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A B S T R A C T

As network analysis methods prevail, more metrics are applied to co-word networks to reveal hot
topics in a field. However, few studies have examined the relationships among these metrics. To
bridge this gap, this study explores the relationships among different ranking metrics, including
one frequency-based and six network-based metrics, in order to understand the impact of net-
work structural features on ranking themes on co-word networks. We collected bibliographic
data from three disciplines from Web of Science (WoS), and generated 40 simulation networks
following the preferential attachment assumption. Correlation analysis on the empirical and si-
mulated networks shows strong relationships among the metrics. Their relationships are con-
sistent across disciplines. The metrics can be categorized into three groups according to the
strength of their correlations, where Degree Centrality, H-index, and Coreness are in one group,
Betweenness Centrality, Clustering Coefficient, and frequency in another, and Weighted
PageRank by itself. Regression analysis on the simulation networks reveals that network topology
properties, such as connectivity, sparsity, and aggregation, influence the relationships among
selected metrics. In addition, when comparing the top keywords ranked by the metrics in the
three disciplines, we found the metrics exhibit different discriminative capacity. Coreness and H-
index may be better suited for categorizing keywords rather than ranking keywords. Findings
from this study contribute to a better understanding of the relationships among different metrics
and provide guidance for using them effectively in different contexts.

1. Introduction

Keywords of scientific articles, either manually assigned (author keywords and subject descriptors) or automatically generated,
are widely used to reveal themes, structures, and development of a field, for example, through co-word analysis
(Callon, Courtial, Turner, & Bauin, 1983). Unlike other bibliometric methods, such as co-citation analysis or co-author analysis, co-
word analysis is a content-based method from which the results can be directly interpreted according to their semantics. Term
frequency, defined as the number of occurrences of a term in a collection, is often used to identify important themes of a field
(Khasseh, Soheili, Moghaddam, & Chelak, 2017). The assumption is that a frequently investigated topic could be an important theme
in the field. Identifying themes by frequency is simple and convenient. However, this metric ignores the co-occurrence relationships
among keywords, which can be captured by co-word networks. The structures of co-word networks carry information beyond term
frequency, which can be used to measure the importance of keywords.

As social network analysis becomes popular, co-word analysis shifts to network-based metrics for measuring important themes
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(Song & Cai, 2012). Network-based metrics rank the nodes (i.e. keywords) in co-word networks by considering the network topology.
For example, Degree Centrality measures the importance of nodes through the number of incident edges. Nodes with higher values of
degree centrality are regarded as more important. Some researchers have applied network-based metrics to co-word networks for
identifying important themes in a research field (Ronda-Pupo & Guerras-Martin, 2012; Song & Cai, 2012). However, few studies have
examined the relationships among traditional metrics (e.g., frequency) and network-based metrics on co-word networks. In this
study, we explore the relationships among frequency and a number of popular network-based metrics, including Degree Centrality,
Betweenness Centrality, Clustering Coefficient, Coreness, H-index, and Weighted PageRank. Our first research question is:

• What are the differences and correlations of these seven metrics in ranking themes revealed by keywords in a research field? In
particular, are there any differences between frequency-based and network-based methods?

A further goal of this study is to examine the impact of structural features of co-word networks on the relationships among
frequency-based and network-based metrics. The research question is:

• Do the relationships among different metrics differ depending on different disciplines or the different properties of networks, such
as density, the number of vertices, the number of edges, etc.? If so, what are the factors that influence their relationships?

To address these questions, the seven metrics were compared using two groups of data. One group was the empirical data from
three fields, and the other group was a collection of simulated co-word networks with different scales and other structural features.
The simulated co-word networks were generated by following the generation process of real co-word networks, and were used to
investigate the impact of structural features on the relationships between the seven metrics. The findings of this study help to
understand the relationships among different methods in identifying important themes on a co-word network and provide guidance
on how to use them effectively in different contexts.

This study extends previous work that has attempted the random walk method on co-word networks (Chiu & Lu, 2015), and aims
to provide a more comprehensive understanding of the metrics. In particular, this study includes more datasets, a more compre-
hensive list of network-based metrics, and a simulation method for co-word networks.

2. Literature review

Work related to this study can be found in the following areas: co-word analysis method, metrics for co-word networks, and
network simulation.

2.1. Co-word analysis method

As a commonly used method in information science over the past decades, co-word analysis is well known for its ability to reveal
themes, structures, and development of a field by examining co-occurrences of term pairs from different parts of papers. Terms from
titles (Besselaar & Heimeriks, 2006), abstracts (Ravikumar, Agrahari, & Singh, 2015), and full-texts (Janssens, Leta, Glänzel, & Moor,
2006) are frequently used. Also, author keywords (Cho, 2014) and subject terms (Ocholla, Onyancha, & Britz, 2010) are recently used
in co-word analysis, the results of which have shed light on the structure and development of a research field.

Co-word analysis has been through two stages: the first stage is characterized by frequency-based analysis methods, while the
second stage places more emphasis on term co-occurrences and the resulting network structure. In the first stage, co-word analysis is
often combined with multidimensional scaling (MDS) or other clustering methods. It has been used to reveal the development of
concepts (Ronda-Pupo & Guerras-Martin, 2012) or domains (Gan & Wang, 2015; Viedma-Del-Jesus, Perakakis, Muñoz, López-
Herrera, & Vila, 2011), and to find hot topics (Liu, Chen, Liu, & Xie, 2016) or hidden topics (Milojević, Sugimoto, Yan, & Ding, 2011;
Muñoz-Leiva, Sánchez-Fernández, Liébana-Cabanillas, & López-Herrera, 2012). However, research in this stage does not consider
network structures. In the second stage, network analysis is applied to co-word networks (Hong et al., 2016; Liu, Hu, & Wang, 2012),
which provides different metrics to measure network properties. These metrics can be categorized into global indicators that describe
the overall properties of a network (e.g. density, diameter, and average degree), and local indicators that delineate the importance of
individual vertices in a network (e.g. centrality). Many network-based metrics can be used to identify important themes on a co-word
network. However, previous studies have not comprehensively investigated the relationships among different metrics for this pur-
pose.

