
The Journal of Systems and Software 122 (2016) 110–143

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Requirement-driven evolution in software product lines: A systematic

mapping study

Leticia Montalvillo

∗, Oscar Díaz

University of the Basque Country (UPV/EHU), ONEKIN Research Group - Facultad de Informática - San Sebastián, Spain

a r t i c l e i n f o

Article history:

Received 11 December 2015

Revised 11 August 2016

Accepted 12 August 2016

Available online 21 August 2016

Keywords:

Systematic mapping study

Software product lines

Evolution

a b s t r a c t

CONTEXT. Software Product Lines (SPLs) aim to support the development of a whole family of software

products through systematic reuse of shared assets. As SPLs exhibit a long life-span, evolution is an even

greater concern than for single-systems. For the purpose of this work, evolution refers to the adaptation

of the SPL as a result of changing requirements. Hence, evolution is triggered by requirement changes,

and not by bug fixing or refactoring.

OBJECTIVE. Research on SPL evolution has not been previously mapped. This work provides a mapping

study along Petersen’s and Kichenham’s guidelines, to identify strong areas of knowledge, trends and

gaps.

RESULTS. We identified 107 relevant contributions. They were classified according to four facets: evo-

lution activity (e.g., identify, analyze and plan, implement), product-derivation approach (e.g., annotation-

based, composition-based), research type (e.g., solution, experience, evaluation), and asset type (i.e., vari-

ability model, SPL architecture, code assets and products).

CONCLUSION. Analyses of the results indicate that “Solution proposals” are the most common type

of contribution (31%). Regarding the evolution activity, “Implement change” (43%) and “Analyze and plan

change” (37%) are the most covered ones. A finer-grained analysis uncovered some tasks as being under-

exposed. A detailed description of the 107 papers is also included.

© 2016 Elsevier Inc. All rights reserved.

i

m

S

l

S

i

t

d

n

a

s

a

d

s

“

f
1. Introduction

Software Product Lines (SPLs) aim to support the development

of a whole family of software products through systematic reuse of

shared assets (Clements and Northrop, 2001). SPL engineering has

gained considerable momentum. Companies such as Boeing, Bosch,

General Motors, Philips or Siemens resort to SPLs to broaden their

software portfolio, increase return on investment, shorten time to

market, and improve software quality 1 (Clements and Northrop,

2001; van der Linden et al., 2007; Weiss, 2008). As the SPL do-

main matures, evolution concerns come into play (Bosch, 2002;

Dhungana et al., 2008). Unfortunately, the term “evolution” has

long been recognized as being overloaded with diverse matters

(Bennett and Rajlich, 20 0 0). For the purpose of this work, “evo-

lution” refers to the adaptation of the SPL as a result of changing

SPL requirements . From this perspective, evolution is triggered by

requirement changes, and not so much by bug fixing or refactor-
∗ Corresponding author.

E-mail addresses: leticia.montalvillo@ehu.eus (L. Montalvillo), oscar.diaz@ehu.eus

(O. Díaz).
1 Refer to http://splc.net/fame.html for a list of successful SPL examples.

T

T

e

c

B

http://dx.doi.org/10.1016/j.jss.2016.08.053

0164-1212/© 2016 Elsevier Inc. All rights reserved.
ng. Evolution happens as a result of SPLs moving from adoption to

aturity. In their infancy, SPLs strive to fix defects. At adulthood,

PLs might have less defects, but their wider customer base more

ikely increases the chances for new functionality requests. Indeed,

PLs’ long life-span makes evolution a top priority, yet far from be-

ng fully resolved (Botterweck and Pleuss, 2014). SPL characteristics

hat make evolution specially challenging include: (1) separation of

evelopment into Domain Engineering (DE) and Application Engi-

eering (AE), (2) existence of assets of different types of variability

nd abstraction, and (3), high number of interrelations between as-

ets (Mcgregor, 2003; Ajila and Kaba, 2008; Deelstra et al., 2005).

One of the first works addressing evolution in SPLs is Svahnberg

nd Bosch (1999) . Svahnberg et al. analyze the life-span of two in-

ustrial SPLs, and classified SPL evolution according to common

cenarios that arose during evolution (“requirement evolution”,

architecture evolution”, and “component evolution”). Thereafter,

ew effort s have been made to gather studies addressing this issue.

wo exceptions are (Botterweck and Pleuss, 2014; Mcgregor, 2003).

he most referenced work is McGregor’s one who introduces basic

volution concepts and discusses practices that initiate, anticipate,

ontrol, and direct the evolution of SPL assets (Mcgregor, 2003).

otterweck and Pleuss (2014) present the most recent summary

http://dx.doi.org/10.1016/j.jss.2016.08.053
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.08.053&domain=pdf
mailto:leticia.montalvillo@ehu.eus
mailto:oscar.diaz@ehu.eus
http://splc.net/fame.html
http://dx.doi.org/10.1016/j.jss.2016.08.053

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 111

o

m

S

t

c

w

m

2

d

w

t

fi

t

b

R

p

l

v

u

e

a

o

g

t

S

g

a

S

e

t

t

b

g

t

t

2

m

s

2

w

a

o

m

u

m

n

Fig. 2.1. Types of changes (based on (Botterweck and Pleuss, 2014; Schmid and

Eichelberger, 2007)).

m

d

u

i

a

v

u

v

d

v

a

e

t

t

m

B

C

c

p

i

e

M

s

u

v

m

i
n the topic. Authors provide an overview on three main issues:

igration to SPLs, planning SPL evolution, and implementation of

PL evolution. None of the previous works systematically review

he existing literature, and thus, they do not provide a complete

overage of the different topics.

A systematic mapping study is an evidence-based approach

here existing works can be categorized, often giving a visual

ap of its results (Kitchenham and Charters, 2007; Petersen et al.,

008a). This work presents the outcome of such approach con-

ucted for the literature on SPL evolution available up to July, 2015

hich resulted in 107 primary studies. The overall research ques-

ions follow:

RQ1: What types of research have been reported, to what ex-

tent, and how is coverage evolving?

RQ2: Which product-derivation approach received most cover-

age, and how is coverage evolving?

RQ3: Which kind of SPL asset received more attention, and how

is attention evolving?

RQ4: Which activities of the evolution life-cycle received most

coverage, and how is this coverage evolving?

Answering RQ1 would allow us to assess maturity within the

eld, e.g., if research is limited to solution proposals or rather it

akes a step forward and conducts some kind of validation, or even

etter, it evaluates the solution in industry. On the other hand,

Q2 would allow us to assess how SPL product derivation ap-

roaches are catching on. Next, RQ3 looks at “the subject” of evo-

ution, i.e., the SPL asset being subject to change. This includes the

ariability model, the SPL architecture, code assets or SPL’s prod-

cts. Conversely, RQ4 looks at “the verb” of evolution, i.e., which

volution tasks authors have focused on (e.g., identify change, an-

lyze change, implement change, verify change). In summary, the

utcome of this study might help to identify trends, hotspots and

aps both in terms of “the verb” and “the subject” of SPL evolu-

ion. Also, a brief is provided for each of the 107 primary studies.

pecial effort is dedicated to arrange these studies within a fine-

rained schema that might help newcomers to better pinpoint the

rea of interest.

The remainder of this paper is organized as follows.

ection 2 provides an overview on SPLs, highlights what makes SPL

volution challenging, and points to previous mapping studies in

he SPL field. Section 3 describes the systematic methodology used

o conduct this mapping study. Section 4 provides an annotated

ibliography that serves to map primary studies into a finer-

rained classification of the evolution activities. Section 5 analyses

he results of the mapping, and answers the RQs. Conclusions end

he paper.

. Background

This section provides an overview on SPLs, highlights what

akes SPL evolution challenging, and points to previous mapping

tudies in the SPL field.

.1. A brief on SPLs

SPLs aim to support the development of a whole family of soft-

are products through systematic reuse of shared assets (Clements

nd Northrop, 2001). These assets give support to different stages

f the SPL production process. The asset list includes variability

odels (i.e., allowed variants to be exhibited by the SPL prod-

cts, a.k.a. features), architecture (i.e., high-level description of the

ain modules involved and their connections), software compo-

ents, class libraries, code snippets or at a higher description level,
odels as in model-driven SPLs. It might also include requirement

ocuments, plans, test cases, process descriptions, product config-

rations, and trace documents. These assets are handled along two

nterrelated processes. During Domain Engineering (DE), the scope

nd variability of the SPL are defined, and reusable assets are de-

eloped. During Application Engineering (AE), products are derived

sing these assets by resolving variability (Pohl et al., 2005). Hence,

ariability management is an SPL hallmark. SPL assets can be of

ifferent variabilities: common assets are present in all products,

ariable assets are present in some products, and product-specific

ssets are local to individual products.

As any other software, SPLs are subject to evolution (Deelstra

t al., 2005). Specifically, we conceive evolution as adaptation of

he SPL to cope with changing requirements . This might happen in

wo different scenarios:

• during product derivation, new requirements emerge (a.k.a. re-

active evolution). These requirements can be accounted for in

two different places: within the product realm or within the

core asset realm. The former implies the creation of product

specific artifacts. Application engineers can use the core assets

as basis for further development, or they can develop new as-

sets from scratch. Second option is within the core asset realm.

Here, requirements are tackled by domain engineers, and ad-

ditions can benefit products other than the one generating the

change.
• at any time, SPL engineers must be able to anticipate future

needs (a.k.a. proactive evolution). This might lead to adapt core

assets in such a way that the SPL is capable of accommodat-

ing the needs of product stakeholders in the shortest amount

of time.

Previous scenarios involve SPL changes . Fig. 2.1 depicts the

ain types of changes along the lines of those proposed in

otterweck and Pleuss (2014) ; Schmid and Eichelberger (2007) .

ommon functionality can be made variable if it should be ex-

luded from some products. Usually, this requires changing the im-

lementation (to make it variable), which then affects all exist-

ng products. Conversely, making a variable asset common influ-

nces at least those products that did not contain the asset before.

aking a variable asset product-specific, or a product-specific as-

et generic, requires also to adapt individual products to hold or

nhold the asset, respectively.

The bottom line is that SPL assets might be moved along “the

ariability spectrum”: common, variable and product-specific. Com-

on assets are present in all products, variable assets are present

n some products, and product-specific assets are local to individ-

112 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

2

p

e

(

b

a

i

t

s

s

e

c

o

i

S

o

a

n

m

d

i

t

i

S

t

t

a

v

i

fi

t

fi

m

P

p

t

f

t

(

b

c

c

c

p

t

s

t

(

(

t

t

a

2 http://www.scopus.com/ .
ual products. Moving along this spectrum is not straightforward

due to SPL specifics, namely:

• Large number of asset inter-dependencies. The distinction be-

tween DE and AE introduces dependencies between products

and the reusable assets used in their production. DE and AE

have their own life-cycles and priorities. The urgency in releas-

ing a product, fixing a bug, providing a new product release, or

delivering a new feature may vary depending on whether the

stakeholder is involved in DE or AE. Nevertheless, both parties

need to be in sync to avoid SPL erosion (Deelstra et al., 2005).
• Broad scope . SPLs aim to build a family of products. Hence,

the volume and likelihood of asset coupling is potentially larger

than if the focus were on a single product.
• Large life-span . SPLs are long-term investments. This lengthy

life-span should encourage a more effective control over SPL

evolution in order to avoid SPL decay (van Gurp and Bosch,

2002).

A final remark. Terminology was particularly elusive in this

study. In the SPL literature, the term “evolution” can denote a

broad range of concerns: migrating legacy systems into SPLs (e.g.,

Laguna and Crespo, 2013), refactoring (e.g., Laguna and Crespo,

2013) or bug-fixing (e.g., Ribeiro and Borba, 2008; Schulze et al.,

2013), to name a few. This is not specific of the SPL literature

but it has long been recognized for software engineering in gen-

eral (Bennett and Rajlich, 20 0 0). The term “maintenance” tends to

be predominantly used to describe activities aiming at preventing

software from failing to deliver the intended functionalities. In the

same vein, SEBOK defines maintainability as “the probability that

a system or system elements can be repaired in a defined environ-

ment within a specified period of time” SEBOK . It can be noticed

a bias towards the use of the term maintenance in relation with

“failure” and “repair”. From this perspective, maintenance predom-

inantly aims at preserving functionality. By contrast, we conceive

“evolution” not so much as a repairing action, but as an enhance-

ment in the system’s capabilities. Here, stakeholders (rather than

bugs) tend to be the main triggers of evolution. This distinction

is aligned with the way software modifications are classified by

Kitchenham et al. (1999) . Rather than using Swanson’s classifica-

tion of maintenance activities based on intention (i.e., corrective,

adaptive, and perfective) (Swanson, 1976), Kitchenham et al. pro-

pose to categorize the modifications in terms of activities per-

formed: activities to make corrections (i.e., existence of discrep-

ancies between the expected behavior of a system and the actual

behavior) versus activities to make enhancements (i.e., existence

of desires to somehow change the current behavior of the sys-

tem). For the purpose of this work, we use the term “evolution”

to denote these enhancement activities, would these be modifying

the scope, the commonality, the variability or the products of an

SPL. We then leave out activities such as SPL migration (Breivold

et al., 2008; Laguna and Crespo, 2013), SPL bad-smell detection

(Abdelmoez et al., 2004; Devine et al., 2014; Loesch and Ploed-

ereder, 2007; Bertran et al., 2010; Padilha et al., 2014; Vale et al.,

2014), SPL refactoring (Alves et al., 2008, 2006; Ribeiro and Borba,

2008; Schulze et al., 2012, 2013) or SPL bug fixing (Krishnan et al.,

2011, 2013). At adulthood, SPL is exposed to a wider customer

base and hence, the pressure for new functionality increases. As

pointed out by Singer, “a corrective activity may require only the

ability to locate faulty code and make localized changes, whereas

an enhancement activity may require a broad understanding of a

large part of the product” (Singer, 1998). Our research questions

are headed for assessing the types and coverage of these “enhance-

ment activities”.
.2. Related mapping studies

We conducted a Scopus 2 search for mapping studies in SPLs

ublished from 2010. The following search string was used:

(“software product line” OR “SPL”) AND (“systematic literature re-

view” OR “systematic review” OR “research review” OR “systematic

overview” OR “mapping study”)

We identified six relevant papers that overlap with our inter-

sts (see Table 1). For quality attributes in SPLs, Montagud et al.

2012) found 165 measures proposed in the literature. This figure is

roken down along the SPL life-cycle phase in which the measures

re applied: Requirements (9%), Design (67%), Realization (4%), Test-

ng (3%), Application domain phase (7%), and, most important here,

he Evolution stage (10%). The latter is based on the insights of a

ingle paper: (Ajila and Dumitrescu, 2007).

Laguna and Crespo (2013) address the reengineering of legacy

ystems into SPLs. Here, the term evolution is understood as the

ffect of migrating a set of related products, probably created by

lone-and-own operation, into an SPL where reusable assets are

btained by refactoring existing products. Our focus is not so much

n how SPLs are created by reengineering existing products, but

PLs’ assets evolution. Indeed, studies of Laguna et al. present no

verlap with our primary studies. Though refactoring is certainly

 trigger for evolution, we are more interested in how SPL engi-

eers accommodate new functionality. This makes Risk Manage-

ent (RM) a topic of special interest. The mapping study con-

ucted by Lobato et al. (2013) identifies RM activities and practices

n SPLs. Some practices tackle the evolution of SPLs. For instance,

he practice SPL variability acknowledges that “the product variabil-

ty must be considered when evolving the architecture”. However,

PL evolution does not appear as a first-class activity but is scat-

ered among other steps (e.g., SPL management, SPL variability, SPL

esting , etc.). By contrast, we move SPL evolution to the forefront,

iming to provide a broader overview of the different aspects in-

olved, not limited to RM. Nevertheless, all the references concern-

ng evolution were also included in our study.

Pereira et al. (2015) focus on SPL management tools. A classi-

cation facet is about the functionality cluster supported by the

ool: Planning (i.e., means for collecting the data needed to de-

ne domain scope), Modeling (i.e., means for represents the do-

ain scope), Validation (i.e., means for validating the domain),

roduct configuration (i.e., means for product derivation) and Im-

ort / Export facilities. The outcome provides the following distribu-

ion: Planning (34%), Modeling (85% of the tools support at least

our of the functionalities), Validation (49% support at least three of

he functionalities), Product configuration (83%) and Import / Export

71%). However, evolution as such is not explicitly considered but

lurred behind other notions, mainly the Validation cluster which

omprises functions for the inclusion of new requirements. It is not

lear the extent to which tools give support to the evolution life-

ycle (see later).

For consistency checking, Santos et al. (2015) undertook a map-

ing study for 24 primary studies. This work is certainly of in-

erest for SPL evolution. Indeed, consistency checking aims at as-

uring that all SPL assets remain consistent with each other af-

er some changes have been introduced: model against source code

25%), model against model (33%), or model against specifications

42%), where rates are those provided by this study. Our work ex-

ends beyond consistency checking to include other activities of

he change life-cycle (Yau et al., 1978): identify change, analyze

nd plan change, implement change or verify change.

http://www.scopus.com/

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 113

Table 1

Related mapping studies.

Ref. Year Topic Research Questions

(Montagud et al., 2012) 2012 Quality attribute What quality attributes have been proposed for assessing the quality of software

product lines?

What measures have been proposed for assessing the quality of software product

lines and how are they used?

(Laguna and Crespo, 2013) 2013 Migration What approaches have been proposed on SPL oriented evolution and what is their

focus and origin?

Which challenges for SPL oriented evolution have been identified?

(Lobato et al., 2013) 2013 Risk management Which risk management steps are suggested by the approaches?

Which risks were identified and reported in SPLs?

Which risk management activities and practices are adopted by the SPL approaches?

What do the researchers commonly use to evaluate the identified risks?

How do the stakeholders influence the identified risks?

(Pereira et al., 2015) 2014 Management tools How many SPL management tools have been cited in the literature since 20 0 0?

What are the main characteristics of the tools?

What are the main functionalities of the tools?

(Santos et al., 2015) 2015 Consistency checking What kind of consistency checking activities have been performed in the literature?

Can any trend on consistency checking be recognized in the research field?

How do the existing approaches relate to each other?

(Heradio et al., 2016) 2015 Bibliometric analysis of SPL research What are the most influential papers on SPL literature?

Who are the most prolific authors?

What journals, conferences, etc. have published the majority of the papers?

How numerous is the SPL literature? How has paper publication been distributed

over time?

What are the main topics studied in the area? How has the interest in those topics

evolved with time?

What are the most impacting papers for a given topic along a certain period of

time?

s

e

s

m

c

i

i

t

i

d

e

t

r

a

l

n

s

p

a

o

o

i

v

s

3

o

t

i

t

S

c

o

T

r

f

t

w

d

d

i

T

(

3

a

T

t

W

i

r
Finally, Heradio et al. (2016) perform the broadest mapping

tudy on SPL research. Authors analyzed 20 years of the SPL lit-

rature (from 1995 to 2014), which involved above 2800 primary

tudies. Authors, resort to bibliometric analyses to: (1) identify the

ost influential publications on the SPL literature (based on re-

eived citations), (2) detect the most covered SPL “research top-

cs” (in terms of published papers), and (3), determine how the

nterest in these research topics evolved over time. Main research

opics are: software architecture, automated analysis, feature model-

ng, software reuse, variability management, software quality, product

erivation, domain engineering , and software design . Regarding the

volution over time, authors ascertain that: (1) software architec-

ure was the initial motor of research in SPLs; (2) work on software

euse has been essential for the development of the SPL research;

nd (3) feature modeling has been the most important topic for the

ast fifteen years, having the best evolution behavior in terms of

umber of published papers and received citations. From our per-

pective, it is worth highlighting that SPL evolution does not ap-

ear as a first-class topic, but included as part of software reuse

nd software design.

These studies can be considered good sources of information

n their subjects. Yet, SPL evolution tends to be blurred behind

ther notions (e.g., migration, risk management, consistency check-

ng, etc.). We aim at moving SPL evolution at the forefront by pro-

iding a deeper analysis along the lines of the change life-cycle

tages (Yau et al., 1978).

. Method

A Systematic Mapping Study (SMS) is an evidence-based form

f secondary study. It provides a wide overview of a research area,

o establish if research evidence exists on a topic, and provides an

ndication of the quantity of the evidence (Kitchenham and Char-

ers, 2007). SMSs offer multiple benefits (Budgen et al., 2008). First,

MSs identify gaps and clusters of papers based on frequently oc-

urring themes, using a systematic and objective procedure. Sec-
nd, SMSs help plan new research, avoiding effort duplication.

hird, they identify areas suitable for future systematic literature

eviews (SLRs), a more in-depth form of secondary studies with a

ocus on smaller research areas and more concrete research ques-

ions compared to SMSs. The software engineering community is

orking towards the definition of a standard processes for con-

ucting SMSs. Guidelines and procedures for undertaking SMSs are

efined in Budgen et al. (2008) ; Petersen et al. (2008a, 2015) . Sim-

lar to other studies (e.g., da Mota Silveira Neto et al., 2011 and

ofan et al., 2014), we split the process proposed by Petersen’s

 Petersen et al., 2008b) into three main phases (see Fig. 3.1):

• planning the review , where the need for the review, appraisal of

related literature surveys and research questions are set. Sim-

ilar to other SMSs (da Mota Silveira Neto et al., 2011; Tofan

et al., 2014), we complement Petersen’s. approach with a proto-

col definition process and the data collection form as suggested

by Kitchenham and Charters (2007) ,
• study identification , where relevant papers are identified. First, a

set of initial papers are identified by querying digital databases.

Then, these studies are filtered based on inclusion/exclusion cri-

teria, yielding primary studies.
• data extraction and classification , where primary studies are an-

alyzed to derive the classification schema, and studies are clas-

sified under the schema.

Next subsections provide the details.

.1. Phase 1: planning the review

This section introduces the directives for planning our SMS,

long Kitchenham’s guidelines (Kitchenham and Charters, 2007).

his step iterates along three activities: protocol definition, litera-

ure survey and research question definition (see Fig. 3.1 -“Phase1”).

e analyzed literature surveys on SPL evolution whose outcome

s presented in Section 2 . As for the research questions, we point

eaders to the introduction, where the objective of research ques-

114 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

Fig. 3.1. Systematic Mapping Study process (adapted from (Petersen et al., 2008a)).

i

q

s

t

a

v

m

a

e

h

3

i

t

F

3

d

p

a

r

p

H

s

n

“

t

i

2

A

t

t

a

s

tions RQ1, RQ2, RQ3 and RQ4 is set. Hence, this section focuses on

the protocol definition.

3.1.1. Protocol definition

This includes the need, the topic and the scope of the review,

the preliminary research questions, a preliminary search strategy,

selection criteria, and a data extraction form (Kitchenham and

Charters, 2007). We reviewed and updated the protocol in several

iterations throughout the entire SMS process.

The need for the review. This SMS is motivated by the per-

ceived need to systematically map out effort s made on SPL evo-

lution. Thus, the outcomes of this study can identify the trends,

hotspots and gaps which need attention from the community.

Moreover, leading venues to publish results (and read literature) on

SPL evolution can be identified. In addition, researchers and prac-

titioners can check if there is a growing or decreasing interest on

SPL evolution. An overview of the field and its distinctive concerns

is given at the beginning of this work (Sections 1 and 2).

Preliminary research questions. The goal of this study was

to obtain a comprehensive overview of current research on SPL

evolution.

The search strategy. The search strategy must lead to inclusion

of relevant papers and exclusion of irrelevant papers. We set ini-

tial search strategy to include querying digital databases with cus-

tomized search strings, followed by manual filtering of the result-

ing studies by predefined inclusion and exclusion criteria. To avoid

replication, we detail this process later in Section 3.2 .

Inclusion and exclusion criteria. For filtering the papers, we

formulated inclusion and exclusion criteria. The inclusion criteria

are:

• IC1. The study focuses on SPLs as opposed to peripherally ad-

dressing the topic.
• IC2. The study focuses on SPL evolution as such. Migration from

single product to an SPL approach, refactoring, bad-smells and

bug-fixing are not considered (as addressed in Section 2).
• IC3. The study is peer-reviewed.

Next, the exclusion criteria are:

• EC1. The study is not SPL-centric.
• EC2. The study does not address evolution.
• EC3. The study is in a language other than English.
• EC4. The study is gray literature, extended abstract, tutorial,

tool demo, or doctoral symposium paper.
•
 EC5. The study is a delta of another study in the review.
Data extraction form . Its main purpose is to help researchers

n collecting all the information needed to answer the research

uestions, recording rationales for inclusion and exclusion of the

tudies, and classifying each of the studies along the classifica-

ion schema. We employed a spreadsheet to collect metadata for

ll of the studies: title, authors, year of publication, publication type,

enue, abstract , and keywords . Additionally, we gave a brief sum-

ary for each study and rationales for inclusion or exclusion. If

 study was included, then we determined its classification cat-

gories . The resulting table for all primary studies is available at

ttp://www.onekin.org/content/spl- evolution- mapping .

.2. Phase 2: study identification

This phase includes: conducting the search and filtering stud-

es . Additionally, we added the evaluating the search step to verify

hat we did not miss any important study (see Fig. 3.1 -“Phase2”).

ig. 3.2 depicts the process.

.2.1. Conducting the search

This step deals with building a search string to query digital

atabases. We followed the PICO approach as suggested by good

ractices on systematic reviews (Petersen et al., 2015; Kitchenham

nd Charters, 2007). P stands for population . In our case, population

efers to the area on SPLs. I stands for intervention . In our case, the

rocedure to be assessed is evolution. C corresponds to Comparison .

ere, we do not compare different strategies for evolution but as-

ess the area as a whole. Finally, O stands for Outcome which does

ot apply to our study either. The identified keywords are then,

Software Product Lines” and “Evolution”.

Next, synonyms should be found. Along the guidelines of Pe-

ersen’s (Petersen et al., 2015), the following related mapping stud-

es were consulted: (Khurum and Gorschek, 2009; Chen and Babar,

011; do Carmo Machado et al., 2014; Laguna and Crespo, 2013).

dditionally, we conducted a pilot study over the IEEE database

o find a balance between hits and noise . We noticed that the

erms “evolution” and “maintenance” tend to be used interchange-

bly. Hence, we included both terms. This resulted in the following

earch string:

((“product lines” OR “product families” OR “product family” OR

“product-lines” OR “product-families” OR “product-family”)

AND

(”evolution” OR “evolving” OR “maintenance” OR “maintain-

ing”))

http://www.onekin.org/content/spl-evolution-mapping

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 115

Fig. 3.2. Study identification process.

