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Abstract

‘‘Innovation indicators’’ strive to track the maturation of an emerging technology to help forecast its

prospective development. One rich source of information is the changing content of discourse of R&D,

as the technology progresses. We analyze the content of research paper abstracts obtained by searching

large databases on a given topic. We then map the evolution of that topic’s emphasis areas.

The present research seeks to validate a process that creates factors (clusters) based on term usage in

technical papers. Three composite quality measures—cohesion, entropy, and F measure—are

computed. Using these measures, we create standard factor groupings that optimize the composite

term sets and facilitate comparisons of the R&D emphasis areas (i.e., clusters) over time.

The conceptual foundation for this approach lies in the presumption that domain knowledge

expands and becomes more application specific in nature as a technology matures. We hypothesize

implications for this knowledge expansion in terms of the three factor measures, then observe these

empirically for the case of a particular technology—autonomous navigation. These metrics can

provide indicators of technological maturation.

Published by Elsevier Science Inc.

Keywords: R&D cluster quality measures; Technology maturity; Innovation indicators

0040-1625/02/$ – see front matter. Published by Elsevier Science Inc.

doi:10.1016/S0040-1625(02)00355-4

* Corresponding author.

E-mail address: wattsb@tacom.army.mil (R.J. Watts).

Technological Forecasting & Social Change

70 (2003) 735–758



1. Background: TECH OASIS and R&D profiling

Technology managers have many reasons to want to gauge how rapidly a technology of

interest is progressing toward applications. Most organizations, private and public, need to

assess external technological developments to determine how they can gain from these

(e.g., via joint development activities, licensing). The good news—there is tremendous

information available relating to scientific and technological development activities. In

particular, large, publicly accessible databases compile such information and make it

electronically accessible (for a price). Two such databases do a fine job of abstracting a

major portion of the world’s open engineering R&D literature—INSPEC (Institute of

Electrical Engineers, UK: http://www.iee.org/Publish/INSPEC/) and EI Compendex=http://

www.ei.org/eicorp/eicorp?menu = engineeringvillage2menu&display = engineeringvillage2).

Together, they add about 500,000 abstracts of conference papers and journal articles

annually.

The bad news? The quantity of information available on a given technology exceeds our

traditional mechanism of digesting this—namely, reading. For instance, were you to want to

keep track of developments in fuel cells, you would confront about 50,000 abstracts in the

leading five or so databases. What to do? Given this need for information about emerging

technologies and the abundance of such information in electronic form, we need to devise

tools to exploit this information to help assess current developmental status and future

prospects of a given technology.

Work on text mining is extremely active. This draws on efforts under several labels,

including ‘‘KDD’’ (Knowledge Discovery in Databases—cf. http://www.cs.cmu.edu/~dunja/

WshKDD2000.html, http://www.cs.biu.ac.il/~feldman/ijcai-workshop%20cfp.html), and bib-

liometrics (counting of bibliographic activity—cf. sistm.web.unsw.edu.au/conference/

issi2001).

The Technology Opportunities Analysis of Scientific Information System (TECH OASIS)

is a software tool that enables ‘‘text mining’’ of fixed field literature abstract files. That is, it

counts the occurrences of particular terms, making it easy to list the most frequent authors,

organizations researching the topic, terms used in the abstracts, etc. Such lists can be crossed

with each other to create matrices. For instance, one might cross the leading keywords against

the date of publication to see which keywords are most prevalent in recent years. van Raan [1]

has called these ‘‘one-dimensional’’ (lists) and ‘‘two-dimensional’’ (matrix) analyses. One can

go further to study interrelationships based on co-occurrence of terms. For example, it might

be of interest to note which authors publish with each other. Alternatively, one could group

terms, such as keywords, to see which tend to appear in the same abstracts.

TECH OASIS supports the performance of technology assessments by automating the

profiling of open-source R&D. TECH OASIS has been used to serve the process of

‘‘innovation forecasting,’’ by applying bibliometric analyses to augment and enhance

traditional technology forecasting techniques [2].