2.2. Metrics for co-word networks

Global metrics describe the entire network, especially the topology of a network. For example, the numbers of vertices and edges
are the two simplest global metrics that define the size of a network. According to Wang, Li, and Chen (2012), connectivity, sparsity,
aggregation, uniformity, and assortativity are five perspectives that reflect network topology. Connectivity concerns how strongly
vertices connect with each, and thus it mainly focuses on the largest component of a network, which is a connected component of a
network that has the most vertices. Common metrics of connectivity include metrics related to edges, such as the number of edges
whose weights are 1. Unlike connectivity, sparsity focuses on network degree, which is often revealed by average degree and density.
Aggregation reflects how closely vertices are connected with each other, which is usually measured by average distance and
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Clustering Coefficient. Degree distribution is the most common way to examine network uniformity. By modeling or plotting degree
distribution, one can discover whether the network follows some specific regularities, like power-law. As for assortativity, degree
correlation is an essential indicator of whether vertices tend to connect to similar vertices or dissimilar ones. If high degree vertices
tend to connect with other high degree vertices, the network is considered assortative. Otherwise, the network is disassortative.

Compared with global metrics, local metrics are more popular in co-word network analysis due to their ability to reveal important
themes (Ronda-Pupo & Guerras-Martin, 2012; Song & Cai, 2012). The most popular are variations of centrality. According to Yan and
Ding (2014), commonly used centrality measures in scholarly networks analysis include Degree Centrality, Betweenness Centrality,
Closeness Centrality, and Eigenvector Centrality. Degree Centrality mainly measures local influence as it only considers directly
connected vertices. Both Betweenness Centrality and Closeness Centrality reflect global centrality. Closeness Centrality focuses on the
geodetic distance between nodes and is more regularly used in collaboration networks (Abbasi, Hossain, & Leydesdorff, 2012) and
citation networks (Linden, Barbosa, & Digiampietri, 2017). In the context of co-word networks, Betweenness Centrality better reflects
the bridging effect of keywords. Eigenvector Centrality is closely related to PageRank (Yan & Ding, 2009) which will be discussed
below. Therefore, in this study, we selected Degree Centrality and Betweenness Centrality, two commonly used centrality metrics in
co-word networks. Clustering Coefficient, usually recognized as a global metric (Zhu & Guan, 2013), has a local version as well
(Newman, 2010). The local version of Clustering Coefficient represents the average probability that nodes connected to a node are
also connected with each other, which measures the connectivity among the neighbors of a node. According to Newman (2010),
compared with Degree Centrality, Clustering Coefficient can reveal node importance from a different perspective, namely, how
solidary a node's neighborhood is, and can be used as a probe for “structural holes” in a network. Another indicator, Coreness, not
only weights the nodes, but also categorizes them (He et al., 2015). It originates from the k-shell decomposition, and provides a
deeper perspective on which level a node belongs to. The higher Coreness level a node is at, the closer this node is to the core of the
network (Shen, Yuan, & Guan, 2013). Coreness has been successfully applied to a variety of networks, such as bibliographic networks
(Yang, Wu, & Cui, 2012) and institution networks (Zong et al., 2013). More recently, H-index has been applied to network analysis. It
is one of the most popular metrics in ranking authors (Dehdarirad & Nasini, 2017), articles (Bornmann, Mutz, & Daniel, 2008), and
journals (Harzing & Ron, 2009). The H-index of a node n is defined as the largest integer k such that n has maximum k neighbors with
degrees at least k (Korn, Schubert, & Telcs, 2009). Lü, Zhou, Zhang, and Stanley (2016), have discovered that degree, Coreness, and
H-index, which seem to be unrelated, are actually highly correlated. In addition, an increasing number of network-based metrics are
also introduced to co-word network analysis, for example, the weighted random walk (Chiu & Lu, 2015).

Random walk is one of the simulation models showing random moves on a network. It simulates stochastic processes on a network
according to the given parameters of the network and movements. Originated from information retrieval (Page, Brin, Motwani, &
Winograd, 1999), random walk has been applied to other research areas, such as ranking tags (Liang et al., 2014). The difference
between random walk and other network-based metrics is that random walk changes vertices’ status iteratively, which does not apply
to other metrics. As the most popular branch of random walk, PageRank has been applied to co-citation networks, for ranking
journals (Cheang, Chu, Li, & Lim, 2014) and papers (Song & Kim, 2013), and co-author networks (Liu et al., 2015) for ranking
authors. Studies have shown that PageRank is feasible and reliable in measuring the impact of entities.

In light of the commonly used metrics for co-word networks and other networks, this study selects seven metrics, including
Frequency, Degree Centrality, Betweenness Centrality, Clustering Coefficient, Coreness, H-index, and Weighted Random Walk. These
metrics well represent different perspectives of assessing the importance of nodes in a network.

2.3. Simulation for scholarly networks

Applying mathematical models to simulate how real science works is an important way of studying the mechanisms of science.
Price (1956) used an exponent curve to describe the growth of science. Later, Price (1965) modeled citation networks of scientific
papers through which some quantitative rules about references and citations were investigated. Recent studies have mainly focused
on modeling empirical data with scholarly networks (Yan, 2012) and investigating the properties of the networks. Among all the
scholarly networks, co-author networks (Guimera, Uzzi, Spiro, & Amaral, 2005) and citation networks (Garfield, 1970) have attracted
the most attention. However, one limitation of empirical studies is the insufficient amount of data which hinders the ability to
generalize beyond the datasets used. Most empirical studies only collect one or a few datasets from popular citation databases, such as
Web of Science or Scopus. A simulation approach can overcome this issue in that almost unlimited artificial data can be generated in
an automated manner. In addition, parameters in simulation models can be easily tuned to allow studies on how network properties
impact the structures of scholarly networks, which reveals the underlying mechanisms of science. Attributing to these benefits, some
recent studies have started to apply simulation approaches to understand the innate process of academic phenomena. To study
research teams in a research specialty, Morris and Goldstein (2007) proposed a team growth model that considers the two phenomena
of collaboration and author productivity simultaneously. The key simulated process was the author behavior: to write an article as the
result of a research task in the team, and to select co-authors from/outside of the team. Goldberg, Anthony, and Evans (2015)
proposed three models to simulate citation networks to study the variations of citation distribution per year, from which three
phenomena were uncovered, including cumulative advantage of cited papers, aging effect of core papers, and local search of cita-
tions.

However, to our knowledge, the process of generating co-word networks has not been attempted, although some related me-
chanisms of paper keywords are studied empirically. The keyword frequency distribution has been shown to be a power law dis-
tribution in many research fields (Liu et al., 2012; Liu, Qi, Xue, & Xie, 2014), which reflects how different keywords grow in the
collection. Another mechanism is the decay of popular keywords in a field (Zhang, Lü, Liu, & Zhou, 2008). These mechanisms can be
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considered when simulating co-word networks.
In summary, a brief review of the literature suggests that co-word analysis has seen a shift to network-based metrics; however,

very few studies have examined the relationships among different ways of ranking terms on co-word networks. This motivates us to
explore the relationship among different ways of identifying important themes on co-word networks through empirical data and
simulation studies.

