALICE, LHCb) and compare them to the Large Electron Positron
Collider (LEP) experiments (ALEPH, DELPHI, L3, OPAL) and the Tevatron experiments (CDF, D0). We provide an
overview of the scientific output of these projects over time and highlight the role played by remarkable project
results in the publication–citation distribution trends. The methodological and technical contributions of this
work provide a starting point for the development of a theoretical model of modern scientific knowledge prop-
agation over time.

© 2016 Elsevier Inc. All rights reserved.
Keywords:
Research infrastructures
Scientometrics
Clustering
Citation distribution
Publication distribution
Knowledge propagation
1. Introduction

The main purpose of this study is to investigate whether there is a
pattern of propagation of knowledge related to research infrastruc-
tures and, if it exists, what it depends on and how to measure it.
The time and manner of dissemination of knowledge are hard to
measure and to predict. The processes of dissemination are diverse
and often not observable, but the number of publications associated
to a project and the citations that it receives are the most immediate
information that we are able to measure. Scientometric techniques
(de Solla Price, 1986) are the most used approaches to evaluate
knowledge propagation. These methods are based on the analysis
of scientific publications and their citations over time. The creation
of knowledge is certainly one of the benefits that can justify the
high costs for the construction of research infrastructures. We are
also motivated by the idea of providing a first understanding of
knowledge growth derived from the funding of research infrastruc-
tures (Martin & Irvine, 1984; Martin, 1996; Florio et al.,).

In particular, in this paper, we focus our study on the most modern
accelerator project in High Energy Physics, the Large Hadron Collider
(LHC), completed at the European Organization for Nuclear Research
(CERN) in 2008. The LHC's primary function is to search for the Higgs
boson and, more generally, for new physics discoveries involving high
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collision energies. The LHC accelerator is utilized in seven experiments
that use detectors to analyze the particles produced by the collisions.
In this work, we will focus on the four biggest experimental collabora-
tions: ATLAS, CMS, ALICE and LHCb. ATLAS and CMS are two general
purpose experiments composed by a large number of collaborators
worldwide, they are specialized in the search for signs of new physics
and the hunt for the Higgs boson. ALICE and LHCb are specific experi-
ments looking at heavy-ion collisions and antimatter respectively,
their community is smaller than the general purpose experiments.

The data from LHC are complemented with data collected from the
Large Electron-Positron Collider (LEP) and the Tevatron experiments,
in order to compare results at different times and using different tech-
nologies and infrastructures. Our work is focused on a period starting
with the first publication of Tevatron, that is, 1982 to 2012.We describe
the knowledge output of the projects considered here by considering
the following variables that bring out interesting regularities and
make data from different projects comparable:

• the different evolution of the reference scientific community as
reflected by different rates of publications and interrelations among
scientists and infrastructures;

• the lifetime cycle of each specific project and its community; and
• the eventual remarkable project results that can enhance or modify
the distribution of citations.

To this end, we describe the activity (number of publications) and
the impact (number of citations) of scientific output by comparing the
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Fig. 1. Graphical representation of scientific projects included in the present work by
function of time, subdivided by laboratory. The lifetime of each project is represented by
the width of the respective rectangle.

122 S. Carrazza et al. / Technological Forecasting & Social Change 112 (2016) 121–133
results with the rate of overall publications in physics, as reported by
Web Of Science.1

Moreover, we note that not all papers are equal in terms of citation
trajectory; for each experiment there are papers with different weights.
The weight classifies the behavior from excellent to mediocre papers in
terms of propagation impact.

As a first step, we group the papers according to the the shape of
their distribution of citations over time. We also study if the citation
patterns depend on the semantic dimension and on the temporal
dimension.

The cluster of papers could depend on some covariates, such as the
characteristics of the scientific community that produced them, the
number of authors involved, the reputation of them, etc.

Beyond this first description of the knowledge growth due to the an-
alyzed projects, the data collected and the methodological and techno-
logical tools used in this paper will be the starting point for the
definition of a statistical model predicting the outcome of a project,
given the human and financial resources available and its timing.

Section 2 describes the data used in this work. Section 3 shows the
activity and impact measures. Section 4 motivates the modeling of
knowledge propagation in High Energy Physics (HEP). Section 5 intro-
duces a methodology of clustering of papers based on citation patterns.
Section 6 studies the cluster collections according to the semantic and
temporal dimensions. Finally we list our conclusions and future tasks
in Section 7.
2. Data description

In practice, tracking knowledge creation consists of quantifying the
knowledge outputs generated by scientists' experiments (first wave
knowledge), by papers written by other scientists and citing those of
the first wave, by other papers citing those of the second wave and so
on. In the following, we define knowledge as outputs generated by in-
sider scientist papers as level 0 papers and knowledge outputs generated
by outsiders-scientist-literature papers as level 1papers. Papers by scien-
tists outside level 1 are called level 2, and so on.

Fig. 1 shows a synthetic view of the projects and relative experi-
ments taken into account by the present analysis. The LHC was con-
structed after the LEP project at CERN, and operated from 1989 until
2000. The LEP project comprised four experiments: ALEPH, DELPHI, L3
and OPAL. We also include all the available information from these
LEP experiments in order to compare the research output from projects
organized in the same laboratory but at different time periods.

Another potential comparison involves projects frommultiple in-
frastructures. In order to perform such a comparison, we also include
the Tevatron project at the Fermi National Accelerator Laboratory
(Fermilab) in the USA, which started operating in 1983 and ceased
operations in 2011. The Tevatron is a synchrotron accelerator used
in two experiments, CDF and D0.

The LHC, LEP and Tevatron are projects involving the same physics
field, which is High Energy Physics, but the time periods of operation
do not allow a comparison of the absolute values for the paper and cita-
tions produced. It should be noted that in the 1990s, when pre-prints
and open access were not yet available, it was difficult to get a paper
in electronic format on a home computer. In 1991, the Internet was
born and the database SPIRES High Energy Physics (SPIRES-HEP),
installed at the Stanford Linear Accelerator Center (SLAC) in the
1970s, became the first website in North America and the first database
accessible via the World Wide Web.

The bibliographic database used in the current analysis was extract-
ed directly from the INSPIRE website (http://inspirehep.net/) by query-
ing the public user interface. The database was constructed during
September 2013, and we include papers up to 2012 in order to avoid
1 http://wokinfo.com/.
the inclusion of unconsolidated papers. The collection of papers obtain-
ed by this procedure contains the information needed to reconstruct the
citation evolution of the most important papers in HEP. However, we
are aware that several papers not published in INSPIRE were used in
the technical development of large research machines, such as the
LHC, and also that technical patents provide benefits which are impor-
tant to the scientific community.

Using that collection of papers we perform comparisons and studies
about the respective scientific communities, infrastructures and the dif-
fusion of scientific knowledge across time.