T

A

w

f

s

t

(

n

n

“

i

a

0

i

T

3

r

m

o

r

e

d

1

a

c

t

o

a

w

t

r

3

w

m

g

i

t

a

e

a

t

v

t

3

a

3

s
We restricted the search to studies published up to July 2015 .

he following electronic databases were consulted: IEEE Xplore, 3

CM Digital Library, 4 Springer Link 5 and Science Direct. 6 The query

as matched against the title , the abstract and the keywords . Un-

ortunately, at the time of this study, Springer did not account for

uch focused search, and we resorted to posing the query against

he full article content. Additionally, previously known references

identified during the analysis of related literature in the “plan-

ing” phase) were manually added. Refer to Fig. 3.2 to inspect the

umber of the studies that each digital database returned. Fig. 3.2 -

Step1” highlights how Springer Link returned most primary stud-

es (40,2%). Next, ACM Digital Library, Science Direct, IEEE Xplore,

nd manually retrieved studies, returned 31,4%, 5,6%, 22,1% and

,7%, respectively. In summary, we obtained 1409 primary studies

n this first step, where 70 were duplicated and hence, removed.

his leads to 1339 initial studies.

.2.2. Filtering studies

For filtering, we formulated inclusion and exclusion criteria (al-

eady presented in Section 3.1.1). A paper was selected as a pri-

ary study only when it met all the inclusion criteria and none

f the exclusion criteria. Filtering was mainly conducted by one

esearcher. When the researcher was not sure about including or

xcluding a paper, the other researcher was asked to discuss and

ecide. Next, we outline the main debates:
3 http://ieeexplore.ieee.org .
4 http://dl.acm.org/ .
5 http://link.springer.com/ .
6 http://www.sciencedirect.com/ .

a

s

t

f

c

(
• EC1 (“The study is not centric to SPL”). Some studies addressed

SPLs incidentally, not really focusing on SPLs. For instance, stud-

ies just mentioning SPLs as related work (e.g., Ahn and Chong,

2007).
• EC2 (“The study does not address evolution”). We found that

evolution might encompass a great variety of concerns such as

migration or refactoring. As noted in Section 2 , we understand

evolution as “activities to make enhancements”. Hence, we left

outside activities such as SPL migration (Breivold et al., 2008;

Laguna and Crespo, 2013), SPL bad-smell detection (Abdelmoez

et al., 2004; Loesch and Ploedereder, 2007; Devine et al., 2014;

Bertran et al., 2010; Padilha et al., 2014; Vale et al., 2014) or SPL

refactoring (Alves et al., 2008, 2006; Ribeiro and Borba, 2008;

Schulze et al., 2012, 2013) or SPL bug-fixing (Krishnan et al.,

2011, 2013). We also excluded studies on traceability with a fo-

cus on trace extraction and trace specification (Anquetil et al.,

2010; Merschen et al., 2012; Moon et al., 2007; Ahn and Chong,

2007; Shen et al., 2009; Vianna et al., 2012; Yu et al., 2012).
• EC4 (“The study is grey literature”). We excluded grey liter-

ature, and also extended abstracts, tutorials, tool demos, and

doctoral symposium papers (e.g., Vierhauser et al., 2014; Dhun-

gana et al., 20 07; Czarnecki, 20 07).
• EC5 (“The study is a delta of another study in the review”). 26

deltas were excluded in favor of the paper that more exten-

sively detailed the issue (e.g., ter Beek et al., 2011; Botterweck

et al., 2009; Weyns et al., 2011).

We applied a three-stage filtering process to the initial set of

339 studies (see Fig. 3.2 -“Step 2”). Filter 1 looks at the title and

bstract (233 papers left out). Filter 2 looks at the introduction and

onclusions (987 papers left out). Finally, filter 3 looks at the con-

ent (21 papers left out). At a given stage, a study was filtered out

nly if the researcher doing the work was fully sure that it met

ll the exclusion criteria and none of the inclusion criteria. Other-

ise, it went to the next filtering stage. If reaching the third stage,

he study was revised by the two researchers, and a consensus was

eached. The process resulted in 98 primary studies.

.2.3. Evaluating the search

The filtering of studies was mainly conducted by one researcher,

hich is a threat we were aware of. To reduce the risk of having

issed any important study, we followed (Petersen et al., 2015)

uidelines, which recommend to cross-check the resulting stud-

es with a test-set of studies. Our test-set was extracted from

he most up to date summary on SPL evolution by Botterweck

nd Pleuss (2014) . From the set of Botterweck’s references we

xcluded those that do not met our inclusion/exclusion criteria,

nd obtained a final test-set of 34 studies. We then cross-checked

hese 34 studies with our 98 primary studies. The cross-check re-

ealed 9 new references. This rises the number of primary studies

o 107.

.3. Phase 3: data extraction and classification

This phase iterates along two tasks, relevant topics keywording

nd data extraction and mapping (see Fig. 3.1 -“Phase 3”).

.3.1. Relevant topic keywording

This process yields the classification schema. Our classification

chema includes four facets: “Research type”, “Product-derivation

pproach”, “Asset type” and “Evolution activity”. The classification

chema is grounded in the literature. Specifically, the “relevant

opic keywording” process was performed to refine the categories

or facet “Evolution activity”. We departed from a coarse-grained

lassification for “Evolution activity” first proposed by Yau et al.

1978) . This classification was refined by means of the “relevant

http://ieeexplore.ieee.org
http://dl.acm.org/
http://link.springer.com/
http://www.sciencedirect.com/

116 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

u

s

t

f

F

i

m

topic keywording” process. Within this process, a reviewer read the

papers and manually look for keywords and concepts that reflected

the contribution of the papers. Afterwards, the set of keywords

from the different papers were combined together and clustered to

form the fine-grained categories for the “Evolution activity” facet.

The resulting fine-gained schema is later presented in Section 4 , as

part of the mapping of primary studies. Next paragraphs provide

the description of the four facets.

Facet 1: Research type. Description & derivation method. The re-

search type reflects the research approach used in the primary

study. As other SMSs in software engineering (Engström and Rune-

son, 2011), research type categories are based on the scheme pro-

posed by Wieringa et al. (2006) .

Classification Schema:

• “Experience papers” describe the experience of the authors,

usually in practice, using a certain method, technology, etc. Of-

ten, these papers are written by people from industry.
• “Conceptual proposals” sketch a new way of looking at exist-

ing things, providing a vision or philosophical view on a subject

matter.
• “Solution proposals” describe a solution which is usually illus-

trated with an example, case study, running example, etc. The

work is barely or not validated; the proposal is only explained,

and it is shown how to apply it.
• “Validation research” describes validation of research that is not

deployed in practice, for example, by an experiment, perform-

ing some kind of tests, lab studies, etc. Usually it follows a solu-

tion proposal. It answers the question: is the proposed solution

“good”?
• “Evaluation research” describes an evaluation of research, usu-

ally by seeing how the solution works in practice or compar-

ing it with other solutions, pointing out positive and negative

points. It is more extensive than validation and often carried

out within an industrial setting. It answers the question: is the

proposed solution the “right” solution?

This facet somehow serves as an indication of maturity. For in-

stance, the existence of case studies or prototype tools in an aca-

demic context indicates at least a certain degree of validation (“So-

lution proposals” and “Validation research”). On the other hand,

“Experience papers” and “Conceptual proposals” might denote an

incipient research area.

This classification schema is disjointed, i.e., a study belongs to

a unique category. If a study addresses two categories (e.g., a so-

lution and its validation), the “uppermost” category is selected

(e.g., validation). From a maturity perspective, categories rank as

follows: “Evaluation research” > “Validation research” > “Solu-

tion proposals” > “Conceptual proposals” > “Experience papers”.

Note that both “Validation research” and “Evaluation research” will

cover studies that propose new solutions (if they are validated or

evaluated), as well as papers that address the validation or evalua-

tion of existing solutions. Hence, we could not determine whether

solutions being evaluated/validated are new or they have already

being proposed. For our purposes, this is not an issue since our

emphasis is on determining the maturity level of each research

area, regardless of whether solutions are new or not.

Facet 2: Product-derivation approach. Description & derivation

method. It refers to the way products are obtained from core

assets. Two approaches are commonly distinguished: annotation-

based (a.k.a. negative variability) and composition-based (a.k.a.

positive variability) Apel et al. (2013) . However, if the abstraction

level of assets is also considered, a number of studies also address

model-driven SPLs. A minority yet practical approach for product

derivation is the use of clone-and-own.
Classification Schema:

• “Annotation-based”. Here, the code of all features is merged

into a single code base, and annotations spot which code be-

longs to which feature. During product derivation , all code that

belongs to deselected features is removed (at compile time) or

ignored (at run time) to form the final product (Beuche et al.,

20 04; Krueger, 20 01). Pre-processors are a case in point. They

typically provide facilities for conditional compilation, where

marked code fragments in the source code are conditionally re-

moved at compile-time. Annotations are realized through tags,

such as #ifdef and # endif .
• “Composition-based”. Here, features are realized as compass-

able units, ideally one unit per feature. During product deriva-

tion , all units of all selected features and valid feature com-

binations are composed to form the final product. Frame-

works (Johnson and Foote, 1988), Component-based develop-

ment, Feature-Oriented Programming (FOP) (Batory et al., 2004;

Prehofer, 1997), Aspect-Oriented Programming (AOP) (Kiczales

et al., 1997) or Delta-Oriented Programming (DOP) (Schaefer

et al., 2010) applied to SPLs fall within this category.
• “Model-driven”. Here, code is abstracted in terms of models.

During product derivation , model transformations are used that,

ideally, generates the complete product together with all docu-

mentation, test cases, etc., in a fully automated way (Greenfield

and Short, 2003; Völter and Visser, 2011). Model-driven SPLs

can follow annotations or composition for variability handling.

For our purpose, however, the distinctive aspect is that they ab-

stract the way at which product derivation takes place, let this

be “annotation-based” or “composition-based”.
• “Clone-based”. In early stages of SPL adoption, developers might

prefer keeping clone-based generated products separately. Here,

product derivation is just “clone-and-own”. Nevertheless, those

products conform a family, where changes in one product

might need to be propagated directly to sibling products with-

out the intermediation of an SPL infrastructure (Rubin et al.,

2015).
• “Hybrid”. This comprises studies that somehow combines or

blend some of the aforementioned approaches.

This classification schema is disjointed, i.e., a study belongs to a

nique category. Papers addressing model-driven SPLs are so clas-

ified, no matter whether annotation or composition is used. In

his way, we want to gain a glimpse to the extent model trans-

ormation is being involved in product derivation.

acet 3: Evolution activity. Description & derivation method. Activ-

ties involved in SPL evolution. We tap into the change mini-cycle

odel of Yau et al. (1978) .

Classification Schema:

• “Identify change”. Customers, product engineers, domain en-

gineers, the target market, maintenance needs or competitors

might exert evolutionary forces over an SPL. “Identify change”

has to do with monitoring those sources of change.
• “Analyze and plan change”. Program comprehension is essen-

tial to understand what parts of the software will be affected

by a requested change. In addition, the extent or impact of

the change needs to be assessed to obtain an estimation of

how costly the change will be, as well as the potential risk in-

volved in making the change. This analysis is then used to de-

cide whether it is worth carrying out the change.
• “Implement change”. This activity conducts the change. The

large number of assets and stakeholders involved in SPLs rec-

ommend error prevention and guidance mechanism to be in

place.

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 117

a

s

p

F

S

r

a

a

s

p

i

c

3

i

w

m

w

e

c

p

c

a

c

u

c

t

c

s

t

t

v

o

3

t

i

w

(

p

2

3

s

i

t

r

r

l

A

p

k

w

p

o

a

a

w

r

(

n

t

s

f

a

p

2

o

s

n

c

o

c

p

t

w

fi

s

a

d

L

t

L

c

n

M

a

r

S

a

7 In SMSs, quality assessment is not a mandatory practice (Petersen et al., 2008a).
• “Verify change”. Techniques to re-verify the SPL after change

are crucial to ensure that the SPL integrity has not been com-

promised.

This classification schema allows for categories to overlap, i.e.,

 study might belong to more than one category. A finer-grained

chema is later presented in Section 4 , as part of the mapping of

rimary studies.

acet 4: Asset type. Description & derivation method. Type of the

PL asset being subject to evolution. Types are obtained from the

eviewed studies.

Classification Schema:

• “Variability model”. Variability modeling is to efficiently de-

scribe more than one variant of a system. Different approaches

to capture such variability have been proposed: Feature Models

(FMs) (Kang, 1990), cardinality-based FMs (Kim and Czarnecki,

2005), Decision-Oriented Variability Models (DOVMs) (Schmid

et al., 2011), and Orthogonal Variability Models (OVMs) (Pohl

et al., 2005).
• “SPL architecture”. An SPL architecture captures the structure

commonalities and structure variability of the SPL products,

along the architecture elements: software assets, the externally

visible properties of those assets, and the relationships among

them (Capilla et al., 2014).
• “Code assets”. Broadly, code assets are the raw material to pro-

duce the SPL products. This can range from code snippets to

models (in model-driven SPLs). Here, code asset might enclose

variability built-in, later resolved during product derivation.
• “Products”. Broadly, a product is what is delivered to a cus-

tomer. Depending on the maturity of the SPL, products might

be directly derived from the reusable assets based on feature

selection, or rather, require the intervention of product engi-

neers before being ready for release (Deelstra et al., 2005).

This classification schema is “overlapped”, i.e., a study might

ddress evolution for different assets. Notice however, that studies

re classified based on the “evolving artefact”, i.e., the artefact that

uffers the change first, regardless of whether this change is next

ropagated to other artefacts. So, a study describing how a change

n the variability model percolates to code assets and products, is

lassified as “Variability model”.

.3.2. Data extraction and mapping

Having the classification scheme in place, the primary stud-

es are sorted into the scheme. The classification scheme evolved

hile doing the data extraction, like adding new categories or

erging and splitting existing categories. Data extraction process

as performed by one reviewer, who entered data into the data

xtraction form fields: (i) gave a short description of each paper’s

ontribution, (ii) classified the study into the four facets, and (iii)

rovided a short rationale why the paper should be in a certain

ategory. The second reviewer checked the outcome of this process

nd checked its correctness. The outcome of this second review

ould be agreement, disagreement or doubt . If disagreement , the doc-

ment was read (again) in full appraisal by both researchers, and a

onsensus was reached. If the classification was still dubious, then

he studies’ authors were contacted through e-mail. This was the

ase for 15 papers. Additionally, we contacted authors of other 13

tudies, as a cross-check measure. These 28 studies are listed in

he acknowledgements to thank the authors for the prompt reply

o our request. The mapping of the papers and their brief is pro-

ided in Section 4 . The Appendix holds Table A.1 with the mapping

f the primary studies into our classification schema.
.4. Threats to validity

There are several factors that may threaten the validity of sys-

ematic mapping outcomes. Main shortcomings include: (i) bias

n the selection of studies (Barney et al., 2012), and (ii) errors

hen extracting and classifying studies into detailed categories

 Engström and Runeson, 2011). Additionally, we evaluate this map-

ing study along Petersen’s evaluation rubric (Petersen et al.,

015).

.4.1. Selection of studies

Biases might happen during both finding and filtering primary

tudies. The former has to do with coming up with primary stud-

es. Here, one of the risks is the lack of standard languages and

erminologies (Dybå and Dingsøyr, 2008). To reduce this risk, we

efined the “search string ” by (i) consulting the keywords used on

elated mapping studies, and (ii) conducting a pilot study, which

et us determine the “noise” introduced by the selected keywords.

dditionally, we referred to the main publishing houses in com-

uting science (i.e., ACM, IEEE, Springer and Science Direct), even

nowing that a large overlap could exist (indeed, 70 duplicates

ere detected). Inclusion and exclusion criteria were established to

rovide an assessment of how the final set of primary studies was

btained. Where in doubt, the screening of a study went from the

bstract, introduction and conclusions, to the full-text appraisal. If

fter full text appraisal, doubts persisted, then the decision about

hether to include or not the study was jointly taken by the two

esearchers. This was the case for 21 primary studies (see Fig. 3.2).

In addition, we follow recommendations by Casteleyn et al.

2014) to set aside “delta papers”, i.e., papers that provide mi-

or additions compared to previously published work of the au-

hors. Inclusion of delta papers might mislead summarization data,

pecifically if classification is fine-grained with few studies for each

acet. This process led to the identification of 26 delta papers. As

 final validation, we conducted a cross-check with the two main

otentially overlapping survey studies, i.e., (Laguna and Crespo,

013; Botterweck and Pleuss, 2014). Specifically, primary studies

f Laguna and Crespo (2013) present no overlap with our primary

tudies. As for Botterweck and Pleuss (2014) , though this work is

ot a mapping study but a survey, their references serve to cross-

heck ours: 25 overlapping, 9 only in Botterweck, and 73 only in

ur study. Besides enriching our set with 9 new references, this

omparison corroborates the role of our work as a systematic map-

ing endeavor by introducing 73 new references.

We cannot rule out threats from a quality assessment perspec-

ive because selected studies were assigned no scores. 7 However,

ith the aim of increasing the quality of included studies, we de-

ned exclusion criteria to get rid of potentially low level quality

tudies, such as those excluded by “EC4” (grey literature, extended

bstract, tool demo, workshop proposal). Additionally, the selected

igital databases (ScienceDirect, ACM, IEEE Xplore, and Springer-

ink) which are regarded as reliable by the community. Some sys-

ematic reviews that include them are: Dybå and Dingsøyr (2008) ;

aguna and Crespo (2013) ; do Carmo Machado et al. (2014) .

Another threat might be the focus on those studies that specifi-

ally target SPLs. We did not explore whether other software engi-

eering studies addressing evolution could be applicable for SPLs.

oreover, our notion of evolution can be regarded as too restrictive

s we did not consider SPL migration or SPL refactoring. As for the

eviewers’ reliability, the authors of this study are researchers in

PLs with three papers in the SPLC conference, being (Montalvillo

nd Díaz, 2015) the one more related to SPL evolution.

118 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

Fig. 4.1. Elaborating on the “Evolution activity” facet.

f

a

4

u

o

f

s

e

4

i

t

2

b

d

b

r

g

q

f

S

r

b

4

c

B

i

w

c

c

4

m

e

G

n

t

g

“

(

o

a

3.4.2. Classification errors

It is possible for authors to introduce bias during the data ex-

traction process. To reduce this risk, we based the data extraction

on the words used in each publication wherever possible. First,

an author conducted the data extraction and classification process.

The outcome of this second review could be agreement, disagree-

ment or doubt . If disagreement, the document was read in full (full

appraisal), and a consensus was reached. If the classification was

still dubious, then the document’s authors were contacted through

e-mail. This was the case of 15 papers. As a crosscheck, we ad-

ditionally contacted authors of 25 papers, although only 13 did

finally reply. No inconsistencies were appreciated except for the

facet “Research type”: 5 authors would classify their paper dif-

ferently w.r.t to this facet. The main confusion originated from

the distinction between “validation” and “evaluation” research. Ad-

ditionally, some authors misunderstood when a study should be

considered an “experience paper”. This is not totally unexpected.

Wohlin et al. (2013) already pointed out how misleading this facet

can be. The authors reveal how two independent studies classified

the very same papers differently, w.r.t the “Research type” facet.

This blurriness might advise to stick to the classification of a sin-

gle observer that makes clear his understanding of this facet’s val-

ues, and where the assessment of which research type was con-

ducted is based uniquely on what it is described in the paper. The

alternative would be to collect the answers of the 67 studies’ au-

thors whose understanding of what “validation” and “evaluation”

is might differ, and whose appreciation might be partially biased

from experiences not always fully documented.

3.4.3. Evaluation rubric for this mapping study

Petersen et al. (2015) devise an evaluation rubric where to as-

sess the quality of a mapping study process. This rubric can be

used for readers to quick assess the actions undertaken in a SMS.

Specifically, authors identify 26 actions worth applying. The more

actions taken, the higher would be the quality of a SMS. Table 2

outlines the actions undertaken in this SMS. Additionally, we in-

clude a fourth column, which points to the Section in which the

action is addressed. According to the findings of Petersen et al., the

median quality of the analyzed SMSs is 33%. This SMS undertakes

15 out of the 26 suggested actions, which yields a ratio of 57%.

4. Mapping of primary studies

This section provides a short summary for the primary studies.

This implied a more carefully reading not just of the abstract but

the whole content. This permitted a finer-grained elaboration of

the facet “Evolution activity” based on the challenged addressed by

the primary studies (see Fig. 4.1). Table A.1 provides the outcome.

Next, we dedicate a subsection to each of these nine activities. For

each activity, we first outline what makes this activity challenging
or SPLs. Next, we provide a brief about how these challenges are

ddressed in the primary studies.

.1. Identify change

SPLs broader scope and larger life-span make asset evolution

navoidable. Asset evolution happens in response to forces both

utside the SPL organization and within it. By monitoring these

orces, engineers can identify emerging needs that the SPL may

upport. Studies differ in the force being monitored: customers, SPL

nvironment, or products (i.e., product engineers).

.1.1. Monitoring customers

Customer needs can be identified through requirement volatil-

ty analyses. Requirement volatility is the tendency of requirements

o change over time in response to evolving needs (Peng et al.,

011). In SPLs, requirement volatility tends to be higher due to its

roader scope. Here, requirement volatility analysis helps to pre-

ict which requirements might change and how. The analysis is

ased on the priorities that customers assign to each of the SPL

equirements. Hence, by monitoring changes to these priorities, en-

ineers identify the set of the requested adaptations, e.g., new re-

uirements may arise, others become obsolete, others may shift

rom mandatory to optional, etc. This approach is investigated by

avolainen and Kuusela (2001) and Villela et al. (2010) . An SPL

equirement-based taxonomy is provided by Schmid and Eichel-

erger (2007) .

.1.2. Monitoring the SPL environment

Discussion forums, competitors’ websites and market studies

an provide useful data silos where to mine future SPL needs.

öckle (2005) discusses measures to monitor the SPL environment,

ncluding: (1) workshops and discussion forums, (2) usability labs

here customers can play with new products and where ideas and

omplaints are collected, (3) prototypes for new products, and (4)

ompetitors.

.1.3. Monitoring products

Product engineers are responsible for providing feedback to do-

ain engineers. To spur product-engineer feed-backing, Carbon

t al. (2008) adapt the agile practice “planning game” Planning

ame to SPLs. By means of so-called reuse stories , product engi-

eers are instructed to provide concrete suggestions about how

o improve the reusability of SPL assets. In addition, product en-

ineers might develop product-specific assets. These assets may

inspire” domain engineers. This is illustrated by Mende et al.

2008) and Creff et al. (2012) where code analysis tools are devel-

ped to identify product-specific assets candidate to be promoted

s SPL core assets.

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 119

Table 2

Actions conducted in this SMS: taken (�) & not taken (•).

Phase Actions Applied Refer to ...

Phase 1 Motivate the need and relevance � Introduction & Background & Protocol definition (Sections 1 & 2 & 3.1)

Define objectives and questions � Introduction & Protocol definition (Section 3.1)

Consult with target audience to define questions • –

Phase 2 Choosing search strategy

Snowballing • –

Manual � References from (Botterweck and Pleuss, 2014) (Section 3.2.2)

Conduct database search � ACM, IEEE, SpringerLink & ScienceDirect (Section 3.2.1)

PICO � Phase 2: data collection (Section 3.2.1)

Consult librarians • –

Iteratively try finding more relevant papers � Conduct a pilot study (Section 3.2.1)

Keywords from knows papers � From papers (Khurum and Gorschek, 2009; do Carmo Machado et al., 2014;

Chen and Babar, 2011; Laguna and Crespo, 2013) (Section 3.2.1)

Use standards, encyclopedias, and thesaurus –

Evaluate the search

Test–set of known papers � Test-set references from (Botterweck and Pleuss, 2014) (Section 3.2.2)

Expert evaluates result • –

Search web-pages of key authors • –

Test–retest • –

Inclusion and Exclusion

Identify objective criteria for decision � Inclusion and exclusion criteria (Section 3.1)

Add additional reviewer, resolve disagreements

between them when needed

–

Decision rules (what to do when doubts) � Postpone paper to next filtering level & ask second reviewer (Section 3.2.2)

Phase 3 Extraction process

Identify objective criteria for decision � Provided along the classification schema (Section 3.3.1)

Obscuring information that could bias • –

Add additional reviewer, resolve disagreements

between them when needed

� We asked authors of 28 studies (Section 3.4.2)

Test–retest • –

Classification scheme

Research type � Facet “Research type” included (Section 3.3.1)

Research method • –

Venue type � Venues and frequencies reported (Fig. 5.1)

Validity disc. Validity discussion/limitations provided � Validity evaluation reported (Section 3.4)

4

h

<

f

(

p

o

s

q

b

n

c

N

4

t

m

p

b

m

o

r

t

s

A

i

a

o

f

f

l

s

f

a

H

i

c

v

f

i

d

I

o

h

c

a

l

a

a

a

n

r

fi

b

g

w

t
.2. Analyze and plan change

Even to a larger extent than for single products, SPL assets ex-

ibit numerous dependencies: (1) intra-feature dependencies (e.g.,

 excludes > or < includes > dependencies in variability models); (2)

eature-to-code dependencies (a.k.a. configuration knowledge) or

3), product-to-feature dependencies, which are tracked through

roduct configurations. This coupling makes changes rarely be a

ne-off event. Hence, ascertaining the change impact scope is a first

tep to decide whether or not to carry out the change. This re-

uires of decision-making processes tuned to the kind of change

eing considered. For instance, changing the variability model does

ot have the same implications than changing a code asset. If the

hange goes ahead, then planning and road mapping come into play.

ext, we look into these issues.

.2.1. Ascertaining the change impact scope

Change Impact Analysis (CIA) is defined as “identifying the po-

ential consequences of a change, or estimating what needs to be

odified to accomplish a change” (Bohner, 1996). CIA scope de-

ends on the asset at hand. Variability models are those with

roader impact when evolved. This explains why CIA for variability

odels has received most attention. But it is by no means the only

ne. Table 3 depicts different change scenarios arranged along the

oot of the change (“source”) and its ripple effects (“target”). Note

hat it is possible for a study to give support to more than one

cenario. Next we provide a paragraph for each row.

 change in the variability model might impact the variabil-

ty model itself. Paskevicius et al. (2012) resort to Prolog rules to

ssess how changes in the Feature Model (FM) affect other parts

f the FM. The FM is expressed in Prolog. For instance, the rule
m :- all(alt(f1), f2, f3) describes a FM with f2, f3 as compulsory

eatures, and f1 as optional. FM changes are also captured as Pro-

og rules. When the FM is changed, the rule engine computes the

et of features affected by the change as a result of the existing

eature dependencies (e.g., excludes, includes, and feature associ-

tions). The output is the set of features impacted by a change.

eider et al. (2012c) present an industrial case study, where they

dentify engineers’ desired trace links when performing CIA in a

omponent-based SPL. Desired traces include links between the

ariability model and solution space assets (e.g., components, inter-

aces, and dependencies between them) to ascertain how changes

n the variability model impacts the solution space. They further

iscuss implications for a tool support CIA based on the eclipse

DE.