3. Method

To address the research questions proposed earlier, two approaches are adopted: first, empirical studies on three co-word net-
works from three research fields are conducted to compare different methods on empirical networks; then, a simulation study is
carried out to generate co-word networks with different scales to examine the impact of network properties on the relationships
among different metrics. The combination of the two approaches provides a more thorough understanding of the research questions.

3.1. Empirical studies on co-word networks

3.1.1. Data collections
The top 20 journals with the highest impact factor according to the 2014 Journal Citation Report were selected from three fields:

Information Science & Library (LIS), Sociology (Socio), and Physics, Fluids & Plasma (Phys). LIS was selected due to the expertise of the
authors. Two additional fields, Socio and Phys, were selected to represent social sciences and natural sciences, respectively. The
selection of the top 20 journals is an arbitrary cut intending to select representative and high quality literature in a field.
Bibliographic records of articles published in these journals for the period January 2006–December 2015 were downloaded fromWeb
of Science (WoS). This resulted in 14,048, 11,978, and 65,603 articles for LIS, Socio, and Phys, respectively (Appendix A).

Using term sources from controlled vocabularies is generally preferable for co-word analysis as different expressions of the same
concept are standardized (Looze & Lemarie, 1997; Qin, 2000). We chose the KeyWords Plus field in which the keywords are auto-
matically selected from the titles of a paper's references (Garfield, 1990). Other term sources, such as author keywords or title words,
can also be used. The author keywords field in WoS is obtained from publishers and varies greatly across journals. Some journals don't
request author keywords, which results in a high ratio of missing data. This is observed in the Phys data we collected, where 69% of
the articles miss author keywords. This would greatly skew the topics generated from the author keywords field. In addition, ac-
cording to Zhang, Yu, Zheng, Long, Lu, and Duan (2016), Keywords Plus terms cover the majority of author keywords, and are more
comprehensive and better fitted to analyze the structure of scientific fields than author keywords, although author keywords are more
specific. On the other hand, title words are free-text with many variations. Therefore, Keywords Plus field is used for co-word analysis
in this study. After removing bibliographic records without KeyWords Plus fields, 11,530, 7166, and 61,301 articles for respective LIS,
Socio, and Phys fields were used as the empirical data.

3.1.2. Data processing
The WoS bibliographic data was loaded into a local MySQL database, and co-occurrence pairs of the keywords from the KeyWords

Plus field were tallied. Then, Java programs were developed to generate .net files used by the network analysis tool Pajek (Batagelj &
Mrvar, 1998).

3.2. Co-word network simulation

To obtain a larger number of networks that represent different situations, a simulation study was conducted. In this study, we
simulated co-word networks based on the process of composing scientific papers. The key of the simulation lies in the growth of
keywords, which is similar to the growth of authors (Morris & Goldstein, 2007) in the sense that the growth of keywords/authors can
be accomplished via two critical steps incrementally, i.e., to generate a paper and to generate keywords/authors for the paper. A co-
word network was formed by cumulating co-occurrences of keywords in the papers of the collection.

The generation of keywords for papers is governed by inherent rules in scholarly communication. For example, the keywords in
the KeyWords Plus field are selected from the titles of the paper's references. Essentially, the keywords of a new paper are either
selected from existing keywords used in previous papers or newly added. We assume that the keyword selection follows the pre-
ference attachment (PA) mechanism. The preferential attachment guides the keyword selection by producing a power law dis-
tribution for item occurrences (Mitzenmacher, 2004). Therefore, the more frequently a keyword occurs in previous papers, the higher
the probability that it will be chosen as a keyword for the new paper. In addition to picking an extant keyword for the new paper,
there is a chance to generate an unseen keyword that has not appeared in previous papers. This is implemented by applying a
damping factor.

Formally, we define a collection as a tuple {P, K, A, N}, where P is the paper set, K is the distinct keyword set, A is the keyword
assignments for the papers where Ai denotes the set of keywords assigned to the paper pi, and N is the weighted co-word network
which is a graph {V, E}. The simulation process is as follows:

1) Generate a paper pi in the collection. Since we are only interested in the keywords of pi not its content, here pi is just a sequential
number.

2) Determine the number of keywords to be assigned to pi, μ (the size of Ai, i.e., |Ai|), according to the probability distribution of the
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number of keywords γ observed in empirical data. In this study, the probability distribution γ is set as:

=
⎧
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where μ is the number of keywords in the paper and δ is the probability that the paper has 10 keywords. This is based on the
observation that a majority of papers are assigned with 10 keywords and the rest share roughly equal probability of having from 1 to
9 keywords (Appendix B).

3) Keyword selection:
a. Select a keyword for pi by applying preferential attachment as in Simon model (Simon, 1955): with a probability of − α1 to

pick a keyword from the existing keyword set K, and the probability of picking a keyword is proportional to the frequency of
the keyword:

= − α n
ι

P(k) (1 ) k
(2)

where nk is the current frequency of the keyword k and ι is the sum of the frequencies of all keywords in the collection.
b. In addition, with a probability α (damping factor) to pick a keyword from a new keyword outside of K.

It should be mentioned that the keywords of a paper should be distinct.

4) Form co-word network edges from Ai: For each pair of keywords in the paper, if the edge connecting two keywords already exists
in the edge set E, increase the weight of the edge by 1, otherwise create a new edge with a weight of 1 that connects the two
keywords and add it to the edge set E.

5) Repeat steps 1–4 M times to generate the co-word network for a collection with M papers (1≤ i≤M).

For example, to generate the 10th paper in simulated data (i = 10), five keywords are assigned to the paper according to the
probability distribution γ (Appendix B). It's assumed that at this point there are 20 keywords in the existing keyword set (K) with a
total frequency of 50 ( =ι 50). Then, each of the 5 keywords is sampled from the 20 keywords according to the distribution P(k)
(= − α(1 ) n

50
k , k = 1,2,…,20), or newly generated with a probability of α. Any new keyword is added to the keyword set. The 5

keywords of this paper form new edges or increase the weight of existing edges in the co-word network.
When simulating the final co-word networks for analysis, the damping factor α was set to 0.17 and δ equaled 0.36, which were

determined manually by comparing the network properties between initial simulated data and the empirical data. The number of
papers in the collection (M) varied from 2500 to 100,000 with an interval of 2500. In total, 40 co-word networks were generated.