Technical tools have been developed in order to create the database.
The procedure is summarized in the following steps: i) download all
available information obtained by querying the name of the experimen-
tal collaboration, e.g. “collaboration: ‘ATLAS’” with a custom python
script able to build a catalog of records using information from papers
stored in custom tags; ii) extract and download the respective citation
and reference records frompapers obtained in i; and iii) import all infor-
mation to a final MySQL database. A graphical summary of such steps is
shown in Fig. 2.

In the next sections, we show results obtained from this database.
3. Activity measures and impact measures

The simplest measure of activity that can be considered is the num-
ber of papers produced by authors working on an experiment. We note
that the number of produced papers does not match the number of pa-
pers actually published. There are a substantial number of pre-prints
loaded in arXiv that are not published in scientific journals. These pa-
pers are found in bibliometric databases, such as Scopus or Web of Sci-
ence, and are considered in our analysis. In the following,wewill denote
experiment papers as level 0 paper and literature papers as level 1 pa-
pers. We denote experiment paper cited by literature papers as 1to0
and literature papers cited by experiment papers as 0to1.

Table 12 shows the total number of papers for each experiment, sep-
arately for published and unpublished and for levels 0 and 1.

It is important to note that the number of papers produced from LHC
experiments has already exceeded the number of papers produced from
both LEP and Tevatron, although these experiments lastedmuch longer.
The same thing occurs with the literature papers, which, as evident
when examining LEP and Tevatron experiments, have continued to
growover the years, particularly literature papers that cite experiments.

Next, we examine several impact measures. The simplest mea-
sure of impact is the number of citations generated by an experi-
ment. Table 2 shows the citations for each experiment: 0to0 are
2 All tables refer to data collected up to November 2013.
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Fig. 2.Graphical representation of the database creation. The records are downloaded from the INSPIRE website by querying the project name. For each paper in the project the reference
and citation papers are extracted. Finally all the records are stored in a MySQL database.
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citations of experiment papers in experiment papers; 0to1 are cita-
tions of experiment papers in literature papers; 1to0 are citations
of literature papers in experiment papers; and 1to1 are citations for
literature papers versus literature papers that cite experiment pa-
pers. The table also shows the experiment papers' H-index and the
number of papers with more than 500 citations (renowned papers).
The H-index is defined as the number such that, for a general group
of papers, h papers received at least h citations while the other pa-
pers received no more than h citations (Hirsch, 2005). The H-index
measures both the productivity and citation impacts of the publica-
tions of a scientist or scholar. The index can also be applied to the
productivity and impact of a scholarly journal as well as a group of
scientists, such as a department or university or country.

As seen in Table 1, the number of papers in the literature citing the
LEP and Tevatron is still higher than the number of papers in the litera-
ture mentioning LHC. However, this is not the case for citations. The
number of citations (0to0 and 1to1) for LHC experiments, ATLAS and
CMS in particular, are an order of magnitude higher than those of the
LEP experiments. Whether this is due to the fact that the LHC operated
during the era of theWorldWideWeb and the LEP did not or to the fact
that the LHC is associated with the discovery of the Higgs boson or both
together would be an interesting study to be carried out in the future.

Appendix A details the absolute value of activity and impact mea-
sures for each experiment year by year.
Table 1
Experiment papers (produced and published); experiment papers cited by literature pa-
pers and literature papers cited by experiment papers.

Project Experiment Papers L0 Papers L0_pub Papers 1to0 Papers 0to1

LEP ALEPH 636 589 383 3233
DELPHI 736 670 417 3644
L3 605 549 381 3563
OPAL 694 634 475 4037
Subtotal 2671 2442 1656 14,477

Tevatron CDF 3077 2386 1641 6616
D0 2383 1769 1176 4744
Subtotal 5460 4155 2817 11,360

LHC ALICE 1579 945 382 2963
ATLAS 2529 1921 1195 4862
CMS 2580 1603 1030 4640
LHCb 735 585 248 1608
Subtotal 7423 5054 2855 14,073
The LHC series (Tables A.13, A.14, A.15 and A.16) shows steady
growth, with a slight increase in 2008 (when it started operations),
and an explosion in 2012. On July 4, 2012, the discovery of the Higgs
boson was announced. While important, this is not the only reason for
the explosion; in the years 2010–2012, many important results have
been obtained via experiments using LHC. In 2011, the number of liter-
ature papers citing the experiments increased rapidly, particularly for
ATLAS and CMS, superseding both the number of internal papers and
the literature papers cited.

Looking to the LEP project (Tables A.7, A.8, A.9 and A.10), it can be
observed that the gap between produced papers and published pa-
pers is reduced. This is because, as already mentioned, there was
no Internet in 1989 when the LEP experiments began. Moreover,
when examining the LEP trajectories, it is evident that when the ex-
periment began (1989), the number of literature papers citing the
experiments outnumbered the number of literature papers cited.
Subsequently, there was a peak in the number of experiment papers
in 2000 (the year it stopped operating) and then a decline. However,
this is not the case for the literature papers citing the experiments,
the number of which continued to increase.

The Tevatron experiment paper trajectories (Tables A.11, and A.12),
as with the LEP, show an intersection of the curves for literature papers
that are cited and literature papers that cite the experiments a fewyears
after it started. They also show a growth phase, with a small peak in
Table 2
Citations, H-index and number of renowned papers.

Project Experiments 0to0 0to1 1to0 1to1 H-index N500
cit

LEP ALEPH 2244 11,075 22,475 241,877 77 4
DELPHI 2170 12,800 18,482 206,600 66 4
L3 2136 14,492 17,628 198,608 63 4
OPAL 4659 18,993 25,469 243,995 79 4
Subtotal 11,283 57,360 84,054 891,080 – 16

Tevatron CDF 11,166 37,173 52,286 421,100 119 6
D0 6216 25,676 29,758 280,703 85 3
Subtotal 17,382 62,849 82,044 701,803 – 9

LHC ALICE 1671 8169 3950 308,610 34 1
ATLAS 7474 27,208 20,521 731,848 78 4
CMS 5294 21,775 15,059 738,324 69 4
LHCb 653 4117 2644 324,625 33 1
Subtotal 15,092 61,269 42,174 2,103,407 – 10
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Fig. 3. The proportion of project papers on the left. The proportion of literature papers citing project on the right. In both cases data is normalized with respect toWOS papers. Results are
presented as cumulative values.
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2011 (the year in which it ceased) that decreased slightly but is not yet
in the process of obsolescence. They also appear to benefit from the re-
sults of the LHC, given the extraordinary growth in literature papers that
cite the experiments (more than 2000 in 2012 alone). Citations 1to1 in
the tables highlight literature papers versus literature papers that cite
experiment papers for LEP and Tevatron experiments, the number of
which increased disproportionately as a result of diffusion of the results
of LHC results. The LHCdiscoveries are likewise building on the scientific
infrastructure of the past. Looking specifically at the trajectories of the
citations, it can be seen that the quotes from outside sources about var-
ious experiments are always greater in number than those cited by the
experiment papers. Regarding the LHC, citations are in the expansion
phase (as the project is not finished); for Tevatron, they are at the
point of maximum expansion (the project finished in 2011); and for
LEP, they are in the process of obsolescence. Regarding LEP, the only re-
search infrastructure for which all the steps have been completed, there
is a peak in the number of citations immediately after the start of oper-
ations and soon after the end of the experiments.

