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Abstract

This paper studies the dynamics of fundamental research. We develop a simple model where researchers
allocate their effort between improving existing fields and inventing new ones. A key assumption is that
scientists derive utility from recognition from other scientists. We show that the economy can be either in
a regime where new fields are constantly invented, and then converges to a steady state, or in a cyclical
regime where periods of innovation alternate with periods of exploitation. Our analysis provides a rigorous
foundation to the Kuhnian theory of scientific evolution. We show that scientists’ care for reputation has a
strong impact on research dynamics and tends to favor innovation. Especially, innovation fads may emerge.
We also study welfare and find that the academic reputational reward system can help align scientists’
short-term incentives with society’s long-term interests.
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“My love of natural science (...) has been much aided by the ambition to be esteemed by my
fellow naturalists.” Charles Darwin [11].

1. Introduction

In this paper, we develop a full-fledged analysis of the evolution of science. Our objective is
to understand the dynamic implications of the unique incentive structure of academia. Because
scientists care about their reputation, current research decisions are affected by expectations on
future developments. Scientists strive to produce high impact research. We argue below that this
has important and understudied consequences on the scientific process. Do scientists devote too
much effort to try and break new ground? Can science be subject to fads and fashions? Does the
collegiate reputational reward system provide appropriate incentives for scientific production?
We build a new model to answer these questions.

Our model embodies several key features of fundamental research.2 First, new knowledge
is publicly available as soon as it is produced.3 Second, citations respect the rule of priority.
Scientists who build on some idea acknowledge the contribution of the scientist who first found
this idea. Third, the value of research on a specific topic is subject to decreasing returns. Fourth,
scientists have both an intrinsic and an extrinsic motivation to do research. As in Darwin’s citation
above, a scientist wants to expand scientific knowledge and cares about his reputations among his
peers.4 Both motivations affect research decisions. In our model, scientists allocate their effort
between the exploitation of existing fields and the invention of new ones. The utility derived by
a scientists from a paper he has written is the sum of an “intrinsic” value of the paper and a
“citation premium”. The intrinsic value depends on the field in which it is written. It decreases
at a decreasing rate as the field gets exploited. The citation premium depends on the number of
subsequent papers written in that field. The relative weight of the citation premium in scientists’
preferences is a key parameter we are interested in.

Our analysis provides a rigorous foundation to the Kuhnian theory of scientific evolution, see
[17]. In Kuhn’s view, science alternates between periods of normal science and scientific revo-
lutions. Under normal science, progress is gradual and builds up on past achievements. Science
evolves within fixed paradigms. These paradigms are overthrown during scientific revolutions,
when scientists adopt new assumptions and frames of reference. We show that such research
cycles emerge as one possible outcome of our economy.5 However, it is not the only one. The
economy could also be in a regime where new fields are constantly invented, and where the rate
of invention converges to a steady state. We are able to precisely understand the conditions under
which cycles emerge.

To illustrate our motivation quantitatively, let us focus on the relatively homogeneous field
of finance. Using bibliometric analysis we can construct an index of the number of seminal
papers in that field in a given year. We limit ourselves to the two most important journals, the
Journal of Finance and the Journal of Financial Economics, and to the 1946–1986 period. Using

2 See [10] for a detailed discussion of the institutions and norms that distinguish academic from private-sector and
military research.

3 We abstract here from delays associated with the publication process, or arising from strategic considerations.
4 Scientists’ care for reputation could also be financially motivated. Empirical studies find a robust positive impact of

citations on scientists’ earnings, see e.g. [12].
5 Furthermore, these cycles are very irregular and the duration of a cycle is “unpredictable” from the duration of the

previous cycle – i.e. related to it by a highly nonlinear function.
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Fig. 1. Number of seminal papers in finance.

Google Scholar we get a measure of the total number of citations for each paper in those two
journals (called xit for paper i published in year t).6 We then immediately run into the difficulty
that citations are trending upward, which reflects the growth in the amount of research. We can
however de-trend by using as a benchmark some aggregate measure of citations; we pick the
number of citations of the 20th percentile paper in the Journal of Finance. Presumably this is
not a seminal paper, and this allows to construct a trend measure which is not being polluted by
outliers (which seminal papers, in particular, are). The median would not have been appropriate
because it has too few citations and is therefore too noisy. Over the relevant period, fitting an
exponential trend to this measure works well.7 We use this exponential trend (called x̄t ) to de-
trend our citation measure. Next, we define a seminal paper as a paper whose ratio xit /x̄t is
at least equal to 30. This leaves Black and Scholes [5] among the seminal papers, but by a
rather narrow margin – its citation rate does not put it among the top 10 most cited papers by
the Google Scholar measure, even if we de-trend it. Overall, this defines 46 seminal papers in
finance, among which 27 are in the Journal of Finance and 19 are in the Journal of Financial
Economics. Fig. 1 plots the number of seminal papers per year. We do observe an explosion
of ‘fundamental’ research in the late 1970s. This is consistent with our view that periods of
fundamental innovation alternate with periods of improvements. For example, no seminal papers
were published in the Journal of Finance between 1979 and 1983, vs. eight in the three preceding
years.

6 Our data are available from us upon request for replication. We used the Publish or Perish software.
After 1986, we run into two problems. First, the number of published papers rises considerably and this is associated

with a sharp drop in the 20th percentile Journal of Finance paper. We do not know whether that is due to an intrinsically
less innovative period – which we would like to capture – or to the fact that the additional papers were marginal in such a
way that the 20th percentile is no longer a good measure of the trend. Second, more recent papers suffer from a truncation
bias when one wants to measure their total impact, which suggests that the end of the sample should be sufficiently distant
in the past.

7 R2 = 0.9, DW = 1.79.
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While technical change plays a central role in modern theories of growth, economists have
devoted relatively little attention to the study of scientific change.8 Our paper contributes to a
growing literature studying the specific features of academia. For instance, [2] emphasizes the
value placed by scientists on academic freedom.9 Their focus lies on the question of delegation
of authority, and they mostly abstract from incentive considerations. They develop an insightful
analysis of the relative performances of academia and the private sector in the production of
research. In contrast, we focus on academic incentives. We develop the first formal model of
the evolution of science, and study the implications of the reputational reward system on the
scientific output.

Building on our characterization of cycles, our analysis yields three main messages.
First, we find that the citation premium strongly affects the dynamics of research. We show

that a higher citation premium makes cycles less likely. An increase in reputational concerns
tends to tilt scientists’ choices toward innovation rather than exploitation. The citation premium
also interacts in interesting ways with the other parameters of the model. Especially, we find that
an increase in research uncertainty has an ambiguous impact. If the citation premium is not too
large, a mean-preserving spread in the distribution of values of new fields makes cycles more
likely. Exploitation is favored: the best fields turn out to be better, which increases the value
of working on them. However this effect is alleviated, and potentially reversed, if the citation
premium is large. Scientists may then prefer to innovate as they anticipate their good papers to
get more citations.

Second, we show that sunspot equilibria and indeterminacy emerge if the citation premium
is high enough. Science may be subject to innovation fads.10 If scientists expect the opening of
new fields to bring a higher payoff, they devote more time to invention. This yields more papers
in new fields, and more subsequent research in the best of these new fields. The citation premium
originally associated with these fields is then effectively larger. Expecting invention to bring a
high payoff can be a self-fulfilling prophecy. In contrast, topic fads cannot emerge in our setup
because expectations are rational.11

Third, we provide a partial welfare analysis. We focus on the issue of durability of research.
We assume that scientists do not internalize the fact that their research will benefit future gen-
erations, and this is the only market failure. We find that absent a citation premium, there is too
little innovation in the equilibrium steady state compared to the social optimum. We show that
a “pigovian” citation premium can be introduced so as to induce the socially optimal level of
innovation. The reputational reward system can thus be viewed as an institutional solution to
the problem of durability. It helps align scientists’ short-term incentives with society’s long-term
interests.