3.3. Metrics of keyword importance in co-word network

Seven metrics that measure the importance of keywords in a co-word network were calculated, namely, Frequency (fr), Degree
Centrality (dc), Betweenness Centrality (bc), Clustering Coefficient (cc), Coreness (co), H-index (hi), and Weighted PageRank (pr).
They are categorized into frequency-based and network-based metrics (Table 1).

Frequency, H-index, and Weighted PageRank were computed using a Java program developed by the authors, and the other
metrics were obtained from Pajek.

Table 1
Brief description of frequency-based and network-based metrics.

Frequency-based metric
Frequency (fr) the number of times a keyword occurs in the collection
Network-based metrics
Degree Centrality (dc) measured by the degree of a node
Betweenness Centrality (bc) describes the probability of a keyword being in the middle of the shortest route of other two randomly selected keywords

(Newman, 2010)
Clustering Coefficient (cc) measured by the ratio of triangles connected to the keyword to triples connected to the keyword. Triangles are triples whose

nodes connect to each other (Newman, 2010)
Coreness (co) used to identify influential spreaders of information at network cores and reveal the level of edges being in the central of the

network (Alvarez-Hamelin et al., 2005)
H-index (hi) adopted from the definition of H-index in Lü et al. (2016)
Weighted PageRank (pr) adopted from Chiu and Lu (2015). The difference between Weighted PageRank we used and PageRank is that we used co-

occurrence of two keywords as the weight of the corresponding edge.
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4. Results

There were 12,165, 10,499, and 50,106 unique keywords assigned to articles in LIS, Socio, and Phys, respectively. Descriptive
information of the data collections and co-word networks are presented in Table 2. It is interesting to note that although the sizes of
the co-word networks differ, the average distances (the average length of shortest paths between any two nodes in the networks) are
very similar (2.77 for LIS, 2.82 for Socio, and 2.85 for Phys), so are the diameters of the networks (6 for LIS and Socio, and 7 for
Phys).

The frequency distributions of the keywords in the collections are shown in Figs. 1–3. The frequency distributions of the keywords
in simulated networks with similar sizes are overlaid in the figures to provide visual comparisons between the empirical and si-
mulated networks. The figures suggest that the frequency distributions of the keywords in simulated networks and empirical net-
works are similar, both are Zipf-like. This, to some extent, validates the simulation process which generates simulated networks
sharing similar basic properties with empirical co-word networks in this study.

4.1. Correlation analysis on empirical data

Spearman's correlation coefficient was used to measure the strength of the associations among the seven metrics as a normal
distribution is not assumed. Fig. 4 presents a summary of the correlation results in LIS, Socio, and Phys. Heat maps are used to show
the strength of the correlations. All seven metrics are significantly (p<.01, two-tailed tests) and strongly correlated with each other
with the lowest values well above 0.80. The values of correlations are similar across the three fields, which suggests that their
relationships are consistent across these disciplines. It is worth noting that Clustering Coefficient has all negative correlations with the
other metrics, which suggests that a higher value in Clustering Coefficient associates with lower values in the other metrics.

The highest values of correlations are observed among Frequency, Betweenness Centrality, and Clustering Coefficient, and Degree
Centrality, H-index, and Coreness. With that, it seems that Frequency, Betweenness Centrality, and Clustering Coefficient are the
closest to each other, and Degree Centrality, H-index, and Coreness are the closest. In addition, Weighted PageRank is strongly
correlated with other metrics; however, its correlations with the others are not among the strongest.

To provide detailed results from these metrics, tables in Appendix C, D, and E list the top 20 keywords by different metrics in the
three fields (the bottom 20 keywords from Clustering Coefficient due to its negative correlations with the other metrics). Many
keywords are shared by different metrics, which is not surprising given the strong correlations among them. Both general keywords
and relatively specific keywords can be found in the tables. For example, in the LIS field, general keywords like “INFORMATION”,

Table 2
Descriptive information of the data sets and co-word networks.

Attributes Information Science & Library Sociology Physics, Fluids & Plasma

# of articles 11,530 7,166 61,301
Keywords per article 6.6 7.1 6.4
Edges 182,449 146,966 841,627
Nodes 12,165 10,499 50,106
Density 0.0025 0.0027 0.0007
Average degree 29.996 27.996 33.594
Clustering Coefficient 0.0982 0.1108 0.0568
Diameter 6 6 7
Average distance 2.766 2.815 2.847
# of unreachable pairs of nodes 3,217,912 1,714,952 29,275,752

Fig. 1. Frequency distribution of keywords in Information Science & Library and PA-10,000 (PA-10,000 indicates the simulated network with 10,000 articles).
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“KNOWLEDGE”, “TECHNOLOGY”, and “MODEL” are listed. More specific ones, like “SYSTEMS”, “BEHAVIOR”, “QUALITY”, and
“IMPACT” which reveal important themes in the LIS field (e.g. information system, information behavior, and informetrics), are also
in the top 20 across different metrics. Some keywords are only ranked within the top 20 by some metrics but not the others. For
example, in Appendix C, “ORGANIZATIONS” is only listed by Degree Centrality, Frequency, and Weighted PageRank, “UNITED-
STATES” is only listed by Clustering Coefficient and Betweenness Centrality, and “INNOVATION” is found by all the metrics except
Clustering Coefficient and Betweenness Centrality. There are many ties among the top keywords from H-index and Coreness. For
example, twelve of the top 20 keywords from H-index share the same ranks, and 290 keywords ties at the first place for Coreness.
Similarly, for H-index, 10 keywords tie in Socio and 14 keywords tie in Phys. For Coreness, 144 keywords tie in Socio and 383
keywords tie in Phys. This indicates that H-index and Coreness are less able to differentiate among the top keywords.

Fig. 2. Frequency distribution of keywords in Sociology and PA-7500 (PA-7500 denotes the simulated network with 7500 articles).

Fig. 3. Frequency distribution of keywords in Physics, Fluids & Plasma and PA-60,000 (PA-60,000 indicates the simulated network with 60,000 articles).

Fig. 4. Heat maps of Spearman's correlation results for empirical networks (Left is LIS, middle is Socio, and right is Phys).
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4.2. Correlation analysis on simulated networks

Fig. 5 shows the correlation results from 40 simulated networks. All pairs are strongly correlated according to Spearman's cor-
relation tests. The small values of standard deviations, except for the pairs involving H-index, indicate that little variation exists in the
correlation values. Similar to the results from empirical networks (Fig. 4), Frequency, Between Centrality, and Clustering Coefficient
are the closest to each other, and Degree Centrality, H-index, and Coreness are the closest among themselves. This further validates
the simulation method.