The series of absolute values reported in the tables in Appendix A are
useful to get an idea of the order ofmagnitude of the activity and impact
measures for each experiment but cannot be used to compare projects
or experiments that took place in different historical periods. Previously,
Price (de Solla Price, 1986) talked about magnitudes of growth in “the
size of science”. To normalize the series, we used the trend of the num-
ber of physics articles published in journals found in theWeb of Science
each year from 1985 to 2012.3 This series is presented in Table A.6 in
Appendix A. For each experiment – for experiment papers and for liter-
ature papers that cite the experiments – we calculated cumulative
values, and then we divided them by cumulative values of the series
of physics papers. The next figures show the two ratios for the various
projects.

The series of papers produced by the LEP and Tevatron experiments
Fig. 3(a) show a concave shape, to indicate that at a certain point they
will become stationary and then decreases. The curve of LEP, after it
has been closed (2000), begins to decrease. Both series in the early
years show a convex shape, which is the form that is observed for the
LHC project, so that sooner or later, we expect a change of concavity
and then a phase of stationarity and then of obsolescence. With regard
to the paper of the literature citing the paper of the experiments, as
was already noted, the phase of obsolescence has not yet been observed
even for LEPwhichwas closed formore than 10 years. This is evenmore
evident from Fig. 3(b). Even in this case, LEP presents a concavity facing
3 We queryWeb of Science (apps.webofknowledge.com): Advanced Search— Research
Area Physics (SU = Physics).
downwards and looks very close to the stationary phase. Tevatron
seems still in a phase of expansion and LHC has an exponential growth.

To better see these trajectories, we report the same ratios for each
experiment of the various projects in Fig. 4.

4. Towards the modeling of knowledge propagation in High Energy
Physics (HEP)

Amodel which describes and provides predictions about the knowl-
edge propagation in HEP is formulated by analyzing the citation distri-
bution of papers of projects and its derivations. In the following
paragraphwe show an overview of such analysis by selecting a subclass
of papers.

We selected three remarkable papers for the HEP physics communi-
ty in terms of important discoveries, one paper for each project:

• LHC: the Higgs boson discovery by ATLAS Aad et al. (2012);
• Tevatron: the observation of top quark production by CDF Abe et al.
(1995); and

• LEP: the determination of the number of light neutrinos species by
ALEPH Decamp et al. (1989).

In Fig. 5 we show the absolute distribution of citations obtained
from the respective level 1 papers over time. We observe similarities
between LEP and Tevatron distributions: there is a citation peak
close to the publication date and a diffusion tail. Moreover, consider-
ing all the three distributions, we observe a strong correlation be-
tween the date of publication, the maximum number of citations
and the width of the peak region. The impact of a remarkable
paper in the scientific community is proportional to publication
age: modern papers generate a strong wave of level 1 papers, and
thewave of knowledge continues longer in time. A possible explana-
tion for the observed trend can be assigned to the continuous
growth of the scientific community and its effort to achieve such re-
markable results.

Table 3, shows for each of the three papers presented above, a
summary with the total number of level 1 publications and the H-
index computed using their respective level 1 papers. However, the
original H-index definition does not take into account the age of an
article. Ref. (Sidiropoulos et al., 2007) proposes the contemporary
H-index (cH-index) in which the number of citations that an article
has received is divided by the age of the article. The information re-
ported by these estimators is fundamental to the construction of a
model.

A generalization of the results presented above, for each paper in
our database, provides a complete sample of HEP data from which
we can extract a model. The model includes social factors, like how

http://webofknowledge.com
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Fig. 4. Same as Fig. 3 but for single experiments.
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the community propagates knowledge, and technological factors,
e.g. project time, its lifetime cycle and the information diffusion.
Such a model can determine and predict the impact of funding re-
search infrastructures.

5. Clustering of papers based on citation patterns

Starting from the results of the previous section we tried to get a pre-
dictive knowledge output model for each paper in our database. We no-
ticed that not all papers are equal in terms of citation trajectory. So it is
not immediate to identify a parametric function. Moreover, for each ex-
periment there are papers with different weights. The weight classifies
the behavior from excellent to mediocre papers in terms of propagation
impact. In principle, the weight distribution can be extracted from data.
There are two issues we are working on:

1. Try to group the papers; and

2. Try to figure out if there are covariates that explain the different
clusters.

The cluster of papers could depend on some covariates, such as the
characteristics of the scientific community that produced them, and
the number of authors involved. We deal with this point in the discus-
sion section. We focus here on a methodology for the construction of
clusters of papers based on the shape of their distribution of citations
over time.

Image of Fig. 4


Fig. 5. Absolute distribution of citations over time for three remarkable papers for each
project.
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Paper citations distribution is normalized and shifted in order to
compare papers published (and cited) in different time periods:

• shifting: the timeline of papers citations is shifted in such a way that
all the citations are reported to a temporal range t0 , t1 ,… , tn-1 , tn,
where t0 is the first year when a paper has been cited; and

• normalization: the number of citations Cpy received by a paper p in the
year y is normalized as follows:

norm Cy
p

� �
¼

Cy
p � K
Cy:

where Cy is the total number of citations observed in the year y andK is a
normalization factor.

5.1. Cluster methodology

We define a cluster of papers Ci as

Ci ¼ p1;p2;…;pnf g; ð1Þ

where i is the index which identifies the cluster, pj with j=1,… ,pni
is

the ni elements of the cluster i, i.e. the papers contained in Ci.
The cluster analysis of time series is a well-known problem stud-

ied in the literature (Nagin, 2009; Xie et al., 2010; Manrique-Vallier
et al., 2014; Ho et al.,). Most of the relevant contributions on this
problem start from the Group-based Trajectory Modeling (GBTM)
(Nagin, 2009). GBTM provides a non-parametric statistics for
distinguishing the developmental trajectories of sub-populations in
sets. It is based on using mixed models for the prediction of different
trajectories in the data. In particular Xie et al. (2010) present an evo-
lution of GBTM for multidimensional outcomes and Manrique-
Vallier et al. (2014) used the idea of mixed membership to relax
the within-class homogeneity assumption. GBTM algorithm, while
having the advantage of being able to include covariates both
stationary and time dependent, has many limitations. First of all it
assumes a priori a model for the response variable and uses
Table 3
Additional scientometric information for papers (Aad et al., 2012; Abe et al., 1995;Decamp
et al., 1989).