Our analysis introduces the distinction between horizontal and vertical innovation to the eco-
nomics of science. A similar distinction lies at the core of recent work on technical change and

8 Some early contributions include [7,9,10,18,21].
9 See also [14] on coauthorship networks, or Chatterjee and Chowdhury (“Academic citations and diffusion of knowl-

edge: An economic analysis”, unpublished manuscript) on citation patterns.
10 Researchers have discussed the importance of scientific fashions, but this phenomenon has not been incorporated in
a formal analysis before. For instance, [8] gives an early account of economics’ fads, [22] discuss the impact of fashions
on a scientist’s career, and [23] relates academic fads to informational cascades.
11 Topic fads could emerge under irrational expectations. If scientists think that a field is “hot”, they will work on it to
reap the rewards of future citations. These expectations could be initially fulfilling, leading to a research bubble. At some
point the bubble would burst, however, bringing back the expectations in line with the scientific fundamentals.
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endogenous growth.12 Cycles of technological innovation notably play a central role in the stud-
ies of [13,16,19]. The deep reason behind cycles is similar in these models and in ours. Some
form of decreasing returns is assumed, which ensures that if exploitation lasts long enough rad-
ical innovation may become worthwhile. However, setups differ in crucial ways. [16] builds
a Bayesian learning model. A myopic agent explores the technological space through discrete
choices.13 [19] integrates the neoclassical and Schumpeterian views on growth. Cycles emerge
because the monopoly power enjoyed by innovators is temporary.14 [13] focuses on the organi-
zational features of technical change. Organizations gradually build up during exploitation, but
are rendered obsolete by the adoption of a radical innovation. Our model differs from these in
two important ways. First, cycles arise due to a strong induced effect of an invention of the subse-
quent mass of research devoted to exploiting this invention – if that effect is substantial, it builds
instability and cycles in the dynamics of the economy. Second, a key role is played in our results
by the citation premium, which captures the indirect rewards to a researcher of other researchers
building on his or her work in the future.15 Through citations, payoffs from a scientist’s current
choice depends on the future evolution of science. This dynamic linkage has a strong impact on
the existence and properties of cycles.16

Finally, note that our results could also potentially be applied to the analysis of commercial
R & D, with our citation premium being reinterpreted as the income derived by an innovator
from the royalties paid by subsequent innovators building on his or her invention. The level of
the citation premium can then be interpreted as the level of intellectual property.17

The rest of the paper is organized as follows. We introduce the model in Section 2. We present
our main result in Section 3 and interpret it in Section 4. We study comparative statics and
dynamics in Section 5. We show that indeterminacy may emerge in Section 6, and look at welfare
in Section 7. Section 8 concludes.

2. The model

We consider an infinite horizon model with discrete time. At each date t there is a continuum
of existing fields of research, which we index by i. Each field is characterized by a stock of
contributions (or ‘papers’) nt (i) at the end of period t . We also think of this stock as a continuum.
nt (i) is the advancement level of field i at date t . Creating a new field puts it at a fixed, initial
advancement level n̄.

Papers are produced by researchers. Researchers live for two periods, hence we have an over-
lapping generation structure. In the first period of their life, researchers produce contributions.

12 Our paper is also related to the literature on directed innovation in growth models, which studies the incentive to
innovate in one sector vs. another (see [1]). The determinants of innovation in existing vs. new fields which we discuss
here, however, are substantially different from the ones studied in that literature. The two approaches could be brought
together by assuming that exploiting existing fields uses different factors of production than invention.
13 See also [15].
14 Innovation is also associated with cycles in [20], although the key mechanism is a strategic complementarity between
demand and implementation, which essentially leads to multiple equilibria.
15 Also, we adopt a continuous framework where different fields can be exploited in the same period.
16 It also complicates the proof of existence of an equilibrium. As shown in the paper’s technical appendix, we cannot
invoke standard fixed-point results here. Instead, we develop some original continuity arguments to prove existence, that
could have applicability in other dynamic settings.
17 Or, more generally, as the degree of appropriability of the returns to innovation through their embodiment in physical
goods, as in [6].
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In the second period of their life, they enjoy the returns from their scientific “reputation”, which
defines their utility function. A researcher’s scientific reputation is the sum of the contribution of
each individual paper he or she has written. An (infinitesimal) individual paper written at date t

in existing field i yields the following contribution to its author’s reputation:

vt (i) = ω(i) − β
(
lnnt (i) − ln n̄

) + θ
(
lnnt+1(i) − lnnt (i)

)
.

This reputation is the sum of two terms. The first term, ω(i) − β(ln nt (i) − ln n̄), defines the
intrinsic value of the paper. ω(i) is a field-specific constant which represents the field’s value (or
initial research potential) as a whole. The term β(ln nt (i) − ln n̄), where β and n̄ are positive
parameters, captures the fact that there are decreasing returns to research: the larger the stock
of knowledge in field i, the smaller the intrinsic value of additional contributions. The second
term, θ(lnnt+1(i)− lnnt (i)), is the citation premium. It tells us that the reputation obtained from
papers written at t is greater, the greater the flow of further advances in the relevant field at t + 1.
Underlying this formulation is the idea that papers come in a given order, and that new papers
cite previous papers, thus enhancing their author’s reputation. Note that contemporaneous papers
do not cite each other, so that what matters for citations is the log difference between the stock
of papers written at the end of t + 1 and that at the end of t .18

The total mass of researchers per generation is normalized to 1. Each researcher is endowed
with υ units of time. He allocates his time optimally between writing papers in different fields.
In addition to that, one may create new fields.19

When one writes the first paper in a new field, its potential ω(i) is drawn from some distri-
bution, with pdf f (.), such that all moments exist. The realization of ω(i) is unknown when one
decides to write the paper. At the end of the period when the new field is created, its advance-
ment level is set at the initial value n̄. Therefore, one must wait one period before making further
contributions to a new field.

We assume that one unit of time produces either a mass 1 of papers in an existing field or a
mass γ of papers in a new field.

We make two technical assumptions that help simplify the analysis of the model.

Assumption A1. If at date t , there is a strictly positive measure of new fields invented, then all
fields invented before date t can no longer be researched from date t + 1 on.

This assumption means that only the fields invented in the last wave of innovation can be
exploited at a given date.20 It is consistent with Kuhn’s theory: “When it repudiates a paradigm,
a scientific community simultaneously renounces most of the books and articles in which that

18 An interpretation is that within a period, papers are written simultaneously and therefore researchers are not aware
of the contemporaneous papers written in the same field. The analysis would be unchanged if contemporaneous papers
could cite each other, as long as (i) there is no way researchers can affect their contemporaneous citation rate, and (ii) the
effect is not strong enough to overturn decreasing returns in the advancement of the field. Thus, for example, if people
get an additional citation premium λ lnnt (i) from contemporaneous papers, this is equivalent to replacing β by β − λ.
The model is unchanged provided λ < β .
19 Note that this distinction between fundamental and secondary innovation is different from the one used by [3,4], who
assume that secondary innovation results from learning by doing only.
20 It is not necessary to make this assumption in the special case where θ = 0. In such a case the value of inventing a new
field is VN = γ ω̄ = γE(ω), which is also the lower bound of the value of working on an existing field, since one could
always produce new fields instead. Consequently, when new fields are invented, all previous fields reach their maximum
advancement level, such that the value of the marginal paper is equal to VN ; they will not be exploited thereafter.
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paradigm had been embodied” [17]. A similar assumption is often made in models of tech-
nological innovation cycles, see e.g. [15]. Relaxing this assumption would not affect the main
mechanism behind the emergence of cycles. The decreasing returns to research ensure that in-
novation becomes worthwhile if exploitation lasts long enough. However, it would make the
analysis cumbersome. If Assumption A1 does not hold, we need to keep track of all the fields
ever invented at any date. A current cycle with a low value of invention would see the reactivation
of all the old fields abandoned in earlier cycles with higher values of invention.

Assumption A2. γ < 1.