Fig. 6 plots the correlations between the pairs of metrics against the sizes of simulated networks. It shows that the correlation
curves involving H-index behave differently from others with a drop (a rise for Cluster Coefficient due to the negative correlations) as
the number of articles increases beyond 55,000. This explains the higher standard deviations for the pairs involving H-index in Fig. 5.
Other correlations are more stable as the size of the network grows. The reason for the exception of H-index is unclear and warrants
further investigation.

Regression analysis was conducted on the simulated data to examine the potential factors that may influence the relationships
among different metrics. We selected nine network property metrics as independent variables (Table 3), and categorized them into
different types according to Wang et al. (2012). The dependent variable is the correlation between different metrics.

Regression results (Table 4) show that global attributes of networks do affect the correlations between different metrics, except for
the number of edges whose weights are 1 (x2) and the number of edges (x9). Most regression models have high adjusted R2 values
above 0.75, meaning these models are of good fit. Three groups of correlations, including fr*bc, dc*co, and dc*cc, are not affected by
any independent variables. For fr*bc and dc*co, their standard deviations are smaller than 0.000, meaning they seldom change. Some
regression models share one or more common factors. For example, x4 (average degree) and x6 (average distance of reachable nodes)
are shared by pr*fr, pr*bc, pr*cc, fr*cc, and co*cc. This means the correlations between the five pairs are influenced by x4 and x6.
Independent variables x3 (the number of edges whose weights are not 1) and x4 are common factors for pr*bc, pr*hi, and bc*cc.
Independent variables x1 (the number of unreachable node pairs) and x3 are common factors of pr*hi, dc*hi, and hi*co. In addition, a
few other correlations share single common factors. For example, x6 is shared by pr*dc and pr*co, and x1 is shared by fr*hi, bc*hi,
and hi*cc. It's interesting to note that correlations between H-index and all other metrics are negatively influenced by the common
factor x1, and correlations between Weighted PageRank and all the other metrics, except with H-index, share x6 as their common
factor. Similarly, x5 (density) is shared by fr*dc, fr*co, and bc*cc, and x7 (diameter) is shared by dc*bc, bc*co, and bc*cc.

The results in Table 4 also show that there are interaction effects in the regression models for pr*bc, pr*hi, dc*hi, bc*cc, and
hi*co. An interaction effect indicates that the impact of one independent variable varies depending on the value of another in-
dependent variable. To visualize the interaction effects, we discretized the values of x1, x3, x4, x5, x7, and x8 into two groups where
“high” represents values that are higher than their corresponding median, and “low” represents the values that are equal to or lower
than the median. The results of some interaction effects are shown in Fig. 7. For example, Fig. 7(a) suggests when the values of x4 are
high, the impact of x3 on the correlation between pr and bc is greater than when x4 is low, and the same kind of interaction effect is
observed between x8 and x4 as in x3 and x4. Fig. 7(b) suggests when the values of x4 are high, the impact of x3 (or x1) on the
correlation between pr and hi is greater than when x4 is low. Similar interpretations can also be given to the rest of the plots in Fig. 7.
These interaction effects show more complex relationship between the independent variables and the correlations.

Fig. 5. Heat map of correlation results for simulation networks (N = 40).
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Fig. 6. Correlation results from simulation networks. (a) shows correlations without Clustering Coefficient involved, and (b) shows correlations involving Clustering
Coefficient.

Table 3
Independent variables for regression analysis.

Independent variables

Connectivity
x1 the number of unreachable node pairs
x2 the number of edges whose weights are 1
x3 the number of edges whose weights are not 1
Sparsity
x4 average degree
x5 density
Aggregation
x6 average distance of reachable nodes
x7 diameter
Basic indicators
x8 the number of vertices
x9 the number of edges
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Table 4
Regression analysis on simulation networks (N = 40).

Dependant variables (correlations) Significant main effect Significant interaction effect R2 adjusted R2

1 pr*fr x4(+), x6(-) \ 0.810 0.800
2 pr*dc x6(-) \ 0.817 0.813
3 (pr*bc)−169.8112 x3(+), x4(-), x6(+), x8(-) x3*x4, x4*x8 0.758 0.731
4 pr*hi x1(-), x3(+), x4(-) x1*x3, x1*x4, x3*x4 0.965 0.962
5 pr*co x6(-) \ 0.798 0.793
6 pr*cc x4(-), x6(+) \ 0.519 0.493
7 (fr*dc)−228.7784 x5(-) 0.268 0.248
8 fr*bc \ \ \ \
9 (fr*hi)25.4622 x1(-) \ 0.916 0.914
10 (fr*co)−162.2933 x5(-) \ 0.242 0.222
11 fr*cc x4(-), x6(+) \ 0.812 0.802
12 (dc*bc)−236.3315 x7(+) \ 0.388 0.372
13 dc*hi x1(-), x3(+) x1*x3 0.962 0.960
14 dc*co \ \ \ \
15 dc*cc \ \ \ \
16 (bc*hi)23.432 x1(-) \ 0.914 0.911
17 (bc*co)−181.7074 x7(+) \ 0.231 0.211
18 bc*cc x3(+), x4(-), x5(-), x7(+) x5*x3, x5*x4, x3*x7, x3*x4 0.942 0.936
19 hi*co x1(-), x3(+) x1*x3 0.962 0.960
20 (-hi*cc)23.3602 x1(-) \ 0.893 0.890
21 (-co*cc)82.6251 x4(+), x6(-) \ 0.349 0.313

Note: The asterisk signs (*) in the dependent variables column are used to indicate the correlation between two metrics. Since the raw models didn't meet the
assumptions of regression analysis, we used Boxcox method to transform pr*bc, fr*dc, fr*hi, fr*co, dc*bc, bc*hi, bc*cc, hi*co and co*cc. After Boxcox transformation,
we also deleted one of the indicators (x3) for model 20, which is less correlated with dependent variable, since it affects heteroscedasticity of the model. ‘+’ and ‘-’
means positive and negative coefficient correspondingly. All effects are significant at 0.05 level

Fig. 7. Visual examples of interaction effects.
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5. Discussion

5.1. Relationships among different metrics

All metrics are strongly correlated according to both empirical and simulated co-word networks. Empirical results show re-
lationships among metrics are consistent across the three disciplines. According to their correlations, the seven metrics can be
classified into 3 groups: group 1 includes Degree Centrality, H-index, and Coreness; group 2 includes Betweenness Centrality,
Clustering Coefficient, and Frequency; and group 3 has Weighted PageRank.