Project Paper L1 papers H-index cH-index

LHC Aad et al. (2012) 1696 43 82
Tevatron Abe et al. (1995) 2280 105 63
LEP Decamp et al. (1989) 348 55 22
polynomial models to estimate the trajectories; secondly, the num-
ber of groups must be fixed as well as the order of the polynomials
that are assumed for each different trajectory. Finally, from the com-
putational point of view, themodel proves inefficient in the presence
of a very large number of papers, and resulting in a large number of
clusters. Ho et al. develop a probabilistic model for latent role analy-
sis in time-varying networks, as well as an efficient variational EM al-
gorithm for approximate inference and learning. Here we use
Affinity Propagation (AP), by the messaging passing algorithm pre-
sented in Frey & Dueck (2007) where the authors show its impres-
sive capability of grouping data with complex structure. The choice
of this particular algorithm is motivated by its capability of deter-
mining automatically the number of final clusters without requiring
as input a prior knowledge or guess of the number of clusters.

The clustering procedure that we adopt consists of the following
steps:

• Data pre-processing: before starting the clustering procedure, we
apply a pre-selection criterion for the input ensemble of papers. We
define an ensemble of papers

Ek ¼ pi : N
cit
total pið Þ≥k

n o
ð2Þ

where Ntotal
cit (pi) is the total number of citations that pi received since

its publication and k is a threshold value defined to filter the items of
the ensemble. In our analysis we limited the threshold values to
k=10,50,100,500.

• Distance definition: there are several different definitions to quantify
the similarity between elements of a given ensemble Ek of papers. In
the AP framework, we construct a similarity matrix, defined as

Si; j ¼ �d pi;pj

� �
; ð3Þ

where d(pi,pj) is the distance estimator defined by the user. We per-
formed the present cluster analysis with two different distance defini-
tions: the dynamic time warping (DTW) (Müller, 2007) and the
squared euclidean distance between points. For the DTW distance we
use the raw distribution of citation for each paper, meanwhile for the
squared euclidean distance we apply the normalization procedure pre-
sented at the beginning of this section.

• AP clustering: we perform the AP clustering with the damping factor
λ=0.5, amaximumof 200 iterations and 15 iterationswithno change
in the number of estimated clusters that stop the convergence.

• Multiple passes: due to the large number of elements that we are con-
sidering, the construction of large similarity matrices is not possible
due to hardware limitations. In order to deal with such limitations
we implemented an interactive procedure which compares the simi-
larity between the available exemplars of a given cluster to the re-
maining papers. We call “pass” each time we compare exemplars to
a new chunks of papers. This situation is more pronounced when ap-
plying pre-selection criteria where k is small.

5.2. Results

The ensemble of papers used in the clustering procedure presented
here is the same as previously described in Section 3. In Table 3we sum-
marize the clustering results, for each of the four pre-selected ensemble
of papers, k=10,50,100,500, we build two similarity matrices based on
the distance definitions presented above.We describe in details the fea-
tures of such cluster in the next section.

Image of Fig. 5


Table 4
Summary of the clusters obtained with the affinity propagation method.

Collection Distance k Papers Clusters (size N 1) Passes

cut500dtw DTW 500 1453 107 (73) 1
cut100dtw DTW 100 18,745 106 (71) 2
cut50dtw DTW 50 43,595 245 (156) 2
cut10dtw DTW 10 149,749 69 (47) 3
cut500euclidean Euclidean 500 1453 70 (24) 1
cut100euclidean Euclidean 100 18,745 60 (15) 2
cut50euclidean Euclidean 50 43,595 171 (45) 2
cut10euclidean Euclidean 10 149,749 436 (76) 2

Table 5
Average semantic and temporal dimensions of the cluster collections.

Collection Size Size ≥ 5 avg(size) avgðSCi Þ avgðT Ci Þ

cut500dtw 107 60 23.066 0.081 0.257
cut100dtw 106 55 339.327 0.169 0.300
cut50dtw 245 121 358.727 0.186 0.321
cut10dtw 69 36 3609.722 0.183 0.278
cut500euclidean 70 21 66.571 0.176 0.306
cut100euclidean 60 9 2075.889 0.247 0.246
cut50euclidean 171 22 1972.909 0.224 0.311
cut10euclidean 436 41 3641.244 0.241 0.332
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6. Clusters description

The cluster collections presented in Table 3 have been calculated by
working on the distribution of the citations received by papers in time.
In other terms, the resulting clusters group together those papers that
have been cited in a similar way during their life-cycle. Our hypothesis
is that the citation analysis per se is a sufficient criterion for clustering
together papers that have an affinity both from a temporal perspective
and from a semantic perspective. In particular, we are interested in un-
derstanding if the citation behavior is based on the historical period in
Fig. 6. Correlation between semantic and
which the cited papers have been published and/or if it depends on
the topics addressed by the papers. A correlation among temporal, se-
mantic, and citation dimensionswould justify the choice of the citations
as a descriptive criterion for understanding the success of specific scien-
tific topics in time. On the contrary, the discovery of substantial inde-
pendence of these three dimensions would support the idea that the
citation behavior is determined by factors (such as the popularity of au-
thor and institutions) that do not depend on the topic and the historical
period of publication.

In order to study the cluster collections of Table 3 according to the
semantic and temporal dimensions, we define a set of descriptive di-
mensions for clusters, based on a preliminary activity of semantic
indexing of papers and the analysis of their years of publication.

6.1. Semantic indexing

The semantic indexing activity aims at associating each paper with a
set of topics, each representing a latent variable in the corpus.We stress
the fact that this activity is completely independent from the clustering
activity described in Section 5.1. Indexing is based exclusively on the
terms extracted from the paper titles, while clustering is based exclu-
sively on the citations received by the papers. Formally, we define the
semantic index IðCÞ of a corpus C of n papers as follows:

I Cð Þ ¼ p1; T1ð Þ; p2; T2ð Þ;…; pn; Tnð Þh i;

where pi denotes a paper in C, and Ti={t0, … , tk} is a set of topics as-
sociated with pi. In order to calculate IðCÞ, we exploit the well-known
indexing approach based on Latent Semantic Analysis, which is often
referred to Latent Semantic Indexing (LSI) (Deerwester et al., 1990).
In the following, we briefly recall LSI in order to introduce the defini-
tion of IðCÞ. For LSI, we are interested in the M×N term-document
matrix C, where rows represent terms and columns represent docu-
ments. In our case, terms have been extracted by the paper titles by
means of standard natural language normalization techniques, in-
cluding stemming and stop-words filtering. Documents are papers
temporal dimensions in each cluster.

Image of Fig. 6
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of the corpus C. An entry (i, j) in the matrix C denotes the relevance of
the ith term in the jth document, according to the term frequency–
inverse document frequency (TfIdf) measure (Aizawa, 2000). Ac-
cording to this model, each paper pj can be represented as a vector v!