... code assets. Livengood (2011) describes industrial experience

n assessing CIA for large and complex variability models (those

aving multiple constraints). Specifically, authors stress how diffi-

ult it is to determine how implementation is affected when vari-

bility model constraints are modified. So far, the organization re-

ies on engineers to determine the impact of such changes. Authors

dvocate for enhanced traceability between the variability model

nd the code assets.

... product configurations. Changes to the variability model may

lter the configuration space (e.g., introducing a new feature adds

ew product configurations). Thüm et al. (2009) present an algo-

ithm to reason about the impact of FM changes on product con-

gurations. The algorithm takes the two versions of the FM (i.e.,

efore and after the change) and classifies changes as follows: (1)

eneralization , if the set of valid product configurations is extended

ith additional alternatives, (2) refactoring , if the same configura-

ions exist, (3) specialization , if the set of valid configurations is

120 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

Table 3

CIA scenarios.

Triggering

Source \ Triggered

Target Variability model Architecture Code asset Product

Variability model Paskevicius et al. (2012) ,

Heider et al. (2012c)

Heider et al. (2012c) Livengood (2011) , Heider et al.

(2012c)

Thüm et al. (2009) , Dintzner et al.

(2015) , Murashkin et al. (2013) ,

Heider et al. (2012b), Michalik and

Weyns (2011) , Heider et al. (2012c),

Architecture Heider et al. (2012c) Heider et al. (2012c), Díaz

et al. (2014)

Heider et al. (2012c) Michalik and Weyns (2011) , Heider

et al. (2012c)

Code asset Heider et al. (2012c) Heider et al. (2012c) Yazdanshenas and Moonen (2012) ,

Jiang et al. (2008) , Pichler et al.

(2011) , Heider et al. (2012c),

Ribeiro et al. (2014)

Heider et al. (2012c), Michalik and

Weyns (2011)

Product – – Käßmeyer et al. (2015) Rubin et al. (2013, 2012)

i

(

f

A

C

t

(

d

m

b

C

I

t

s

n

l

o

e

S

i

f

p

(

m

t

m

m

t

(

i

t

f

d

t

r

c

W

t

A

o

e

(

t

r
reduced, and (4) arbitrary change, if some of product configura-

tions are removed and others are added. Similar goal but for multi

SPLs (i.e., a set of interacting and interdependent SPLs) is presented

by Dintzner et al. (2015) . Murashkin et al. (2013) develop a visual

tool to detect the set of product configurations that become non-

optimal when the FM changes (w.r.t. quality attributes). In their

approach, FMs are annotated with quality values, e.g., cost and us-

ability . Product configurations are also annotated with expected

objectives, e.g., product configuration p1 can have at most a cost

of 1500, and usability must range between 100 and 300. When a

feature quality value evolves (e.g., the cost of a feature increases),

the tool highlights those product configurations that do not fulfill

the set objectives.

... already derived products. Changes in the variability model

may force products to be updated accordingly. Michalik and Weyns

(2011) propose a preliminary CIA model where to keep track of de-

rived products’ configurations, so that whenever the FM changes

engineers can assess the affected products. Heider et al. (2012b)

introduce a tool for domain engineers to get feedback on how

changes performed to the variability model may affect existing

products. Given a new version of the variability model, the tool re-

generates existing products according to their configurations. Next,

the tool triggers regression tests for domain engineers to assess the

impact of these changes on the re-generated products.

A change in the SPL architecture might impact the SPL archi-

tecture itself. Architectures are the result of design decisions. If

those decisions are recorded and contextualized through the fea-

tures, then so-captured design decision can help to trace core com-

ponents back to features. This is the insight of Díaz et al. (2014) .

Consider an ATM SPL. Let’s balanceAccount be a feature about pro-

viding information about user account balance. This feature pro-

vides context for the design decision: “if there is an overload of re-

quests, reject it”. This decision is in turn traced back to the architec-

ture component that implements it (e.g., Balance component). On

changing feature balanceAccount (e.g., adding new variations or ex-

cluding dependencies), CIA can go down to the potentially affected

components. This scenario gets more complex when design deci-

sions might rest on other design decisions so that their algorithm

goes down until all affected components are ascertained. Authors

evaluate their approach in an industrial case study on smart grids.

... already derived products. Changes in either the component

dependencies or the bindings between these components and

the features, may force products to adjust to the new arrange-

ment. Michalik and Weyns (2011) propose a preliminary CIA model

where to keep track of derived products’ configurations. Heider

et al. (2012c) present an industrial case study, where they identify

engineers’ desired trace links when performing CIA. Desired CIA
nclude assessing SPL architecture changes on (1) derived products,

2) dependencies with other architectural components and inter-

aces, and (3) features in the variability model.

 change in code assets might impact the variability model.

hanges to component interfaces and component dependencies of-

en affect variability models (Heider et al., 2012c). Heider et al.

2012c) present an industrial case study. They identify engineers’

esired CIA, including how code assets changes affect variability

odels. A model is generated based on those desires and a possi-

le realization in Eclipse is discussed.

... code assets themselves. Clone&own is not limited to products.

ode assets can also be obtained by cloning existing code assets.

n this setting, Jiang et al. (2008) present an automated technique

o identify code asset that need to be changed when a code as-

et changes. For component-based SPLs, Yazdanshenas and Moo-

en (2012) introduce a fine-grained source code analysis (at code

ine level) where the impact of component line-grained changes in

ther components is assessed. For annotation-based SPLs, Ribeiro

t al. (2014) develop an Eclipse-based tool for annotation-based

PLs. Given a point in code (the one to be changed), this tool

dentifies the set of additional code changes associated to other

eatures that need to be addressed for the change to be com-

leted. For model-driven SPLs, Pichler et al. (2011) and Corrêa et al.

2011) tackle change impact on meta-models and model transfor-

ations. Pichler et al. (2011) envisage ten changing scenarios and

heir respective scopes are analyzed. For instance, a change into a

eta-model might ripple through the meta-model itself, model-to-

odel transformations or model-to-text transformations. Based on

he classification for meta-model changes proposed by Gruschko

2007) , Corrêa et al. (2011) adapt it for model-driven SPLs. For

nstance, Non-breaking changes (NBC) in SPLs are those changes

hat do not break consistency and variability rules, and there-

ore, no product is affected. Authors classify changes in model-

riven SPLs (feature changes, meta-model changes and transforma-

ion changes) according to this classification, and identify eventual

ipple effects.

... already derived products. New enhancements in reusable

ode assets might impact already derived products. Michalik and

eyns (2011) proses a preliminary CIA model that keeps track of

he configuration details for each derived products.

 change in a product might impact code assets. Improvement

pportunities can be detected by product engineers. Käßmeyer

t al. (2015) tackle this scenario. For Version Control Systems

VCSs), development histories can be used to trace products back

o the SPL release version from where the product was initially de-

ived. Previous release versions that hold the targeted asset can be

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 121

Table 4

Classification of studies based on the decision to be taken.

Decisions to be made Primary studies

Make Variable/Make Common Thurimella and Bruegge (2007) , Thurimella et al. (2008) , Thurimella and Bruegge (2012) , Deelstra et al. (2009) ,

Noor et al. (2008) , Riva and Rosso (2003) , Liu et al. (2007) , Annosi et al. (2012) ,

Schackmann and Lichter (2006) , Sarang and Sanglikar (2007) , Peng et al. (2011) , Chen et al. (2004)

Make Generic/Make Specific Heider et al. (2010b)

Product-local change Gámez and Fuentes (2013) , Gámez and Fuentes (2011) , Karimpour and Ruhe (2013)

New product Chen et al. (2004) , Heider et al. (2010a), Tran and Massacci (2014) , Murthy et al. (1994) , Schmid and Verlage (2002)

d

S

t

(

c

p

t

i

a

4

p

o

s

s

g

s

M

r

S

h

m

c

i

O

a

m

m

t

t

o

a

o

t

B

f

w

u

a

v

a

r

t

c

t

(

(

o

i

e

c

S

p

b

(

e

r

c

t

o

v

r

p

(

a

u

i

a

o

u

f

H

(

f

h

a

C

f

d

b

a

M

a

s

e

a

S

o

h

c

f

r

c

m
etected as well, which, in turn, permits to identify which other

PL products might benefit.

... already derived products. In clone-based SPLs, changes made

o one clone might be propagated to other clones. Rubin et al.

2012) propose a model to describe information for managing

loned products. Herein, if a clone changes, then this model could

oint to other affected features within the clone as well as iden-

ify other impacted cloned products. The authors discuss the real-

zation through VCSs. In a later study (Rubin et al., 2013), authors

pproach is validated through a set of industrial case studies.

.2.2. Decision-making

A change request is not a must-do. Developers should first ex-

lore the impact of conducting a change. This very much depends

n the kind of change being conducted. This subsection classifies

tudies based on our understanding of the change type being con-

idered. Change types are those indicated in Fig. 2.1 . Table 4 pi-

eonholes studies based on these change types. Note that it is pos-

ible for a study to give support for more than one change type.

ake variable/make common. Here, the issue is about finding the

ight amount of variability. Too much commonality moves the

PL towards traditional single product engineering. On the other

and, more variability broadens the SPL scope at the expense of

ore maintenance (and upfront investment). On the search for a

ompromise, decision-making approaches come in handy, specif-

cally, the WinWin model (Boehm et al., 1994) and the Question

ptions Criteria (QOC) model (MacLean et al., 1991). 8 Thurimella

nd Bruegge (2007) propose a combination of the EasyWinWin

odel (i.e., an adapted version of the WinWin model) and the QOC

odel. Specifically, the model includes a question (e.g., “what are

he changes that have been requested for feature F1? ”), a set of op-

ions (e.g., changing variability from mandatory-to-optional, from

ptional-to-mandatory, to add a new feature or to delete a feature),

nd finally, some criteria (e.g., cost to implement each of these

ptions). In this way, Thurimella and Bruegge (2007) adapt QOC

o SPLs. Alternatively, Thurimella et al. (2008) and Thurimella and

ruegge (2012) enrich variability models with annotations about

eature rationales. This information can later be used to assess

hat and how to manage variability. This approach is later eval-

ated by Thurimella and Brügge (2013) .

In the same vein, Deelstra et al. (2009) introduce the variability

ssessment method COSVAM. COSVAM requires engineers to pro-

ide both (1) the SPL’s variability model, and (2), the required vari-

bility (i.e., the variability necessary to accommodate the change

equest). The tool detects mismatches between the provided and

he required variability. If mismatches arise (i.e., existing product

onfigurations become invalid), the tool suggests the set of adap-

ations needed to overcome the mismatches. However, estimat-
8 QOC models arrange decision making along four steps. First, define the issues

 questions). Second, identify available solutions (options). Third, define the criteria

e.g., estimates about development effort s, benefit s and risks) to rate the available

ptions. Finally, a decision (option) is selected on this basis.

t

i

i

ng the cost of such changes is not always easy. Predictive mod-

ling is a process used in predictive analytics to create a statisti-

al model of future behavior. Schackmann and Lichter (2006) and

arang and Sanglikar (2007) advocate to create such models from

ast evolution-driven developments efforts. These models can later

e used to estimate costs for the different SPL evolution scenarios

e.g., fix a feature, add a new feature, etc.). At this respect, Peng

t al. (2011) assess the profit that a change would imply. The met-

ic is based on the following estimates: (1) the probability that the

hange will emerge (estimated by analyzing the market and the

echnological trends), (2) the volume of the change (the number

f products affected by the change) and (3), the added customer

alue for each product (estimated by multiplying the price and the

elative value of all the impacted problems identified in change im-

act analysis).

If the focus is on risks assessment, Riva and Rosso

2003) present an industrial case study, where architectural

ssessment helped to determine if a new feature would put

nder risk the SPL integrity. Architectural assessments are used to

dentify defects and shortcomings of the SPL architecture. If the

rchitecture is weak, new features may compromise the integrity

f the SPL. Here, SPL managers may postpone the new feature

ntil the architecture is ready to support it. On the other side, new

eatures may alter the functionality of already existing features.

ence, a careful analysis of feature interactions is vital. Liu et al.

2007) focus on the identification and modeling of safety-critical

eature interactions to determine whether they may cause a

azard. For component-based SPLs, Annosi et al. (2012) present

n industrial experience on risk management when updating

OTSs. 9 The upgrade may surface incompatibilities with other

eatures resulting into unforeseen side effects. Authors build a

ecision model that considers expert knowledge and dependencies

etween the SPL architecture elements (i.e., existing components)

nd the COTS candidates.

ake generic / make specific. Here, the issue is about making

 variable asset product-specific (“make specific”) or a product-

pecific asset generic (“make generic”). For this matter, Heider

t al. (2010b) resort to a WinWin model. Key stakeholder roles

re first identified (e.g., salesperson, product engineers, customers,

PL managers), and next, negotiation clusters are set (e.g., devel-

pment, market, management). For each negotiation cluster, stake-

olders describe their individual objectives and expectations as win

onditions. For instance, project managers might favor cheap and

ast development while product engineers prefer to develop with

euse despite introducing additional delays. If all stakeholders con-

ur on a win condition, then the condition is turned into an agree-

ent . Otherwise, stakeholders identify conflicts, risks, or uncertain-

ies as issues . Stakeholders seek options to overcome the collected

ssues and explore tradeoffs as a team. Options can then be turned

nto agreements that capture mutually satisfactory solutions.
9 COTS are pre-packaged solutions usually acquired to a third-party for a fee.

122 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

4

t

m

t

R

p

i

u

r

p

(

s

w

f

r

b

d

fi

g

s

t

r

e

c

M

p

a

S

S

i

s

v

p

e

R

s

m

t

f

s

r

v

b

d

b

c

o

c

c

p

d

r

s

t

4

c

e

w

a

(
Product-local change. When core assets are enlarged with a “new-

comer”, a question arises about which SPL products to be used

as a test bed. Karimpour and Ruhe (2013) tackle this issue. They

compute the synergy between the newcomer and distinct prod-

ucts in terms of value and integrity . The value is provided by prod-

ucts’ customers, based on how much value will be added to the

product if the newcomer is incorporated. The integrity computes

cohesion, i.e., the degree to which (a product’s) features are per-

ceived to be related to the newcomer (e.g., play and pause features

of a video-player systems are more cohesive than play and vol-

ume features). The best product candidate would be the one with

maximum value and integrity . In a similar vein, but now focusing

on product architectures, Gámez and Fuentes (2013) resort to diff

tools to compute the architectural differences between a product’s

current configuration and the new configuration that will emerge,

should the newcomer be incorporated. The output identifies which

components must be added or removed from each product. Man-

agers would then assess the cost for producing the upgraded prod-

uct versions.

New product. SPLs can potentially account for a large number of

products based on different feature combinations. However, not all

products end up being realized. The cost of a product is not lim-

ited to generating the product. Besides the potential pressure for

product-local changes, a new product is a new asset to be main-

tained when the SPL evolves. This begs the question: how to de-

cide the introduction of a new SPL product? Studies resort to sim-

ulation models. Simulations involve designing a model of a sys-

tem and carrying out experiments on it as it progresses through

time. Here, the model is the SPL ecosystem, and the experiments

are about the impact of introducing the new product. Studies differ

in the estimate being considered, e.g., development effort, time-to-

market, change resiliency or marketability.

Chen et al. (2004) resort to simulations to estimate the devel-

opment effort and time-to-market. SPL managers should first cre-

ate the model, indicating: the number of current SPL products,

phases on which the different products are (development, release,

waiting for core assets requested), phases on which core assets

are (in development, released), and the number of developers and

their current state (free or under development activities). SPL man-

agers can next simulate the desired change (e.g., introducing a new

product). The simulation will tell managers about: the time-to-

market for the new product, its development effort, and the ad-

ditional maintenance effort caused by the change. Effort estimates

are traditionally obtained based on previous development efforts.

Alternatively, simulation of evolution scenarios can be used. For

model-based SPLs, Heider et al. (2010a) resort to this approach to

measure model maintenance effort.

Tran and Massacci (2014) aim to predict products’ resiliency.

Experts specify the prediction of future evolutions in a feature-like

model (called eFM). Based on both the eFM and the current feature

model, authors provide a configuration survivability analysis for new

product configurations. This analysis measures whether a configu-

ration would still be operational in the presence of forthcoming

evolutions.

Murthy et al. (1994) tackle marketability. Product marketability

metrics are proposed to capture customer affordability (willingness

to pay) and product quality. Though the study focuses on single ap-

plications, the authors argue that these metrics can also be useful

to assess whether a new product should enter an SPL. An inter-

esting issue is whether product introduction is a one-off event or

rather, it might be better to introduce several products as a single

shot. Schmid and Verlage (2002) discuss the economical impact of

these two scenarios.
.2.3. Planning and road-mapping

The change backlog rarely holds a single petition. Rather, dis-

inct changes are often competing for attention and resources. Har-

onious evolution requires roadmaps and release plans that guide

he evolution journey.

oad-mapping. A project roadmap is a simple presentation of

roject ambitions and project goals alongside a timeline. The aim

s to manage stakeholder expectations, and generate a shared

nderstanding across the teams involved. For SPL evolution, a

oadmap provides a global vision of the SPL with features and

roducts to be offered some years from now. Pleuss et al.

2012) and Schubanz et al. (2013) propose the use of FMs to de-

cribe roadmaps. Such FMs are called EvoFM, which include “the

hat” and “the why” of the change. EvoFMs are composed of FM

ragments. A fragment gathers related features that are added or

emoved together during the same evolution step. Dependencies

etween fragments can also be established, just like in an stan-

ard FM. Each evolution step can then be represented by a “con-

guration” of the EvoFM, i.e., a selection of fragments that to-

ether make a FM. The evolution of a FM can, hence, be repre-

ented by a sequence of EvoFM configurations. Authors visualize

his sequence in a matrix-like roadmap. The horizontal dimension

epresents the time line (year), where each column represents an

volution step. Each cell in the plan represents a configuration de-

ision, i.e., whether a FM fragment is applied in that version or not.

oving from FMs to SPL architectures, van Ommering (2001) pro-

oses for SPL roadmaps to include both products and components,

nd most importantly, release dependencies between them. Finally,

avolainen and Kuusela (2008) report experiences from industrial

PLs and suggests key factors for effectively road-mapping, includ-

ng e.g., decomposing features into sub-features (to better under-

tand feature inter-dependencies), mapping features to component

ersions (to understand how features are mapped to code), and

rioritizing features based on the value that each product gives to

ach feature.

elease planning. A release plan is a company’s current under-

tanding of what features are going into the next release, how

any effective developers are deployed on it, and the current sta-

us of the development effort (ahead, behind, on-time). It differs

rom road-mapping in that it signifies that there are a subset of

elected requirements to be implement, and there are committed

esources to implement such requirements. Release planning pro-

ides focus to road-mapping. To know which requirements should

e part of the next release, requirements prioritization is con-

ucted. Prioritization can be based on distinct criteria: costs and

enefits (Noor et al., 2008), constraints on available resources to

onduct the requirements (e.g., person months until next release)

r dependencies between requirements (e.g., one requirement in-

ludes/excludes another) (Inoki et al., 2014). The large set of con-

erns to be considered leads (Taborda, 2004) to specify release

lans as matrixes with different layers. Each layer accounts for

ifferent SPL release facets: prioritized product features, allocated

equirements for each component, estimated development effort,

cheduled dates, test plans cases, and delivered product configura-

ion. The author describes the results of practical trials.

.3. Implement change

CIA strives to identifying the potential consequences of a

hange. The aim is collecting data to decide whether the change

nds up being implemented or not. If the answer is yes, then

e move to “Implement change”. For classification purposes, we

rrange studies addressing this activity along three main issues:

1) how to make SPL assets change resilient (“Built-for-change”),

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 123

(

c

s

4

t

s

g

S

t

v

p

T

t

t

(

t

a

f

c

a

t

e

w

t

t

t

r

r

a

D

c

m

a

a

a

o

s

a

a

e

C

t

g

(

i

a

a

a

m

r

O

(

c

T

c

t

c

e

t

A

d

n

i

u

f

C

n

o

a

t

i

m

i

t

l

a

w

t

g

fi

S

a

n

g

i

(

t

c

t

e

c

p

4

i

s

C

r

c

m

t

T

c

B

t

i

C

c

(

r

a

s

a

a

l

o

W

a

i

o

c

2) how to accommodate change in a reliable way (“Built-with-

hange”), and (3), how to ensure consistency when changes are

cattered across different assets (“Change synchronization”).

.3.1. Built-for-change

Studies strive to anticipate change, and reflect about means

o make assets change resilient (Loughran and Rashid, 2004). Re-

ilience very much depends on the SPL architecture and the pro-

ramming paradigm used to implement code assets.

PL architecture resilience. Studies strive to make the SPL architec-

ure steady through evolution. For planned changes, the wired-in

ariability of SPL architectures accommodates well. However, un-

lanned changes might compromise the SPL architecture stability.

he question is how to ensure long-term viability of SPL archi-

ectures considering that unplanned changes are unavoidable. Al-

hough no golden-rules exist, Tischer et al. (2012) and Dikel et al.

1997) present some successful industrial cases. In hindsight, au-

hors propose some guidelines: focusing on simplification (finding

 balance between features that are needed for “tomorrow” and

eatures that are needed for “today”), adapting for the future (fore-

asting market and technology trends that are specific to the SPL

rchitecture), establishing architectural rhythm (fix regular archi-

ecture and product releases that help coordinate the actions and

xpectations of all parties), partnering and broadening relations

ith stakeholders (e.g., when users want changes to a component,

hey should negotiate directly with the component owner rather

han directly change it themselves), maintaining a clear SPL archi-

ecture vision across the company (all parties need to know who is

esponsible for what), and managing risks and opportunities (e.g.,

eview the architecture with customers and stakeholders, tracking

nd testing the assumptions underlying customer requirements).

eng et al. (2005) discuss several evolution challenges for SPL ar-

hitectures, and propose a model-driven approach based on auto-

ated domain model transformations. Authors advocate that their

pproach is flexible enough to accommodate changes to the SPL

rchitecture. Finally, Díaz et al. (2014) propose an SPL architecting

pproach that combines (1) an incremental SPL architecture devel-

pment based on scrum sprints , and (2) a modeling technique to

pecify the SPL architecture and design decisions that led to each

rchitectural element. Authors evaluate whether their approach en-

bles to maintain SPL architectures’ flexibility and integrity upon

volving requirements.

ode asset resilience. A number of studies evaluate how varia-

ion mechanisms perform as for change resilience. Traditional pro-

ramming paradigms have been assessed by Svahnberg and Bosch

20 0 0) and Sharp (1999) . Svahnberg and Bosch (20 0 0) compare

nheritance, extensions, parameterization, configuration and gener-

tion. Additionally, Sharp (1999) discusses object-oriented mech-

nisms, including inheritance, aggregation, generic programming,

nd conditional compilation. Departing from traditional program-

ing paradigms, newer approaches have been investigated for SPL

ealization, namely, Aspect-Oriented Programming (AOP), Feature-

riented Programming (FOP), and Delta-Oriented Programming

DOP).

AOP supports cross-cuts, i.e., functionality that cannot be

leanly decomposed and tangles/scatters around distinct assets.

esanovic (2007) endorse AOP as a suitable paradigm to face cross-

utting evolution. Dyer et al. (2013) compare different AOP in-

erface proposals, namely, open modules, annotation-based point-

uts, explicit join points and quantified-typed events. Figueiredo

t al. (2008) evaluate AOP strengths and weaknesses compared

o conditional compilation in a set of evolution scenarios. Finally,

bdelmoez et al. (2012) contrast the maintainability effort required

uring evolution of aspect-oriented SPLs and object-oriented SPLs.
Next, FOP, i.e., a composition-based approach that provides the

otion of feature as a construct of the programming language. The

dea is to decompose code in terms of features (i.e., feature mod-

les). Object-Oriented Programming (OOP) resorts to subclassing

or extending a class C1 with additional functionality in subclass

2. In the same scenario, FOP defines a single class C1 but its defi-

ition is split into two assets: the base and the feature so that C1 is

btained by composing base • feature . There are not two classes but

 single class that is incrementally extended to exhibit a new fea-

ure. Ferreira et al. (2014) evaluate FOP in several evolution scenar-

os. Authors conclude that FOP seems to be more effective tackling

odularity degeneration, by avoiding feature tangling and scatter-

ng in source code, than conditional compilation and design pat-

erns. Cafeo et al. (2012) compare AOP, FOP and conditional compi-

ation. Cardone and Lin (2001) propose java-layers (JL), a FOP-like

pproach for Java, and evaluate JL against Object-Oriented frame-

orks in terms of flexibility, ease of use, and support for evolution.

Finally, DOP. DOP generalizes FOP by allowing removal of func-

ionality, and hence, brings non-monotonicity to SPLs. In DOP en-

ineers start from a core module (containing a valid product con-

guration), and apply deltas to remove, add, and modify features.

chaefer et al. (2010) introduce DOP, and compares it w.r.t. FOP in

n SPL evolution scenario.

From the previous studies, it can be concluded that there is

ot a one-size-fits-all approach. Hence, hybrid approaches are sug-

ested. Aspectual feature modules , a mix between AOP and FOP,

s proposed by Gaia et al. (2014) . Similarly, Loughran and Rashid

2004) evaluate framed aspects , a mix between AOP and frames

echnology (i.e., a language independent textual pre-processor that

reates software modules by using code templates and a specifica-

ion from the developer). Finally, for component-based SPLs, Tizzei

t al. (2011) propose aspectual-components , a mix between AOP and

omponents. Authors evaluate to what extent this approach sup-

orts the evolution of SPLs compared to object-oriented SPLs.

.3.2. Built-with-change

SPL complexity substantiates the efforts to bring assistance dur-

ng change implementation. Studies differ in the asset being the

ubject of change.

hanging the variability model. Error prevention can be amelio-

ated through constraints to be obeyed when conducting the

hange. Romero et al. (2013) follow this approach by allowing do-

ain engineers to define authorized changes to the SPL. Such au-

horized changes are specified in a model (the evolution model).

his model is next fed to asset editors so that editions should be

ompliant with the evolution model (i.e., the constraints). Similarly,

orba et al. (2012) and Teixeira et al. (2015) propose the use of

emplates. Templates regulate the SPL evolution so that the behav-

or of the original SPL products is preserved.

hanging the SPL architecture. Guidance to conduct change at ar-

hitectural level is addressed by Hendrickson and van der Hoek

20 07) ; Knodel et al. (20 06) and Garg et al. (2003) . The first two

esort to a diff-like approach to capture differences between the

rchitecture as-is and the architecture as-it-needs-to-be . This repre-

entation states the architectural elements (components, interfaces

nd connectors) that need to be added, deleted or modified. This

ssists engineers in determining the changes to be made. Simi-

arly, Garg et al. (2003) present a tool to visualize different versions

f architectural models in terms of components and connectors.

hen a change is implemented at code level, architecture evalu-

tions can then be used to compare the architectural model with

ts corresponding implementation at code level. This assists devel-

pers in determining whether the changes have been thoroughly

ompleted.