TECH OASIS has been developed under the joint sponsorship of the Defense Advanced

Research Projects Agency (DARPA) and the U.S. Army Tank-Automotive and Armaments

Command (TACOM). The technology opportunities analysis (TOA) concept originated at
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Georgia Tech’s Technology Policy and Assessment Center (TPAC). TPAC strives to facilitate

analyses of technological innovations [3,4] (see also http://tpac.gatech.edu). TECH OASIS,

named VantagePoint for the commercial market, has been developed as a Windows-based

software suite of tools that combines bibliometrics with content analysis [5]. TECH OASIS

development represents a collaborative program, involving Search Technology, as the prime

contractor, and subcontractors, Georgia Tech TPAC and Intelligent Information Services

Corporation (IISC).

The TOA process entails these main steps:

1. Search and retrieve text information, typically from large abstract databases on a particular

subject. In this paper, we analyze abstracts retrieved to capture research related to

‘‘autonomous navigation.’’

2. Clean the data and generate basic analyses.

3. Profile the resulting research domain [6]. TECH OASIS applies a combination of machine

learning, statistical analyses enhanced by computational linguistics, fuzzy analysis, and

principal components analysis (PCA), among others, to analyze literature abstracts.

Profiling may focus on documents (e.g., ‘‘bucketing’’ documents into related, manageable

groups [5,7]). Alternatively, it may focus on concepts (e.g., PCA to group related terms as

conceptual clusters [8,9]). A third choice is a combination—seeking to link documents to

concepts (e.g., relevance scoring [10]). Conceptual distinctions and methods are discussed

further elsewhere [11].

4. Extract latent relationships. TECH OASIS applies iterative PCA to uncover links among

terms and underlying concepts (cf. examples on http://tpac.gatech.edu [5,7–9,12]).

5. Represent relationships graphically. Generation of ‘‘maps,’’ as applied in this research, is

elaborated elsewhere [13].

6. Interpret the prospects for successful technological development. This typically entails

integrating the bibliographic search set analyses with expert domain knowledge

(interviews) [8].

The TOA process strives to create knowledge from a ‘‘body’’ of literature beyond that

obtainable by digesting individual pieces. Retrieved text is treated as data [14]. Text is parsed

into informative units, counted, and patterns uncovered that can speak to information

analysts’ interests and management needs.

2. The present research case: autonomous navigation

This paper focuses on extracting latent relationships through PCA and representing the

derived relationships graphically. PCA, an inductive approach, does not impose groupings,

but instead elicits them from the data. The PCA factor map analysis, a partly automated

process, elicits relationships based on ‘‘co-occurrence’’ information. Co-occurrence reflects

the pattern of terms occurring together. If two terms occur together in the records more

frequently than expected, there is a presumption of relationship between them. The terms
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analyzed in this study are from the descriptors, or keywords, field of INSPEC and EI

Compendex abstracts. The descriptors field for each abstract generally contains about five to

eight terms that were generated to reflect the contents of the abstracted research paper. PCA

of the descriptors should, therefore, generate factors (groupings of terms) that depict domain

knowledge of the set of research papers under study.

What is being analyzed? This research documents the analysis of 1629 INSPEC and 1091

EI Compendex abstracts of technical papers published on ‘‘autonomous navigation’’ between

1987 and 2001. The search strategy used to retrieve the literature abstracts was ‘‘autonomous

(adjacent to) (navigation or vehicle(s)).’’ Roughly equal ‘‘number-of-record’’ periods were

separated—i.e., 1987–1990 (279 records), 1991–1993 (248 abstracts), 1994–1995 (306

records), 1996–1997 (288 abstracts), 1998–1999 (284 abstracts), and 2000–2002 (223

records)—for the INSPEC ‘‘autonomous navigation’’ documented research. The 1091 EI

Compendex autonomous navigation abstracts were subdivided into the same periods, with the

following periods’ record breakout: 171 abstracts in 1987–1990, 164 in 1991–1993, 197 in

1994–1995, 197 in 1996–1997, 182 in 1998–1999, and 180 in 2000–2001.

The next section explains the quality measures used to determine the standard factor or

cluster groupings. We then discuss the use of these measures to assess technology maturity.

Later, we present the findings for the autonomous navigation research, followed by a

discussion of future research directions for the proposed innovation indicators.