ðpjÞ. The idea behind LSI is to calculate an approximate version of the
matrix C through its Singular Value Decomposition (SVD), such as:

C ¼ UΣVT ;

where U is the M×M matrix whose columns are the orthogonal ei-
genvectors of CCT and VT is the transpose of the N×N matrix whose
columns are the orthogonal eigenvectors of CTC. The following step
Fig. 7. Correlation between semantic and temporal dime
is to reduce the rank of C to an approximation of rank k. To this
end, a matrix Σk is derived from Σ by replacing by zeros the r -k
smallest singular values of the diagonal of Σ in order to computeCk ¼
UΣkV

T (Manning et al., 2008). The rank-k approximation of C can be
now used in order to represent each document as a vector v!kðpjÞof k
dimensions by mapping its original vector v!ðpjÞ into the new k space

as v!kðpjÞ ¼ Σ�1
k UT

k v
!ðpjÞ. The intuition is that by reducing the number

of dimensions we bring together terms with similar co-occurrences.
This intuition, together with several empirical experiments made
using LSI (Wolfe et al., 1998), leads to the conclusion that the k di-
mensions of the approximate vector space representation of the cor-
pus can be interpreted as latent topics in the corpus.
nsions with respect to different cluster collections.

Image of Fig. 7
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In our process of indexing, we define a vector space of 400 dimen-
sions (i.e., k=400), which has been recommended as a good choice
for LSI (Bradford, 2008). Given a paper pi and its corresponding ap-
proximate vector v!kðpiÞwith k=400, we denote as v!kðpiÞ½ j� the con-
tribution of pi to the latent topic represented by the jth dimension of
the matrix Ck. The idea is that the higher is the absolute value of v!kðpiÞ
½ j�, the higher is also the relevance of the topic tj for the paper pi. Follow-
ing this intuition we empirically determined a threshold th=0.2 in
order to choose the topics to associate with pi in the semantic
index IðCÞ as follows:

I Cð Þ pi½ � ¼ pi; Tið Þ;where Ti ¼ t j; v!k pið Þ j½ �
�� ��≥th

n o
:

Fig. 8. Correlation between semantic a
6.2. Descriptive dimensions

Our descriptive semantic (SCi) and temporal (T Ci) dimensions pro-
vide a measure of the homogeneity of a cluster Ci with respect to topics
and years of publication, respectively.

6.2.1. Semantic dimension

Given a cluster Ci, its semantic dimension SCi is calculated through
the semantic index IðCÞ. In particular, we first determine the set T(Ci)
of topics involved in Ci as follows:

T Cið Þ ¼ ⋃
jCi j

j¼1
T jj∃ pj; T j

� �
∈I Cð Þ : pj∈Ci;
nd temporal dimensions in time.

Image of Fig. 8
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where |Ci | is the cardinality of Ci. Then, we associate with each topic
tj∈Tj the number N(tj,Ci) of papers in Ci that corresponds to the topic
tj. In such a way, we obtain a distribution of papers in Ci over the set of
topics Tj. On top of this distribution, we calculate the semantic dimen-
sion SCi of a cluster Ci as the Gini coefficient (Atkinson, 1970). Since it
is basically a measure of inequality among values of the frequency dis-
tribution, low values ofSCi represent an almost equal distribution of pa-
pers over the topics and, thus, a low level of semantic homogeneity of
the cluster. On the contrary,whenSCi is high, it means that there is a rel-
atively small number of topics which is associated with many papers in
Ci and, as a consequence, the cluster is homogenous from the semantic
point of view.

6.2.2. Temporal dimension
Similarly to semantic dimension, the temporal dimension is based

on the frequency distribution of papers over the years of publication.
Also in this case, the temporal dimension T Ci of a cluster Ci is calculated
as the Gini coefficient of such a distribution. Low values represent an
equal distribution over different years, while high values represent the
presence of a limited number of years with a prevalence of papers.

6.3. Cluster analysis

According to the semantic and temporal dimensions described
above, we analyze the cluster collections described in Table 4. In partic-
ular, for each collection,we calculate the semantic and temporal dimen-
sions of all the clusters grouping at least 5 papers. This choice is
motivated by the fact that we need a minimal number of papers in a
cluster in order to adopt our dimensions based on the paper distribution
over topics and years, respectively. The number of clusters involved in
the analysis, as well as the average values of the semantic and temporal
dimensions, is reported for each cluster collection in Table 5.

As we can see from Table 5, the clusters seem to be generally more
characterized by the temporal rather than by the semantic dimension,
as seen by the higher values of T Ci with respect to SCi . This result sug-
gests that citations depend more on the year of publication of papers
than on their topics. A more detailed analysis of the semantic and tem-
poral dimensions is shown in Fig. 6.

As expected, we note a correlation between the semantic and the
temporal dimensions: clusters grouping together papers published in
the same year tend to be also homogeneous in terms of topics. This is
due to the emergence of paradigms and specific topics in specific pe-
riods of time. However, there is also an interesting group of clusters
with high levels of semantic homogeneity which are weakly homoge-
neous in terms of time. We note also that this group is composed by
Fig. 9. Correlation between semant
the largest clusters. This suggests the emergence of popular topics that
produce a large number of papers for long periods of time.

The correlation between semantic and temporal dimensions by dif-
ferent cluster collections is shown in Fig. 7.

Here, we note that low cut thresholds (i.e., 10 and 50 citations) seem
to produce resultswhere the correlation ismore evident and, in general,
the level of semantic homogeneity is higher. In particular, those collec-
tions focus on highly cited papers only (i.e., cut equal to 500 citations)
seem to be inadequate to capture both the temporal/semantic correla-
tions and to produce semantically homogeneous clusters. A correlation
between temporal and semantic homogeneity seems to be indepen-
dently confirmed in case of clusters associated with different time pe-
riods, as shown in Fig. 8.

A final interesting result is given by the analysis of the correlation
between semantic dimension and cluster size shown in Fig. 9.

In fact, one could expect that large clusters result in low levels of se-
mantic homogeneity due to the high probability of clustering together
papers addressing very different topics. Of course, the limited number
of topics (i.e., 400) with respect to the size of the largest clusters deter-
mines the fact that topics are associated with many papers. But the rel-
evant thing here is that the distribution is also highly unequal, which
means that some topics prevail clearly over the others. The fact that
the level of semantic homogeneity increases with the cluster size sug-
gests the interesting consideration that the citations as a criterion of
clustering are useful also for clustering together papers with the same
or similar topics: a first (initial) confirmation of the hypothesis that
the way papers are cited depends on the topics the papers address.

7. Summary and discussion

In this analysis, we examined publication trends and citations for
various experiments related to major research infrastructures.

The aggregated analysis carried out indicates a regularity in the pat-
tern of publications and citations for research infrastructures. First is a
pre-experiment phase, in which the literature papers referred to by ex-
periments are more numerous than the papers produced by the group
that conducted the experiment.When the experiment starts, the exper-
iment papers grow and from a certain point begin to increase alongside
the literature papersmentioning the experiment.When the experiment
produces the first results, there is usually a peak in internal publications
and literature papers. From that moment, the number of publications
begins to grow, eventually reaching a saturation point. We were only
able to observe this phase for the LEP experiments. We note that the
number of literature papers that cite other literature papers that cite ex-
periment papers has not declined, even more than ten years after the
experiments ended.
ic dimension and cluster size.