124 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

u

i

t

r

m

a

w

c

m

p

w

i

c

t

s

e

c

b

p

g

a

c

d

H

f

n

a

f

S

t

b

e

a

u

c

(

S

n

c

r

m

e

u

t

v

a

S

n

h

l

t

m

a

i

c

m

u

g

g

10 Staged configuration is a process whereby product configurations are arrived at

in stages. At each stage some feature choices are made.
Changing code assets. Introducing changes at code level can be

error-prone. This is more so for composition-based SPLs where

code tends to be scattered across a large number of modules. For

example, a module can reference classes, variables, or methods

that are defined in another module. Safe composition guarantees

that a product synthesized from a composition of modules is type-

safe. While it is possible to check individual products by building

and then compiling them, this does not scale. In an SPL, there can

be thousands of products. It is more desirable to ensure that all le-

gal modules are type-safe without enumerating the entire product

line and compiling each product (Delaware et al., 2009). Schröter

et al. (2014) introduce a tool for FOP, which tells engineers (while

developing), whether their development is type safe, and hence,

no compilation errors will await when composed with other mod-

ules. For AOP SPLs, Menkyna and Vranic (2009) advocate to create

a change catalog . Once the type of change is identified (e.g., Adding

Column to Grid), this catalogue helps to get an idea of its realization

through AOP constructs (e.g., Performing Action After Event). Au-

thors present this catalog using a Web application as a case study.

Finally, Ribeiro et al. (2014) address the ripple effect among code

assets in annotation-based SPLs. Based on usage dependencies be-

tween code snippets (e.g., variables, methods), a tool highlights the

impact that changes in the definition of either variables or method

signatures, have on other snippets using these elements.

Changing products. Customers might request product-specific

changes. Product engineers might proceed by developing the be-

spoken code from scratch. However, the SPL mindset recommends

to tap into the available SPL’s code assets to look for re-use oppor-

tunities. Kakarontzas et al. (2008) assist product engineers on this

matter by selecting the component that offer better reuse oppor-

tunities. Using Test-Driven Development, product engineers might

resort to SPL components’ test cases for both developing and test-

ing the bespoken code.

For model-driven SPLs, code assets are realized in terms of

models, and products are obtained through model transformation.

Therefore, product specifics should be handled at the model level.

But this is not always possible, and product-specifics end up being

added at the code level. The issue is that once models become out

of sync, any future re-generation of code overrides manual modifi-

cations. To solve this problem, Jarzabek and Trung (2011) propose a

flexible model-to-text generator. The idea is to let engineers weave

arbitrary manual modifications into the generation process rather

than directly modify the generated code.

4.3.3. Change synchronization

Change synchronization looks at ways to restore consistency.

For classification sake, we distinguish between “inconsistency de-

tection” (addressed in Section 4.4.1) and “change synchronization”

(this subsection). The former checks whether SPL assets are kept

in a consistent state. The answer is basically “yes” or “no”. On

the other hand, “change synchronization” takes a step further by

restoring consistency. Studies propose restore actions for different

SPL assets. Differences stem from the asset being restored.

Scenario: keeping the variability model in sync. The variability

model can hold a set of dependencies/constraints among its fea-

tures. It is not enough to detect that some of these dependencies

no longer hold. The triggering change should be followed by re-

store actions such as deleting a feature’s children, or removing a

cross-tree constraint. Guo et al. (2012) introduce a tool to assess

those actions for cardinality-based feature models. Dhungana et al.

(2010) introduce a tool to propagate changes between fragments of

Decision-Oriented variability models.

However, keeping the variability model in sync is not limited

to the variability model itself. It might also impact product config-
rations, which were set in terms of the variability model, which

s now being updated. Unlike the previous case, now restore ac-

ions are not taken at the time the variability model changes but

ather, it is up to product engineers to decide when it is the right

oment for products to be upgraded. This decoupling requires of

 variability model change log. This log records who made what at

hen to the variability model. Based on this log, product engineers

an adapt product configurations at the time that they consider

ost appropriate. Heider et al. (2012a) tap on this log to assist

roduct engineers in setting some constraints to be followed when

orking out the new product release w.r.t. the upgraded variabil-

ty model. Gámez and Fuentes (2013) consider this scenario for

ardinality-based FMs. Constraint-compliant configurations are ob-

ained which might include new features in order to meet the con-

traints (e.g., to satisfy a require dependency). Barreiros and Mor-

ira (2014) face large FMs where the options to restore product

onfigurations might be very large. Authors introduce an algorithm

ased on the distance between the original configuration and a

otential repaired configuration akin to the upgraded FM. The al-

orithm suggests those with the minimum distance. Finally, Kim

nd Czarnecki (2005) also tackle change propagation but for staged

onfigurations. 10

The variability model might also be impacted by changes con-

ucted down in the SPL infrastructure. In the automotive domain,

oldschick (2012) consider how potential changes in the so-called

unctional model (e.g., deletion of components, optional compo-

ent becomes mandatory) need to be propagated up to the vari-

bility model (e.g., reformulate relations with related features, split

eatures, etc.).

cenario: keeping architectures in sync. Usually, product architec-

ures are first derived from the SPL architecture. From then on,

oth the SPL architecture and the product architectures might

volve independently. Domain engineers can extend the SPL scope

nd upgrade the SPL architecture accordingly. Likewise, prod-

ct engineers might be forced to make changes to products ar-

hitectures to ensure accurate and responsive customer service

 Clements and Northrop, 2001). Temporary deviations between the

PL and product architectures are allowed, but periodic synchro-

izations might need to be performed. Notice that the triggering

hange might come from either the domain realm or the product

ealm.

If the change originates in the SPL architecture (i.e., the do-

ain realm), then products might benefit from including the new

nhancements in the next product release. To know how a prod-

ct architecture should be updated, architectural traces (i.e., those

hat trace elements from the SPL architecture to products) become

ital to determine what to merge. Michalik et al. (2011) seek to

bstract the level at which this process is conducted. Although

PLs tend to describe their architecture through a model, this is

ot always the case for products where the architecture might be

idden within the code assets. This leads Michalik et al. to fol-

ow a modernization-like approach where the product’s architec-

ure model is first obtained from the product’s code; next, this

odel is enhanced from the improvements conducted in the SPL

rchitecture model; and finally, the so-obtained enhanced model

s mapped back to code. The enhancement stage is conducted by

omparing the current product’s model and the SPL architecture

odel. These differences will lead product engineers to manually

pdate products.

If the change originates in the product architecture, domain en-

ineers might consider the change of interest for the entire SPL or-

anization. Again, this process is decoupled, i.e., domain engineers

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 125

d

b

t

f

C

g

l

o

a

e

v

t

o

f

n

t

o

S

s

n

t

s

a

r

m

i

c

a

V

l

fi

S

c

a

c

(

t

o

(

r

b

n

s

c

p

a

a

w

t

r

a

t

S

r

b

f

t

i

d

w

a

c

t

a

t

r

u

u

f

p

i

f

a

v

a

a

a

s

e

d

i

n

l

t

c

C

k

f

u

t

a

t

c

c

t

a

a

a

h

S

q

T

(

s

d

fi

t

e

n

t

c

(

i

i

t

e

4

t

t

t

e

o

t

c
o not consider product changes at the time the change happens,

ut at a later time in accordance with their roadmap. This begs

he question of how engineers cherry-pick the interesting changes

rom the distinct ones the product suffers from the last milestone.

hen et al. (2003) tap into the product’s version. First, domain en-

ineers look at the product’s version. Second, two versions are se-

ected that isolate the change of interest. Second, differences are

btained. Third, these differences are accommodated into the SPL

rchitecture through an ad-hoc algorithm. Unfortunately, the inter-

sting change does not always correspond to one of the product’s

ersion. It might well be the case that interesting changes are scat-

ered across different versions. This might substantiate the effort

f Shen et al. (2010) to detect interesting changes from the dif-

erences between the current product architecture (no matter the

umber of releases it has suffered) and the current SPL architec-

ure. Once differences are worked out, domain engineers pick those

f interest, and merge then back to the SPL realm.

cenario: keeping code assets in sync. Previous scenario looks at

ynchronizing architecture assets. Now, we tackle a similar sce-

ario but for code assets. The difference stems from synchroniza-

ion to be achieved not just between assets but asset versions. Ver-

ions introduce variability in time: the very same asset might be

vailable along different versions. This means that products are de-

ived from asset versions, not just assets. The very same core asset

ight be included in different products but at different stages of

ts life-cycle (i.e., different version numbers). Hence, versioning be-

omes a main synchronization factor. This moves us to VCSs. VCSs

re designed to keep track of who did what and when. Broadly,

CSs support “revisions”, i.e., a line of development (a.k.a base-

ine or trunk) with branches off of this. The branching model de-

nes the strategy for branching off, and merging back (Walrad and

trom, 2002). Studies differ in the kind of product derivation pro-

ess being addressed: clone-based and composition-based .

For clone-based , each product has its own repository. Several

uthors argue about the benefits of an integrated platform where

loned variants could be managed. Specifically, both Rubin et al.

2012) and Antkiewicz et al. (2014) propose conceptual operations

o manage the synchronization of clones. An industrial experience

n managing clone-based SPLs is later conducted by Rubin et al.

2013) . Authors conclude that an efficient management of clones

elies on not only improving the maintenance of existing clones,

ut also refactoring clones into an SPL infrastructure. From a tech-

ical perspective, McVoy (2015) introduces new VCS operations

uited for BitKeeper, which enables opportunistic reuse and syn-

hronization at component-level. Notice that in clone-based SPLs,

ropagation takes place at the level of products in the absence of

 proper SPL infrastructure.

By contrast, composition-based SPLs derive products out of core

ssets. In a VCS setting, the SPL comprises: one SPL repository

here to keep core assets, and distinct product repositories where

o keep single products. Product repositories are derived from SPL

epositories. A link between both repositories makes change prop-

gations possible. Thao et al. (2008) present a home-made VCS

uned for component-based SPLs. Here, special branches inside the

PL repository, keep the SPL repository connected with product

epositories. Whenever a product repository is derived, a special

ranch is automatically created in the core asset repository, aimed

or change propagation. Specifically, the special branch references

he product repository’s trunk. This branch works like a mirror:

f domain engineers merge changes from the SPL repository main

evelopment trunk to the special branch, the product repository

ill automatically get these updates. For Git/Github, Montalvillo

nd Díaz (2015) introduce a branching model geared towards fa-

ilitating the identification of un-synched assets and their respec-

ive change propagation. Here, links between the SPL repository
nd product repositories are created by means of fork links. Au-

hors approach tuned operations provided by Github (fork and pull

equests) for SPL specifics. When the SPL repository evolves, prod-

ct engineers can automatically identify those parts in their prod-

ct repositories that are no longer in sync, w.r.t. the code assets

rom where the product was derived. The user can assess the im-

act on those changes in a diff like manner, and enact propagation,

f desired. Anastasopoulos (2009) and Dhaliwal et al. (2012) differ

rom the previous studies in keeping both SPL assets and product

ssets in the very same repository. For Anastasopoulos (2009) , the

ision is realized for the Subversion VCS. Engineers can perform

ctivities related to evolution such as creating change requests for

 given core asset, knowing if product assets are in sync with core

ssets’ latest versions, and propagating changes between core as-

ets and products. Diff operations are used to highlight the differ-

nces between core components and product components so that

ifferences can later be merged into a product. However, integrat-

ng changes from the core-asset branch into product branches is

ot always easy. When the core-asset branch holds commits re-

ated to more than one change request (e.g., adding a new fea-

ure, updating an existing one, etc.), developers need to selectively

herry-pick the commits related to the change to be integrated.

ommonly, change-request tracking systems (e.g., Jira) are used to

eep the links between change requests and commits (e.g., a new

eature f is implemented in commits c1, c2 and c3). This way, prod-

ct engineers select the change request they want to integrate into

heir products, and all the commits related to the change request

re merged into the product branch. However, developers need

o perform these tasks manually. This is error-prone and time-

onsuming. Dhaliwal et al. (2012) provide algorithms to identify

ommit dependencies and create groups of dependent commits

hat should be integrated together. Authors propose algorithms to

utomatically determine dependencies among the commits by an-

lyzing dependencies among change requests (in Jira), structural

nd logical dependencies among source code elements, and the

istory of developers’ working collaborations (in Git).

cenario: keeping feature mappings in sync. Change propagation fre-

uently requires a trace infrastructure to ascertain impacted assets.

his infrastructure should also be upgraded. To this end, Seidl et al.

2012) introduce re-tracing operations , e.g., if class C is deleted,

o should it be feature mappings that contain class C , provided

omain engineers approve it. When feature traces are not speci-

ed into a separate asset but are embedded into code (i.e., fea-

ure annotations), Ji et al. (2015) present nine patterns for co-

volving code assets together with their embedded annotations. Fi-

ally, Passos et al. (2013) inspect the Linux kernel evolution his-

ory over four years to identify twelve patterns. These patterns

over how variability changes affect both feature-to-code mappings

specified through Makefiles) and source code embedded variabil-

ty annotations (C files with annotated ifdef clauses). For instance,

f a new optional feature is added, the pattern instructs engineers

o add variability annotations into the source code, as well as to

xtend Makefiles to include the new feature definition.

.4. Verify change

Once changes are conducted, the SPL needs to be revalidated

o ensure that the SPL integrity has not been compromised (e.g.,

hrough regression testing). The issues are the specifics brought by

he SPL assets and scalability. Rather than repeating all tests for

ach new release (should this be of the feature model, a core asset

r a product), authors strive to find ways that scale to large SPLs

o verify that the changes did not have inadvertent effects.

This subsection aligns with the mapping study on consistency

hecking presented by Santos et al. (2015) . The results are quite

126 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

I

a

i

u

m

f

f

s

w

4

c

n

m

a

p

t

s

c

s

s

s

a

t

l

i

t

a

t

t

p

p

H

n

a

m

o

t

b

f

t

a

t

t

a

s

e

t

t

a

t

a

a

c

(

n

m

s

r

b

p

p
similar, though here we include a detailed description of the stud-

ies that is missing in Santos’ et al.

4.4.1. Inconsistency detection

Inconsistency detection checks whether SPL assets are kept in

a consistent state. The answer is basically “yes” or “no”. Studies

differ in the asset being checked.

Inconsistency detection for the variability model. Quinton et al.

(2014) address consistency for cardinality-based feature models.

Authors discuss about common changes and the resulting inconsis-

tencies. A tool supports designers in assessing the where, the why

and the what of the inconsistency. For decision-oriented variabil-

ity models, Vierhauser et al. (2012) build a consistency checking

framework where developers are given feedback about the con-

straints being violated at runtime (between the variability model

and the code). However, changes in the feature model percolate

down to the SPL, and hence, consistency checking should be ex-

tended to other assets, specially, product configurations. For in-

stance, promoting a feature from optional to mandatory turns

those configurations that do not included the upgraded feature, in-

consistent. Besides product configurations, feature traces (i.e., those

that link features to their code realization) are also likely to be

affected. Consider a product configuration p1 with features f and

g, being class F and class G their code realization, respectively.

Now, f is extended with an optional child (e.g., feature h) together

with its corresponding code assets (e.g., class H). If class H is

next inattentively mapped to feature f (rather than h), then prod-

uct p1 will no longer deliver the expected behavior. Borba et al.,

2012 devise tools to check whether the behavior of already exist-

ing products configurations is preserved upon feature changes. In

the same vein, Leopoldo Teixeira and Gheyi (2015) provide a the-

ory about behavior preservation in SPLs upon feature changes. This

study is later extended for multi-product lines (i.e., independently-

developed SPLs that are later integrated) (Teixeira et al., 2015). Fi-

nally, Jahn et al. (2012) develop a consistency checker to detect

inconsistencies for decision-oriented variability models w.r.t the

SPL architecture model. When engineers change the code assets

(e.g., new components are added), the SPL architecture is automat-

ically updated. The tool raises warnings about any inconsistency

between the variability model and the SPL architecture. The tool

further suggest the engineer how to resolve such inconsistencies

by proposing changes to the variability model (e.g., a new feature

should be added).

Inconsistency detection for the SPL architecture. Different means

are proposed in this item: regression testing, functional tests and

architecture evaluations. Regression testing for SPL architectures,

checks if new defects are introduced into a previously tested archi-

tecture. da Mota Silveira Neto et al. (2012) apply regression test-

ing in two scenarios: corrective changes and perfective changes.

Júnior and Coelho (2011) resort to JUnit tests to detect violations

of design rules during SPL evolution. Alternatively, studies Knodel

et al. (2006) and Duszynski et al. (2009) use architecture evalua-

tions, i.e., the comparison of an architectural model with its source

code counterpart. Possible outputs include: the architectural ele-

ment converges (if it exists in both the architecture and the source

code), the architectural element diverges (if it is only present in

the source code) or the architectural element is absent (if the el-

ement is only present in the architecture). Next, architects can in-

terpret the results based on the total numbers of convergences, di-

vergences and absences. Finally, Knodel et al. (2006) illustrate how

this output is used to evaluate the SPL architecture consistency be-

tween its design and the SPL code assets.
nconsistency detection for products. When new releases for code

ssets are delivered, existing products might need to be accord-

ngly upgraded. Due to frequent upgrades, products might keep

nnecessary assets (a kind of bloatware). This superfluous code

ay be harmful in safety critical domains, hindering runtime per-

ormance and smooth evolution. Demuth et al. (2014) resort to

unctional tests for ascertaining and eliminating the bloatware as-

ets from products, as well as for assuring consistency of products

hen code assets and variability model evolves.

.4.2. Scalable verification

SPLs might include a large number of assets. Lowering verifi-

ation effort s has to do with reducing the number of assets that

eed to be re-verified. Approaches differ based on the verification

echanisms being used: model checking, compositional reasoning

nd regression testing.

Model checkers automatically verify if a system satisfies a given

roperty . A property can be concerned with safety or liveness of

he program, such as the absence of deadlocks, but also product-

pecific behavior can be checked (e.g., in a coffee machine SPL,

heck that the total cost of a drink is always less than 2$). The

ystem needs to be described in a formal notation (e.g., Petri nets,

tate-transition diagrams). For large SPLs, Cordy et al. (2012) re-

ort to incremental verification. Here, previous verification results

re used to minimize the re-verification effort. Specifically, authors

ry to determine if new added features are conservative or regu-

ative . A feature is conservative to a product if it adds functional-

ty to the product, without altering its previous functionalities. Al-

ernatively, a feature is regulative if it doesn’t add new function-

lity to the product but “adapts” previous functionalities. When

he SPL evolves and a new feature f is implemented, knowing

hat f is conservative may drastically reduce the number of new

roducts to verify. For instance, any property violated by an old

roduct p is also violated by the new product p after f is added.

ence, if p is known not to satisfy a property, then there is no

eed to check p again. The scenario becomes more complex when

 blend of both conservative and regulative features is added si-

ultaneously. Theorems are provided to determine which subset

f products can be left out for verification when such types of fea-

ures are introduced. Similarly, static analysis techniques are used

y Sabouri and Khosravi (2014) to determine which features af-

ect which properties (a feature affects a property if it can make

he property valid/invalid). In this way, when the SPL evolves (e.g.,

 feature is modified that adds/removes program statements), this

echnique identifies the affected properties . Here, there is no need

o re-verify the properties that are not affected by the statement

dded/modified.

Berezin et al. (1997) introduce so-called “assume guarantee rea-

oning”, a compositional model checking approach that verifies

ach component separately. It is based on decomposing the sys-

em specification into a set of properties each of which describes

he behavior of a system’s subset (i.e., components). Components

re annotated through an assume - guarantee pair. Assume describes

he properties for the correct functioning of the component. Guar-

ntee denotes properties satisfied by the component provided the

ssume clause is met. A component’s assume may depend on other

omponent’s guarantee . This approach is taken by ter Beek et al.

2012) , where the SPL architecture is denoted as a set of compo-

ents chained by assume-guarantees . When a component imple-

entation changes, its assume-guarantees may change as well. If

table (the assume-guarantee pair did not change), products that

euse the component don’t need to be tested again.

Similarly, Rumpe et al. (2015) resort to a component compati-

ility approach, based on pair-wise model checking. If a new com-

onent version is compatible with the previous version of the

roducts’ component, it could be safely replaced. Finally, common-

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 127

Fig. 5.1. Distribution of studies over publication venues: types (left) and individuals (right).

a

a

i

c

t

m

m

(

p

S

F

o

w

a

p

5

d

t

f

c

u

a

t

e

f

J

I

E

t

i

m

t

M

t

F

p

w

t

c

l

a

S

&

s

5

a

t

l

l

“

t

s

o

w

(

t

d

l

(

t

r

a

(

a

t

e

a

t

y

a

t

t

s

b

11 Notice that the survey stops at July 2015. One could postulate that a similar

number of papers could be published in the second semester of 2015.
lities and similarities between products’ configurations can be an-

lyzed to additionally narrow the set of products to be tested. The

dea is to determine a minimal set of products such that the suc-

essful verification of such a small set implies the correctness of

he entire SPL. Scheidemann (2006) presents an algorithm for this

atter.

Regression testing is a type of software testing used to deter-

ine whether new problems are the result of software changes

refer to Engström and Runeson (2010) for an survey for single

roduct regression testing practices). The new twist brought by

PLs is that tests can also be core asset and hence, subject of reuse.

or instance, Lity et al. (2012) use model-based testing in delta-

riented SPLs. When a new product is created, the commonalities

ith existing product configurations is ascertained, and test assets

re automatically derived for the brand new product. In this way,

roduct testing is given a head start.

. Analysis of the results

Though it was not the main driver of this research, we depict

istribution of studies over publication venues in Fig. 5.1 . The In-

ernational SPL Conference (SPLC) is the prime publication venue

or SPL evolution research (28%). In 2005, the SPLC committee de-

ided to merge the SPLC with its European counterpart, the Prod-

ct Family Engineering (PFE) conference, so they are jointly visu-

lized in the chart. Next in the ranking is the Journal on Informa-

ion and Software Technology (IST) (8%), the International Confer-

nce on Software Engineering (ICSE) (7%), the International Con-

erence on Software Maintenance and Evolution (ICSME) (%4), the

ournal of Systems and Software (JSS) (3%), and the ICSE co-located

nternational Workshop on Product Line Approaches in Software

ngineering (PLEASE) (4%). The top ten is completed by the In-

ernational Conference on Software Maintenance and Reengineer-

ng (CSMR) (3%), the Journal of Science of Computer Program-

ing (SCP) (3%), the Working Conference on Software Architec-

ure (WICSA) (3%) and the International Workshop on Variability

odeling of Software-Intensive Systems (VaMoS) (2%). The 25% of

he publications were unique in the venue they were published in.

ig. 5.1 also depicts the type of publication venue. Conference pa-

ers and Journals account for the 68% and 19%, respectively, while

orkshops account for a 13%. These results align with the state of-

he-art on SPL evolution by Botterweck and Pleuss (2014) . Specifi-

ally, the majority of the included papers by Botterweck et al. be-

ong to the SPLC (together with the ICSE). Additionally, we both
gree on the low numbers of both the International Conference on

oftware Reuse (ICSR) and the Generative Programming: Concepts

 Experience (GPCE) conference. Next, we address each of the re-

earch questions.

.1. RQ1: What types of research have been reported, to what extent,

nd how is coverage evolving?

From the accumulated results shown in Fig. 5.2 , we observe

hat “Solution proposals” (31%) is the most addressed category, fol-

owed by “Validation research” (24%). As it can be observed, “So-

ution proposals” have been gradually increasing over the years.

Evaluation research” accounts for a 19%, which indicate the ma-

urity level of the SPL evolution field. Specifically, “Evaluation re-

earch” has been lately more increasingly conducted (from 2008

n). This might indicate the SPL field becoming more mature

ithin an industrial setting. Additionally, “Validation research”

24%) studies conducted in academia still need to find their way

o industry. “Experience research” (%17) indicates the commitment

egree of industry to report “know how”, “open issues” and “chal-

enges behind”. A few conceptual works have also been addressed

9%), which might indicate incipient challenges being addressed by

he community.

From the stacked bar chart, we see a peak of contributions

eached in 2012. 11 This peak aligns with other SPL related system-

tic reviews, which have also identified a global maximum in 2012

 Santos et al., 2015; Thüm et al., 2014). Santos et al. (2015) found

lso a global maximum with 7 studies (the 29%), while the rest of

he years had less than the half of the studies found during 2012,

xcept for 2010 (with 6 papers). Thüm et al. (2014) also identify

 global maximum in 2012, with 27 papers. Regarding the evolu-

ion of the research, it comes as no surprise that during the first

ears (up to 2005) “Experience research” and “Solution proposals”

re the ones most addressed. From then on, we observe a trend

owards “Validation proposals” and “Evaluation research”. Never-

heless, “Solution proposals” still are prominently addressed, which

eems to indicate the existence of SPL evolution challenges left to

e accomplished.

128 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

Fig. 5.2. “Research type” over time.

Fig. 5.3. “Product derivation approach” over time.

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 129

Fig. 5.4. “Asset type” over time.

5

a

t

m

s

t

h

f

i

T

#

A

a

m

T

w

m

a

c

B

c

c

e

S

o

s

c

t

5

i

t

a

s
.2. RQ2: Which product-derivation approach received most coverage,

nd how is this coverage evolving?

We are interested in assessing how the distinct product deriva-

ion approaches are catching on (see Fig. 5.3). These approaches

ight, for instance, impact change implementation in so far as the

tructure and code assets might take different shapes tuned for

he variability implementation and product derivation approach at

and. This in turn might affect how other activities are conducted

rom implementing to propagating change. The 37% of the stud-

es are not reporting any specific product derivation approach. 12

he rest of the studies consider either “Annotation” (4%) (e.g.,

ifdef clauses), “Composition” (e.g., component-based approaches,

OP) (29%), “Model-driven” (15%), “Clone” (7%) or “Hybrid” (8%)

pproaches. From the stacked bar chart, we can observe how the

ost addressed one is composition-based, with a share of 29%.

his is at odds with the annotation approach being the most

idely reported in industry (Ganesan et al., 2009; Jepsen and
12 This includes studies on external forces (for “Identify change”), variability-

odel analyses, metrics and negotiation processes (for “Analysis and plan change”),

nd change synchronization outside code assets (for “Implement change”) and in-

onsistency checking of variability models (for “Verify change”).

f

i

t

n

euche, 2009; Pearse and Oman, 1997; Tartler et al., 2009). This

an be due to composition approaches being proposed to over-

ome the difficulties that annotation-based approaches face when

volved in the large (Ernst et al., 2002; Favre, 1997; Krone and

nelting, 1994). Interestingly, we can observe an incipient interest

n both “Annotation” and “Clone” approaches since 2012 with a

hare of 4% and 7%, respectively. Although they have been criti-

ized due to its lack of modularity, these approaches have being

he subject of recent effort s to overcome this limitation.