This assumption states that inventing a new field requires more labor than writing a paper in an
existing field. It is a plausible, but merely technical assumption, required to prove the existence
of an equilibrium for θ > 0.21

3. Equilibrium

In this section, we show the existence of an equilibrium, and the conditions under which it
is cyclical as opposed to converging to a steady state. We provide a result for uniqueness in the
case where θ = 0. We first discuss the equilibrium conditions of the model in the two regimes
of interest. We then state the paper’s main result, whose proof is relegated to Appendix A. In
the next section, we discuss its economic interpretation using a graphical illustration, confining
ourselves to the θ = 0 case. We then work out numerical examples. Finally, we give a sketch of
the proof when the citation premium is positive.

3.1. Equilibrium conditions

At any point in time, the economy may be in one of two regimes:
In regime I, all the research input is allocated to improving existing fields. There exists a

shadow value of time λt ; a field is exploited if and only if the first paper written in the current
period has a value greater than λt , that is22:

ω − β(lnnt−1 − ln n̄) + θ(lnnt+1 − lnnt−1) > λt . (3.1)

The number of papers written in such a field, at t , must satisfy

ω − β(lnnt − ln n̄) + θ(lnnt+1 − lnnt ) = λt . (3.2)

The equilibrium value of λt must adjust so that the total mass of papers being written is equal
to υ . Call s the last period where invention took place, and μs the mass of new fields invented
at s.

Using (3.1) and (3.2), the full employment condition can be written as

μs

∫
ω>(β+θ) lnnt−1(ω)−β ln n̄−θ lnnt+1(ω)+λt

(
nt (ω) − nt−1(ω)

)
f (ω)dω = υ. (3.3)

21 It is again not needed for θ = 0.
22 We drop the index i as two fields with the same ω will behave identically.
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Finally, the value of writing a paper in a new field, denoted by Vt , must be lower than that of
working on an existing field:

Vt < λt .

In regime II, people exploit existing fields, and work on new fields as well. They must be
indifferent between the two activities, so that one must have λt = Vt . Conditions (3.1) and (3.2)
remain valid with λt replaced with Vt .

Because of Assumption A1, the existing fields will disappear at t + 1 and be replaced by the
mass μt of new fields, which will start with advancement level n̄ at t + 1. Therefore, nt+1(ω) =
nt (ω), since existing fields at t are no longer exploited at t + 1. Substituting into (3.2), the final
advancement level is:

nt (ω) = n̄e
ω−Vt

β , (3.4)

while (3.1) can be rewritten in this regime as

ω > Vt + β
(
lnnt−1(ω) − ln n̄

)
.

Note that this condition collapses to

ω > Vt (3.5)

if the economy was also in regime II at date t − 1, since the field must then have been invented
at that date.

In regime II, the resource constraint states that total time devoted to existing fields cannot
exceed υ:

μs

∫
ω>β(lnnt−1(ω)−ln n̄)+Vt

(
nt (ω) − nt−1(ω)

)
f (ω)dω � υ.

The remaining time endowment must be devoted to new fields; this determines the mass of
new fields invented at t :

μt = γ

[
υ − μs

∫
ω>β(lnnt−1(ω)−ln n̄)+Vt

(
nt (ω) − nt−1(ω)

)
f (ω)dω

]
. (3.6)

Finally, in both regimes, the value of working in a new field Vt is determined as follows.
Consider a researcher writing a paper in a new field with value ω. Then, nt (ω) = n̄. If (3.1) holds
at t + 1, which is equivalent to

ω > θ ln n̄ − θ lnnt+2(ω) + λt+1,

then the field will be active, and the inventor will benefit from citations. The value to the inventor
is then given by

vt (ω) = ω + θ
(
lnnt+1(ω) − ln n̄

)
where nt+1(ω) = n̄

β
β+θ nt+2(ω)

θ
β+θ e

ω−λt+1
β+θ .

Otherwise, the field will not be active at t + 1, and the inventor just gets the intrinsic value of
the first paper:

vt (ω) = ω.

Thus, the value of working on a new field at t is given by:
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Vt = γEvt (ω)

= γ

[
ω̄ + θ

β + θ

∫
ω>λt+1−θ(lnnt+2(ω)−ln n̄)

(
ω − λt+1 + θ

(
lnnt+2(ω) − ln n̄

))
f (ω)dω

]
.

3.2. Existence, uniqueness, and cycles

We now state the central results of the paper. To do so, we need to introduce the following two
functions:

Φ(y) = γ

[
ω̄ + θ

β

+∞∫
y

(ω − y)f (ω)dω

]
, (3.7)

and

I ∗(y) = n̄

+∞∫
y

(
e

ω−y
β − 1

)
f (ω)dω.

The Φ function captures how the value of invention evolves during regime II, as a function of
the value of invention next period, denoted by y. It consists of two terms: the average intrinsic
value of the first paper in the field, ω̄, and the contribution to the inventor’s welfare of future ci-
tations, θ

β

∫ +∞
y

(ω − y)f (ω)dω. That contribution falls with y, since a greater value of invention
tomorrow reduces the number of papers written in my field and thus my citations.

As for I ∗, it is a measure of the mass of researchers who devote themselves to existing virgin
fields, as a function of the current opportunity cost of writing a paper. The greater that value
y, the smaller the equilibrium labor input in existing fields. For example, if the economy is in
regime II in periods t and t + 1, and if a unit mass of new fields is invented at t , exploiting those
with field value greater than or equal to y at t + 1 requires I ∗(y) research input.23

Both functions are continuous and decreasing. Since Φ(0) � γ ω̄ and Φ(+∞) = γ ω̄, Φ has a
fixed point V̄ :

Φ(V̄ ) = V̄ . (3.8)

The paper’s main result can be stated as follows. (All proofs are given in Appendix A.)

Proposition 1. Assume that the economy starts at t = 0 with an initial mass of fields μ−1, whose
intrinsic value is distributed with f ( ), and whose initial advancement level is given by n̄. Then:

(i) There exists an equilibrium path.
(ii) If

γ I ∗(V̄ ) > 1, (3.9)

then any equilibrium is cyclical, i.e. periods in regime I alternate with periods in regime II.
During periods in regime II, the mass of invented fields follows explosive oscillations, until
the economy reverts to regime I. During periods in regime I, the set of exploited fields grows.
The duration of a period in regime I cannot exceed γ I ∗(γ ω̄).

23 As another example, if θ = 0 and fields are exploited for the first time, then the LHS of (3.3) is equal to μsI
∗(λt ).
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(iii) If

γ I ∗(V̄ ) < 1,

then there exists an equilibrium such that
– the economy is in regime II from t = 0 on;
– the value of working in a new field is equal to V̄ at all dates;
– the mass of invented fields converges to its steady-state value, given by

μ̄ = γ υ

1 + γ I ∗(V̄ )
, (3.10)

by dampened oscillations.
(iv) If θ = 0, equilibrium is unique.24

We interpret the key condition (3.9). Consider a regime II episode where the value of invention
is constant and equal to V̄ . By definition of I ∗, a unit increase in the mass of new fields invented
at t triggers an increase in the research input exploiting these fields at t +1 equal to I ∗(V̄ ). Since
total labor input is fixed, this represents a decrease in the research input devoted to invention at
t + 1. Recall, one unit of time produces γ papers in a new field. Therefore, a unit increase in
new fields at t leads to a decrease in new fields at t + 1 equal to γ I ∗(V̄ ). If γ I ∗(V̄ ) > 1, the
initial effect is amplified and regime II dynamics are unstable. The economy eventually reverts
to regime I, and cycles emerge. In contrast, the initial effect is attenuated if γ I ∗(V̄ ) < 1. In that
case, stable regime II dynamics lead to a steady-state equilibrium. The quantity I ∗(V̄ ) represents
the attractiveness of existing fields in regime II. We describe this process more formally, and
explain how our proof is constructed, in the next section. In Section 5, we study how the main
parameters of the model affect the emergence of cycles.

4. Interpretation

To analyze the reason behind cycles, let us focus on the simpler case where θ = 0. In the
absence of a citation premium, inventors of new fields just get the intrinsic value of the field, ω,
as a reward. Consequently, the value of a new field is pinned down and equal to V = γ ω̄ in any
period.