The metrics in group 1 concern directly linked nodes. Lü et al. (2016) found that Degree Centrality, H-index, and Coreness are
strongly related. More specifically, Degree Centrality and Coreness are different forms of H-index, where Degree Centrality corre-
sponds to zero order of H-index and Coreness corresponds to the highest order, in other words, the converged form of H-index. The
results from our study confirm the strong relationship among Degree Centrality, H-index, and Coreness in the context of co-word
networks.

The three metrics in group 2 appear unrelated but turn out to be highly correlated. The high correlation between Betweenness
Centrality and Clustering Coefficient can be partially explained by their definitions. Betweenness Centrality describes the probability
of a keyword being on the shortest route of any other two keywords (Newman, 2010). Clustering Coefficient measures the con-
nectivity among the neighbors of a node (Newman, 2010). Conceptually, Betweenness Centrality reflects bridging effect where one
keyword bridges two other keywords, and Clustering Coefficient concerns complete mutual connections among keywords. It turns out
these are two opposite concepts. If we only focus on direct links, Betweenness Centrality depicts to which extent the neighbors of a
node are not connected with each other (In Fig. 8, if a node a is on the shortest path of the other two nodes b and c, then b and c must
not be directly linked. Otherwise, the shortest path between b and c is their direct link.), which is exactly the opposite of Clustering
Coefficient. This partially explains why Betweenness Centrality and Clustering Coefficient are negatively correlated. The strong
positive correlation between Frequency and Betweenness Centrality suggests that the more frequently a keyword occurs, the more
likely it serves as a bridge for other keywords.

As for Weighted PageRank, unlike other metrics discussed above, it considers more network features. First, Weighted PageRank
considers the edge importance based on the co-occurrences of connected nodes, which is neglected in other metrics. Secondly,
Weighed PageRank is not a static metric, but involving iterations until convergence, which essentially accounts for the global to-
pology of the network.

5.2. Factors influencing relationships among metrics

Empirical results show no evidence of disciplinary differences for the relationships among the metrics. Regression analysis on the
simulation networks shows that some network topology factors influence the relationships among different metrics. Common factors
of pr*hi, dc*hi, and hi*co, the number of unreachable node pairs (x1) and the number of edges whose weights are not 1 (x3), are
metrics of connectivity, indicating that network connectivity influences their relationships. For fr*hi, bc*hi, and hi*cc, x1 is their
common factor, reflecting network connectivity influences these relationships. Sparsity of a network influences fr*dc, fr*co, and
bc*cc that share density (x5) as their common factor. Aggregation has an impact on dc*bc, bc*co, and bc*cc which share diameter
(x7) as their common factor. It is interesting to note that x1 is a common factor for all relationships that involve H-index, which
indicates relationships involving H-index are all influenced by network connectivity. Also worth mentioning, the average distance of
reachable nodes (x6) is a common factor of relationships involving Weighted PageRank and the other metrics except H-index, which
means these relationships are influenced by the network aggregation property. Besides the single aspect of network topology, some
correlations are impacted by multiple dimensions. The relationships between pr*bc, pr*hi, and bc*cc are influenced by network
connectivity and sparsity, for which x3 and average degree (x4) are common factors. Also, common factors of pr*fr, pr*bc, pr*cc,
fr*cc, and co*cc, x4 and x6, are metrics of sparsity and aggregation, respectively, indicating that network sparsity and aggregation
influence their relationships. Basic indictors, such as numbers of vertices and edges, are not common factors, which suggests the size

Fig. 8. Direct links among three nodes.
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of a network may not be a main factor for the relationships of the metrics. In summary, connectivity, sparsity, and aggregation of a
network affect most of the relationships among these metrics.

5.3. Metrics recommended for different purposes

Although all metrics are strongly and significantly correlated, they exhibit different characteristics that may help us to select
appropriate metrics for different purposes. Frequency, Degree Centrality, Betweenness Centrality, Clustering Coefficient, and
Weighted PageRank have greater discriminative capacity among top-ranked keywords. The strong correlations between frequency
and network-based metrics confirm the validity of frequency as a simple but effective method to identify hot themes in a field.
However, H-index and Coreness produce many ties among the top keywords, which makes it hard to distinguish the importance of the
same-ranked keywords. Coreness has shown its effectiveness in classification (Alvarez-Hamelin, Dall'Asta, Barrat, & Vespignani,
2005). Thus, Coreness and H-index may be better suited for keyword classification.

Clustering Coefficient, which was originally designed to identify important nodes based on the connectivity among their
neighbors, has negative correlations with all the other metrics. This suggests that nodes with densely connected neighbors on co-word
networks may not be important themes. When combined with the evidence from Degree Centrality and Betweenness Centrality, it
seems that on co-word networks, the important themes are those keywords connecting to many neighbors (i.e. high degree cen-
trality), but their neighbors are not well connected with each other (i.e. low clustering coefficient), and these important keywords
serve as bridges to other keywords on the networks (i.e. high betweenness centrality). For example, “MODEL”, “PERFORMANCE”,
and “IMPACT” are such keywords in the LIS field. According to Choi, Yi, and Lee (2011), these keywords help bridge disconnected
clusters of keywords into an integrated network.

6. Conclusion

In this study, we used both empirical and simulated data to explore the relationships of different metrics for ranking themes on co-
word networks. To answer the research questions:

1. All seven metrics, including Frequency, Degree Centrality, Betweenness Centrality, Clustering Coefficient, H-index, Coreness, and
Weighted PageRank, are strongly correlated according to both empirical and simulated data. Clustering Coefficient is negatively
correlated with the other metrics.

2. The seven metrics can be categorized into three groups according to the strength of their correlations: Degree Centrality, H-index,
and Coreness as one group, Betweenness Centrality, Clustering Coefficient, and Frequency as another group, and Weighted
PageRank by itself. There is no clear difference between frequency-based and network-based methods. Frequency is more strongly
correlated with Betweenness Centrality and Clustering Coefficient than their correlations with the other network-based metrics.

3. There is no evidence that the relationships among the metrics differ across disciplines. The metrics show consistent mutual
correlations across the selected disciplines. Regression analysis on simulated networks shows that network topology does influ-
ence the relationships among the metrics. Some common factors include network connectivity, sparsity, and aggregation.