.3. RQ3: Which kind of SPL asset received more attention and how

s this attention evolving?

From the accumulated results in Fig. 5.4 , 13 we notice that both

he variability model (30%), and the code assets (30%) are the

rtefacts most addressed. This stems from the way we classified

tudies. Although studies might deal with distinct SPL assets (e.g.,

eature-to-code mappings, test assets, etc.), here we are interested

n the assets that first evolve (“the subject of evolution”), rather
13 “NA” (9%) refer to studies that consider no asset (e.g., a requirement prioritiza-

ion algorithm (Inoki et al., 2014), monitoring the SPL environment to identify new

eeds (Böckle, 2005), etc).

130 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

Fig. 5.5. “Evolution activity” over time.

“

h

1

w

t

c

a

a

5

s

g

M

i

m

b

s

d

s

e

m

a

than those assets that evolve as a result of the evolution of other

assets. The latter assets are not computed into this facet.

“Code assets” account for 30%. Note that this category also in-

cludes models as the code counterpart in model-driven SPLs. Re-

garding the evolution over time, “SPL architecture” received more

attention during the first years. This aligns with the findings of

Heradio et al. (2016) . On the other hand, products lag behind other

assets as for attention received (13%). Though some proponents re-

gard products to be derived on the fly from core assets, the cur-

rent state of affairs is that products are still in need of being cus-

tomized, and hence, having a detached life-cycle from the SPL.

5.4. RQ4: Which activities of the evolution life-cycle received most

coverage and how is this coverage evolving?

Fig. 5.5 depicts the rate for each evolution activity. Note that

it is possible for a paper to be categorized into more than one

activity. This happens in eight cases, which explains why the to-

tal amounts goes up to 115. From the accumulated results, we

observe that “Implement change” (43%) and “Analyze and plan

change” (37%) account for more than half of the studies. Con-

versely, “Identify change” and “Verify change” lag behind with a

rate of 6% and 14%, respectively. These differences might be par-

tially explained by SPL challenges being more related to analysis

and implementation, while change identification in SPLs exhibits

some resemblance with single-product engineering. The stacked

bar chart shows a sustained interest in “Implement change” and
Analyze and Plan change” over the years, while “Verify change”

as recently received more attention.

So far, activities are those of Yau’s change mini-cycle (Yau et al.,

978). This mini-cycle applies to any software artefact. However,

e wanted to zoom into the specific sub-activities SPL practi-

ioners cared about. Based on the mapping of primary studies

onducted in Section 4 , we refined Yau’s model along nine sub-

ctivities (see Fig. 4.1). Next subsections provide a finer-grained

nalysis of those sub-activities.

.4.1. Zooming into identify change

Fig. 5.6 highlights this activity as being the less addressed:

even studies. Among the different forces of change, product en-

ineering is the force more broadly addressed (Carbon et al., 2008;

ende et al., 2008; Creff et al., 2012), including customers’ chang-

ng needs (Savolainen and Kuusela, 2001; Villela et al., 2010). This

ight be so, due to the fact of SPL products being amenable to

e promoted as core assets, a distinctive aspect not applicable to

ingle systems. On the other hand, the forces of change exerted by

omain engineers are not so different from those found in single

ystems, hence, introducing less novelty. This likeness might also

xplain the sole existence of a study looking into “the SPL environ-

ent” (i.e., competitors, market research and technology forecasts)

s a driver for SPL evolution: (Böckle, 2005).

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 131

Fig. 5.6. A finer-grained classification for SPL “Evolution activity”.

Fig. 5.7. Mapping “Analyze and plan change” across facets “Asset type” and “Research type”.

5

a

(

c

s

f

t

F

t

e

e

P

c

p

a

s

t

m

t

r

c
.4.2. Zooming into analyze and plan change

Fig. 5.6 depicts how “Decision-making” (17%) has received more

ttention that its siblings “Change impact” (14%) and “Planning”

6%). This might stem from SPLs bringing a new range of decisions

oncerning how assets evolve along the re-use spectrum. For these

ub-activities, we are interested in finding what is the focus (i.e.,

acet “Asset type”) and maturity (i.e., facet “Research type”). To

his end, we crossed the activity dimension with these two facets.

ig. 5.7 depicts the outcome.

Impact analysis. Maturity level of CIA reveals that proposed

echniques are mostly validated within academic case studies or

xperiments conducted in labs. These studies have mainly consid-
red “Code Assets” and “Variability models” as the evolving assets.

roducts lag behind. This might evidence that academia barely

onsiders product-specific changes which is at odds with common

ractice in industry (Rabiser et al., 2007).

Decision-making. At first glance, figures suggest this to be

 rather mature area with three studies reaching the evaluation

tage. However, this first impression should be contrasted against

he kind of artefact being addressed. “Variability model” is the

ost tackled asset with nine studies. This might well stem from

he formality brought by variability models that facilitates formal

easoning. However, other assets are largely overlooked. Specifi-

ally, the decision about product specifics being promoted to SPL

132 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

Fig. 5.8. Mapping “Implement change” across facets “Asset type” and “Research type”.

p

u

t

i

c

6

e

s

s

e

g

d

O

c

c

o

o

e

a

t

c

p

y

t

n

a

b

e

N

i

i

i

p

r

o

u

d

k

h

“

r

i

u

p
core assets, has not received so much coverage despite being com-

mon in industry (Rabiser et al., 2007). This is an area that presum-

ably will receive more attention in the future, especially if clone-

based SPLs take off.

Planning and road-mapping . Studies seem to rely on industrial

experiences to find evidences about how companies schedule and

plan releases for SPLs. Variability models and the SPL architecture

are the chosen artefacts for this kind of studies.

5.4.3. Zooming into implement change

Fig. 5.6 places “Change synchronization” (19%) as the most cov-

ered activity, ahead of “Built-for-change” (14%) and “Built-with-

change” (9%). Next, we analyze each sub-activity w.r.t. asset focus

and maturity (see Fig. 5.8).

Built-for-change . It comes as no surprise that code-artefact re-

alization is by far the largest studied asset. It also stands out the

comprehensive extent at which these studies have been conducted

with nine studies reaching the evaluation stage.

Built-with-change . This sub-activity seems to mainly rely on

“Solution proposals”, and lacks empirical evaluation. Additionally,

proposed approaches mostly aid engineers on performing changes

at architecture and code asset level. Research on this field seems

to underestimate product engineers when conducting product-

specific changes (one study).

Change synchronization. This topic is receiving a steady inter-

est in the last years. Special attention is devoted to keeping the SPL

assets in sync along all abstraction levels, as well as, to keep syn-

chronized SPL core assets and product assets. Specifically, “Evalua-

tion research” has focused on keeping the variability model consis-

tent with (smaller parts of) itself (Guo et al., 2012), and keeping in

sync core assets and products (Dhungana et al., 2010; Heider et al.,

2012a). The latter calls for effective configuration management ap-

proaches. We found several evidences at technical level, i.e., VCSs.

For code assets, the trend seems to be to adapt new generation

VCSs (e.g., BitKeeper, Git) to SPL’s. However, we found neither ex-

periences nor practices regarding how configuration management

is achieved in industry.

5.4.4. Zooming into verify change

Fig. 5.6 gives a rough total for the sub-activities “Inconsistency

detection” and “Scalable verification” of 9% and 5%, respectively.

Mapping with the other dimensions indicates an evenly distribu-

tion of the studies w.r.t. both asset type and research type (see

Fig. 5.9).

Inconsistency detection. Regarding the asset type, the variabil-

ity model is the most addressed, presumably due to its readiness

to formal reasoning. Specifically, Feature models are the favorite

notation as opposed to Orthogonal Variability models, Decision-

Oriented Variability models, or Cardinality-based models. More-

over, more than half of the studies include either validation or

evaluation.
Scalable verification . Model checking is by far the most re-

orted approach, and approaches to reduce re-verification effort

pon changes, specially, on variability models and SPL architec-

ures. Research in this field looks to be less mature compared to

ts sibling “inconsistency detection”. This might be due to the diffi-

ulties in finding industrial cases where to test out the approaches.

. Conclusions

This paper presented the results of a mapping study on SPL

volution. In total, 107 articles were included in this mapping

tudy from 1994 to mid 2015. The aims were (1) to provide a con-

olidated overview on “SPL evolution”, and (2), to identify well-

stablished topics, trends and open research issues. As for the first

oal, we described the SPL specifics and their impact on the tra-

itional software change mini-cycle proposed by Yau et al. (1978) .

n these grounds, we further elaborated on this mini-cycle, and

lassified the literature accordingly. This permitted a finer grained

lassification of studies. The answers to the research question of

ur mapping study are presented below.

RQ1, Research type. Solution papers are the most common type

f contribution (31%), followed by “Validation research” (24%). Nev-

rtheless, a tendency can be observed towards more evaluation

nd validation papers. This admits a twofold interpretation: prac-

itioners taking a more active role, or the research community be-

oming more mature. The area reaches a peak in 2012 with 25 pa-

ers, and it maintains a steady contribution of around 10 papers a

ear. Finally, four main conferences stand out as the main venues

hough SPLC takes the lion’s share with a 28%.

RQ2, Product derivation approach. Effort s go as follows: “An-

otation” (4%), “Clone” (7%), “Hybrid” (8%), “Model-driven” (15%),

nd “Composition-based” (29%), the later specially for component-

ased SPLs. Studies on FOP, AOP or DOP took the form of academic

valuations aiming at proving their resiliency upon SPL evolution.

o evidences were found on the applicability of these approaches

n an industrial setting. Interestingly, we observed a recent interest

n both “Annotation” and “Clone” approaches since 2012 on.

RQ3, Asset type. Basically, all assets received coverage: variabil-

ty model (30%), SPL architecture (18%), code assets (30%) and SPL

roducts (13%). Products lag behind other assets as for attention

eceived. Though some proponents regard products to be derived

n the fly from core assets, the current state of affairs is that prod-

cts are still in need of being customized, and hence, having their

etached life-cycle from the SPL. This advices for products to be

ept in the radar of SPL evolution.

RQ4, Evolution activity. “Identify change” and “Verify change”

ave received less attention (6% and 14%, respectively) compared to

Analyze and plan change” and “Implement change” (37% and 43%,

espectively). A finer-grained analysis uncovered some tasks as be-

ng underexposed, namely, (1) decision-making on whether prod-

ct specifics should be promoted to SPL core assets; (2) change im-

act analysis upon architectural changes; (3) inconsistency detec-

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 133

Fig. 5.9. Mapping “Verify change” across facets “Asset type” and “Research type”.

t

w

S

n

T

w

b

w

p

T

A

S

B

2

e

2

2

v

B

e

2

w

t

t

C

A

ion for assets other than variability models. “Document change”

as left out since no study was found on this activity.

From the results of this systematic mapping, we observe that

PLs are receiving considerably attention by the Software Engi-

eering community with conferences fully dedicated to this topic.

he increasing focus on evolution might be a symptom of maturity

here SPL solutions start being tested out. Surprisingly, the num-

er of “Experience papers” is rather limited (17%) which contrasts

ith the increasing use of SPLs in industry (Savolainen, 2013). A

lea is then for practitioners to report their SPL evolution effort s.

his would certainly be a spur for the whole field.

cknowledgment

Thanks are due to authors of papers (Heider et al., 2012b;

abouri and Khosravi, 2011; Michalik et al., 2011; Liu et al., 2007;
Table A.1

Primary study facet classification.

Ref. Title Year

Evolution

activity

Käßmeyer et al.

(2015)

A process to support a systematic

change impact analysis of variability

and safety in automotive functions

2015 Analyze and

plan

Heider et al.

(2012c)

A case study on the evolution of a

component-based product line

2012 Analyze and

plan

Schackmann and

Lichter (2006)

A cost-based approach to software

product line management

2006 Analyze and

plan

Barreiros and

Moreira (2014)

A cover-based approach for

configuration repair

2014 Implement

Murthy et al.

(1994)

A holistic approach to product

marketability measurements-the

PMM approach

1994 Analyze and

plan

Thurimella and

Brügge (2013)

A mixed-method approach for the

empirical evaluation of the

issue-based variability modeling

2013 Analyze and

plan

Leopoldo Teixeira

and Gheyi

(2015)

A product line of theories for reasoning

about safe evolution of product lines

2015 Implement

Verify

Gaia et al. (2014) A quantitative and qualitative

assessment of aspectual feature

modules for evolving software

product lines

2014 Implement

Schmid and

Eichelberger

(2007)

A requirements-based taxonomy of

software product line evolution

2007 Identify

Borba et al.

(2012)

A theory of software product line

refinement

2012 Implement

Verify

Deng et al.

(2005)

Addressing domain evolution

challenges in software product lines

2006 Implement
orba et al., 2012; Leopoldo Teixeira and Gheyi, 2015; Ribeiro et al.,

014; Mende et al., 2008; Loughran and Rashid, 2004; Rumpe

t al., 2015; Lity et al., 2012; Vierhauser et al., 2012; Demuth et al.,

014; Tizzei et al., 2011; Peng et al., 2011; Michalik and Weyns,

011; Sabouri and Khosravi, 2014; Cordy et al., 2012; da Mota Sil-

eira Neto et al., 2012; Garg et al., 2003; Käßmeyer et al., 2015; ter

eek et al., 2012; Júnior and Coelho, 2011; Inoki et al., 2014; Pleuss

t al., 2012; Rubin et al., 2012; Teixeira et al., 2015; Díaz et al.,

014) who promptly helped us to better classify their work. This

ork is co-supported by the Spanish Ministry of Education, and

he European Social Fund under contract TIN2014-58131-R. Mon-

alvillo enjoys a doctoral grant from the University of the Basque

ountry.

ppendix A. Included papers classified on facets
Evolution

sub-activity Asset type

Product-

derivation

appr. Research type

Change impact Products Model-driven Solution

Change impact Variability

model, SPL

architecture,

Code assets

Composition Experience

Decision-making Variability

model

NA Conceptual

Change synchro-

nization

Variability

model

NA Validation

Decision-making Products NA Solution

Decision-making Variability

model

NA Evaluation

Built-with-

change

Variability

model, SPL

architecture,

Hybrid Solution

Inconsistency

checking

Code assets

Built-for-change Code assets Composition Evaluation

Monitoring the

environment

NA NA Conceptual

Built-with-

change

Variability

model,

Hybrid Solution

Inconsistency

checking

Code assets

Built-for-change SPL architecture Model-driven Solution

(continued on next page)

134 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

Table A.1 (continued)

Ref. Title Year Evolution

activity

Evolution

sub-activity

Asset type Product-

derivation

appr.

Research type

Díaz et al. (2014) Agile product-line architecting in

practice: A case study in smart grids

2014 Analyze and

plan

Change impact SPL architecture Composition Evaluation

Implement Built-for-change

Noor et al. (2008) Agile product line planning: A

collaborative approach and a case

study

2008 Analyze and

plan

Planning NA NA Validation

Corrêa et al.

(2011)

An analysis of change operations to

achieve consistency in model-driven

software product lines

2011 Implement Change synchro-

nization

Code assets Model-driven Conceptual

Sarang and

Sanglikar

(2007)

An analysis of effort variance in

software maintenance projects

2008 Analyze and

plan

Decision-making Code assets, SPL

architecture,

Code assets

NA Solution

Tran and

Massacci

(2014)

An approach for decision support on

the uncertainty in feature model

evolution

2014 Analyze and

plan

Decision-making Variability

model

NA Solution

Garg et al. (2003) An environment for managing evolving

product line architectures

2003 Implement Built-with-

change

SPL architecture Composition Solution

da Mota

Silveira Neto

et al. (2012)

An experimental study to evaluate a

SPL architecture regression testing

approach

2012 Verify Inconsistency

checking

SPL architecture,

Code assets

Composition Evaluation

Cafeo et al.

(2012)

Analysing the impact of feature

dependency implementation on

product line stability: An exploratory

study

2012 Implement Built-for-change Variability

model, Code

assets

NA Evaluation

Peng et al. (2011) Analyzing evolution of variability in a

software product line: From contexts

and requirements to features

2011 Analyze and

plan

Decision-making Variability

model

NA Conceptual

Inoki et al. (2014) Application of requirements

prioritization decision rules in

software product line evolution

2014 Analyze and

plan

Planning NA Composition Experience

Vierhauser et al.

(2012)

Applying a consistency checking

framework for heterogeneous

models and artifacts in industrial

product lines

2012 Verify Inconsistency

checking

Variability

model, Code

assets

Model-driven Evaluation

Dikel et al. (1997) Applying software product-line

architecture

1997 Implement Built-for-change SPL architecture NA Experience

Gámez and

Fuentes (2013)

Architectural evolution of FamiWare

using cardinality-based feature

models

2013 Analyze and

plan

Decision-making Variability

model

NA Validation

Implement Change synchro-

nization

Menkyna and

Vranic (2009)

Aspect-oriented change realization

based on multi-paradigm design

with feature modeling

2012 Implement Built-with-

change

Code assets Composition Solution

ter Beek et al.

(2012)

Assume-guarantee testing of evolving

software product line architectures

2012 Verify Scalable

verification

SPL architecture Composition Solution

Demuth et al.

(2014)

Automatic and incremental product

optimization for software product

lines

2014 Verify Inconsistency

checking

Variability

model, Code

assets

Composition Validation

Rumpe et al.

(2015)

Behavioral compatibility of simulink

models for product line maintenance

and evolution

2015 Verify Scalable

verification

SPL architecture Composition Validation

Karimpour and

Ruhe (2013)

Bi-criteria genetic search for adding

new features into an existing

product line

2013 Analyze and

plan

Decision-making Variability

model, Code

assets

NA Solution

Holdschick (2012) Challenges in the evolution of

model-based software product lines

in the automotive domain

2012 Implement Change synchro-

nization

SPL architecture Composition Experience

Paskevicius et al.

(2012)

Change impact analysis of feature

models

2012 Analyze and

plan

Change impact Variability

model

NA Solution

Seidl et al. (2012) Co-evolution of models and feature

mapping in software product lines

2012 Implement Change synchro-

nization

Variability

model, Code

assets

Model-driven Solution

Passos et al.

(2013)

Coevolution of variability models and

related artifacts: A case study from

the Linux kernel

2013 Implement Change synchro-

nization

Variability

model

Annotation Validation

Cardone and Lin

(2001)

Comparing frameworks and layered

refinement

2001 Implement Built-for-change Code assets Hybrid Evaluation

Abdelmoez et al.

(2012)

Comparing maintainability evolution of

object-oriented and aspect-oriented

software product lines

2012 Implement Built-for-change Code assets Composition Evaluation

Tizzei et al.

(2011)

Components meet aspects: Assessing

design stability of a software

product line

2011 Implement Built-for-change SPL architecture Composition Evaluation

(continued on next page)

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 135

Table A.1 (continued)

Ref. Title Year Evolution

activity

Evolution

sub-activity

Asset type Product-

derivation

appr.

Research type

Quinton et al.

(2014)

Consistency checking for the evolution

of cardinality-based feature models

2014 Verify Inconsistency

checking

Variability

model

NA Validation

Guo et al. (2012) Consistency maintenance for evolving

feature models

2012 Implement Change synchro-

nization

Variability

model

NA Evaluation

Lity et al. (2012) Delta-oriented model-based SPL

regression testing

2012 Verify Scalable

verification

Products Compositon Solution

Schaefer et al.

(2010)

Delta-oriented programming of

software product lines

2010 Implement Built-for-change Code assets Composition Evaluation

Tischer et al.

(2012)

Developing long-term stable product

line architectures

2012 Implement Built-for-change SPL architecture NA Experience

Chen et al. (2003) Differencing and merging within an

evolving product line architecture

2004 Implement Change synchro-

nization

Products Composition Solution

Dintzner et al.

(2015)

Evaluating feature change impact on

multi-product line configurations

using partial information

2015 Analyze and

plan

Change impact Variability

model

NA Validation

Villela et al.

(2010)

Evaluation of a method for proactively

managing the evolving scope of a

software product line

2010 Identify Monitoring

customer

NA NA Evaluation

Thurimella and

Bruegge (2007)

Evolution in product line requirements

engineering: A rationale

management approach

2007 Analyze and

plan

Decision-making NA NA Validation

Pichler et al.

(2011)

Evolution patterns for business

document models

2011 Analyze and

plan

Change impact Variability

model

Model-driven Solution

Tesanovic (2007) Evolving embedded product lines:

Opportunities for aspects

2007 Implement Built-for-change Code assets Composition Experience

Figueiredo et al.

(2008)

Evolving software product lines with

aspects

2008 Implement Built-for-change Code assets Composition Evaluation

Riva and Rosso

(2003)

Experiences with software product

family evolution

2003 Analyze and

plan

Decision-making SPL architecture NA Experience

Sharp (1999) Exploiting object technology to support

product variability

1999 Implement Built-for-change Code assets Hybrid Experience

Heider et al.

(2012a)

Facilitating the evolution of products in

product line engineering by

capturing and replaying

configuration decisions

2012 Implement Change synchro-

nization

Variability

model, Code

assets

Model-driven Evaluation

Ribeiro et al.

(2014)

Feature maintenance with emergent

interfaces

2014 Analyze and

plan

Change impact Code assets Annotation Validation

Implement built-with-

change

Schröter et al.

(2014)

Feature-context interfaces: Tailored

programming interfaces for software

product lines

2014 Implement Built-with-

change

Code assets Composition Evaluation

Yazdanshenas

and Moonen

(2012)

Fine-grained change impact analysis for

component-based product families

2012 Analyze and

plan

Change impact Code assets Composition Validation

Jarzabek and

Trung (2011)

Flexible generators for software reuse

and evolution

2011 Implement Built-with-

change

Products Model-driven Solution

Antkiewicz et al.

(2014)

Flexible product line engineering with

virtual platform

2014 Implement Change synchro-

nization

Products Clone Conceptual

Loughran and

Rashid (2004)

Framed Aspects: supporting variability

and configurability for AOP

2009 Implement Built-for-change Code assets Hybrid Solution

Taborda (2004) Generalized release planning for

product line architectures

2004 Analyze and

plan

Planning SPL architecture NA Experience

Thurimella et al.

(2008)

Identifying and exploiting the

similarities between rationale

management and variability

management

2008 Analyze and

plan

Decision-making Variability

model

NA Evaluation

Anastasopoulos

(2009)

Increasing efficiency and effectiveness

of software product line evolution:

An infrastructure on top of

configuration management

2009 Implement Change synchro-

nization

Variability

model, Code

assets,

Products

Composition Validation

Böckle (2005) Innovation management for product

line engineering organizations

2005 Identify Monitoring the

environment

NA NA Conceptual

Thurimella and

Bruegge (2012)

Issue-based variability management 2012 Analyze and

plan

Decision-making Variability

model

NA Evaluation

Svahnberg and

Bosch (20 0 0)

Issues concerning variability in

software product lines

20 0 0 Implement Built-for-change SPL architecture Hybrid Experience

Livengood (2011) Issues in software product line

evolution: complex changes in

variability models

2011 Analyze and

plan

Change impact Variability

model

Annotation Experience

Dyer et al. (2013) Language features for software

evolution and aspect-oriented

interfaces: An exploratory study

2013 Implement Built-for-change Code assets Composition Evaluation

Ji et al. (2015) Maintaining feature traceability with

embedded annotations

2015 Implement Change synchro-

nization

Variability

model

Clone Validation

(continued on next page)

136 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

Table A.1 (continued)

Ref. Title Year Evolution

activity

Evolution

sub-activity

Asset type Product-

derivation

appr.

Research type

Annosi et al.

(2012)

Managing and assessing the risk of

component upgrades

2012 Analyze and

plan

Decision-making Code assets Composition Experience

Jiang et al. (2008) Maintaining software product lines: an

industrial practice

2008 Analyze and

plan

Change impact Code assets Composition Experience

Rubin et al.

(2013)

Managing cloned variants : A

Framework and experience

2013 Analyze and

plan

Change impact Products Clone Validation

Implement Change synchro-

nization

Cordy et al.

(2012)

Managing evolution in software

product lines: A model-checking

perspective

2012 Verify Scalable

verification

Variability

model, Code

assets

Model-driven Solution

Rubin et al.

(2012)

Managing forked product variants 2012 Analyze and

plan

Change impact Products Clone Conceptual

Implement Change synchro-

nization

Creff et al. (2012) Model-based product line evolution: An

incremental growing by extension

2012 Identify Monitoring

products

Products Model-driven Solution

Schubanz et al.

(2013)

Model-driven planning and monitoring

of long-term software product line

evolution

2013 Analyze and

plan

Planning Variability

model

Model-driven Solution

Pleuss et al.

(2012)

Model-driven support for product line

evolution on feature level

2012 Analyze and

plan

Planning Variability

model

Model-driven Validation

Hendrickson and

van der Hoek

(2007)

Modeling product line architectures

through change sets and

relationships

2007 Implement Built-with-

change

SPL architecture Composition Solution

Heider et al.

(2010b)

Negotiation constellations in reactive

product line evolution

2010 Analyze and

plan

Decision-making NA NA Conceptual

Michalik et al.

(2011)

On the problems with evolving

egemin’s software product line

2011 Implement Change synchro-

nization

SPL architecture Composition Experience

Ferreira et al.

(2014)

On the use of feature-oriented

programming for evolving software

product lines - A comparative study

2014 Implement Built-for-change Code assets Hybrid Evaluation

Scheidemann

(2006)

Optimizing the selection of

representative configurations in

verification of evolving product lines

of distributed embedded systems

2006 Verify Scalable

verification

Variability

model, SPL

architecture

NA Experience

McVoy (2015) Preliminary product line support in

BitKeeper

2015 Implement Change synchro-

nization

Code assets Clone Solution

Júnior and Coelho

(2011)

Preserving the exception handling

design rules in software product line

context: A practical approach

2011 Verify Inconsistency

checking

Code assets Composition Validation

Kakarontzas et al.

(2008)

Product line variability with elastic

components and test-driven

development

2008 Implement Built-with-

change

Products Composition Solution

Carbon et al.

(2008)

Providing feedback from application to

family engineering: The product line

planning game at the Testo AG

2008 Identify Monitoring

products

Products NA Experience

Thüm et al.

(2009)

Reasoning about edits to feature

models

2009 Analyze and

plan

Change impact Variability

model

NA Validation

Dhaliwal et al.

(2012)

Recovering commit dependencies for

selective code integration in

software product line

2012 Implement Change synchro-

nization

Code assets Composition Validation

Sabouri and

Khosravi

(2014)

Reducing the verification cost of

evolving product families using

static analysis techniques

2014 Verify Scalable

verification

Variability

model, Code

assets

Annotation Validation

van Ommering

(2001)

Roadmapping a product population

architecture

2002 Analyze and

plan

Planning SPL architecture Composition Solution

Teixeira et al.