Fig. 2 plots the value of working in an existing field at any date t , λt , as a function of the total
input in existing fields; that defines the LL schedule. This curve is downward-sloping, because of
decreasing returns, captured by the −β(lnnt (i) − ln n̄) term in the utility function. For the same
reason, its position is lower, the higher the initial advancement level of those fields, nt−1(i).
Finally, given that level, its position is higher, the greater the mass of available fields μs , since
the same total research input is now associated with a lower advancement level nt (i) in each
field.

If, as is the case in Fig. 2, that schedule intersects the horizontal line VV at λ = V , then the
economy is in regime II. The horizontal distance AB determines the labor input into new fields,
and hence the mass of fields being invented.

If that is not the case, then the economy must be in regime I, and equilibrium determination is
illustrated in Fig. 3. At date t , all researchers work in existing fields. Advancement in these fields
generate a downward shift in LL, and the intercept of the LL schedule for the next period must

24 We conjecture that the equilibrium is unique for θ small enough, but cannot prove it.
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Fig. 2. Equilibrium determination in regime II.

Fig. 3. Equilibrium determination in regime I.

be equal to λt – which simply means that the value of the first marginal paper at t + 1 in a given
field is equal to the value of the last paper written in that field at t . The process continues until
the LL schedule cuts the VV schedule, in which case one is back to regime II (at t + 2 in the case
of Fig. 3). This must happen in finite time, otherwise decreasing returns would eventually drive
VV below the λ = 0 line. Note that the λt fall during the regime I period. That is the reason why
the set of fields being exploited grows during that phase.25

25 Because of Assumption A1, a field exploited during that phase must have been invented in the last period in regime II
before the regime I phase. It enters regime I with an initial advancement level equal to n̄. Using (3.1) with θ = 0, it will
therefore be exploited as soon as ω > λt . Because the λ’s are falling, it will continue to be exploited until the economy
reverts to regime II, when it becomes obsolete.
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Fig. 4. Convergence to the regime II steady state.

What happens, next, in regime II? At each date, a given mass of fields is invented. The greater
that mass, the greater the value of exploiting these fields next period (i.e. LL shifts up). On
average, one field invented at date t , with a quality distribution f (ω), triggers an amount I ∗(V )

of research input devoted to exploiting that field at date t + 1. That reduces the amount of time
devoted to innovation: the greater the mass of fields invented today, the lower the mass of fields
invented tomorrow. The evolution of μt , the mass of fields invented at t , evolves according
to

μt = γ
(
υ − μt−1I

∗(V )
)
. (4.1)

If these dynamics are stable (γ I ∗(V ) < 1, Fig. 4), then the economy converges to a steady
state. Otherwise, (γ I ∗(V ) > 1, Fig. 5), the economy cannot remain in regime II forever: it will
revert to regime I. As regime I itself cannot last forever, the two regimes must prevail alterna-
tively.

The instability condition γ I ∗(V ) > 1 simply means that a unit of labor employed in inventing
a new field today attracts more than one unit of labor into exploiting that field tomorrow. That
in turn reduces the amount of labor inventing new fields tomorrow more than one for one, thus
generating the explosive oscillatory dynamics and the subsequent exit from regime II. The greater
the quantity I ∗(V ), the more existing fields are attractive, and the more likely it is that cycles
arise.

To complete the analysis, we show that the duration of a regime I episode is equal to
INT(

μs

υ
I ∗(V )) where INT(z) is the smallest integer q such that q � z and μs is the mass of

invented fields inherited from the last period of the previous regime II episode. Clearly, exploita-
tion lasts longer when there is more inherited invention. This allows to determine how the mass
of fields invented at the first period of a new regime II episode, μt , depends on the inherited μs .
We obtain:

μt = γ υ

(
1 − DEC

(
μs

I ∗(V )

))
(4.2)
υ
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Fig. 5. The economy eventually leaves regime II.

where DEC(z) is the decimal part of z: DEC(z) = z − INT(z). This provides the key equation
explaining how the mass of invention μt evolves in the presence of exploitation.26

From these considerations, it is easy to show that an equilibrium exists in the θ = 0 case by
using the following iterative procedure.

We start from a given inherited measure of invented fields at date s, μs (thus the economy
was in regime II at date s). At date t = s + 1, we allocate all research to improving these fields,
in an optimal way, i.e. so that the resulting advancement level of each field satisfies (3.2) – the
marginal value of an extra contribution is common across all fields and equal to λt . Integrating
the number of papers written across all active fields and using the resource constraints (3.3), this
allows to solve for λt .

If the result is such that λt < V , it can be checked that we can construct a new period in
regime II by simply applying (4.1) between dates s and s + 1; and we can restart the procedure
from date s + 1.

If the result is such that λt > V , we have constructed one period in regime I, and we can
repeat the procedure for t = s + 2. That leads to a decreasing sequence of values of λt . The
procedure is stopped when we get λt < V , in which case we are back to regime II at t and the
number of invented fields is set according to (3.6). We then just apply (4.1) until the economy
exits regime II, in which case we restart the procedure.

Clearly, the dynamical system followed by the mass of available fields μ is described by
Eqs. (4.1) and (4.2). The latter, in particular, builds considerable nonlinearity in the dynamics of
μ, since at the exit of a period in regime I, the number of invented fields depends linearly on the
decimal part of a multiple of the initial μ.

The basic principle behind the proof of Proposition 1 is to extend that strategy to the case
where θ > 0. It involves two essential ingredients: First, the λt ’s that intervene in the construction

26 Observe that Eq. (4.2) exactly reduces to Eq. (4.1) when there is no exploitation.
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Fig. 6. Time in regime I per cycle.

of regime I are substituted by a pseudo-shadow cost λ̂t which reflects future citations. Second, the
value of working in a new field Vt is no longer constant and a sophisticated continuity argument
must be elaborated so as to prove that there exists an initial value of Vt which matches the
equilibrium condition for the transition from regime I to regime II.

The reason why we cannot rely on standard existence proofs (such as fixed point theorems) is
two-fold. First, this is a model with heterogeneous agents that cannot be reduced to an optimiza-
tion problem for a representative agent. Second, as seen above, the mapping which defines the
current measure of invented fields as a function of past ones is discontinuous, so that fixed-point
theorems do not apply.

4.1. Numerical illustration

In this section we provide some simulations in order to get a better idea of the irregular
nature of the innovation cycles. We assume that the quality of a field ω is drawn from a uniform
distribution over [0,ωu], implying ω̄ = ωu/2. We stick to the θ = 0 case.

Figs. 6 to 11 report the simulation results for the following set of parameters: n̄ = 2; ωu = 1;
β = 0.3; γ = 0.7; υ = 1. The initial measure of existing fields was taken as μc = 1.

It is easy to show that (3.9) holds in this case, so that the equilibrium must be cyclical. The
simulation shows that the economy follows cycles that are irregular, both in the duration spent
in regime I and the duration spent in regime II. The time spent in regime I oscillates between
1 and 2 periods (Fig. 6), while time spent in regime II oscillates between 1 and up to 6 periods
(Fig. 9).27 There are also chaotic oscillations in the stock of new fields available for exploration at

27 These figures report the 70 first cycles after the initial one.
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Fig. 7. Mass of new fields per cycle.

Fig. 8. Cycle length and mass of new fields.
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Fig. 9. Time spent in regime II.

the beginning of each regime I phase (Fig. 7). Furthermore, and that can be proved analytically,28

there is a tight positive connection between that initial stock and the length of the time spent in
period 1 (Fig. 8); the regime I cycle lasts for 2 periods if the initial stock of knowledge is � 0.6,
and for 1 period otherwise.