3. Three criteria for term factors

The leading keywords (descriptors) compiled for the autonomous navigation abstract

records represent the content of the full documents abstracted. TECH OASIS has a process

that applies a semiautomated version of PCA, a basic form of factor analysis. Henceforth, we

refer to the resulting clusters of terms that are so grouped as ‘‘factors.’’ The factors, derived

from the analyzed descriptors, should reflect domain knowledge as it builds over the time

periods.

The resulting factors are automatically tabulated and depicted in a standard factor map

display representation. Figs. 1 and 2 depict the factor maps derived from the leading

keywords in ‘‘autonomous navigation’’ research papers. Fig. 1 derives from the INSPEC

records for 1987–1990; Fig. 2, for INSPEC records for 1991–1993. Consider Figs. 1—14

factors are shown.1 Each represents a group of keywords that tend to occur together in the

abstract records. The ‘‘aerospace control’’ factor (upper, center) consists of two high-loading

keywords, ‘‘aerospace control’’ and ‘‘space vehicles.’’ The software has an algorithm to

distinguish those more highly correlated keywords from the others (PCA actually calculates

the relationship between every keyword in the analysis and each factor constructed there-

1 The factor map algorithm uses an absolute value, descriptor loading factor, threshold to define the existence

(i.e., relevance) of a derived cluster group. The descriptor loading factors for one factor in the 13-factor analysis,

depicted in Fig. 1, exceeded this threshold in both the positive and negative ranges of the loading-factors.

Therefore, 14 factors were generated for the 279 autonomous navigation abstracts from 1987 to 1990.

R.J. Watts, A.L. Porter / Technological Forecasting & Social Change 70 (2003) 735–758738



from). The size of a node represents the number of records containing one or more of the

high-loading keywords for that factor—e.g., fewer records relate to the ‘‘aerospace control’’

factor than to the ‘‘computerized control’’ factor (lower center in Fig. 1). Location of the

factors in the map is based on multidimensional scaling (MDS); it provides a weak reflection

of the extent of relationship among factors. The lines connecting factors reflect a path-erasing

algorithm; the presence of a connecting line is a stronger reflection of relationship than is map

node placement. So, for instance in Fig. 1, the ‘‘radar systems’’ factor (lower left) is

somewhat related to four other factors, whereas the ‘‘computerized materials handling’’ factor

(upper right) is less related to other factors. TECH OASIS (VantagePoint) can zoom in to

provide various descriptions of a given factor. For instance, in Fig. 1, pull down lists have

been frozen in place to illustrate country of the lead authors of the articles relating to the

factor ‘‘image recognition,’’ year of publication for the articles pertaining to ‘‘radar systems,’’

and affiliation of the lead author for articles linked to ‘‘computerized signal processing.’’

Fig. 1. Autonomous navigation (INSPEC 1987–1990) descriptors’ standard factor map.
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Factor analysis research seeks to create ‘‘highly internally homogenous groups, the

members of which are similar to one another, and highly externally heterogeneous groups,

members of which are dissimilar to those of other groups’’ [15]. Steinbach et al. [16] discuss

and apply measures of cluster quality, both internal and external measures of ‘‘goodness.’’

Internal measures, such as cohesion, assess sets of clusters without knowledge of external

cluster relationships. External quality measures, such as entropy and F measure, compare

factors to known classes, which extends to mean other factors.

We apply an automated process that evaluates factors for each period’s publications based

on the combined cohesiveness, entropy, and F measure of the derived factor groups [17]. This

standard (representing the optimized cluster quality grouping) approach strives to minimize

the entropy and F measure, and maximize cohesiveness, for each period’s keywords factors.

Fig. 2. Autonomous navigation (INSPEC 1991–1993) descriptors’ standard factor map.
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The factor groups’ weighted average entropy, F measure, and cohesion measures for each

period will later be plotted across time periods (Fig. 3). Empirically derived relationships

among these measures may prove valuable in tracking domain knowledge expansion, as well

as technological innovation and diffusion.