(2015)

Safe evolution of product populations

and multi product lines

2015 Verify Inconsistency

checking

Variability

model, Code

assets

NA Solution

Savolainen and

Kuusela (2008)

Scheduling product line features for

effective roadmapping

2008 Analyze and

plan

Planning NA NA Experience

Heider et al.

(2010a)

Simulating evolution in model-based

product line engineering

2010 Analyze and

plan

Decision-making NA NA Validation

Thao et al. (2008) Software Configuration Management

for Product Derivation in Software

Product Families

2008 Implement Change synchro-

nization

Variability

model, Code

assets,

Products

Composition Solution

Romero et al.

(2013)

SPLEMMA: A generic framework for

controlled-evolution of software

product lines

2013 Implement Built-with-

change

Variability

model

NA Solution

Liu et al. (2007) State-based modeling to support the

evolution and maintenance of

safety-critical software product lines

2007 Analyze and

plan

Decision-making NA NA Solution

(continued on next page)

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 137

Table A.1 (continued)

Ref. Title Year Evolution

activity

Evolution

sub-activity

Asset type Product-

derivation

appr.

Research type

Knodel et al.

(2006)

Static evaluation of software

architectures

2006 Implement Built-with-

change

SPL architecture NA Experience

Verify Inconsistency

checking

Dhungana et al.

(2010)

Structuring the modeling space and

supporting evolution in software

product line engineering

2010 Implement Change synchro-

nization

Variability

model, Code

assets

Model-driven Evaluation

Jahn et al. (2012) Supporting model maintenance in

component-based product lines

2012 Verify Inconsistency

checking

Variability

model, Code

assets

Model-driven Validation

Mende et al.

(2008)

Supporting the grow-and-prune model

in software product lines evolution

using clone detection

2008 Identify Monitoring

products

Products Clone Evaluation

Shen et al. (2010) Synchronized architecture evolution in

software product line using

bidirectional transformation

2010 Implement Change synchro-

nization

SPL architecture,

Products

Model-driven Solution

Kim and

Czarnecki

(2005)

Synchronizing cardinality-based feature

models and their specializations

2005 Implement Change synchro-

nization

Variability

model

NA Solution

Schmid and

Verlage (2002)

The economic impact of product line

adoption and evolution

2002 Analyze and

plan

Decision-making NA NA Experience

Michalik and

Weyns (2011)

Towards a solution for change impact

analysis of software product line

products

2011 Analyze and

plan

Change impact Variability

model, SPL

architecture,

Code assets

Model-driven Conceptual

Montalvillo and

Díaz (2015)

Tunning Github for SPL development:

branching models and operations for

product engineers

2015 Implement Change synchro-

nization

Code assets,

Products

Composition Solution

Heider et al.

(2012b)

Using regression testing to analyze the

impact of changes to variability

models on products

2012 Analyze and

plan

Change impact Variability

model

Model-driven Validation

Chen et al.

(2004)

Using simulation to facilitate the study

of software product line evolution

2004 Analyze and

plan

Decision-making NA NA Solution

Deelstra et al.

(2009)

Variability assessment in software

product families

2009 Analyze and

plan

Decision-making Variability

model

NA Validation

Savolainen and

Kuusela (2001)

Violatility analysis framework for

product lines

2001 Identify Monitoring

customer

NA NA Solution

Murashkin et al.

(2013)

Visualization and exploration of

optimal variants in product line

engineering

2013 Analyze and

plan

Change impact Variability

model

NA Validation

R

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

eferences

bdelmoez, W. , Khater, H. , El-shoafy, N. , 2012. Comparing maintainability evolu-

tion of object-oriented and aspect-oriented software product lines. In: 18th
International Conference on informatics and Systems (INFOS 2012), pp. 53–

60 .
bdelmoez, W., Nassar, D.E.M., Shereshevsky, M., Gradetsky, N., Gunnalan, R.,

Ammar, H.H., Yu, B., Mili, A., 2004. Error propagation in software architec-

tures. In: 10th IEEE International Software Metrics Symposium (METRICS), 11–
17 September 2004, Chicago, IL, USA, pp. 384–393. doi: 10.1109/METRIC.2004.

1357923 .
hn, S., Chong, K., 2007. Requirements change management on feature-oriented

requirements tracing. In: Computational Science and Its Applications - ICCSA
2007, International Conference, Kuala Lumpur, Malaysia, August 26–29, 2007.

Proceedings, Part II, pp. 296–307. doi: 10.1007/978- 3- 540- 74477- 1 _ 29 .

jila, S., Dumitrescu, R.T., 2007. Experimental use of code delta, code churn, and rate
of change to understand software product line evolution. J. Syst. Softw. 74–91.

doi: 10.1016/j.jss.2006.05.034 .
jila, S.A., Kaba, A.B., 2008. Evolution support mechanisms for software product line

process. J. Syst. Softw. 81 (10), 1784–1801. doi: 10.1016/j.jss.2007.12.797 .
lves, V., Calheiros, F., Nepomuceno, V., Menezes, A., Soares, S., Borba, P., 2008. Flip:

Managing software product line extraction and reaction with aspects. In: Soft-
ware Product Lines, 12th International Conference, SPLC 2008, Limerick, Ireland,

September 8–12, 2008, Proceedings, p. 354. doi: 10.1109/SPLC.2008.51 .

lves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena, C.J.P., 2006. Refac-
toring product lines. In: Generative Programming and Component Engineering,

5th International Conference, GPCE 2006, Portland, Oregon, USA, October 22–26,
2006, Proceedings, pp. 201–210. doi: 10.1145/1173706.1173737 .

nastasopoulos, M., 2009. Increasing efficiency and effectiveness of software prod-
uct line evolution: an infrastructure on top of configuration management. In:

Proceedings of the joint international and annual ERCIM workshops on Prin-

ciples of software evolution (IWPSE) and software evolution (Evol) workshops,
Amsterdam, Netherlands, August 24–28, 2009, pp. 47–56. doi: 10.1145/1595808.

1595819 .
nnosi, M.C., Penta, M.D., Tortora, G., 2012. Managing and assessing the risk of com-

ponent upgrades. In: Proceedings of the Third International Workshop on Prod-
uct LinE Approaches in Software Engineering, PLEASE 2012, Zurich, Switzerland,

June 4, 2012, pp. 9–12. doi: 10.1109/PLEASE.2012.6229776 .

nquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J., Rummler, A., Sousa, A.,
2010. A model-driven traceability framework for software product lines. Softw.

Syst. Model. 9 (4), 427–451. doi: 10.1007/s10270- 009- 0120- 9 .
ntkiewicz, M., Ji, W., Berger, T., Czarnecki, K., Schmorleiz, T., Lämmel, R., Stanci-

ulescu, S., Wasowski, A., Schaefer, I., 2014. Flexible product line engineering
with a virtual platform. In: 36th International Conference on Software Engineer-

ing, ICSE ’14, Companion Proceedings, Hyderabad, India, May 31, - June 07, 2014,

pp. 532–535. doi: 10.1145/2591062.2591126 .
pel, S., Batory, D.S., Kästner, C., Saake, G., 2013. Feature-Oriented Soft-

ware Product Lines - Concepts and Implementation. Springer doi: 10.1007/
978- 3- 642- 37521- 7 .

arney, S., Petersen, K., Svahnberg, M., Aurum, A., Barney, H.T., 2012. Software qual-
ity trade-offs: A systematic map. Inf. Softw. Technol. 54 (7), 651–662. doi: 10.

1016/j.infsof.2012.01.008 .
arreiros, J., Moreira, A., 2014. A cover-based approach for configuration repair. In:

18th International Software Product Line Conference, SPLC ’14, Florence, Italy,

September 15–19, 2014, pp. 157–166. doi: 10.1145/2648511.2648528 .
atory, D.S., Sarvela, J.N., Rauschmayer, A., 2004. Scaling step-wise refinement. IEEE

Trans. Softw. Eng. 30 (6), 355–371. doi: 10.1109/TSE.2004.23 .
ennett, K.H., Rajlich, V., 20 0 0. Software maintenance and evolution: a roadmap.

In: 22nd International Conference on Software Engineering, Future of Software
Engineering Track, ICSE 20 0 0, Limerick Ireland, June 4–11, 20 0 0., pp. 73–87.

doi: 10.1145/336512.336534 .

erezin, S., Campos, S.V.A., Clarke, E.M., 1997. Compositional reasoning in model
checking. In: Compositionality: The Significant Difference, International Sympo-

sium, COMPOS’97, Bad Malente, Germany, September 8–12, 1997. Revised Lec-
tures, pp. 81–102. doi: 10.1007/3- 540- 49213- 5 _ 4 .

ertran, I.M., Garcia, A., von Staa, A., 2010. Defining and applying detection strate-
gies for aspect-oriented code smells. In: 24th Brazilian Symposium on Software

Engineering, SBES 2010, Salvador, Bahia, Brazil, September 27, - October 1, 2010,

pp. 60–69. doi: 10.1109/SBES.2010.14 .

http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0001
http://dx.doi.org/10.1109/METRIC.2004.penalty -@M 1357923
http://dx.doi.org/10.1007/978-3-540-74477-1_29
http://dx.doi.org/10.1016/j.jss.2006.05.034
http://dx.doi.org/10.1016/j.jss.2007.12.797
http://dx.doi.org/10.1109/SPLC.2008.51
http://dx.doi.org/10.1145/1173706.1173737
http://dx.doi.org/10.1145/1595808.1595819
http://dx.doi.org/10.1109/PLEASE.2012.6229776
http://dx.doi.org/10.1007/s10270-009-0120-9
http://dx.doi.org/10.1145/2591062.2591126
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1016/j.infsof.2012.01.008
http://dx.doi.org/10.1145/2648511.2648528
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1145/336512.336534
http://dx.doi.org/10.1007/3-540-49213-5_4
http://dx.doi.org/10.1109/SBES.2010.14

138 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

d

d

D

D

D

D

D

D

D

D

D

D

D

D

D

d

D

D

D

E

E

E

F

F

Beuche, D., Papajewski, H., Schröder-Preikschat, W., 2004. Variability management
with feature models. Sci. Comput. Program. 53 (3), 333–352. doi: 10.1016/j.scico.

20 03.04.0 05 .
Böckle, G., 2005. Innovation management for product line engineering organiza-

tions. In: Software Product Lines, 9th International Conference, SPLC 2005,
Rennes, France, September 26–29, 2005, Proceedings, pp. 124–134. doi: 10.1007/

11554844 _ 14 .
Boehm, B.W., Bose, P.K., Horowitz, E., Lee, M.J., 1994. Software requirements as ne-

gotiated win conditions. In: Proceedings of the First IEEE International Confer-

ence on Requirements Engineering, ICRE ’94, Colorado Springs, Colorado, USA,
April 18–21, 1994, pp. 74–83. doi: 10.1109/ICRE.1994.292400 .

Bohner, S.A., 1996. Impact analysis in the software change process: a year 20 0 0
perspective. In: 1996 International Conference on Software Maintenance (ICSM

’96), 4–8 November 1996, Monterey, CA , USA , Proceedings, pp. 42–51. doi: 10.
1109/ICSM.1996.564987 .

Borba, P., Teixeira, L., Gheyi, R., 2012. A theory of software product line refinement.

Theor. Comput. Sci. 455, 2–30. doi: 10.1016/j.tcs.2012.01.031 .
Bosch, J., 2002. Maturity and evolution in software product lines: Approaches, arte-

facts and organization. In: Software Product Lines, Second International Confer-
ence, SPLC 2, San Diego, CA , USA , August 19–22, 2002, Proceedings, pp. 257–271.

doi: 10.1007/3- 540- 45652- X _ 16 .
Botterweck, G., Pleuss, A., 2014. Evolution of software product lines. In: Evolving

Software Systems, pp. 265–295. doi: 10.1007/978- 3- 642- 45398- 4 _ 9 .

Botterweck, G., Pleuss, A., Polzer, A., Kowalewski, S., 2009. Towards feature-driven
planning of product-line evolution. In: Proceedings of the First International

Workshop on Feature-Oriented Software Development, FOSD 2009, Denver, Col-
orado, USA, October 6, 2009, pp. 109–116. doi: 10.1145/1629716.1629737 .

Breivold, H.P., Larsson, S., Land, R., 2008. Migrating industrial systems towards soft-
ware product lines: Experiences and observations through case studies. In:

34th Euromicro Conference on Software Engineering and Advanced Applica-

tions, SEAA 2008, September 3–5, 2008, Parma, Italy, pp. 232–239. doi: 10.1109/
SEAA.2008.13 .

Budgen, D. , Turner, M. , Brereton, P. , Kitchenham, B.A. , 2008. Using mapping studies
in software engineering. In: Proceedings of Psychology of Programming Interest

Group (PPIG), 8, pp. 195–204 .
Cafeo, B.B.P., Dantas, F., Gurgel, A.C., Guimarães, E.T., Cirilo, E., Garcia, A.F., de Lu-

cena, C.J.P., 2012. Analysing the impact of feature dependency implementation

on product line stability: an exploratory study. In: 26th Brazilian Symposium on
Software Engineering, SBES 2012, Natal, Brazil, September 23–28, 2012, pp. 141–

150. doi: 10.1109/SBES.2012.23 .
Capilla, R., Bosch, J., Trinidad, P., Cortés, A.R., Hinchey, M., 2014. An overview

of dynamic software product line architectures and techniques: observations
from research and industry. J. Syst. Softw. 91, 3–23. doi: 10.1016/j.jss.2013.12.

038 .

Carbon, R., Knodel, J., Muthig, D., Meier, G., 2008. Providing feedback from applica-
tion to family engineering - the product line planning game at the testo AG. In:

Software Product Lines, 12th International Conference, SPLC 2008, Limerick, Ire-
land, September 8–12, 2008, Proceedings, pp. 180–189. doi: 10.1109/SPLC.2008.

21 .
Cardone, R., Lin, C., 2001. Comparing frameworks and layered refinement. In: Pro-

ceedings of the 23rd International Conference on Software Engineering, ICSE
2001, 12–19 May 2001, Toronto, Ontario, Canada, pp. 285–294. doi: 10.1109/ICSE.

2001.919102 .

Casteleyn, S., Garrigós, I., Mazón, J., 2014. Ten years of rich internet applications:
asystematic mapping study, and beyond. TWEB 8 (3), 18:1–18:46. doi: 10.1145/

2626369 .
Chen, L., Babar, M.A., 2011. A systematic review of evaluation of variability manage-

ment approaches in software product lines. Inf. Softw. Technol. 53 (4), 344–362.
doi: 10.1016/j.infsof.2010.12.006 .

Chen, P., Critchlow, M., Garg, A., van der Westhuizen, C., van der Hoek, A., 2003.

Differencing and mer ging within an evolving product line architecture. In:
Software Product-Family Engineering, 5th International Workshop, PFE 2003,

Siena, Italy, November 4–6, 2003, Revised Papers, pp. 269–281. doi: 10.1007/
978- 3- 540- 24667- 1 _ 20 .

Chen, Y., Gannod, G.C., Collofello, J.S., Sarjoughian, H.S., 2004. Using simulation to fa-
cilitate the study of software product line evolution. In: 7th International Work-

shop on Principles of Software Evolution (IWPSE 2004), 6–7 September 2004,

Kyoto, Japan, pp. 103–112. doi: 10.1109/IWPSE.2004.1334774 .
Clements, P. , Northrop, L. , 2001. Software Product Lines: Practices and Patterns. Ad-

dison-Wesley Professional .
Cordy, M., Classen, A., Schobbens, P., Heymans, P., Legay, A., 2012. Managing evo-

lution in software product lines: a model-checking perspective. In: Sixth In-
ternational Workshop on Variability Modelling of Software-Intensive Systems,

Leipzig, Germany, January 25–27, 2012. Proceedings, pp. 183–191. doi: 10.1145/

2110147.2110168 .
Corrêa, C.K.F., de Oliveira, T.C., Werner, C.M.L., 2011. An analysis of change opera-

tions to achieve consistency in model-driven software product lines. In: Soft-
ware Product Lines - 15th International Conference, SPLC 2011, Munich, Ger-

many, August 22–26, 2011. Workshop Proceedings (Volume 2), p. 24. doi: 10.
1145/2019136.2019163 .

Creff, S., Champeau, J., Jézéquel, J., Monégier, A., 2012. Model-based product line

evolution: an incremental growing by extension, 107–114.
Czarnecki, K., 2007. Software reuse and evolution with generative techniques. In:

22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2007), November 5–9, 2007, Atlanta, Georgia, USA, p. 575. doi: 10.1145/

1321631.1321750 .
a Mota Silveira Neto, P. A., do Carmo Machado, I., Cavalcanti, Y. C., de Almeida, E.
S., Garcia, V. C., de Lemos Meira, S. R., 2012. An experimental study to evaluate a

SPL architecture regression testing approach, 608–615. 10.1109/IRI.2012.6303065
a Mota Silveira Neto, P.A., do Carmo Machado, I., McGregor, J.D., de Almeida, E.S.,

de Lemos Meira, S.R., 2011. A systematic mapping study of software product
lines testing. Inf. Softw. Technol. 53 (5), 407–423. doi: 10.1016/j.infsof.2010.12.

003 .
eelstra, S., Sinnema, M., Bosch, J., 2005. Product derivation in software product

families: a case study. J. Syst. Softw. 74 (2), 173–194. doi: 10.1016/j.jss.2003.11.

012 .
eelstra, S., Sinnema, M., Bosch, J., 2009. Variability assessment in software product

families. Inf. Softw. Technol. 51 (1), 195–218. doi: 10.1016/j.infsof.20 08.04.0 02 .
elaware, B., Cook, W.R., Batory, D.S., 2009. Fitting the pieces together: a machine-

checked model of safe composition. In: Proceedings of the 7th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, 2009, Amster-

dam, The Netherlands, August 24–28, 2009, pp. 243–252. doi: 10.1145/1595696.
1595733 .

emuth, A., Lopez-Herrejon, R.E., Egyed, A., 2014. Automatic and incremental
product optimization for software product lines. In: Seventh IEEE Interna-

tional Conference on Software Testing, Verification and Validation, ICST 2014,
March 31 2014-April 4, 2014, Cleveland, Ohio, USA, pp. 31–40. doi: 10.1109/ICST.

2014.14 .

eng, G., Lenz, G., Schmidt, D.C., 2005. Addressing domain evolution challenges in
software product lines. In: Satellite Events at the MoDELS 2005 Conference,

MoDELS 2005 International Workshops, Doctoral Symposium, Educators Sym-
posium, Montego Bay, Jamaica, October 2–7, 2005, Revised Selected Papers,

pp. 247–261. doi: 10.1007/11663430 _ 26 .
evine, T.R., Goseva-Popstojanova, K., Krishnan, S., Lutz, R.R., 2014. Assessment and

cross-product prediction of software product line quality: accounting for reuse

across products, over multiple releases. Autom. Softw. Eng. 23 (2), 253–302.
doi: 10.1007/s10515- 014- 0160- 4 .

haliwal, T., Khomh, F., Zou, Y., Hassan, A.E., 2012. Recovering commit dependencies
for selective code integration in software product lines. In: 28th IEEE Interna-

tional Conference on Software Maintenance, ICSM 2012, Trento, Italy, September
23–28, 2012, pp. 202–211. doi: 10.1109/ICSM.2012.6405273 .

hungana, D., Grünbacher, P., Rabiser, R., Neumayer, T., 2010. Structuring the model-

ing space and supporting evolution in software product line engineering. J. Syst.
Softw. 83 (7), 1108–1122. doi: 10.1016/j.jss.2010.02.018 .

hungana, D., Neumayer, T., Grúnbacher, P., Rabiser, R., 2008. Supporting evolution
in model-based product line engineering. In: Software Product Lines, 12th Inter-

national Conference, SPLC 2008, Limerick, Ireland, September 8–12, 2008, Pro-
ceedings, pp. 319–328. doi: 10.1109/SPLC.2008.26 .

hungana, D., Rabiser, R., Grünbacher, P., Neumayer, T., 2007. Integrated tool support

for software product line engineering. In: 22nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2007), November 5–9, 2007, At-

lanta, Georgia, USA, pp. 533–534. doi: 10.1145/1321631.1321730 .
íaz, J., Pérez, J., Garbajosa, J., 2014. Agile product-line architecting in practice: a

case study in smart grids. Inf. Softw. Technol. 56 (7), 727–748. doi: 10.1016/j.
infsof.2014.01.014 .

ikel, D., Kane, D., Ornburn, S., Loftus, W., Wilson, J., 1997. Applying software
product-line architecture. IEEE Comput. 30 (8), 49–55. doi: 10.1109/2.607064 .

intzner, N., Kulesza, U., van Deursen, A., Pinzger, M., 2015. Evaluating feature

change impact on multi-product line configurations using partial information.
In: Software Reuse for Dynamic Systems in the Cloud and Beyond - 14th Inter-

national Conference on Software Reuse, ICSR 2015, Miami, FL, USA, January 4–6,
2015. Proceedings, pp. 1–16. doi: 10.1007/978- 3- 319- 14130- 5 _ 1 .

o Carmo Machado, I., McGregor, J.D., Cavalcanti, Y.C., de Almeida, E.S., 2014. On
strategies for testing software product lines: A systematic literature review. Inf.

Softw. Technol. 56 (10), 1183–1199. doi: 10.1016/j.infsof.2014.04.002 .

uszynski, S., Knodel, J., Lindvall, M., 2009. SAVE: software architecture visualization
and evaluation. In: 13th European Conference on Software Maintenance and

Reengineering, CSMR 2009, Architecture-Centric Maintenance of Large-SCale
Software Systems, Kaiserslautern, Germany, 24–27 March 2009, pp. 323–324.

doi: 10.1109/CSMR.2009.52 .
ybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: asys-

tematic review. Inf. Softw. Technol. 50 (9–10), 833–859. doi: 10.1016/j.infsof.

20 08.01.0 06 .
yer, R., Rajan, H., Cai, Y., 2013. Language features for software evolution and

aspect-oriented interfaces: an exploratory study. T. Aspect-Oriented Softw. Dev.
10, 148–183. doi: 10.1007/978- 3- 642- 36964- 3 _ 5 .

ngström, E., Runeson, P., 2010. A qualitative survey of regression testing practices.
In: Product-Focused Software Process Improvement, 11th International Confer-

ence, PROFES 2010, Limerick, Ireland, June 21–23, 2010. Proceedings, pp. 3–16.

doi: 10.1007/978- 3- 642- 13792- 1 _ 3 .
ngström, E., Runeson, P., 2011. Software product line testing - A systematic map-

ping study. Inf. Softw. Technol. 53 (1), 2–13. doi: 10.1016/j.infsof.2010.05.011 .
rnst, M.D., Badros, G.J., Notkin, D., 2002. An empirical analysis of C preproces-

sor use. IEEE Trans. Softw. Eng. 28 (12), 1146–1170. doi: 10.1109/TSE.2002.
1158288 .

avre, J., 1997. Understanding-in-the-large. In: 5th International Workshop on Pro-

gram Comprehension (WPC ’97), May 28–30, 1997 - Dearborn, MI, USA, pp. 29–
38. doi: 10.1109/WPC.1997.601260 .

erreira, G.C.S., Gaia, F.N., Figueiredo, E., de Almeida Maia, M., 2014. On the use of
feature-oriented programming for evolving software product lines - A compar-

ative study. Sci. Comput. Program. 93, 65–85. doi: 10.1016/j.scico.2013.10.010 .

http://dx.doi.org/10.1016/j.scico.2003.04.005
http://dx.doi.org/10.1007/11554844_14
http://dx.doi.org/10.1109/ICRE.1994.292400
http://dx.doi.org/10.1109/ICSM.1996.564987
http://dx.doi.org/10.1016/j.tcs.2012.01.031
http://dx.doi.org/10.1007/3-540-45652-X_16
http://dx.doi.org/10.1007/978-3-642-45398-4_9
http://dx.doi.org/10.1145/1629716.1629737
http://dx.doi.org/10.1109/SEAA.2008.13
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0030
http://dx.doi.org/10.1109/SBES.2012.23
http://dx.doi.org/10.1016/j.jss.2013.12.penalty -@M 038
http://dx.doi.org/10.1109/SPLC.2008.21
http://dx.doi.org/10.1109/ICSE.2001.919102
http://dx.doi.org/10.1145/2626369
http://dx.doi.org/10.1016/j.infsof.2010.12.006
http://dx.doi.org/10.1007/978-3-540-24667-1_20
http://dx.doi.org/10.1109/IWPSE.2004.1334774
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0040
http://dx.doi.org/10.1145/2110147.2110168
http://dx.doi.org/10.1145/2019136.2019163
http://dx.doi.org/10.1145/1321631.1321750
http://dx.doi.org/10.1016/j.infsof.2010.12.003
http://dx.doi.org/10.1016/j.jss.2003.11.012
http://dx.doi.org/10.1016/j.infsof.2008.04.002
http://dx.doi.org/10.1145/1595696.1595733
http://dx.doi.org/10.1109/ICST.2014.14
http://dx.doi.org/10.1007/11663430_26
http://dx.doi.org/10.1007/s10515-014-0160-4
http://dx.doi.org/10.1109/ICSM.2012.6405273
http://dx.doi.org/10.1016/j.jss.2010.02.018
http://dx.doi.org/10.1109/SPLC.2008.26
http://dx.doi.org/10.1145/1321631.1321730
http://dx.doi.org/10.1016/j.infsof.2014.01.014
http://dx.doi.org/10.1109/2.607064
http://dx.doi.org/10.1007/978-3-319-14130-5_1
http://dx.doi.org/10.1016/j.infsof.2014.04.002
http://dx.doi.org/10.1109/CSMR.2009.52
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1007/978-3-642-36964-3_5
http://dx.doi.org/10.1007/978-3-642-13792-1_3
http://dx.doi.org/10.1016/j.infsof.2010.05.011
http://dx.doi.org/10.1109/TSE.2002.1158288
http://dx.doi.org/10.1109/WPC.1997.601260
http://dx.doi.org/10.1016/j.scico.2013.10.010

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 139

F

G

G

G

G

G

G

G

G

H

H

H

H

H

H

H

H

I

J

J

J

J

J

J

J

K

K

K

K

K

K

K

K

K

K

K

K

K

K

L

L

L

L

L

igueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,
Soares, S., Ferrari, F.C., Khan, S.S., Filho, F.C., Dantas, F., 2008. Evolving software

product lines with aspects: an empirical study on design stability. In: 30th In-
ternational Conference on Software Engineering (ICSE 2008), Leipzig, Germany,

May 10–18, 2008, pp. 261–270. doi: 10.1145/1368088.1368124 .
aia, F.N., Ferreira, G.C.S., Figueiredo, E., de Almeida Maia, M., 2014. A quantita-

tive and qualitative assessment of aspectual feature modules for evolving soft-
ware product lines. Sci. Comput. Program. 96, 230–253. doi: 10.1016/j.scico.2014.