Fig. 10 reports the average rate of innovation during the time spent in regime II. We see that it
exhibits irregular fluctuations. We also see (Fig. 11), that cycles where a longer time is spent in
regime II, have a lower rate of innovation. Intuitively, if a large number of researchers produce
new fields, it is more likely that the economy reverts to regime I in the following period in order
to exploit the potential of these new fields.29

Relative to that benchmark simulation, we can perform some exercises. Figs. 12 and 13 report
the structure of cycles when we reduce the decreasing returns parameter from β = 0.3 to β =
0.2.30 We see that overall, the economy spends more time in regime I and less time in regime II.
In a cycle, regime I last between 1 and 5 periods, although that is quite often just 1 period, and
regime II typically does not exceed 2 periods, although there are very rare occurrences of cycles
where the economy spends 3 periods in regime II.

In fact, while there is a maximum duration for the regime I phase, if the dynamics are truly
chaotic one will have (very rare) regime II phases of arbitrary length. The reason is that the

28 See Eq. (A.7) in Appendix A.
29 Another interesting property of that simulation, is that cycles where regime I lasts for two periods, are such that the
economy only spends 1 period in regime II. The explanation could be as follows: at the end of such cycles, fields are
quite exhausted, and the value of working in new fields in regime II is quite high. Thus a large mass of innovation will
take place during a short period of time, after which people revert to exploiting the new fields.

However, this explanation is incomplete, since longer cycles are also those with a higher total initial potential. And
that regularity is not robust to parameter changes.
30 Given the richer results, simulation are reported over 140 cycles rather than 70.
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Fig. 10. Average production of new fields in regime II per cycle.

Fig. 11. Time in regime II and average innovation.
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Fig. 12. Cycle duration in regime I, β = 0.2.

Fig. 13. Time spent in regime II per cycle, β = 0.2.

initial values of μ will span all the [0, γ υ] interval, becoming sometimes arbitrarily close to the
unstable steady-state value μ̄.

We are now in a position to analyze how the parameters of interest affect the equilibrium.
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5. Comparative statics and dynamics

In this section, we study how the equilibrium is affected by the main parameters of the model:

• The citation premium θ ;
• The distribution of field quality f (ω); in particular: how does the riskiness of invention,

measured by the variance of f (.), affects the likelihood to obtain a cyclical equilibrium;
• The strength of decreasing returns β .

To do so, we study how these parameters affect the quantity I ∗(V̄ ). As discussed above,
I ∗(V̄ ) measures the relative attractiveness of exploiting existing fields during regime II episodes.
Proposition 1 shows that cycles are more likely to emerge when I ∗(V̄ ) is higher. Therefore, an
increase in I ∗(V̄ ) means that cycles are more likely, and also that the steady-state measure of
invented fields (μ̄ in (3.10)) in regime II becomes smaller. Our results thus relate to both the
likelihood of cycles and the equilibrium invention rate in steady state, when it exists.

5.1. The effect of the citation premium

Eq. (3.7) implies that V̄ is an increasing function of θ . Furthermore, one can check that
dI ∗/dV̄ < 0. Consequently,

Proposition 2. Cycles are less likely to emerge, the higher θ . Furthermore, μ̄ increases with θ .

This result is not totally obvious. In principle, the citation premium increases incentives to
work both in new fields and in existing fields. However, in regime II, existing fields are only
exploited during one period; thus one earns no citation premium on them. An increase in θ

clearly decreases the value of working on existing fields in regime II, hence the chance of ever
reaching regime I, as well as the steady-state measure of invented fields.

5.2. The role of research uncertainty

Next, we look at the role of uncertainty in research; we want to know how the variance of ω –
or any mean-preserving spread parameter denoted by σ – affects the arbitrage between working
in new fields vs. existing fields in regime II. As we shall see, option values intervene in two
conflicting ways.

We first note that I ∗(V ) can be written as n̄E(z(ω)), where z(ω) = max(e
ω(i)−V

β − 1,0) is a
convex function of ω(i). By Jensen’s inequality, a mean-preserving spread in the distribution of
ω raises I ∗(V ) for any given V . If V̄ were to remain unchanged, or move by only a little, I ∗(V̄ )

would actually increase: more research uncertainty reduces the incentives to work in new fields.
If θ = 0, it is actually true that V̄ does not change in response to a mean-preserving change

in the distribution of ω, for it is equal to γ ω̄. Similarly, by continuity, Eq. (3.7) implies that
for θ arbitrarily small the change in V̄ can be made arbitrarily small. Thus we also expect a
mean-preserving spread in ω to increase I ∗(V ) as long as θ is not too large.

Proposition 3. Assume θ small enough, i.e.

θ � β

γ
∫ +∞

(eω/β − 1)f (ω)dω
, (5.1)
0
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then

∂I ∗(V̄ )

∂σ
> 0.

Therefore, a mean preserving spread in the distribution of ω reduces the equilibrium value of μ̄

and makes cycles more likely.

Uncertainty increases the value of existing fields because one can select those of them with the
highest potential. A greater variance of ω means that it is more valuable to work in the top field,
while the value of working in the bottom fields is unchanged, because these fields are abandoned
anyway. In contrast, the value of writing the first paper in an unknown field is increased if the
field turns out to be good, but reduced if it turns out to be bad – if θ is small, then that value will
roughly equal ω(i), regardless of the fate of the field after its invention. Hence greater uncertainty
increases the value to work in known fields relative to unknown, new fields in regime II.

Against that logic, runs the fact that uncertainty increases the value of new fields, because
of the citation premium. That is apparent from (3.7): a mean-preserving spread in ω increases
its RHS. The option value of working in an existing field only if it is good enough also affects
the value of working in new fields through the citation premium. When uncertainty goes up,
researchers gain from their good ideas being cited more, but do not lose from their bad, uncited
ideas, being cited less. In other words, the higher the citation premium, the less risk-averse the
researchers. If the condition in Proposition 3 holds, then that effect is smaller than the direct
effect of a spread in ω. But if θ is larger, we can work out examples of mean-preserving spreads
that raise the incentives to produce new fields, thus making cycles less likely and raising the
equilibrium invention rate in steady state (see Appendix A).

5.3. The role of decreasing returns

A similar trade-off appears regarding the effect of β . It is easy to see that I ∗(V ) is a decreasing
function of β . Given the value of writing a new paper V , existing fields lose their value more
quickly. Researchers thus devote more time to invention, which makes the emergence of cycles
less likely. As with uncertainty, an opposite effect comes into play through the citation premium.
Note that V̄ is decreasing in β when θ > 0. A higher β means that existing fields will be less
exploited. This decreases the value of writing a paper in a new field (they will be cited less),
which tends to counteract the first effect. We can again show that if the same condition (5.1)
holds, then the first effect dominates:

Proposition 4. Assume (5.1) holds. Then

∂I ∗(V̄ )

∂β
< 0.

Therefore, a rise in β raises the equilibrium value of μ̄ and makes cycles less likely.

5.4. Comparative dynamics on cycles

Given the highly nonlinear nature of our cycles, it is difficult to establish comparative dy-
namics properties. We provide two results, here. First, Proposition 5 gives some information on
the impact of the citation premium on the structure of cycles. Typically, the casual idea that a
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greater citation premium makes “fads” more important and therefore cycles more likely, is not
supported by the model. The reason is that the value of new fields goes up with the citation pre-
mium, which reduces the attractivity of existing fields, thus making it less likely that instability
arises in (4.1). As the next section shows, however, a larger citation premium makes fads more
likely in an indeterminacy sense.

Proposition 5. Conditional on the initial mass of invented fields, the economy spends less time in
the regime I phase for θ > 0 than for θ = 0. Furthermore, if the amount of time spent in regime I
is the same, then more invention takes place at the beginning of the subsequent regime II phase,
if θ > 0.

Second, we describe an example of a regular cycle. We saw in Section 4 that cycles are usually
irregular. Nonetheless, we can build regular cycles by specifying appropriate initial conditions.
We can notably show that cycles of length 1 always exist if θ > 0. Let V1 be the solution to the
following equation:

V1 = Φ

(
I ∗−1

(
1

2

(
1

γ
+ I ∗(V1)

)))
. (5.2)

Properties of I ∗ and Φ imply that this equation has a unique solution.