Ideally, an assessment of the implications of change in the values of the entropy, F

measure, and cohesion would be focused on common factors that reoccur in multiple time

periods (e.g., ‘‘telecontrol’’ and ‘‘computerized pattern recognition’’ appear in both Figs. 1

and 2). Evaluation of individual factors’ quality measures across periods might reveal specific

domain knowledge expansion. Such a situation (i.e., obtaining common factors across

periods) seldom occurs naturally. Use of thesauri to seed, or at least encourage, common

factors across sequential time periods will be addressed in the discussion on future research.

Chen et al. [18] recognize the cluster grouping change issue and state ‘‘Base maps across

different time intervals tend to have different topology. . . . Such a design tends to give the

viewer a relatively high cognitive load because one has to compare different shaped base

maps across different time intervals.’’ Only two factors (those just noted) have common titles

in both factor maps (Figs. 1 and 2). This does not imply that the other research categories of

the 1987–1990 period all ended. However, term usage (i.e., ‘‘descriptor’’ field term/phase

record frequencies) changed sufficiently to alter the term/phrase factor analysis factors and

names in the subsequent periods. (Note: The term or phrase with the highest loading

coefficient is used to name each factor.)

This research focuses on the standard composite (i.e., macrolevel) cluster quality measures

derived for the set of factors in each period, as opposed to the individual factors’ quality

measures. We focus on macrolevel cluster quality measures in hopes that the findings might

both validate the standard process, itself, and reveal an approach for individual factor groups’

recombination and analysis over sequential time periods.

The following section defines the factor quality measures and addresses their change

implications for each period’s R&D abstracts. The quality measures will also be assessed as to

their empirical relationships to ‘‘domain knowledge’’ and ‘‘technology diffusion.’’

4. Cluster quality measures and change implications

4.1. Cohesion

The internal quality measure applied toward developing a standard factor analysis

approach is cohesion. Cohesiveness emanates from the vector space model of document

information cluster analysis. In the vector space model, a term frequency vector represents

each document. The terms chosen to represent the documents from the ‘‘autonomous

navigation’’ abstract set are the leading (most frequent) descriptors. Each descriptor occurs

only once in each document. All document vectors, therefore, consist of a sequence of 1’s and

0’s, as representation of inclusion or exclusion of the descriptors used. Each document vector

is normalized to be of unit length. The average pairwise similarity between each factor’s

documents constitutes the cohesion measure. The pairwise similarity is computed by the
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vector cosine measure, which for unity vectors equals the vectors’ dot product. The standard

factor analysis process strives to maximize the factors’ cohesion.

What might changes over time in the cohesion measure indicate? A composite cohesion

measure (i.e., averaged over each of the factors in each time period) decrease over time might

reflect domain knowledge expansion, or a general broadening of the field of research in each

subarea (factor). As a technology matures, one might expect domain knowledge to expand

and clustered research to become more dissimilar. The opposite change, an increase of the

composite cohesion measure, might indicate focusing of domain knowledge, such as on an

important new discovery. Knowledge growth could occur in either case. The composite

cohesion, therefore, would not seem to be a straightforward indicator for knowledge growth.

4.2. Entropy

Entropy provides an external measure of cluster quality for nonnested clusters or clusters at

one level of a hierarchical grouping. The probabilities, Pij, are computed for each cluster

grouping. These represent the probability that a member of cluster j belongs to group i, which

is defined as the noncommon derived factors. These probabilities can be obtained by analyzing

the TECH OASIS co-occurrence matrix, which has the derived factors as both the rows and

column entries (e.g., Tables 2–4). Cluster group entropy is calculated using the formula:

Entropyj ¼ �
Xm

i¼1

½PijlogðPijÞ�

where the sum is taken for all groups, excluding each group where i = j. The sum of the

weighted entropies for each cluster grouping equals the total entropy:

total entropy ¼
Xm

j¼1

½ðnj � EntropyjÞ=n�

where nj equals the number of abstracts in cluster j,m is the number of factors, and n equals the

total number of abstracts in the file (e.g., 279 for the 1987–1990 period).

The exclusion of the matrix diagonal entries from the analysis attempts to minimize the

comparative entropy penalty that a larger number of factor groups would have vs. a smaller

number of factor groups. The applied algorithm attempts to minimize the total factor grouping

entropy. However, groupings that generate a large number of factors should not be unduly

penalized, since a larger number of small factors may have a higher total cohesion than a

smaller number of larger factors. It should be emphasized, the algorithm attempts to

maximize total cohesion, while minimizing total entropy, to define the standard factor

grouping.