Image of Fig. 9
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The analysis of clusters of papers based on the shape of their dis-
tribution of citations over time shows a correlation between the se-
mantic and the temporal dimensions. Moreover we discover
important correlations between semantic dimension and cluster
size; the level of semantic homogeneity increases with the cluster
size. So, seems that using the citations as a criterion of clustering is
useful also for clustering together papers with the same or similar
topics. These conclusions are obviously valid for High Energy Phys-
ics. It is our intention to find out what happens instead in other dis-
ciplines, it will certainly be interesting.

Further developments can be achieved by: i) analyzing more in
depth the clusters composition, also the co-citation network between
the authors; ii) identifying clusters based on semantic topics and com-
pare these collectionswith the ones obtained using the citations; iii) ex-
amining the cluster characteristics and connections and create a
scientific map of HEP physics; iv) applying the clustering methodology
to other fields; v) selecting possible covariates that explain the citation
pattern for each cluster; and, last but not the least, vi) defining a theoret-
ical model to describe and predict the growth of knowledge and the dif-
fusion of project results and its uncertainty.
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Appendix A. Descriptive Tables

Table A.6
Physics Articles (source: Web of Science).
3

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

Year
 Papers

3
3
1
 1985
 45,325
3
2
 1986
 45,559
3
3
 1987
 50,133
3
4
 1988
 54,246
4
5
 1989
 56,876
4
6
 1990
 59,760
4
7
 1991
 63,399

8
 1992
 64,352

9
 1993
 67,934

0
 1994
 72,256

1
 1995
 73,060

2
 1996
 80,813

3
 1997
 84,107

4
 1998
 83,547

5
 1999
 88,515

6
 2000
 88,375
2
7
 2001
 89,550

2
8
 2002
 94,631

2
9
 2003
 97,234

2
0
 2004
 103,074

2
1
 2005
 107,002

2
2
 2006
 112,565

2
3
 2007
 114,623

2
4
 2008
 118,945

2
5
 2009
 117,542

2
6
 2010
 117,978

3
7
 2011
 125,548
8
 2012
 125,883
2
Table A.7
ALEPH data.
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
0
 1989
 6
 6
 133
 1
 1
 17
 1
 96

1
 1990
 17
 17
 160
 302
 29
 18
 216
 450

2
 1991
 23
 23
 170
 279
 7
 29
 42
 343

3
 1992
 20
 20
 148
 341
 6
 15
 105
 207

4
 1993
 26
 26
 165
 386
 2
 4
 41
 215

5
 1994
 21
 20
 166
 431
 10
 7
 30
 286

6
 1995
 28
 28
 187
 366
 4
 4
 45
 363

7
 1996
 39
 37
 179
 461
 4
 11
 54
 517

8
 1997
 30
 30
 218
 414
 3
 9
 46
 766

9
 1998
 40
 38
 159
 455
 3
 6
 65
 477

0
 1999
 134
 127
 164
 521
 8
 6
 67
 476

1
 2000
 52
 49
 136
 451
 2
 6
 49
 464

2
 2001
 36
 26
 80
 613
 4
 21
 75
 1038

3
 2002
 101
 100
 54
 658
 3
 8
 64
 692

4
 2003
 13
 11
 40
 519
 0
 6
 44
 422

5
 2004
 13
 11
 54
 498
 1
 11
 14
 474

6
 2005
 9
 3
 28
 551
 2
 15
 36
 414

7
 2006
 11
 8
 10
 544
 3
 6
 48
 388

8
 2007
 3
 1
 13
 589
 0
 9
 4
 481

9
 2008
 1
 0
 21
 632
 0
 3
 0
 648

0
 2009
 7
 3
 12
 662
 0
 7
 4
 601

1
 2010
 3
 1
 13
 654
 1
 5
 18
 557

2
 2011
 1
 1
 9
 829
 0
 0
 0
 810

3
 2012
 0
 0
 8
 866
 0
 0
 0
 1998
4
Table A.8
DELPHI data.
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
0
 1989
 2
 2
 153
 1
 0
 3
 1
 111

1
 1990
 23
 23
 176
 195
 22
 44
 89
 407

2
 1991
 16
 16
 170
 204
 2
 14
 6
 269

3
 1992
 19
 19
 165
 273
 3
 4
 109
 185

4
 1993
 19
 19
 173
 306
 1
 7
 26
 152

5
 1994
 22
 22
 181
 329
 6
 3
 21
 198

6
 1995
 34
 34
 200
 292
 5
 12
 45
 254

7
 1996
 35
 33
 209
 333
 15
 15
 38
 383

8
 1997
 25
 25
 241
 334
 2
 15
 38
 628

9
 1998
 40
 38
 209
 368
 5
 15
 24
 356

0
 1999
 67
 64
 193
 366
 1
 4
 31
 335

1
 2000
 146
 143
 144
 308
 4
 9
 30
 258

2
 2001
 76
 52
 92
 383
 14
 18
 150
 425

3
 2002
 67
 64
 83
 493
 0
 9
 5
 450

4
 2003
 36
 33
 74
 416
 3
 5
 54
 421

5
 2004
 29
 25
 68
 426
 4
 13
 26
 421

6
 2005
 18
 11
 28
 433
 2
 16
 26
 307

7
 2006
 26
 22
 12
 470
 3
 4
 52
 388

8
 2007
 11
 8
 11
 515
 4
 6
 5
 436

9
 2008
 6
 5
 16
 608
 0
 3
 5
 536

0
 2009
 10
 6
 12
 597
 0
 7
 6
 567

1
 2010
 3
 2
 9
 591
 0
 4
 7
 478

2
 2011
 3
 3
 9
 769
 0
 0
 1
 791

3
 2012
 0
 0
 9
 836
 0
 0
 0
 2026
4
Table A.9
L3 data.
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
0
 1989
 5
 5
 150
 9
 0
 6
 3
 111

1
 1990
 22
 22
 181
 218
 28
 32
 79
 447

2
 1991
 16
 16
 180
 210
 8
 9
 46
 270

3
 1992
 22
 22
 146
 281
 10
 18
 104
 183

4
 1993
 19
 19
 157
 330
 5
 4
 16
 170

5
 1994
 11
 11
 177
 329
 1
 5
 14
 202

6
 1995
 14
 13
 204
 260
 0
 3
 31
 263

7
 1996
 26
 25
 210
 288
 1
 11
 41
 342

8
 1997
 31
 30
 203
 260
 19
 24
 36
 391

9
 1998
 51
 51
 178
 286
 4
 17
 23
 307

0
 1999
 67
 65
 192
 317
 10
 16
 40
 322
(continued on next page)
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able A.9 (continued)
3
3
3
3
3
3
3
3
3
4
4
4

1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4

1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
4
1
 2000
 57
 53
 138
 363
 10
 30
 64
 359

4
2
 2001
 57
 47
 103
 467
 5
 29
 87
 590

4
3
 2002
 58
 52
 80
 505
 2
 13
 18
 422

4
4
 2003
 29
 28
 57
 420
 3
 10
 51
 305
5
 2004
 36
 28
 58
 415
 7
 12
 30
 356