03.006 .

ámez, N., Fuentes, L., 2011. Software product line evolution with cardinality-based
feature models. In: Top Productivity through Software Reuse - 12th Interna-

tional Conference on Software Reuse, ICSR 2011, Pohang, South Korea, June 13–
17, 2011. Proceedings, pp. 102–118. doi: 10.1007/978- 3- 642- 21347-2 _ 9 .

ámez, N., Fuentes, L., 2013. Architectural evolution of famiware using cardinality-
based feature models. Inf. Softw. Technol. 55 (3), 563–580. doi: 10.1016/j.infsof.

2012.06.012 .

anesan, D., Lindvall, M., Ackermann, C., McComas, D., Bartholomew, M., 2009. Ver-
ifying architectural design rules of the flight software product line. In: Software

Product Lines, 13th International Conference, SPLC 2009, San Francisco, Califor-
nia, USA, August 24–28, 2009, Proceedings, pp. 161–170. doi: 10.1145/1753235.

1753258 .
arg, A., Critchlow, M., Chen, P., van der Westhuizen, C., van der Hoek, A., 2003. An

environment for managing evolving product line architectures. In: 19th Inter-

national Conference on Software Maintenance (ICSM 2003), The Architecture of
Existing Systems, 22–26 September 2003, Amsterdam, The Netherlands, p. 358.

doi: 10.1109/ICSM.2003.1235443 .
reenfield, J., Short, K., 2003. Software factories: assembling applications with pat-

terns, models, frameworks and tools. In: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA 2003, October 26–30, 2003, Anaheim, CA , USA , pp. 16–27.

doi: 10.1145/949344.949348 .
ruschko, B. , 2007. Changes classification in M2 models. In: Software Engineer-

ing 2007 - Beiträge zu den Workshops, Fachtagung des GI-Fachbereichs Soft-
waretechnik, 27.-30.3.2007 in Hamburg, pp. 277–280 .

uo, J., Wang, Y., Trinidad, P., Benavides, D., 2012. Consistency maintenance for
evolving feature models. Expert Syst. Appl. 39 (5), 4 987–4 998. doi: 10.1016/j.

eswa.2011.10.014 .

eider, W., Froschauer, R., Grünbacher, P., Rabiser, R., Dhungana, D., 2010. Simulating
evolution in model-based product line engineering. Inf. Softw. Technol. 52 (7),

758–769. doi: 10.1016/j.infsof.2010.03.007 .
eider, W., Grünbacher, P., Rabiser, R., 2010. Negotiation constellations in reactive

product line evolution. In: Fourth International Workshop on Software Product
Management, IWSPM 2010, Sydney, NSW, Australia, September 27, 2010, pp. 63–

66. doi: 10.1109/IWSPM.2010.5623862 .

eider, W., Rabiser, R., Grünbacher, P., 2012. Facilitating the evolution of prod-
ucts in product line engineering by capturing and replaying configuration de-

cisions. Int. J. Softw. Tools Technol. Transfer 14 (5), 613–630. doi: 10.1007/
s10 0 09- 012- 0229- y .

eider, W., Rabiser, R., Grünbacher, P., Lettner, D., 2012. Using regression testing to
analyze the impact of changes to variability models on products. In: 16th Inter-

national Software Product Line Conference, SPLC ’12, Salvador, Brazil - Septem-
ber 2–7, 2012, Volume 1, pp. 196–205. doi: 10.1145/2362536.2362563 .

eider, W., Vierhauser, M., Lettner, D., Grünbacher, P., 2012. A case study on the

evolution of a component-based product line. In: 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software Ar-

chitecture, WICSA/ECSA 2012, Helsinki, Finland, August 20–24, 2012, pp. 1–10.
doi: 10.1109/WICSA-ECSA.212.8 .

endrickson, S.A., van der Hoek, A., 2007. Modeling product line architectures
through change sets and relationships. In: 29th International Conference on

Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20–26, 2007,

pp. 189–198. doi: 10.1109/ICSE.2007.56 .
eradio, R., Perez-Morago, H., Fernández-Amorós, D., Cabrerizo, F.J., Herrera-

Viedma, E., 2016. A bibliometric analysis of 20 years of research on software
product lines. Inf. Softw. Technol. 72, 1–15. doi: 10.1016/j.infsof.2015.11.004 .

oldschick, H., 2012. Challenges in the evolution of model-based software prod-
uct lines in the automotive domain. In: 4th International Workshop on Feature-

Oriented Software Development, FOSD ’12, Dresden, Germany - September 24,

- 25, 2012, pp. 70–73. doi: 10.1145/2377816.2377826 .
noki, M., Kitagawa, T., Honiden, S., 2014. Application of requirements prioritiza-

tion decision rules in software product line evolution. In: 5th IEEE Interna-
tional Workshop on Requirements Prioritization and Communication, RePriCo

2014, Karlskrona, Sweden, August 26, 2014, pp. 1–10. doi: 10.1109/RePriCo.2014.
6895216 .

ahn, M., Rabiser, R., Grünbacher, P., Löberbauer, M., Wolfinger, R., Mössenböck, H.,

2012. Supporting model maintenance in component-based product lines. In:
2012 Joint Working IEEE/IFIP Conference on Software Architecture and European

Conference on Software Architecture, WICSA/ECSA 2012, Helsinki, Finland, Au-
gust 20–24, 2012, pp. 21–30. doi: 10.1109/WICSA-ECSA.212.10 .

arzabek, S., Trung, H.D., 2011. Flexible generators for software reuse and evolution.
In: Proceedings of the 33rd International Conference on Software Engineering,

ICSE 2011, Waikiki, Honolulu , HI, USA, May 21–28, 2011, pp. 920–923. doi: 10.

1145/1985793.1985946 .
epsen, H.P., Beuche, D., 2009. Running a software product line: standing still is go-

ing backwards. In: Software Product Lines, 13th International Conference, SPLC
2009, San Francisco, California, USA, August 24–28, 2009, Proceedings, pp. 101–

110. doi: 10.1145/1753235.1753250 .
i, W., Berger, T., Antkiewicz, M., Czarnecki, K., 2015. Maintaining feature traceability
with embedded annotations. In: Proceedings of the 19th International Confer-

ence on Software Product Line, SPLC 2015, Nashville, TN, USA, July 20–24, 2015,
pp. 61–70. doi: 10.1145/2791060.2791107 .

iang, M., Zhang, J., Zhao, H., Zhou, Y., 2008. Maintaining software product lines - an
industrial practice. In: 24th IEEE International Conference on Software Mainte-

nance (ICSM 2008), September 28, - October 4, 2008, Beijing, China, pp. 4 4 4–
447. doi: 10.1109/ICSM.2008.4658100 .

ohnson, R.E. , Foote, B. , 1988. Designing reusable classes. J.Object-Oriented Program.

1 (2), 22–35 .
únior, R.J.S., Coelho, R., 2011. Preserving the exception handling design rules in

software product line context: A practical approach. In: Dependable Comput-
ing Workshops (LADCW), 2011 Fifth Latin-American Symposium on, pp. 9–16.

doi: 10.1109/LADCW.2011.26 .
akarontzas, G., Stamelos, I., Katsaros, P., 2008. Product line variability with elastic

components and test-driven development. In: 2008 International Conferences

on Computational Intelligence for Modelling, Control and Automation (CIMCA
2008), Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC

2008), Innovation in Software Engineering (ISE 2008), 10–12 December 2008,
Vienna, Austria, pp. 146–151. doi: 10.1109/CIMCA.2008.84 .

ang, K.C. , 1990. Feature-oriented Domain Analysis (FODA): Feasibility Study. Tech-
nical Report. Software Engineering Inst., Carnegie Mellon Univ .

arimpour, R., Ruhe, G., 2013. Bi-criteria genetic search for adding new features into

an existing product line. In: 1st International Workshop on Combining Mod-
elling and Search-Based Software Engineering, CMSBSE at ICSE 2013, San Fran-

cisco, CA, USA, May 20, 2013, pp. 34–38. doi: 10.1109/CMSBSE.2013.6604434 .
äßmeyer, M., Schulze, M., Schurius, M., 2015. A process to support a systematic

change impact analysis of variability and safety in automotive functions. In: Pro-
ceedings of the 19th International Conference on Software Product Line, SPLC

2015, Nashville, TN, USA, July 20–24, 2015, pp. 235–244. doi: 10.1145/2791060.

2791079 .
hurum, M., Gorschek, T., 2009. A systematic review of domain analysis solutions

for product lines. J. Syst. Softw. 82 (12), 1982–2003. doi: 10.1016/j.jss.2009.06.
048 .

iczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J., Ir-
win, J., 1997. Aspect-oriented programming. In: ECOOP, pp. 220–242. doi: 10.

10 07/BFb0 053381 .

im, C.H.P., Czarnecki, K., 2005. Synchronizing cardinality-based feature models
and their specializations. In: Model Driven Architecture - Foundations and Ap-

plications, First European Conference, ECMDA-FA 2005, Nuremberg, Germany,
November 7–10, 2005, Proceedings, pp. 331–348. doi: 10.1007/11581741 _ 24 .

itchenham, B.A. , Charters, S. , 2007. Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering. Technical Report. Keele University and

Durham University Joint Report .

itchenham, B.A., Travassos, G.H., von Mayrhauser, A., Niessink, F., Schnei-
dewind, N.F., Singer, J., Takada, S., Vehvilainen, R., Yang, H., 1999. Towards

an ontology of software maintenance. J. Softw. Maintenance 11 (6), 365–389.
doi: 10.1002/(SICI)1096-908X(199911/12)11:6 〈 365::AID-SMR200 〉 3.0.CO;2-W .

nodel, J., Muthig, D., Naab, M., Lindvall, M., 2006. Static evaluation of software ar-
chitectures. In: 10th European Conference on Software Maintenance and Reengi-

neering (CSMR 2006), 22–24 March 2006, Bari, Italy, pp. 279–294. doi: 10.1109/
CSMR.2006.53 .

rishnan, S., Strasburg, C., Lutz, R.R., Goseva-Popstojanova, K., 2011. Are change

metrics good predictors for an evolving software product line? In: Proceed-
ings of the 7th International Conference on Predictive Models in Software En-

gineering, PROMISE 2011, Banff, Alberta, Canada, September 20–21, 2011, p. 7.
doi: 10.1145/2020390.2020397 .

rishnan, S., Strasburg, C., Lutz, R.R., Goseva-Popstojanova, K., Dorman, K.S., 2013.
Predicting failure-proneness in an evolving software product line. Inf. Softw.

Technol. 55 (8), 1479–1495. doi: 10.1016/j.infsof.2012.11.008 .

rone, M. , Snelting, G. , 1994. On the inference of configuration structures from
source code. In: Proceedings of the 16th International Conference on Software

Engineering, Sorrento, Italy, May 16–21, 1994., pp. 49–57 .
rueger, C.W., 2001. Easing the transition to software mass customization. In:

Software Product-Family Engineering, 4th International Workshop, PFE 2001,
Bilbao, Spain, October 3–5, 2001, Revised Papers, pp. 282–293. doi: 10.1007/

3- 540- 47833- 7 _ 25 .

aguna, M.A., Crespo, Y., 2013. A systematic mapping study on software product
line evolution: From legacy system reengineering to product line refactoring.

Sci. Comput. Program. 78 (8), 1010–1034. doi: 10.1016/j.scico.2012.05.003 .
eopoldo Teixeira, P.B., Alves, V., Gheyi, R., 2015. A product line of theories for rea-

soning about safe evolution of product lines. In: Proceedings of the 19th Inter-
national Conference on Software Product Line, SPLC 2015, Nashville, TN, USA,

July 20–24, 2015, pp. 161–170. doi: 10.1145/2791060.2791105 .

ity, S., Lochau, M., Schaefer, I., Goltz, U., 2012. Delta-oriented model-based SPL re-
gression testing. In: Proceedings of the Third International Workshop on Prod-

uct LinE Approaches in Software Engineering, PLEASE 2012, Zurich, Switzerland,
June 4, 2012, pp. 53–56. doi: 10.1109/PLEASE.2012.6229772 .

iu, J., Dehlinger, J., Sun, H., Lutz, R.R., 2007. State-based modeling to support the
evolution and maintenance of safety-critical software product lines. In: 14th An-

nual IEEE International Conference and Workshop on Engineering of Computer

Based Systems (ECBS 2007), 26–29 March 2007, Tucson, Arizona, USA, pp. 596–
608. doi: 10.1109/ECBS.2007.66 .

ivengood, S., 2011. Issues in software product line evolution: complex changes in
variability models. In: Proceedings of the 2nd International Workshop on Prod-

uct Line Approaches in Software Engineering, PLEASE 2011, Waikiki, Honolulu,
HI, USA, May 22–23, 2011, pp. 6–9. doi: 10.1145/1985484.1985487 .

http://dx.doi.org/10.1145/1368088.1368124
http://dx.doi.org/10.1016/j.scico.2014.03.006
http://dx.doi.org/10.1007/978-3-642-21347-2_9
http://dx.doi.org/10.1016/j.infsof.2012.06.012
http://dx.doi.org/10.1145/1753235.1753258
http://dx.doi.org/10.1109/ICSM.2003.1235443
http://dx.doi.org/10.1145/949344.949348
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0072
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0072
http://dx.doi.org/10.1016/j.eswa.2011.10.014
http://dx.doi.org/10.1016/j.infsof.2010.03.007
http://dx.doi.org/10.1109/IWSPM.2010.5623862
http://dx.doi.org/10.1007/s10009-012-0229-y
http://dx.doi.org/10.1145/2362536.2362563
http://dx.doi.org/10.1109/WICSA-ECSA.212.8
http://dx.doi.org/10.1109/ICSE.2007.56
http://dx.doi.org/10.1016/j.infsof.2015.11.004
http://dx.doi.org/10.1145/2377816.2377826
http://dx.doi.org/10.1109/RePriCo.2014.6895216
http://dx.doi.org/10.1109/WICSA-ECSA.212.10
http://dx.doi.org/10.1145/1985793.1985946
http://dx.doi.org/10.1145/1753235.1753250
http://dx.doi.org/10.1145/2791060.2791107
http://dx.doi.org/10.1109/ICSM.2008.4658100
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0089
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0089
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0089
http://dx.doi.org/10.1109/LADCW.2011.26
http://dx.doi.org/10.1109/CIMCA.2008.84
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0092
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0092
http://dx.doi.org/10.1109/CMSBSE.2013.6604434
http://dx.doi.org/10.1145/2791060.2791079
http://dx.doi.org/10.1016/j.jss.2009.06.048
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/11581741_24
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0098
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0098
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0098
http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W
http://dx.doi.org/10.1109/CSMR.2006.53
http://dx.doi.org/10.1145/2020390.2020397
http://dx.doi.org/10.1016/j.infsof.2012.11.008
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0103
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0103
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0103
http://dx.doi.org/10.1007/3-540-47833-7_25
http://dx.doi.org/10.1016/j.scico.2012.05.003
http://dx.doi.org/10.1145/2791060.2791105
http://dx.doi.org/10.1109/PLEASE.2012.6229772
http://dx.doi.org/10.1109/ECBS.2007.66
http://dx.doi.org/10.1145/1985484.1985487

140 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

P

P

P

P

P

P

P

P

P

P

P

Q

R

R

R

R

R

R

R

R

R

S

S

S

Lobato, L.L., Bittar, T.J., da Mota Silveira Neto, P.A., do Carmo Machado, I., de
Almeida, E.S., de Lemos Meira, S.R., 2013. Risk management in software product

line engineering: a mapping study. Int. J. Softw. Eng.Knowl. Eng. 23 (4), 523–
558. doi: 10.1142/S0218194013500150 .

Loesch, F., Ploedereder, E., 2007. Restructuring variability in software product lines
using concept analysis of product configurations. In: 11th European Conference

on Software Maintenance and Reengineering, Software Evolution in Complex
Software Intensive Systems, CSMR 2007, 21–23 March 2007, Amsterdam, The

Netherlands, pp. 159–170. doi: 10.1109/CSMR.2007.40 .

Loughran, N., Rashid, A., 2004. Framed aspects: Supporting variability and config-
urability for AOP. In: Software Reuse: Methods, Techniques and Tools: 8th In-

ternational Conference, ICSR 2004, Madrid, Spain, July 5–9, 2009. Proceedings,
pp. 127–140. doi: 10.1007/978- 3- 540- 27799- 6 _ 11 .

MacLean, A., Young, R.M., Bellotti, V., Moran, T.P., 1991. Questions, options, and crite-
ria: elements of design space analysis. Hum. Comput. Interact. 6 (3–4), 201–250.

doi: 10.1080/07370024.1991.9667168 .

Mcgregor, J.D. , 2003. The Evolution of Product Line Assets. Technical Report .
CMU/SEI-20 03-TR-0 05, doi: 10.1109/MMUL.2003.1218250

McVoy, L., 2015. Preliminary product line support in bitkeeper. In: Proceed-
ings of the 19th International Conference on Software Product Line, SPLC

2015, Nashville, TN, USA, July 20–24, 2015, pp. 245–252. doi: 10.1145/2791060.
2791110 .

Mende, T., Beckwermert, F., Koschke, R., Meier, G., 2008. Supporting the grow-

and-prune model in software product lines evolution using clone detection. In:
12th European Conference on Software Maintenance and Reengineering, CSMR

2008, April 1–4, 2008, Athens, Greece, pp. 163–172. doi: 10.1109/CSMR.2008.
4493311 .

Menkyna, R., Vranic, V., 2009. Aspect-oriented change realization based on multi-
paradigm design with feature modeling. In: Advances in Software Engineering

Techniques - 4th IFIP TC 2 Central and East European Conference on Software

Engineering Techniques, CEE-SET 2009, Krakow, Poland, October 12–14, 2009.
Revised Selected Papers, pp. 40–53. doi: 10.1007/978- 3- 642- 28038- 2 _ 4 .

Merschen, D., Pott, J., Kowalewski, S., 2012. Integration and analysis of design arte-
facts in embedded software development. In: 36th Annual IEEE Computer Soft-

ware and Applications Conference Workshops, COMPSAC 2012, Izmir, Turkey,
July 16–20, 2012, pp. 503–508. doi: 10.1109/COMPSACW.2012.94 .

Michalik, B., Weyns, D., 2011. Towards a solution for change impact analysis of soft-

ware product line products. In: 9th Working IEEE/IFIP Conference on Software
Architecture, WICSA 2011, Boulder, Colorado, USA, June 20–24, 2011, pp. 290–

293. doi: 10.1109/WICSA.2011.45 .
Michalik, B., Weyns, D., Betsbrugge, W.V., 2011. On the problems with evolv-

ing egemin’s software product line. In: Proceedings of the 2nd International
Workshop on Product Line Approaches in Software Engineering, PLEASE 2011,

Waikiki, Honolulu, HI, USA, May 22–23, 2011, pp. 15–19. doi: 10.1145/1985484.

1985489 .
Montagud, S., Abrahão, S., Insfrán, E., 2012. A systematic review of quality attributes

and measures for software product lines. Softw. Qual. J. 20 (3–4), 425–486.
doi: 10.1007/s11219-011-9146-7 .

Montalvillo, L., Díaz, O., 2015. Tuning github for SPL development: branching models
& repository operations for product engineers. In: Proceedings of the 19th In-

ternational Conference on Software Product Line, SPLC 2015, Nashville, TN, USA,
July 20–24, 2015, pp. 111–120. doi: 10.1145/2791060.2791083 .

Moon, M., Chae, H.S., Nam, T., Yeom, K., 2007. A metamodeling approach to tracing

variability between requirements and architecture in software product lines. In:
Seventh International Conference on Computer and Information Technology (CIT

2007), October 16–19, 2007, University of Aizu, Fukushima, Japan, pp. 927–933.
doi: 10.1109/CIT.2007.117 .

Murashkin, A., Antkiewicz, M., Rayside, D., Czarnecki, K., 2013. Visualization and ex-
ploration of optimal variants in product line engineering. In: 17th International

Software Product Line Conference, SPLC 2013, Tokyo, Japan - August 26, - 30,

2013, pp. 111–115. doi: 10.1145/2491627.2491647 .
Murthy, K., Kadur, A., Rao, P., 1994. A holistic approach to product marketabil-

ity measurements-the pmm approach. In: Engineering Management Conference,
1994. ’Management in Transition: Engineering a Changing World’, Proceedings

of the 1994 IEEE International, pp. 323–329. doi: 10.1109/IEMC.1994.379914 .
Noor, M.A., Rabiser, R., Grünbacher, P., 2008. Agile product line planning: a collabo-

rative approach and a case study. J. Syst. Softw. 81 (6), 868–882. doi: 10.1016/j.

jss.2007.10.028 .
van Ommering, R.C., 2001. Roadmapping a product population architecture. In:

Software Product-Family Engineering, 4th International Workshop, PFE 2001,
Bilbao, Spain, October 3–5, 2001, Revised Papers, pp. 51–63. doi: 10.1007/

3- 540- 47833- 7 _ 6 .
Padilha, J., Pereira, J.A., Figueiredo, E., Almeida, J.M., Garcia, A., Sant’Anna, C., 2014.

On the effectiveness of concern metrics to detect code smells: an empiri-

cal study. In: Advanced Information Systems Engineering - 26th International
Conference, CAiSE 2014, Thessaloniki, Greece, June 16–20, 2014. Proceedings,

pp. 656–671. doi: 10.1007/978- 3- 319- 07881- 6 _ 44 .
Paskevicius, P., Damasevicius, R., Stuikys, V., 2012. Change impact analysis of fea-

ture models. In: Information and Software Technologies - 18th International
Conference, ICIST 2012, Kaunas, Lithuania, September 13–14, 2012. Proceedings,

pp. 108–122. doi: 10.1007/978- 3- 642- 33308-8 _ 10 .

Passos, L.T., Guo, J., Teixeira, L., Czarnecki, K., Wasowski, A., Borba, P., 2013. Coevolu-
tion of variability models and related artifacts: a case study from the linux ker-

nel. In: 17th International Software Product Line Conference, SPLC 2013, Tokyo,
Japan - August 26, - 30, 2013, pp. 91–100. doi: 10.1145/2491627.2491628 .
earse, T.T., Oman, P.W., 1997. Experiences developing and maintaining software in
a multi-platform environment. In: ICSM, pp. 270–277. doi: 10.1109/ICSM.1997.

624254 .
eng, X., Yu, Y., Zhao, W., 2011. Analyzing evolution of variability in a software prod-

uct line: From contexts and requirements to features. Inf. Softw. Technol. 53 (7),
707–721. doi: 10.1016/j.infsof.2011.01.001 .

ereira, J.A., Constantino, K., Figueiredo, E., 2015. A systematic literature review of
software product line management tools. In: Software Reuse for Dynamic Sys-

tems in the Cloud and Beyond - 14th International Conference on Software

Reuse, ICSR 2015, Miami, FL, USA, January 4–6, 2015. Proceedings, pp. 73–89.
doi: 10.1007/978- 3- 319- 14130- 5 _ 6 .

etersen, K. , Feldt, R. , Mujtaba, S. , Mattsson, M. , 2008. Systematic mapping studies
in software engineering. In: 12th International Conference on Evaluation and

Assessment in Software Engineering, EASE 2008, University of Bari, Italy, 26–27
June 2008 .

etersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008b. Systematic mapping studies

in software engineering.
etersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting systematic

mapping studies in software engineering: An update. Inf. Softw. Technol. 64,
1–18. doi: 10.1016/j.infsof.2015.03.007 .

ichler, C., Huemer, C., Strommer, M., 2011. Evolution patterns for business docu-
ment models. In: Software Product Lines - 15th International Conference, SPLC

2011, Munich, Germany, August 22–26, 2011. Workshop Proceedings (Volume 2),

p. 21. doi: 10.1145/2019136.2019160 .
lanning Game agile practice. Http://c2.com/cgi/wiki?PlanningGame . Last visited:

2015-12-11.
leuss, A., Botterweck, G., Dhungana, D., Polzer, A., Kowalewski, S., 2012. Model-

driven support for product line evolution on feature level. J. Syst. Softw. 85 (10),
2261–2274. doi: 10.1016/j.jss.2011.08.008 .

ohl, K., Böckle, G., van der Linden, F., 2005. Software Product Line Engineering -

Foundations, Principles, and Techniques. Springer doi: 10.1007/3- 540- 28901- 1 .
rehofer, C., 1997. Feature-oriented programming: a fresh look at objects. In: ECOOP,

pp. 419–443. doi: 10.10 07/BFb0 053389 .
uinton, C., Pleuss, A., Berre, D.L., Duchien, L., Botterweck, G., 2014. Consistency

checking for the evolution of cardinality-based feature models. In: 18th Inter-
national Software Product Line Conference, SPLC ’14, Florence, Italy, September

15–19, 2014, pp. 122–131. doi: 10.1145/2648511.2648524 .

abiser, R., Dhungana, D., Grünbacher, P., Lehner, K., Federspiel, C., 2007. Involv-
ing non-technicians in product derivation and requirements engineering: A tool

suite for product line engineering. In: 15th IEEE International Requirements
Engineering Conference, RE 2007, October 15-19th, 2007, New Delhi, India,

pp. 367–368. doi: 10.1109/RE.2007.26 .
ibeiro, M., Borba, P., 2008. Recommending refactorings when restructuring vari-

abilities in software product lines. In: Second ACM Workshop on Refactoring

Tools, WRT 2008, in conjunction with OOPSLA 2008, Nashville, TN, USA, Octo-
ber 19, 2008, p. 8. doi: 10.1145/1636642.1636650 .

ibeiro, M., Borba, P., Kästner, C., 2014. Feature maintenance with emergent inter-
faces. In: 36th International Conference on Software Engineering, ICSE ’14, Hy-

derabad, India - May 31, - June 07, 2014, pp. 989–10 0 0. doi: 10.1145/2568225.
2568289 .

iva, C., Rosso, C. D., 2003. Experiences with software product family evolution,
161–169.

omero, D., Urli, S., Quinton, C., Blay-Fornarino, M., Collet, P., Duchien, L., Mosser, S.,

2013. SPLEMMA: a generic framework for controlled-evolution of software
product lines. In: 17th International Software Product Line Conference co-

located workshops, SPLC 2013 workshops, Tokyo, Japan - August 26 - 30, 2013,
pp. 59–66. doi: 10.1145/2499777.2500709 .

ubin, J., Czarnecki, K., Chechik, M., 2013. Managing cloned variants: a framework
and experience. In: 17th International Software Product Line Conference, SPLC

2013, Tokyo, Japan - August 26, - 30, 2013, pp. 101–110. doi: 10.1145/2491627.