The findings from this study contribute to the understanding of the relationships among different metrics for ranking themes on
co-word networks, which complements the measurement theory in the context of co-word networks. There is not a clear distinction
between frequency-based and network-based metrics in the context of co-word networks. Frequency is closely related to network-
based metrics, in particular, Betweenness Centrality and Clustering Coefficient. It is also interesting to note that the relationships
among different metrics are invariable across the disciplines. This suggests there may be some commonality among the co-word
networks from different disciplines. Further validation is needed to confirm this conjecture. Besides theoretical implications, this
study also provides practical guidance on the use of ranking metrics on co-word networks. From the top keywords ranked by different
metrics in the three disciplines, we can see all of the metrics can produce reasonable results in the context of co-word networks.
However, H-index and Coreness are more suitable to classify keywords than to rank keywords due to their low discriminative
capacity among the top keywords. Clustering Coefficient shows negative correlations with other metrics, and thus its results should
be ranked reversely. The results confirm the validity of frequency as a simple but effective method for identifying hot themes in a
field. In addition, this study proposes a simulation method for co-word networks, which can be used to find general patterns.

Several limitations need to be acknowledged in this study. First, the proposed simulation method produces networks with similar
term frequency distributions as in the empirical networks. The correlation results are also consistent between the empirical and
simulated networks. However, how similar the simulated networks are to empirical networks in other aspects are not fully examined.
As we have not found any literature on how to simulate co-word networks, exploring the simulation methods of co-word networks is
still an ongoing research question. The relationships among selected metrics are examined empirically and through simulated data.
Whether there are mathematical relationships among the metrics is unknown. This requires rigorous math proofs. Future studies will
further explore these issues.
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Appendix A

Appendix B

Table A.1
The top 20 journals for the three fields used in this study.

Information science & library Sociology Physics, fluids & plasma

MIS QUARTERLY AMERICAN SOCIOLOGICAL REVIEW ANNUAL REVIEW OF FLUID MECHANICS
JOURNAL OF INFORMATION TECHNOLOGY ANNUAL REVIEW OF SOCIOLOGY PLASMA SOURCES SCIENCE & TECHNOLOGY
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS

ASSOCIATION
AMERICAN JOURNAL OF SOCIOLOGY BIOMICROFLUIDICS

JOURNAL OF COMPUTER-MEDIATED COMMUNICATION ANNUALS OF TOURISM RESEARCH NUCLEAR FUSION
JOURNAL OF STRATEGIC INFORMATION SYSTEMS SOCIOLOGICAL METHODOLOGY COMMUNICATIONS IN NONLINEAR SCIENCE AND

NUMERICAL SIMULATION
INFORMATION SYSTEMS RESEARCH SOCIOLOGICAL THEORY MICROFLUIDICS AND NANO FLUIDICS
JOURNAL OF INFOMETRICS SOCIOLOGICAL METHODS &

RESEARCH
PLASMA PROCESSES AND POLYMERS

GOVERNMENT INFORMATION QUARTERLY SOCIAL NETWORKS JOURNAL OF FLUID MECHANICS
EUROPEAN JOURNAL OF INFORMATION SYSTEMS GENDER & SOCIETY PHYSICAL REVIEW E
SCIENTOMETRICS QUALITATIVE RESEARCH PLASMA PHYSICS AND CONTROLLED FUSION
JOURNAL OF MANAGEMENT INFORMATION SYSTEMS HUMAN ECOLOGY PHYSICS OF PLASMAS
INFORMATION & MANAGEMENT JOURNAL OF MARRIAGE AND

FAMILY
PLASMA CHEMISTRY AND PLASMA PROCESSING

JOURNAL OF THE AMERICAN SOCIETY FOR
INFORMATION SCIENCE AND TECHNOLOGY

CORNELL HOSPITALITY QUARTERLY PHYSICS OF FLUIDS

INTERNATIONAL JOURNAL OF COMPUTER-SUPPORTED
COLLABORATIVE LEARNING

EUROPEAN SOCIOLOGICAL REVIEW EXPERIMENTAL THERMAL AND FLUID SCIENCE

JOURNAL OF THE ASSOCIATION FOR INFORMATION
SYSTEMS

SOCIAL PROBLEMS THEORETICAL AND COMPUTATIONAL FLUID
DYNAMICS

INFORMATION SYSTEMS JOURNAL YOUTH & SOCIETY EUROPEAN JOURNAL OF MECHANICS B-FLUIDS
INFORMATION AND ORGANIZATION SOCIOLOGY OF EDUCATION JOURNAL OF TURBULENCE
INTERNATIONAL JOURNAL OF GEOGRAPHICAL

INFORMATION SCIENCE
INFORMATION COMMUNICATION &
SOCIETY

INTERNATIONAL JOURNAL FOR NUMERICAL
METHODS IN FLUIDS

JOURNAL OF HEALTH COMMUNICATION POPULATION AND DEVELOPMENT
REVIEW

HIGH ENERGY DENSITY PHYSICS

JOURNAL OF KNOWLEDGE MANAGEMENT SOCIOLOGY OF HEALTH & ILLNESS JOURNAL OF MATHEMATICAL FLUID MECHANICS

Table B.1
Frequency distribution of the number of keywords in the empirical data.

Information science & library Sociology Physics, fluids & plasma

# of keywords # of papers # of keywords # of papers # of keywords # of papers

1 985 1 536 1 3582
2 985 2 476 2 4722
3 910 3 495 3 5455
4 860 4 469 4 5860
5 830 5 456 5 5781
6 760 6 400 6 5379
7 649 7 399 7 4877
8 584 8 355 8 4286
9 523 9 356 9 3677
10 4444 10 3224 10 17,682
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Appendix C

Appendix D

Table C.1
Top 20 terms in the LIS field (numbers in parentheses indicate the tied ranks).

DC HI CO(290 words have
maximum score)

BC CC(bottom 20) FR PR

MODEL MODEL (1) MODEL MODEL CLASSIFIER SCIENCE MODEL
PERFORMANCE IMPACT (1) IMPACT INFORMATION MODEL MODEL TECHNOLOGY
IMPACT PERFORMANCE (3) PERFORMANCE PERFORMANCE PERFORMANCE TECHNOLOGY PERFORMANCE
INFORMATION INFORMATION (3) INFORMATION IMPACT INFORMATION IMPACT SYSTEMS
TECHNOLOGY TECHNOLOGY (3) TECHNOLOGY SCIENCE SCIENCE PERFORMANCE MANAGEMENT
SYSTEMS SYSTEMS (6) SYSTEMS SYSTEMS IMPACT SYSTEMS IMPACT
MANAGEMENT MANAGEMENT (6) MANAGEMENT TECHNOLOGY TECHNOLOGY INFORMATION INFORMATION-