6
 2005
 24
 18
 37
 426
 5
 17
 34
 310

7
 2006
 18
 14
 24
 464
 1
 7
 46
 347

8
 2007
 11
 8
 21
 481
 0
 9
 3
 381

9
 2008
 3
 2
 16
 587
 0
 3
 0
 495

0
 2009
 7
 3
 14
 579
 0
 8
 4
 532

1
 2010
 4
 2
 13
 568
 0
 4
 0
 464
1
2
 2011
 6
 5
 11
 743
 0
 2
 1
 780

1
3
 2012
 3
 3
 12
 816
 0
 0
 0
 1959
4

1
1
1
2
2

Table A.10
OPAL data.
2

2

Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
2
9
 1989
 5
 5
 175
 6
 3
 15
 1
 126

2
0
 1990
 25
 25
 185
 260
 15
 28
 120
 514

2
1
 1991
 28
 28
 172
 254
 14
 27
 43
 322

2
2
 1992
 22
 21
 203
 353
 7
 18
 95
 232

2
3
 1993
 42
 42
 180
 354
 16
 5
 33
 195

2
4
 1994
 26
 25
 180
 380
 5
 14
 19
 255

3
5
 1995
 39
 39
 219
 332
 7
 9
 41
 355

3
6
 1996
 57
 55
 234
 389
 29
 49
 31
 512

3
7
 1997
 42
 39
 261
 407
 5
 34
 48
 821

3
8
 1998
 56
 55
 217
 466
 2
 23
 54
 479

3
9
 1999
 69
 67
 205
 514
 0
 17
 64
 515

3
0
 2000
 54
 51
 156
 449
 2
 20
 55
 424

3
1
 2001
 54
 43
 110
 559
 4
 33
 142
 826

3
2
 2002
 71
 68
 64
 600
 4
 14
 22
 586

3
3
 2003
 27
 26
 47
 510
 2
 9
 55
 430

3
4
 2004
 18
 14
 54
 510
 1
 13
 24
 453

4
5
 2005
 16
 8
 29
 547
 4
 13
 28
 378

4
6
 2006
 15
 9
 21
 543
 0
 7
 47
 431

4
7
 2007
 8
 5
 13
 552
 0
 10
 4
 448

4
8
 2008
 3
 2
 21
 640
 0
 4
 2
 607
9
 2009
 8
 2
 15
 629
 0
 7
 4
 611

0
 2010
 1
 0
 9
 612
 0
 4
 0
 502

1
 2011
 2
 1
 9
 802
 0
 0
 4
 779

2
 2012
 0
 0
 9
 856
 0
 0
 0
 2116
4
2
2

Table A.11
CDF data.
2
2
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
3
6
 1983
 0
 0
 89
 2
 0
 0
 0
 82

3
7
 1984
 3
 3
 78
 2
 0
 0
 0
 45

3
8
 1985
 7
 7
 86
 5
 0
 0
 3
 29

3
9
 1986
 2
 2
 95
 2
 0
 0
 0
 23

3
0
 1987
 13
 13
 121
 4
 0
 1
 0
 68

3
1
 1988
 16
 16
 101
 13
 15
 10
 5
 21

3
2
 1989
 25
 25
 150
 96
 14
 11
 83
 145

3
3
 1990
 41
 39
 160
 230
 11
 8
 77
 211

3
4
 1991
 40
 39
 153
 216
 7
 14
 6
 233

3
5
 1992
 31
 31
 130
 242
 9
 7
 50
 126

4
6
 1993
 86
 86
 149
 284
 2
 3
 35
 142

4
7
 1994
 98
 90
 185
 411
 27
 17
 177
 365

4
8
 1995
 97
 89
 219
 677
 36
 26
 260
 860

4
9
 1996
 116
 108
 280
 700
 21
 83
 82
 1255

4
0
 1997
 86
 78
 280
 629
 22
 39
 87
 1184
1
 1998
 133
 115
 273
 540
 20
 54
 73
 730

2
 1999
 156
 134
 286
 583
 11
 37
 76
 843

3
 2000
 108
 97
 237
 532
 15
 16
 57
 768

4
 2001
 107
 96
 210
 504
 12
 21
 39
 729

5
 2002
 107
 89
 232
 604
 14
 62
 24
 887

6
 2003
 109
 89
 238
 485
 6
 31
 63
 740

7
 2004
 142
 102
 244
 555
 36
 58
 151
 1091
2
8
 2005
 182
 125
 180
 681
 52
 30
 144
 787

2
9
 2006
 194
 149
 210
 732
 60
 48
 221
 1126

2
0
 2007
 216
 130
 174
 925
 61
 59
 229
 1220
able A.11 (continued)
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
1
 2008
 184
 85
 227
 1039
 65
 136
 244
 1662

2
 2009
 169
 94
 164
 1249
 70
 64
 380
 1873

3
 2010
 186
 150
 170
 1265
 58
 76
 247
 2313

4
 2011
 188
 131
 235
 1948
 120
 205
 684
 6501

5
 2012
 134
 101
 215
 2142
 75
 222
 508
 8711
4
Table A.12
D0 data.
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
5
 1983
 2
 1
 50
 0
 1
 3
 0
 56

6
 1984
 0
 0
 40
 2
 0
 0
 0
 13

7
 1985
 0
 0
 38
 2
 0
 0
 0
 4

8
 1986
 1
 1
 57
 1
 0
 0
 0
 14

9
 1987
 1
 1
 66
 5
 0
 0
 0
 31

0
 1988
 3
 3
 53
 1
 1
 1
 0
 4

1
 1989
 7
 7
 90
 11
 0
 0
 4
 41

2
 1990
 2
 2
 97
 14
 0
 0
 0
 48

3
 1991
 5
 5
 103
 17
 0
 0
 8
 29

4
 1992
 6
 6
 103
 12
 0
 0
 0
 43

5
 1993
 39
 38
 131
 10
 2
 3
 0
 58

6
 1994
 63
 46
 130
 114
 8
 11
 79
 143

7
 1995
 77
 73
 146
 303
 22
 22
 236
 517

8
 1996
 111
 102
 180
 433
 20
 23
 40
 707

9
 1997
 80
 67
 191
 373
 33
 53
 78
 670

0
 1998
 89
 73
 182
 353
 15
 27
 63
 449

1
 1999
 134
 117
 194
 348
 37
 19
 71
 502

2
 2000
 81
 73
 166
 304
 10
 19
 32
 357

3
 2001
 98
 80
 165
 278
 4
 11
 22
 364

4
 2002
 105
 91
 172
 318
 10
 23
 16
 418

5
 2003
 78
 61
 186
 276
 7
 13
 43
 347

6
 2004
 113
 83
 184
 348
 25
 36
 169
 543

7
 2005
 144
 89
 161
 485
 38
 28
 139
 496

8
 2006
 159
 124
 171
 547
 35
 40
 208
 1044

9
 2007
 158
 88
 169
 686
 54
 35
 237
 879

0
 2008
 154
 85
 181
 731
 121
 79
 367
 1014

1
 2009
 149
 84
 163
 914
 96
 59
 292
 1264

2
 2010
 156
 125
 139
 992
 67
 71
 340
 1962

3
 2011
 156
 98
 211
 1469
 135
 204
 434
 5316

4
 2012
 135
 95
 173
 1710
 90
 173
 478
 7442
4
Table A.13
ALICE data.
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
6
 1993
 2
 2
 57
 0
 0
 0
 0
 235