Proposition 6. Suppose that θ > 0 and that γ I ∗(V̄ ) > 1. An equilibrium where a single period
in regime II alternates with a single period in regime I always exists. In this equilibrium, the
value of invention is constant and equal to V1, the unique solution of (5.2). In addition, V1 < V̄ .
The mass of new fields invented in regime II is equal to

μ = 2γ υ

1 + γ I ∗(V1)
.

In this short regular cycle, the value of invention is lower than at the steady state. Interest-
ingly, however, both equilibria possess similar comparative statics. An increase in θ leads to an
increase in V1 and to an increase in the mass of new fields invented. If θ is small enough, a mean-
preserving spread in the distribution of ω or a decrease in β reduce innovation effort. Overall,
these results confirm the idea that the citation premium θ has a positive impact on innovation.

6. Indeterminacy and “sunspots”

The greater θ , the more expectations about future citations have a strong effect on the decision
to work on a given field. By analogy with the literature on indeterminacy, we can speculate that
there are multiple equilibria for θ large enough. That is actually the case. The following result
shows that there is local indeterminacy around the regime II steady state for large enough values
of θ .

Proposition 7. Assume

γ θ

β

(
1 − F(V̄ )

)
> 1 (6.1)

and

γ I ∗(V̄ ) < 1.



Y. Bramoullé, G. Saint-Paul / Journal of Economic Theory 145 (2010) 1890–1920 1911
Then there exists a continuum of equilibria indexed by any initial value V0 = V̄ + vt , for vt

sufficiently small.

Condition (6.1) implies that the conditions for saddle-path stability in the dynamics of Vt

in regime II are violated locally, so that the dynamical system Vt = Φ(Vt+1) no longer has
the steady state V̄ as its unique non-explosive solution. As always, that is because the current
valuation of invention is “too sensitive” to expectations about the future. Condition (6.1) reveals
that that will be the case if research in new fields is productive (γ high), if the citation premium
θ is high, if decreasing returns are not strong (β small), and if the fraction of new fields that are
exploited next period is large (1 − F(V̄ ) large).

If scientists think that opening new fields brings a higher payoff, they devote more effort to
invention. The mass of papers in new fields is higher. This increases subsequent research in the
best of these new fields. The citation premium originally associated to the new fields is thus
effectively larger, which confirms the original expectation. In short, expecting invention to bring
a high payoff can be a self-fulfilling prophecy.

7. Some welfare results

Due to the complexity of our model, it is not easy to make a thorough comparison between
the equilibrium and the social optimum. However, it is possible to compare the steady state in
regime II to its equivalent for the social planner. That is what we do in this section.

In order to perform a welfare analysis, a criterion is needed. There are many options since
our model only specifies the value of innovation to researchers. An ample literature discusses the
appropriability problems associated with research. Here we want to use our model to focus on
only one market failure, which is that the stock of knowledge created by researchers is durable
and will benefit future generations beyond their lifetime. We then show that absent a citation
premium the value of a new field in the equilibrium steady state is lower than at the optimum
steady state, and that an optimal “pigovian” citation premium can be introduced so as to induce
the socially optimal level of fundamental. We provide a formula for computing this citation
premium.

The social welfare function we use is as follows. At each date t there is a stock of knowledge
Kt , which grows because of the introduction of new fields and because of improvements in exist-
ing fields. We assume that the increase in the stock of knowledge is equal to the intrinsic value of
all papers written at date t . Thus, the intrinsic value perceived by each researcher captures well
their contribution to the knowledge stock. Researchers only fail to internalize the fact that their
contribution increases the stock of knowledge forever. They get rewards from the flow of ideas
they produce while society gets rewards from the stock of ideas.

We capture that with an intertemporal social welfare function given by

SW =
+∞∑
t=0

Kt

(1 + φ)t
,

where Kt is the stock of knowledge at t and φ the social discount rate, which can conveniently
be interpreted as an inverse measure of the weight put on future generations. The evolution of
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the knowledge stock is then given by, in regime II,

Kt = Kt−1 + μt

∫
ωf (ω)dω + μt−1

∫
ω

( nt (ω)∫
n̄

(
ω − β(ln z − ln n̄)

)
dz

)
f (ω)dω.

The first integral is the initial value of the fields invented at date t . The second integral is
the contribution of the improvements made during t to the fields invented at t − 1. Note that
we integrate the marginal contribution of all papers ranked between n̄ and nt . This guarantees
that researchers internalize the congestion externality they exert upon others by moving, through
their contribution, the state of the field down the marginal value curve. In other words, the in-
trinsic value of writing a paper in a field with potential ω is equal to its marginal effect on K ,
(ω − β(lnnt − ln n̄)).

This equation may be rewritten

Kt = Kt−1 + μt ω̄ + μt−1

∫
ω

(
(ω + β)

(
nt (ω) − n̄

) − βnt (lnnt − ln n̄)
)
f (ω)dω. (7.1)

It can easily be shown that, as in the equilibrium, given the fraction of researchers who work
in new fields, it is optimal to allocate the others so as to equate their intrinsic marginal value
across active fields. Otherwise, one could reallocate the research effort across existing fields to
get a higher value of the last term in (7.1). Consequently, at each date there exists a critical field

ω∗
t such that nt (ω) = n̄ for ω < ω∗

t and nt (ω) = n̄e
ω−ω∗

t
β for ω � ω∗

t . In steady state, ω∗
t will be

constant through time. Using this property, the evolution equation for knowledge can be rewritten
as

Kt = Kt−1 + μt ω̄ + μt−1Γ
(
ω∗

t

)
,

with

Γ
(
ω∗) = n̄

+∞∫
ω∗

[(
β + ω∗)e ω−ω∗

β − (β + ω)
]
f (ω)dω.

The social planner’s problem can be rewritten recursively by introducing the value function

V (μt−1,Kt−1) = max

(
Kt + 1

1 + φ
V (μt ,Kt )

)
.

Maximization takes place with respect to xt , the fraction of research allocated to new fields.
We thus have

μt = γ υxt , (7.2)

while the resource constraint allows to compute ω∗
t as a function of x. Aggregating the number

of papers written in existing fields, we get

υ(1 − x) = μt−1I
∗(ω∗

t

)
. (7.3)

Proposition 8. The steady-state, welfare maximizing value of ω∗
t is determined by the following

equation:

ω∗ = Ψ
(
ω∗),
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where Ψ (.) is a decreasing function defined by

Ψ
(
ω∗) = γ ω̄ + n̄γ

1 + φ

+∞∫
ω∗

�
(
ω − ω∗)f (ω)dω, (7.4)

and where �(.) is a positive, increasing, convex function defined by �(x) = β(ex/β − 1) − x.

The critical level ω∗ is the social opportunity cost of working in an existing field rather than
a new field. Its equivalent in the analysis of the equilibrium is Vt , which is equal to V̄ , the fixed
point of Φ in the equilibrium. Furthermore, (3.4) and (3.5) show that a market economy will
allocate employment across existing fields in exactly the same way as the social optimum if
V̄ = ω∗. Since the resource constraints (7.2) and (7.3) are the same in the equilibrium case and
the optimum case, all that is needed to compare the equilibrium with the optimum is to compare
the fixed point of Φ with that of Ψ . If they coincide, then the equilibrium steady state is identical
to the social optimum steady state. Confronting (3.7) with (7.4) we then get that the two fixed
points coincide provided the citation premium is equal to

θ∗ = n̄β

1 + φ

∫ +∞
ω∗ �(ω − ω∗)f (ω)dω∫ +∞
ω∗ (ω − ω∗)f (ω)dω

.

This citation premium goes down with φ, which means that it must be higher when the social
planner cares more about future generations.31 That is because the social planner puts more
weight on subsequent improvements of a new field, the lower φ. The value of these subsequent
improvements – which raises the value of a new field beyond its contemporaneous effect ω̄ – is
internalized by the inventor only through the citation premium. Thus it must go up when φ goes
down.

8. Conclusion

This paper has developed a simple model of the allocation of effort between innovation and
exploitation in fundamental research. Despite the model’s simplicity, our results are quite rich.