Entropy measures relatedness among factors. What might changes in the composite

factors’ entropy indicate over sequential periods? A global topic focus, the use of common

base technologies, and/or increasing knowledge diffusion might increase the relatedness of

common term usage of the constituent factors. As a technology matured, one would expect

that base knowledge would be more commonly shared among factors (research clusters), thus
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increasing the measured entropy. Stated differently, as a technology matures, research papers

would become more systems oriented, rather than subtechnology focused, and would be

clustered in multiple research factor groups that increasingly overlap. Conversely, if there

were a significant discovery or change in research direction in one or more cluster categories,

causing divergence in research terms usage, entropy would decrease. More succinctly,

convergent research categories across periods would cause the composite entropy to increase.

Divergent research categories across periods would lead to lower composite entropy.

4.3. F measure

The F measure represents the second external cluster quality measure that gets integrated

into the standard factor grouping process. The total F measure for a factor cluster grouping is

defined as

F ¼
Xm

j¼1

½ðni=nÞmax Fði; jÞf g�

where

Fði; jÞ ¼ ð2� Recallði; jÞ � Precision ði; jÞÞ=ðPrecisionði; jÞ þ Recallði; jÞÞ
and

Recallði; jÞ ¼ nij=ni

Precisionði; jÞ ¼ nij=nj

nij equals the number of members of group i in cluster j, nj is the number of members of

cluster j, ni equals the number of members of group i, and n is the number of documents. As

with the entropy calculations, the diagonal values are excluded from the analysis. Again, the

standard factor analysis process attempts to minimize the total F measure and the total

entropy, while maximizing the total cohesion of the derived factor groupings.

The F measure represents the maximum similarity—relatedness—between each factor and

any of the other factors derived for a period. The increase of F measure from one period to the

next depicts a significant rise in similarity of one group to at least one, and possibly many

other, factors. Both entropy and F measure depict external factor groups relatedness.

However, the F measure provides a composite indicator of the factor groups’ maximum

relatedness; whereas, total entropy reflects a weighted average of the total intergroup

relatedness. If the F measure increases and the rate-of-change exceeds that of the entropy,

one might suspect that a base factor group(s), mutually common to all factor groups, might

have emerged. However, if the total entropy rate-of-change (i.e., the weighted average of the

total intergroup relatedness) exceeds that of the F measure, clusters of factors may be forming

due to general knowledge diffusion. The relevance of F measure changes, then, might best be

determined by comparative analysis to changes in entropy.
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5. Expected patterns and hypotheses

The standard factor analysis strives to minify the effects of factor size (i.e., the number of

records in each group) and the number of factors derived as the standard for each period. The

composite quality measures for each period equal the weighted average of the individual

factors’ quality measures divided by the number of factors. The quality criterion are,

therefore, normalized to a per factor measure. A summary of the ‘‘change implication’’

discussion for the normalized quality measures includes these hypotheses:

1. Cohesion reduction over periods, conceptually, represents domain knowledge expansion.

2. Cohesion increases over periods, theoretically, depicts domain knowledge focus.

3. Significant increases in entropy per group (i.e., convergent or common research categories)

might result from a global subject focus, application of common base technologies, and/or

knowledge diffusion.

4. Periods of lower entropy per group might result from or depict a ‘‘domain’’ (i.e., group

specific) new discovery or ‘‘hot topic’’ focus (i.e., divergent research between research

categories).

5. If the F measure rate of increase exceeds that of the entropy, there may be a common

related category (i.e., global focus) of the existing factors.

6. If the entropy rate of increase exceeds that of the F measure, clusters of factors may be

forming due to general knowledge diffusion.

If the factor quality measures can be ‘‘properly’’ normalized/weighted in relation to one

another:

1. Periods of higher cohesion vs. entropy might reflect periods of focused parallel research

and development.

2. Periods of higher entropy vs. cohesion might reflect periods of knowledge diffusion (i.e.,

base knowledge multiple factor group applications).