7
 1994
 1
 1
 65
 2
 0
 0
 0
 210

8
 1995
 0
 0
 65
 1
 0
 0
 0
 359

9
 1996
 1
 0
 73
 3
 0
 0
 0
 753

0
 1997
 1
 1
 90
 2
 0
 0
 0
 1066

1
 1998
 1
 1
 114
 2
 0
 0
 0
 555

2
 1999
 19
 19
 130
 5
 0
 2
 2
 566

3
 2000
 24
 24
 147
 5
 0
 0
 1
 839

4
 2001
 74
 57
 174
 6
 1
 4
 0
 1065

5
 2002
 23
 22
 159
 8
 0
 0
 1
 862

6
 2003
 34
 34
 162
 9
 1
 13
 3
 1058

7
 2004
 32
 23
 180
 19
 1
 8
 5
 895

8
 2005
 46
 37
 153
 28
 3
 5
 5
 786

9
 2006
 39
 30
 146
 30
 1
 18
 7
 889

0
 2007
 56
 36
 153
 53
 0
 5
 2
 769

1
 2008
 43
 33
 148
 90
 6
 9
 8
 926

2
 2009
 62
 40
 154
 129
 7
 14
 6
 751

3
 2010
 112
 95
 157
 202
 59
 66
 159
 1078

4
 2011
 604
 184
 222
 527
 72
 131
 129
 1348

5
 2012
 240
 184
 137
 630
 226
 160
 213
 1153
4
Table A.14
ATLAS data.
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
6
 1993
 1
 1
 63
 0
 0
 0
 0
 398

7
 1994
 0
 0
 56
 0
 0
 0
 0
 766

8
 1995
 3
 3
 86
 2
 0
 0
 2
 1626
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able A.14 (continued)
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4

2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4

2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4

Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
9
 1996
 1
 1
 80
 6
 0
 0
 0
 1817

0
 1997
 6
 6
 92
 7
 0
 2
 0
 2532

1
 1998
 26
 23
 110
 9
 0
 1
 12
 1423

2
 1999
 20
 19
 136
 9
 0
 0
 1
 1675

3
 2000
 20
 20
 140
 19
 0
 1
 0
 1319

4
 2001
 49
 47
 157
 16
 4
 2
 4
 2074

5
 2002
 36
 33
 179
 23
 0
 4
 7
 1624

6
 2003
 36
 34
 198
 32
 2
 1
 3
 1352

7
 2004
 42
 38
 228
 28
 5
 5
 6
 1620

8
 2005
 37
 24
 196
 31
 0
 5
 4
 1279

9
 2006
 46
 32
 266
 55
 2
 3
 7
 1908

0
 2007
 93
 52
 292
 88
 4
 19
 31
 1762

1
 2008
 142
 84
 333
 192
 51
 69
 75
 2294

2
 2009
 267
 228
 284
 345
 37
 21
 190
 2375

3
 2010
 265
 232
 334
 410
 63
 56
 85
 2972

4
 2011
 381
 303
 526
 1189
 263
 289
 929
 7186

5
 2012
 1048
 438
 441
 3306
 2841
 592
 5535
 13,600
4
Table A.15
CMS data.
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
7
 1993
 1
 1
 67
 0
 0
 0
 0
 440

8
 1994
 1
 1
 57
 0
 0
 0
 0
 740

9
 1995
 1
 1
 85
 3
 0
 0
 0
 1546

0
 1996
 2
 1
 96
 8
 0
 0
 0
 1873

1
 1997
 6
 4
 107
 6
 0
 2
 0
 2544

2
 1998
 12
 12
 99
 17
 0
 0
 8
 1117

3
 1999
 17
 17
 142
 17
 0
 0
 1
 1471

4
 2000
 18
 18
 148
 17
 0
 0
 0
 1310

5
 2001
 39
 38
 164
 35
 0
 0
 9
 2033

6
 2002
 41
 39
 195
 46
 1
 2
 22
 1515

7
 2003
 40
 37
 197
 53
 5
 4
 2
 1330

8
 2004
 44
 38
 204
 31
 0
 3
 6
 1500

9
 2005
 43
 29
 225
 51
 0
 1
 5
 1393

0
 2006
 77
 54
 246
 91
 1
 6
 8
 1726

1
 2007
 98
 63
 270
 140
 20
 17
 83
 1780

2
 2008
 126
 79
 315
 281
 28
 40
 62
 2526

3
 2009
 155
 129
 320
 327
 18
 32
 11
 2775

4
 2010
 242
 178
 376
 456
 44
 72
 187
 3186

5
 2011
 579
 265
 461
 1279
 889
 320
 1148
 7462

6
 2012
 572
 334
 441
 2516
 702
 512
 3366
 14,324
4
Table A.16
LHCb data.
Year
 l0
 l0_published
 l1cited
 l1citing
 X0to0
 X0to1
 X1to0
 X1to1
5
 1993
 0
 0
 25
 0
 0
 0
 0
 168

6
 1994
 0
 0
 25
 0
 0
 0
 0
 271

7
 1995
 0
 0
 31
 0
 0
 0
 0
 469

8
 1996
 0
 0
 29
 0
 0
 0
 0
 768

9
 1997
 0
 0
 30
 0
 0
 0
 0
 824

0
 1998
 3
 3
 40
 1
 0
 0
 2
 508

1
 1999
 1
 1
 58
 4
 0
 0
 0
 699

2
 2000
 12
 12
 55
 2
 0
 0
 1
 732

3
 2001
 14
 14
 60
 9
 0
 3
 2
 1059

4
 2002
 11
 11
 70
 3
 5
 5
 0
 990

5
 2003
 23
 23
 83
 4
 0
 0
 1
 1119

6
 2004
 7
 7
 84
 8
 0
 2
 1
 1144

7
 2005
 28
 20
 99
 12
 0
 0
 5
 916

8
 2006
 16
 13
 141
 8
 0
 1
 0
 1810

9
 2007
 46
 27
 151
 26
 2
 9
 2
 1558

0
 2008
 19
 18
 135
 41
 0
 6
 5
 1462

1
 2009
 37
 28
 138
 72
 0
 3
 7
 1384

2
 2010
 82
 67
 157
 72
 9
 10
 14
 1735

3
 2011
 127
 92
 218
 384
 52
 78
 131
 1507

4
 2012
 158
 135
 200
 632
 175
 208
 421
 2265
4
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