We were able to characterize the cyclical dynamics of the economy and derive a necessary
and sufficient condition for cycles to arise. We have shown that indeterminacy may also appear,
and that the citation premium makes the equilibrium less cyclical, but at the same time makes
indeterminacy more likely.

We have also established some comparative statics for a steady state in regime II, and to
compare this steady state to the welfare optimum. We were able to highlight the role of the
option value in determining the optimal and equilibrium allocation of research between the two
activities.

31 To see this, simply rewrite (3.8) as V̄ = Φ(V̄ ; θ), Φ ′
1 < 0, Φ ′

2 > 0, and (7.4) as ω∗ = Ψ (ω∗, φ), Ψ ′
1 < 0,Ψ ′

2 < 0.
The welfare maximizing value of θ , θ∗, is the unique solution to ω∗ = Φ(ω∗; θ). Hence, ∂θ∗/∂ω∗ > 0. Since ω∗ falls
with φ, so does θ∗ .
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Appendix A

A.1. Proof of Proposition 1: roadmap

We define λt as the shadow cost of a paper at t . The optimality conditions imply that at date
t , a field i is exploited if and only if

ω(i) − β
(
lnnt−1(i) − ln n̄

) + θ
(
lnnt+1(i) − lnnt−1(i)

)
< λt ,

in which case nt is determined by

ω(i) − β
(
lnnt (i) − ln n̄

) + θ
(
lnnt+1(i) − lnnt (i)

) = λt .

The proof then follows the following steps. The details are precisely described in a separate
appendix available from the authors upon request. Here we focus on the essence of the reasoning.

A. First, one proves that one cannot remain forever in regime I. That is based on the following
idea: to only exploit new fields forever, despite that each field has decreasing returns, one must be
compensated by a “citation bubble”: that is, despite that the intrinsic value of a contribution falls
without bounds, one is compensated by future citations, because more papers will be written in
the future. But then, the speed at which new papers are written in any field must accelerate, since
the intrinsic value keeps falling. In the end, the economy resource constraint is violated, which
is a contradiction.

B. Next, we are able to characterize the dynamics when the economy is in regime I. We
can construct a sequence λ̂t of pseudo-shadow costs, which reflect both the shadow cost λt and
the value of future citations. The optimality condition can then be expressed by comparing the
pseudo-shadow cost with the intrinsic value of the paper, as summarized by Property P1:

Property P1. A field is active iff ω(i) − β(lnnt−1 − ln n̄) > λ̂t , in which case ω(i) − β(lnnt −
ln n̄) = λ̂t .

Denoting by T the date at which regime I ends, T0 the date at which it starts, we show that the
λ̂t ’s can be constructed recursively:

λ̂T = VT ;
λ̂t = min

(
θλ̂t+1 + βλt

θ + β
,λt

)
.

Property P1 allows to compute, as a function of λ̂t , the set of fields that are researched at
t , as well as nt for each of those fields. The lower λ̂t , the larger that set and the larger nt ,
so that total research in existing field is a decreasing function of λ̂t . Since one is in regime I,
all researchers work in existing fields. There is a unique value of λ̂t which satisfies that full-
employment condition. This determines the evolution of λ̂t during regime I. Denoting by μT0−1
the measure of exploitable fields, we get:

μT0−1I
∗(λ̂T0) = υ, (A.1)

μT0−1
(
I ∗(λ̂t+1) − I ∗(λ̂t )

) = υ. (A.2)

Finally, one is in regime II as long as the value of working on a new field is lower than the
shadow cost of a paper. We can show that that is equivalent to

Φ(λ̂t+1) < λt . (A.3)
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λ̂t+1 appears in that condition because the lower it is, the more likely the seminal paper written
today will be cited tomorrow.32

C. In regime II, people produce both new fields and papers in existing fields. Vt is both the
shadow cost of an additional paper in an existing field and the expected value of starting a new
field. The value of working in a new field depends on its expected intrinsic value, plus the contri-
bution of next period’s citations. The latter is larger, the larger the number of papers that will be
written in existing fields at t + 1, which is a decreasing function of Vt+1. This allows to derive
the following recursive relationship:

Vt = Φ(Vt+1).

Using similar computations as in regime I, we can get the fraction of researchers in existing
fields:

υAt+1 = I ∗(Vt+1)μt .

We then subtract it to get the labor input into new fields, which gives us the measure of new
fields next period:

μt+1 = γ
(
υ − I ∗(Vt+1)μt

)
. (A.4)

One can show that if V̄ is the fixed point of Φ , and if

I ∗(V̄ )γ > 1, (A.5)

then the dynamics of μt in regime II cannot be stable, so that one must eventually leave regime II.
D–F. We can now work out the transitions between the two regimes. If we know the terminal

value VT and the initial measure μT0−1, we can construct a decreasing sequence λ̂t by applying
(A.1) and (A.2). It is easy to see that the transition takes place at T such that λ̂T −1 > VT > λ̂T .
That in turn allows to compute the allocation of researchers between existing fields and new
fields at T , and thus the measure of new fields invented at T :

μT = γ
(
υ − μT0−1

(
I ∗(VT ) − I ∗(λ̂T −1)

))
. (A.6)

As a corollary, the duration of the phase in regime I is given by33

T − T0 = INT

(
μT0−1

υ
I ∗(VT )

)
. (A.7)

As for the transition from II to I, we get an extra condition by noting that the value of a new field
at T0 − 1 is equal to Φ(λ̂T0), while (A.2) must hold. This gives us

VT0−1 = Φ

(
I ∗−1

(
υ

μT0−1

))
. (A.8)

G. We can finally construct an equilibrium which matches the conditions we have derived
above. The first step consists in constructing the m(.,.) function, which allows to compute μt in
regime II as a function of μs , the inherited measure of fields from the last period in regime II, and

32 As the new field is infinitesimal, it does not make existing fields obsolete, and the researcher who considers working
on a new field assumes that his invention has no impact on the regime prevailing at t + 1 and on λ̂t+1.
33 INT(x) is the largest integer number y such that y � x.
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Vt , the current value of a job. If t = s + 1, then m(.,.) is defined as the RHS of (A.4). Otherwise,
there is a period in regime I between s and t , and we can use the steps in D–F to get34

μt = γ υ

(
1 − DEC

(
μs

υ
I ∗(Vt )

))
= m(μs,Vt ), (A.9)

of which (A.4) is a special case.
The next step is to determine the equilibrium value of Vt . It must be such that the terminal

condition (A.8) at the end of the regime II (i.e. with T instead of T0 − 1 in the formula) holds.
We do that using a continuity-type argument, which must be worked out carefully as the final
measure μT is not a continuous function of Vt . If (A.5) holds, we can construct the last date in
the current regime T , which satisfies (A.8).

Therefore, given an inherited measure μs , we can construct a full cycle in regime II, which
may or may not be preceded by a period in regime I. The procedure can be repeated at the end
of that cycle, using the new measure of fields μT . The only equilibrium condition that remains
to be checked is (A.3) in regime I, which we do.

H. Finally, if (A.5) does not hold, we can construct an infinitely lived path in regime II by
picking V = V̄ throughout and let the economy evolve according to (A.4).