TECHNOLOGY
COMMUNICATION KNOWLEDGE (6) KNOWLEDGE MANAGEMENT SYSTEMS MANAGEMENT INFORMATION
SCIENCE COMMUNICATION

(9)
COMMUNICATION COMMUNICATION COMMUNICATION INFORMATION-

TECHNOLOGY
PERSPECTIVE

KNOWLEDGE PERSPECTIVE (9) PERSPECTIVE KNOWLEDGE MANAGEMENT PERSPECTIVE COMMUNICATION
INFORMATION-

TECHNOLOGY
BEHAVIOR BEHAVIOR BEHAVIOR INFORMATION-

TECHNOLOGY
COMMUNICATION SCIENCE

PERSPECTIVE QUALITY QUALITY INFORMATION-
TECHNOLOGY

KNOWLEDGE KNOWLEDGE KNOWLEDGE

BEHAVIOR INTERNET INTHFERNET INTERNET BEHAVIOR INTERNET ORGANIZATIONS
INTERNET FRAMEWORK FRAMEWORK UNITED-STATES PERSPECTIVE INNOVATION BEHAVIOR
QUALITY DESIGN DESIGN PERSPECTIVE INTERNET ORGANIZATIONS INTERNET
ORGANIZATIONS INFORMATION-

TECHNOLOGY
INFORMATION-
TECHNOLOGY

SYSTEM CARE BEHAVIOR INNOVATION

INNOVATION INFORMATION-
SYSTEMS (17)

INFORMATION-
SYSTEMS

QUALITY UNITED-STATES NETWORKS INFORMATION-
SYSTEMS

DESIGN NETWORKS (17) NETWORKS PATTERNS DECISION-MAKING INFORMATION-
SYSTEMS

DESIGN

INFORMATION-
SYSTEMS

SCIENCE SCIENCE CARE QUALITY DESIGN QUALITY

NETWORKS INNOVATION INNOVATION DESIGN DESIGN QUALITY NETWORKS

Table D.1
Top 20 terms in the Socio field (numbers in parentheses indicate the tied ranks).

DC HI CO(144 words have maximum
score)

BC CC(bottom 20) FR PR

UNITED-STATES UNITED-STATES UNITED-STATES UNITED-STATES UNITED-STATES UNITED-STATES UNITED-STATES
GENDER GENDER GENDER BEHAVIOR MANAGEMENT GENDER GENDER
BEHAVIOR BEHAVIOR BEHAVIOR MANAGEMENT BEHAVIOR HEALTH HEALTH
HEALTH ATTITUDES ATTITUDES GENDER GENDER BEHAVIOR BEHAVIOR
MANAGEMENT HEALTH (5) HEALTH HEALTH HEALTH WORK CHILDREN
WOMEN PERSPECTIVE (5) PERSPECTIVE MODEL MODEL CHILDREN WORK
ATTITUDES WOMEN WOMEN ATTITUDES CONSERVATION WOMEN WOMEN
CHILDREN WORK WORK IMPACT IMPACT MANAGEMENT MARRIAGE
IMPACT CHILDREN (9) CHILDREN PERSPECTIVE WOMEN MARRIAGE ATTITUDES
PERSPECTIVE INEQUALITY (9) INEQUALITY WOMEN ATTITUDES ATTITUDES FAMILY
MODEL PATTERNS (9) PATTERNS CHILDREN KNOWLEDGE FAMILY RACE
WORK PARTICIPATION PARTICIPATION KNOWLEDGE PERSPECTIVE MODEL INEQUALITY
RACE IMPACT IMPACT WORK CHILDREN RACE PERSPECTIVE
FAMILY MODEL (14) MODEL COMMUNITY WORK IMPACT MANAGEMENT
INEQUALITY FAMILY (14) FAMILY POLITICS POLITICS INEQUALITY IMPACT
MARRIAGE RACE RACE PERFORMANCE DYNAMICS PERSPECTIVE MODEL
PERFORMANCE (17) PERFORMANCE (17) PERFORMANCE DYNAMICS COMMUNITY POLITICS IDENTITY
PATTERNS (17) RISK (17) RISK CONSERVATION RACE IDENTITY PARTICIPATION
IDENTITY CONSEQUENCES (17) CONSEQUENCES MODELS PERFORMANCE NETWORKS PERFORMANCE
POLITICS MARRIAGE MARRIAGE RISK IDENTITY PERFORMANCE PATTERNS
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Table E.1
Top 20 terms in the Physics field (numbers in the parentheses indicate the tied ranks).

DC HI CO(383 words have maximum
score)

BC CC(bottom 20) FR PR

DYNAMICS DYNAMICS (1) DYNAMICS DYNAMICS ECRIS(1) DYNAMICS DYNAMICS
MODEL MODEL (1) MODEL MODEL PICKUP(1) MODEL MODEL
SYSTEMS SYSTEMS SYSTEMS SYSTEMS DEGENERACIES(1) SYSTEMS FLOW
FLOW SIMULATION SIMULATION FLOW TUBERCLES(1) FLOW TRANSPORT
STABILITY TRANSPORT TRANSPORT STABILITY OPTICAL COATINGS(1) TRANSPORT SYSTEMS
SIMULATION TRANSITION TRANSITION SIMULATION EXTREME EVENTS(1) STABILITY STABILITY
TRANSPORT FLOW (7) FLOW TRANSPORT STATISTICAL GEOMETRIC

MODEL(1)
PLASMA SIMULATION

TRANSITION STABILITY (7) STABILITY BEHAVIOR DYNAMICS SIMULATION PLASMA
INSTABILITY BEHAVIOR (9) BEHAVIOR SYSTEM MODEL INSTABILITY INSTABILITY
BEHAVIOR SIMULATIONS (9) SIMULATIONS TRANSITION SYSTEMS TRANSITION TRANSITION
SIMULATIONS DIFFUSION DIFFUSION PLASMA FLOW TURBULENCE TURBULENCE
FLUID INSTABILITY (12) INSTABILITY SIMULATIONS STABILITY FLOWS FLUID
DIFFUSION SYSTEM (12) SYSTEM INSTABILITY SIMULATION PLASMAS FLOWS
FIELD FIELD (14) FIELD FIELD TRANSPORT FLUID SIMULATIONS
PLASMA PARTICLES (14) PARTICLES DIFFUSION BEHAVIOR SIMULATIONS PARTICLES
SYSTEM MOTION (16) MOTION FLUID TRANSITION WAVES MOTION
FLOWS SURFACE (16) SURFACE SURFACE PLASMA MOTION PLASMAS
MOTION FLUID FLUID PARTICLES INSTABILITY PARTICLES FIELD
PARTICLES EVOLUTION (19) EVOLUTION MOTION FLUID FIELD BEHAVIOR
TURBULENCE EQUATION (19) EQUATION TEMPERATURE SIMULATIONS BEHAVIOR WAVES
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