2491644 .
ubin, J., Czarnecki, K., Chechik, M., 2015. Cloned product variants: from ad-

hoc to managed software product lines. STTT 17 (5), 627–646. doi: 10.1007/
s10 0 09- 014- 0347- 9 .

ubin, J., Kirshin, A., Botterweck, G., Chechik, M., 2012. Managing forked prod-
uct variants. In: 16th International Software Product Line Conference, SPLC ’12,

Salvador, Brazil - September 2–7, 2012, Volume 1, pp. 156–160. doi: 10.1145/

2362536.2362558 .
umpe, B., Schulze, C., von Wenckstern, M., Ringert, J.O., Manhart, P., 2015. Be-

havioral compatibility of simulink models for product line maintenance and
evolution. In: Proceedings of the 19th International Conference on Software

Product Line, SPLC 2015, Nashville, TN, USA, July 20–24, 2015, pp. 141–150.
doi: 10.1145/2791060.2791077 .

abouri, H., Khosravi, R., 2011. Efficient verification of evolving software product

lines. In: Fundamentals of Software Engineering - 4th IPM International Con-
ference, FSEN 2011, Tehran, Iran, April 20–22, 2011, Revised Selected Papers,

pp. 351–358. doi: 10.1007/978- 3- 642- 29320- 7 _ 24 .
abouri, H., Khosravi, R., 2014. Reducing the verification cost of evolving prod-

uct families using static analysis techniques. Sci. Comput. Program. 83, 35–55.
doi: 10.1016/j.scico.2013.06.009 .

antos, A.R., de Oliveira, R.P., de Almeida, E.S., 2015. Strategies for consistency check-

ing on software product lines: a mapping study. In: Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineer-

ing, EASE 2015, Nanjing, China, April 27–29, 2015, pp. 5:1–5:14. doi: 10.1145/
2745802.2745806 .

http://dx.doi.org/10.1142/S0218194013500150
http://dx.doi.org/10.1109/CSMR.2007.40
http://dx.doi.org/10.1007/978-3-540-27799-6_11
http://dx.doi.org/10.1080/07370024.1991.9667168
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0115
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0115
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0115
http://dx.doi.org/10.1145/2791060.penalty -@M 2791110
http://dx.doi.org/10.1109/CSMR.2008.penalty -@M 4493311
http://dx.doi.org/10.1007/978-3-642-28038-2_4
http://dx.doi.org/10.1109/COMPSACW.2012.94
http://dx.doi.org/10.1109/WICSA.2011.45
http://dx.doi.org/10.1145/1985484.1985489
http://dx.doi.org/10.1007/s11219-011-9146-7
http://dx.doi.org/10.1145/2791060.2791083
http://dx.doi.org/10.1109/CIT.2007.117
http://dx.doi.org/10.1145/2491627.2491647
http://dx.doi.org/10.1109/IEMC.1994.379914
http://dx.doi.org/10.1016/j.jss.2007.10.028
http://dx.doi.org/10.1007/3-540-47833-7_6
http://dx.doi.org/10.1007/978-3-319-07881-6_44
http://dx.doi.org/10.1007/978-3-642-33308-8_10
http://dx.doi.org/10.1145/2491627.2491628
http://dx.doi.org/10.1109/ICSM.1997.624254
http://dx.doi.org/10.1016/j.infsof.2011.01.001
http://dx.doi.org/10.1007/978-3-319-14130-5_6
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0136
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0136
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0136
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0136
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0136
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1145/2019136.2019160
http://c2.com/cgi/wiki?PlanningGame
http://dx.doi.org/10.1016/j.jss.2011.08.008
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/BFb0053389
http://dx.doi.org/10.1145/2648511.2648524
http://dx.doi.org/10.1109/RE.2007.26
http://dx.doi.org/10.1145/1636642.1636650
http://dx.doi.org/10.1145/2568225.2568289
http://dx.doi.org/10.1145/2499777.2500709
http://dx.doi.org/10.1145/2491627.2491644
http://dx.doi.org/10.1007/s10009-014-0347-9
http://dx.doi.org/10.1145/2362536.2362558
http://dx.doi.org/10.1145/2791060.2791077
http://dx.doi.org/10.1007/978-3-642-29320-7_24
http://dx.doi.org/10.1016/j.scico.2013.06.009
http://dx.doi.org/10.1145/2745802.2745806

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 141

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

t

t

T

T

T

T

T

T

T

T

T

T

T

T

V

v

v

V

V

arang, N., Sanglikar, M.A., 2007. An analysis of effort variance in software main-
tenance projects. In: Advances in Computer and Information Sciences and En-

gineering, Proceedings of the 2007 International Conference on Systems, Com-
puting Sciences and Software Engineering (SCSS), part of the International Joint

Conferences on Computer, Information, and Systems Sciences, and Engineer-
ing (CISSE 2007), Bridgeport, CT, USA, December 3–12, 2007, pp. 366–371.

doi: 10.1007/978- 1- 4020- 8741- 7 _ 66 .
avolainen, J., 2013. Past, present and future of product line engineering in industry:

reflecting on 15 years of variability management in real projects. In: Proceed-

ings of the Eighth International Workshop on Variability Modelling of Software-
Intensive Systems. ACM, New York, NY, USA, pp. 1:1–1:1. doi: 10.1145/2556624.

2557789 .
avolainen, J., Kuusela, J., 2001. Violatility analysis framework for product lines, 133–

141. 10.1145/375212.375277
avolainen, J., Kuusela, J., 2008. Scheduling product line features for effective

roadmapping. In: 15th Asia-Pacific Software Engineering Conference (APSEC

20 08), 3–5 December 20 08, Beijing, China, pp. 195–202. doi: 10.1109/APSEC.
2008.21 .

chackmann, H., Lichter, H., 2006. A cost-based approach to software product line
management. In: International Workshop on Software Product Management,

IWSPM ’06, Minneapolis/St.Paul, Minnesota, USA, September 12, 2006, pp. 13–
18. doi: 10.1109/IWSPM.2006.1 .

chaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N., 2010. Delta-oriented pro-

gramming of software product lines. In: Software Product Lines: Going Beyond
- 14th International Conference, SPLC 2010, Jeju Island, South Korea, September

13–17, 2010. Proceedings, pp. 77–91. doi: 10.1007/978- 3- 642- 15579- 6 _ 6 .
cheidemann, K.D., 2006. Optimizing the selection of representative configura-

tions in verification of evolving product lines of distributed embedded systems.
In: Software Product Lines, 10th International Conference, SPLC 2006, Balti-

more, Maryland, USA, August 21–24, 2006, Proceedings, pp. 75–84. doi: 10.1109/

SPLINE.2006.1691579 .
chmid, K. , Eichelberger, H. , 2007. A requirements-based taxonomy of software

product line evolution. ECEASST 8, 1–13 .
chmid, K., Rabiser, R., Grünbacher, P., 2011. A comparison of decision modeling ap-

proaches in product lines. In: Fifth International Workshop on Variability Mod-
elling of Software-Intensive Systems, Namur, Belgium, January 27–29, 2011. Pro-

ceedings, pp. 119–126. doi: 10.1145/1944892.1944907 .

chmid, K., Verlage, M., 2002. The economic impact of product line adoption and
evolution. IEEE Softw. 19 (4), 50–57. doi: 10.1109/MS.2002.1020287 .

chröter, R., Siegmund, N., Thüm, T., Saake, G., 2014. Feature-context interfaces: tai-
lored programming interfaces for software product lines. In: 18th International

Software Product Line Conference, SPLC ’14, Florence, Italy, September 15–19,
2014, pp. 102–111. doi: 10.1145/2648511.2648522 .

chubanz, M., Pleuss, A., Pradhan, L., Botterweck, G., Thurimella, A. K., 2013. Model-

driven planning and monitoring of long-term software product line evolution,
18:1–18:5. 10.1145/2430502.2430527

chulze, S., Lochau, M., Brunswig, S., 2013. Implementing refactorings for FOP:
lessons learned and challenges ahead. In: 5th International Workshop on

Feature-Oriented Software Development, FOSD ’13, Indianapolis, IN, USA, Oc-
tober 26, 2013, pp. 33–40. doi: 10.1145/2528265.2528271 .

chulze, S., Thüm, T., Kuhlemann, M., Saake, G., 2012. Variant-preserving refactoring
in feature-oriented software product lines. In: Sixth International Workshop on

Variability Modelling of Software-Intensive Systems, Leipzig, Germany, January

25–27, 2012. Proceedings, pp. 73–81. doi: 10.1145/2110147.2110156 .
EBOK maintainability Http://sebokwiki.org/wiki/Reliability, _ Availability,

_ and _ Maintainability Last visited: 2015-12-11.
eidl, C., Heidenreich, F., Aßmann, U., 2012. Co-evolution of models and feature

mapping in software product lines. In: 16th International Software Product Line
Conference, SPLC ’12, Salvador, Brazil - September 2–7, 2012, Volume 1, pp. 76–

85. doi: 10.1145/2362536.2362550 .

harp, D.C., 1999. Exploiting object technology to support product variability. In:
Proceedings of the 18th Digital Avionics Systems Conference, 2 doi: 10.1109/

DASC.1999.863671 . 9.C.1–1–9.C.1–8
hen, L., Peng, X., Zhao, W., 2009. A comprehensive feature-oriented traceability

model for software product line development. In: 20th Australian Software En-
gineering Conference (ASWEC 2009), 14–17 April 2009, Gold Cost, Australia,

pp. 210–219. doi: 10.1109/ASWEC.2009.27 .

hen, L., Peng, X., Zhu, J., Zhao, W., 2010. Synchronized architecture evolution in
software product line using bidirectional transformation. In: Proceedings of the

34th Annual IEEE International Computer Software and Applications Confer-
ence, COMPSAC 2010, Seoul, Korea, 19–23 July 2010, pp. 389–394. doi: 10.1109/

COMPSAC.2010.71 .
inger, J., 1998. Practices of software maintenance. In: 1998 International Conference

on Software Maintenance, ICSM 1998, Bethesda, Maryland, USA, November 16–

19, 1998, pp. 139–145. doi: 10.1109/ICSM.1998.738502 .
vahnberg, M., Bosch, J., 1999. Evolution in software product lines: two cases. J.

Softw. Maintenance 11 (6), 391–422. doi: 10.1002/(SICI)1096-908X(199911/12)
11:6 〈 391::AID- SMR199 〉 3.0.CO;2- 8 .

vahnberg, M., Bosch, J., 20 0 0. Issues concerning variability in software product
lines. In: Software Architectures for Product Families, International Workshop

IW-SAPF-3, Las Palmas de Gran Canaria, Spain, March 15–17, 20 0 0, Proceedings,

pp. 146–157. doi: 10.1007/978- 3- 540- 44542- 5 _ 17 .
wanson, E.B. , 1976. The dimensions of maintenance. In: Proceedings of the 2nd In-

ternational Conference on Software Engineering, San Francisco, California, USA,
October 13–15, 1976., pp. 4 92–4 97 .
aborda, L.J.M., 2004. Generalized release planning for product line architectures.
In: Software Product Lines, Third International Conference, SPLC 2004, Boston,

MA , USA , August 30-September 2, 2004, Proceedings, pp. 238–254. doi: 10.1007/
978- 3- 540- 28630- 1 _ 15 .

artler, R., Sincero, J., Schröder-Preikschat, W., Lohmann, D., 2009. Dead or alive:
finding zombie features in the linux kernel. In: Proceedings of the First In-

ternational Workshop on Feature-Oriented Software Development, FOSD 2009,
Denver, Colorado, USA, October 6, 2009, pp. 81–86. doi: 10.1145/1629716.

1629732 .

eixeira, L., Borba, P., Gheyi, R., 2015. Safe evolution of product populations and
multi product lines. In: Proceedings of the 19th International Conference on

Software Product Line, SPLC 2015, Nashville, TN, USA, July 20–24, 2015, pp. 171–
175. doi: 10.1145/2791060.2791084 .

er Beek, M.H., Muccini, H., Pelliccione, P., 2011. Guaranteeing correct evolution
of software product lines: Setting up the problem. In: Software Engineering

for Resilient Systems - Third International Workshop, SERENE 2011, Geneva,

Switzerland, September 29–30, 2011. Proceedings, pp. 100–105. doi: 10.1007/
978- 3- 642- 24124-6 _ 9 .

er Beek, M.H., Muccini, H., Pelliccione, P., 2012. Assume-guarantee testing of evolv-
ing software product line architectures. In: Software Engineering for Resilient

Systems - 4th International Workshop, SERENE 2012, Pisa, Italy, September 27–
28, 2012. Proceedings, pp. 91–105. doi: 10.1007/978- 3- 642- 33176- 3 _ 7 .

esanovic, A., 2007. Evolving embedded product lines: opportunities for aspects. In:

Proceedings of the 6th workshop on Aspects, Components, and Patterns for In-
frastructure Software, ACP4IS 2007, Vancouver, British Columbia, Canada, March

12, 2007, p. 10. doi: 10.1145/1233901.1233911 .
hao, C., Munson, E.V., Nguyen, T.N., 2008. Software configuration management for

product derivation in software product families. In: 15th Annual IEEE Interna-
tional Conference and Workshop on Engineering of Computer Based Systems

(ECBS 2008), 31 March - 4 April 2008, Belfast, Northern Ireland, pp. 265–274.

doi: 10.1109/ECBS.2008.53 .
hüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G., 2014. A classification and survey

of analysis strategies for software product lines. ACM Comput. Surv. 47 (1), 6:1–
6:45. doi: 10.1145/2580950 .

hüm, T., Batory, D.S., Kästner, C., 2009. Reasoning about edits to feature models.
In: 31st International Conference on Software Engineering, ICSE 2009, May 16–

24, 2009, Vancouver, Canada, Proceedings, pp. 254–264. doi: 10.1109/ICSE.2009.

5070526 .
hurimella, A.K., Bruegge, B., 2007. Evolution in product line requirements engi-

neering: a rationale management approach. In: 15th IEEE International Require-
ments Engineering Conference, RE 2007, October 15-19th, 2007, New Delhi, In-

dia, pp. 254–257. doi: 10.1109/RE.2007.11 .
hurimella, A.K., Bruegge, B., 2012. Issue-based variability management. Inf. Softw.

Technol. 54 (9), 933–950. doi: 10.1016/j.infsof.2012.02.005 .

hurimella, A.K., Bruegge, B., Creighton, O., 2008. Identifying and exploiting the sim-
ilarities between rationale management and variability management. In: Soft-

ware Product Lines, 12th International Conference, SPLC 2008, Limerick, Ire-
land, September 8–12, 2008, Proceedings, pp. 99–108. doi: 10.1109/SPLC.2008.

14 .
hurimella, A.K., Brügge, B., 2013. A mixed-method approach for the empirical eval-

uation of the issue-based variability modeling. J. Syst. Softw. 86 (7), 1831–1849.
doi: 10.1016/j.jss.2013.01.038 .

ischer, C., Boss, B., Müller, A., Thums, A., Acharya, R., Schmid, K., 2012. Develop-

ing long-term stable product line architectures. In: 16th International Software
Product Line Conference, SPLC ’12, Salvador, Brazil - September 2–7, 2012, Vol-

ume 1, pp. 86–95. doi: 10.1145/2362536.2362551 .
izzei, L.P., Dias, M.O., Rubira, C.M.F., Garcia, A., Lee, J., 2011. Components meet as-

pects: Assessing design stability of a software product line. Information & Soft-
ware Technology 53 (2), 121–136. doi: 10.1016/j.infsof.2010.08.007 .

ofan, D., Galster, M., Avgeriou, P., Schuitema, W., 2014. Past and future of software

architectural decisions - A systematic mapping study. Inf. Softw. Technol. 56 (8),
850–872. doi: 10.1016/j.infsof.2014.03.009 .

ran, L.M.S., Massacci, F., 2014. An approach for decision support on the uncertainty
in feature model evolution. In: IEEE 22nd International Requirements Engineer-

ing Conference, RE 2014, Karlskrona, Sweden, August 25–29, 2014, pp. 93–102.
doi: 10.1109/RE.2014.6912251 .

ale, G., Figueiredo, E., Abílio, R., Costa, H.A.X., 2014. Bad smells in software product

lines: A systematic review. In: Eighth Brazilian Symposium on Software Compo-
nents, Architectures and Reuse, SBCARS 2014, Maceió, Alagoas, Brazil, Septem-

ber 29–30, 2014, pp. 84–94. doi: 10.1109/SBCARS.2014.21 .
an der Linden, F., Schmid, K., Rommes, E., 2007. Software Product Lines in Action

- The Best Industrial Practice in Product Line Engineering. Springer doi: 10.1007/
978- 3- 540- 71437- 8 .

an Gurp, J., Bosch, J., 2002. Design erosion: problems and causes. J. Syst. Softw. 61

(2), 105–119. doi: 10.1016/S0164-1212(01)00152-2 .
ianna, A., Pinto, F., Sena, D., Kulesza, U., Coelho, R., Santos, J., Lima, J., Lima, G.,

2012. Squid: an extensible infrastructure for analyzing software product line
implementations. In: 16th International Software Product Line Conference, SPLC

’12, Salvador, Brazil - September 2–7, 2012, Volume 2, pp. 209–216. doi: 10.1145/
2364412.2364447 .

ierhauser, M., Grünbacher, P., Heider, W., Holl, G., Lettner, D., 2012. Applying a

consistency checking framework for heterogeneous models and artifacts in in-
dustrial product lines. In: Model Driven Engineering Languages and Systems

- 15th International Conference, MODELS 2012, Innsbruck, Austria, September
30-October 5, 2012. Proceedings, pp. 531–545. doi: 10.1007/978- 3- 642- 33666-

9 _ 34 .

http://dx.doi.org/10.1007/978-1-4020-8741-7_66
http://dx.doi.org/10.1145/2556624.2557789
http://dx.doi.org/10.1109/APSEC.2008.21
http://dx.doi.org/10.1109/IWSPM.2006.1
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1109/SPLINE.2006.1691579
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0160
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0160
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0160
http://dx.doi.org/10.1145/1944892.1944907
http://dx.doi.org/10.1109/MS.2002.1020287
http://dx.doi.org/10.1145/2648511.2648522
http://dx.doi.org/10.1145/2528265.2528271
http://dx.doi.org/10.1145/2110147.2110156
http://sebokwiki.org/wiki/Reliability,_Availability,_and_Maintainability
http://dx.doi.org/10.1145/2362536.2362550
http://dx.doi.org/10.1109/DASC.1999.863671
http://dx.doi.org/10.1109/ASWEC.2009.27
http://dx.doi.org/10.1109/COMPSAC.2010.71
http://dx.doi.org/10.1109/ICSM.1998.738502
http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<391::AID-SMR199>3.0.CO;2-8
http://dx.doi.org/10.1007/978-3-540-44542-5_17
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0173
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0173
http://dx.doi.org/10.1007/978-3-540-28630-1_15
http://dx.doi.org/10.1145/1629716.1629732
http://dx.doi.org/10.1145/2791060.2791084
http://dx.doi.org/10.1007/978-3-642-24124-6_9
http://dx.doi.org/10.1007/978-3-642-33176-3_7
http://dx.doi.org/10.1145/1233901.1233911
http://dx.doi.org/10.1109/ECBS.2008.53
http://dx.doi.org/10.1145/2580950
http://dx.doi.org/10.1109/ICSE.2009.5070526
http://dx.doi.org/10.1109/RE.2007.11
http://dx.doi.org/10.1016/j.infsof.2012.02.005
http://dx.doi.org/10.1109/SPLC.2008.penalty -@M 14
http://dx.doi.org/10.1016/j.jss.2013.01.038
http://dx.doi.org/10.1145/2362536.2362551
http://dx.doi.org/10.1016/j.infsof.2010.08.007
http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://dx.doi.org/10.1109/RE.2014.6912251
http://dx.doi.org/10.1109/SBCARS.2014.21
http://dx.doi.org/10.1007/978-3-540-71437-8
http://dx.doi.org/10.1016/S0164-1212(01)00152-2
http://dx.doi.org/10.1145/2364412.2364447
http://dx.doi.org/10.1007/978-3-642-33666-penalty -@M 9_34

142 L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143

W

W

Y

Y

Y

Vierhauser, M., Rabiser, R., Grünbacher, P., 2014. A requirements monitoring in-
frastructure for very-large-scale software systems. In: Requirements Engineer-

ing: Foundation for Software Quality - 20th International Working Confer-
ence, REFSQ 2014, Essen, Germany, April 7–10, 2014. Proceedings, pp. 88–94.

doi: 10.1007/978- 3- 319- 05843- 6 _ 7 .
Villela, K., Dörr, J., John, I., 2010. Evaluation of a method for proactively managing

the evolving scope of a software product line. In: Requirements Engineering:
Foundation for Software Quality, 16th International Working Conference, REFSQ

2010, Essen, Germany, June 30, - July 2, 2010. Proceedings, pp. 113–127. doi: 10.

1007/978- 3- 642- 14192- 8 _ 13 .
Völter, M., Visser, E., 2011. Product line engineering using domain-specific languages.

In: Software Product Lines - 15th International Conference, SPLC 2011, Munich,
Germany, August 22–26, 2011, pp. 70–79. doi: 10.1109/SPLC.2011.25 .

Walrad, C.C., Strom, D., 2002. The importance of branching models in SCM. IEEE
Comput. 35 (9), 31–38. doi: 10.1109/MC.2002.1033025 .

Weiss, D.M., 2008. The product line hall of fame. In: Software Product Lines, 12th

International Conference, SPLC 2008, Limerick, Ireland, September 8–12, 2008,
Proceedings, p. 395. doi: 10.1109/SPLC.2008.56 .

Weyns, D., Michalik, B., Helleboogh, A., Boucké, N., 2011. An architectural approach
to support online updates of software product lines. In: 9th Working IEEE/IFIP

Conference on Software Architecture, WICSA 2011, Boulder, Colorado, USA, June
20–24, 2011, pp. 204–213. doi: 10.1109/WICSA.2011.34 .
ieringa, R., Maiden, N.A.M., Mead, N.R., Rolland, C., 2006. Requirements engineer-
ing paper classification and evaluation criteria: a proposal and a discussion. Re-

quir. Eng. 11 (1), 102–107. doi: 10.10 07/s0 0766-0 05-0 021-6 .
ohlin, C., Runeson, P., da Mota Silveira Neto, P.A., EngstrÃ¶m, E., do Carmo

Machado, I., de Almeida, E.S., 2013. On the reliability of mapping studies in
software engineering. J. Syst. Softw. 86 (10), 2594–2610. doi: 10.1016/j.jss.2013.

04.076 .
au, S.S. , Collofello, J.S. , MacGregor, T.M. , 1978. Ripple effect analysis of software

maintenance. In: International Computer Software and Applications Conference,

pp. 71–82 .
azdanshenas, A.R., Moonen, L., 2012. Fine-grained change impact analysis for

component-based product families. In: 28th IEEE International Conference
on Software Maintenance, ICSM 2012, Trento, Italy, September 23–28, 2012,

pp. 119–128. doi: 10.1109/ICSM.2012.6405262 .
u, D., Geng, P., Wu, W., 2012. Constructing traceability between features and re-

quirements for software product line engineering. In: 19th Asia-Pacific Software

Engineering Conference - Workshops, APSEC 2012, Hong Kong, China, December
4–7, 2012, pp. 27–34. doi: 10.1109/APSEC.2012.135 .

http://dx.doi.org/10.1007/978-3-319-05843-6_7
http://dx.doi.org/10.1007/978-3-642-14192-8_13
http://dx.doi.org/10.1109/SPLC.2011.25
http://dx.doi.org/10.1109/MC.2002.1033025
http://dx.doi.org/10.1109/SPLC.2008.56
http://dx.doi.org/10.1109/WICSA.2011.34
http://dx.doi.org/10.1007/s00766-005-0021-6
http://dx.doi.org/10.1016/j.jss.2013.04.076
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0200
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0200
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0200
http://refhub.elsevier.com/S0164-1212(16)30151-0/sbref0200
http://dx.doi.org/10.1109/ICSM.2012.6405262
http://dx.doi.org/10.1109/APSEC.2012.135

L. Montalvillo, O. Díaz / The Journal of Systems and Software 122 (2016) 110–143 143

L /EHU). Her current research interests include Software Product Lines and Configuration
M MSc in Information Technology from the Polytechnic University of Catalonia (BarcelonaT-

e

O current interests include Web2.0, model-driven engineering and Software Product Lines.
H ose partnership with industry. He obtained the BSc in Computing at the University of the

B de Informática, Apdo. 649, 20.011 San Sebastián (Spain), oscar.diaz@ehu.eus.
eticia Montalvillo is a PhD student at the University of the Basque Country (UPV
anagement. Montalvillo obtained a BSc from the University of Mondragon and a

ch). Contact her at leticia.montalvillo@ehu.eus.

scar Díaz is Full Professor at the University of the Basque Country (UPV/EHU). His
e leads a fifteen-member group, ONEKIN, with a focus on Web Engineering and cl

asque Country, and a PhD by the University of Aberdeen. Contact him at Facultad

	Requirement-driven evolution in software product lines: A systematic mapping study
	1 Introduction
	2 Background
	2.1 A brief on SPLs
	2.2 Related mapping studies

	3 Method
	3.1 Phase 1: planning the review
	3.1.1 Protocol definition

	3.2 Phase 2: study identification
	3.2.1 Conducting the search
	3.2.2 Filtering studies
	3.2.3 Evaluating the search

	3.3 Phase 3: data extraction and classification
	3.3.1 Relevant topic keywording
	3.3.2 Data extraction and mapping

	3.4 Threats to validity
	3.4.1 Selection of studies
	3.4.2 Classification errors
	3.4.3 Evaluation rubric for this mapping study

	4 Mapping of primary studies
	4.1 Identify change
	4.1.1 Monitoring customers
	4.1.2 Monitoring the SPL environment
	4.1.3 Monitoring products

	4.2 Analyze and plan change
	4.2.1 Ascertaining the change impact scope
	4.2.2 Decision-making
	4.2.3 Planning and road-mapping

	4.3 Implement change
	4.3.1 Built-for-change
	4.3.2 Built-with-change
	4.3.3 Change synchronization

	4.4 Verify change
	4.4.1 Inconsistency detection
	4.4.2 Scalable verification

	5 Analysis of the results
	5.1 RQ1: What types of research have been reported, to what extent, and how is coverage evolving?
	5.2 RQ2: Which product-derivation approach received most coverage, and how is this coverage evolving?
	5.3 RQ3: Which kind of SPL asset received more attention and how is this attention evolving?
	5.4 RQ4: Which activities of the evolution life-cycle received most coverage and how is this coverage evolving?
	5.4.1 Zooming into identify change
	5.4.2 Zooming into analyze and plan change
	5.4.3 Zooming into implement change
	5.4.4 Zooming into verify change

	6 Conclusions
	 Acknowledgment
	Appendix A Included papers classified on facets
	 References