I. In the case where θ = 0, in regime II one must always have Vt = V̄ = γω, which allows to
prove uniqueness.

A.2. Proof of Proposition 3

Consider a change in the distribution f () denoted by �f (). The implied shifts in V̄ and I ∗(V̄ )

satisfy

�I ∗ = − n̄�V̄

β

+∞∫
V̄

e
ω−V̄

β f (ω)dω + n̄

+∞∫
V̄

(
e

ω−V̄
β − 1

)
�f (ω)dω, (A.10)

and

�V̄ = −γ θ

β
�V̄

(
1 − F(V̄ )

) + γ θ

β

+∞∫
V̄

(ω − V̄ )�f (ω)dω. (A.11)

By Jensen’s inequality, it must be that if �f (ω) is a mean-preserving spread, then

+∞∫
V̄

(
e

ω−V̄
β − 1

)
�f (ω)dω >

+∞∫
V̄

ω − V̄

β
�f (ω)dω > 0,

since the functions g1(ω) = max(ω−V̄
β

,0) and exp(g1(ω)− 1)−g1(ω) both are convex. Further-

more, eliminating �V̄ between (A.10) and (A.11) we see that �I ∗ > 0 if and only if

γ θ
∫ +∞
V̄

e
ω−V̄

β f (ω)dω

β + γ θ(1 − F(V̄ ))
<

β
∫ +∞
V̄

(e
ω−V̄

β − 1)�f (ω)dω∫ +∞
V̄

(ω − V̄ )�f (ω)dω
. (A.12)

34 DEC() is the decimal part of a number DEC(x) = x − INT(x).
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Since the RHS is greater than 1, that inequality will be satisfied if the LHS is lower than 1,
which is equivalent to

+∞∫
V̄

(
e

ω−V̄
β − 1

)
f (ω)dω <

β

γ θ
.

Since the LHS decreases with V̄ , it reaches its maximum at V̄ = 0, and that inequality will
therefore always hold if (5.1) holds. �
A.2.1. Counter-example

We now construct a counter-example where �I ∗ < 0. We assume ω is uniformly distributed
over [0,2], γ = 1, and θ = 8β . That implies ω̄ = 1 and it can be checked that V̄ = 3/2. The LHS
of (A.12) is then equal to 4

3 (e1/(2β) − 1). We consider a specific mean-preserving spread whose
only action above V̄ is to add a finite (Dirac) mass at some ω̃ > V̄ . Condition (A.12) will then
be violated iff

4

3

(
e

1
2β − 1

)
>

β(e
ω̃−3/2

β − 1)

ω̃ − 3/2
. (A.13)

The RHS rises from 1 to 2β(e
1

2β − 1) as ω̃ increases from 3/2 to 2. As long as β <

(2 ln 7
4 )−1 ≈ 0.893, the LHS is greater than 1 and the condition holds for ω̃ not too above 3/2.

Furthermore, if β < 2/3, then (A.13) holds for ω̃ = 2 and therefore for any ω̃ ∈ [3/2,2].

A.3. Proof of Proposition 4

We take the same steps as in Proposition 3, but with respect to a change in β . We now get

dI ∗ = − n̄ dV̄

β

+∞∫
V̄

e
ω−V̄

β f (ω)dω − n̄

β2

+∞∫
V̄

e
ω−V̄

β (ω − V̄ )f (ω)dω dβ,

and

dV̄ = −γ θ

β
dV̄

(
1 − F(V̄ )

) − γ θ

β2

+∞∫
V̄

(ω − V̄ )f (ω)dω dβ.

We get that dI ∗ < 0 iff

γ θ
∫ +∞
V̄

e
ω−V̄

β f (ω)dω

β + γ θ(1 − F(V̄ ))
<

∫ +∞
V̄

e
ω−V̄

β (ω − V̄ )f (ω)dω∫ +∞
V̄

(ω − V̄ )f (ω)dω
.

The LHS is the same as in (A.12), while the RHS is always greater than 1. Therefore, that
inequality again holds if (5.1) holds. �
A.4. Proof of Proposition 5

(i) Recall, V̄ is increasing in θ and I ∗ is decreasing. Thus, if the condition I ∗(V̄ ) < 1
γ

is
satisfied for θ , it is also satisfied for θ ′ > θ .
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(ii) By virtue of (A.7), the duration of the first regime I phase is INT(I ∗(γ ω̄)
μ−1
υ

) when θ = 0
and INT(I ∗(VT )

μ−1
υ

) when θ > 0. Since VT � γ ω̄, the first regime I phase is necessarily longer
when θ > 0. Examining the equation for μ gives the second result. �
A.5. Proof of Proposition 6

Consider a profile where a single regime I period alternates with a single regime II period, and
where the mass of new fields invented is constant and equal to μ while the value of invention is
constant and equal to V . This is an equilibrium if and only if the four following conditions are
satisfied

1 <
μ

υ
I ∗(V ) < 2,

μ = γ υ

(
1 − DEC

(
μ

υ
I ∗(V )

))
,

V < I ∗−1
(

υ

μ

)
,

V = φ

(
I ∗−1

(
υ

μ

))
.

Observe that the first condition implies the third. Since INT(
μ
υ
I ∗(V )) = 1, the second condi-

tion becomes μ = 2γ υ/[1 + γ I ∗(V )]. Substituting into the fourth condition yields

V = Φ

(
I ∗−1

(
1

2

(
1

γ
+ I ∗(V )

)))
.

Recall, Φ takes value in [γ ω̄, γ ω̄(1 + θ
β
)]. Since Φ and I ∗ are decreasing, this equation has a

unique solution. Rearranging, the first condition becomes 1 < 2 γ I∗(V )
1+γ I∗(V )

< 2, which is equivalent
to I ∗(V ) > 1/γ .

Next, recall I ∗(V̄ ) > 1/γ . This means that I ∗(V̄ ) > 1
2 ( 1

γ
+ I ∗(V̄ )). Thus, V̄ < I ∗−1( 1

2 ( 1
γ

+
I ∗(V̄ ))) and Φ(V̄ ) = V̄ > Φ(I ∗−1( 1

2 ( 1
γ

+ I ∗(V̄ )))). This implies that V < V̄ and I ∗(V ) >

I ∗(V̄ ) > 1/γ . �
A.6. Proof of Proposition 7

To prove Proposition 7, just differentiate the dynamics of Vt in regime II, Vt = Φ(Vt+1),
around the fixed point V̄ . Denoting by vt = Vt − V̄ , we get

vt = −γ θ

β

(
1 − F(V̄ )

)
vt+1.

If γ θ
β

(1 − F(V̄ )) > 1, then we can construct an equilibrium for any initial value of vt . �
A.7. Proof of Proposition 8

The first order condition for maximization of the value function with respect to x is
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0 =
(

ω̄
∂μt

∂x
+ μt−1Γ

′(ω∗)∂ω∗

∂x

)(
1 + 1

1 + φ

∂V (μt ,Kt )

∂K

)

+ 1

1 + φ

∂μt

∂x

∂V (μt ,Kt )

∂μt

. (A.14)

The resource constraints allow us to compute the following derivatives:

• ∂μt

∂x
= γ υ; ∂ω∗

∂x
= − υ

I∗′(ω∗)μt−1n̄
and ∂ω∗

∂μt−1
= − I∗(ω∗)

I∗′(ω∗)μt−1
.

Differentiating the value function while ignoring the changes in x because of the envelope
theorem allows to compute the following:

• ∂V
∂K

= 1+φ
φ

.

• ∂V (μt−1,Kt−1)

∂μt−1
= (Γ (ω∗) + μt−1Γ

′(ω∗) ∂ω∗
∂μt−1

)
1+φ
φ

.

Substituting these formulas into (A.14) while making use of the steady-state assumption, we
get

0 =
(

ω̄γ υ − Γ ′(ω∗) υ

I ∗′(ω∗)n̄

)
+ 1

1 + φ
γυ

(
Γ

(
ω∗) − Γ ′(ω∗) I ∗(ω∗)

I ∗′(ω∗)

)
. (A.15)

To get to (7.4), compute the derivatives of Γ and I ∗:

• Γ ′(ω∗) = −n̄ ω∗
β

∫ +∞
ω∗ e

ω−ω∗
β f (ω)dω;

• I ∗′(ω∗) = − 1
β

∫ +∞
ω∗ e

ω−ω∗
β f (ω)dω.

Replace all the terms in Γ ′(ω∗)/I ∗′(ω∗) in (A.15) by ω∗, and replace the term in Γ (ω∗) by
the following expression (it can be checked that it is indeed equal to Γ (ω∗)):

(
β + ω∗)I ∗(ω∗) − n̄

+∞∫
ω∗

(
ω − ω∗)f (ω)dω.

These operations yield Eq. (7.4). �
Supplementary material

The online version of this article contains additional supplementary material.
Please visit doi:10.1016/j.jet.2010.02.004.
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