6. Analysis of autonomous navigation R&D evolution

6.1. Basic research: analysis of INSPEC records

As laid out in the Present Research Case section, we analyze the descriptors (keywords) from

the INSPECR&D abstracts for successive time periods. The selection of howmany descriptors

to be analyzed was based on a Zipf distribution analysis [17]. That is, descriptors occurring in

the most records were included, with a minimum of 60 descriptors for each time period.

The factors derived for these descriptors were automatically tabularized and depicted in a

standard factor map display representation (e.g., Figs. 1 and 2). As discussed, the developed

standard (i.e., cluster group optimization) approach applied a composite metric, which

minimized the entropy and F measures and maximized cohesiveness for each period’s

R.J. Watts, A.L. Porter / Technological Forecasting & Social Change 70 (2003) 735–758744



R&D abstracts. The standard composite entropy, F measure, and cohesion measures appear in

Table 1, and are plotted across time periods (Fig. 3) to assess their changes in respect to the

empirical relationships postulated for domain knowledge expansion or technology diffusion.

In Table 1, the second column shows the number of factors that generated the composite

measure. The third column provides the percentage of each period’s R&D abstracts that have

been included in one or more of the derived standard factors. For example, the 13 factors,

which defined 14 cluster groups displayed in Fig. 1, include and/or depict 87% of the 279

abstracts of the 1987–1990 published papers. Similarly, Fig. 2 displays the 10 factors’ 11

cluster groups that depict 69% of the 248 abstracts of the 1991–1993 published papers.

Columns 4, 6, and 8 in Table 1 list the total entropy per cluster group, the total F measure per

cluster group, and the total cohesion per cluster group, respectively. The 14 cluster groups of

Fig. 1, therefore, have a composite total entropy per group of 0.1077, a composite total F

measure per group of 0.0272, and a composite total cohesion per group of 0.4849. Similar

factor maps to Figs. 1 and 2 were generated for the other periods. The weightings for columns

5 and 7 in Table 1 equal the ratio of the arithmetic mean of column 8 to the arithmetic mean of

columns 4 and 6, respectively.

Fig. 3 displays the plots for columns 5, 7, and 8 from Table 1. The total composite

cohesion for the period-derived factors declines for the full period analyzed—1987–2001.

Fig. 3. Autonomous navigation (INSPEC) factor groups’ composite quality measures evolution.

Table 1

Autonomous navigation (INSPEC) factor groups’ composite quality measures

Period Number

of factors

Percentage

clustered

Total

entropy

per group

Total

entropy

(normalized)

Total F

measure

per group

Total F

measure

(normalized)

Total

cohesion

per group

1987–1990 13 0.87 0.1077 0.3931 0.0272 0.3691 0.4849

1991–1993 10 0.69 0.0909 0.3316 0.0240 0.3257 0.4621

1994–1995 17 0.87 0.1366 0.4985 0.0324 0.4389 0.4490

1996–1997 14 0.81 0.1130 0.4124 0.0246 0.3339 0.4350

1998–1999 13 0.78 0.1409 0.5140 0.0411 0.5565 0.4296

2000–2002 9 0.78 0.1422 0.5188 0.0476 0.6443 0.4078

R.J. Watts, A.L. Porter / Technological Forecasting & Social Change 70 (2003) 735–758 745



This implies that domain knowledge is expanding (i.e., the internal group records are

becoming more dissimilar over time). The composite entropy and F measure per cluster

group declined from the 1987–1990 period to the 1991–1993 period. A significant and

comparable rise in both measures occurs for the 1994–1995 period, followed by declines for

the 1996–1997 R&D abstracts. The external quality measures, entropy and F measure,

decline and rise cycle repeats for the 1996–1997 and 1998–1999 periods. During the last two

periods, the F measure increases significantly, while entropy increases slightly for the 2000–

2001 period. Overall, the total entropy per group rises from 0.1077 to 0.1422 during the six

periods analyzed. Do the linear regression slopes for the per-group cohesion and entropy

calculations from Fig. 3 provide a measure of domain knowledge expansion and technology

diffusion for the autonomous navigation basic research?

The INSPEC database contains R&D abstracts that generally reflect more basic research

than those compiled in EI Compendex. From Fig. 3 and the earlier hypotheses, one might

surmise that the autonomous navigation basic research for the period between the 1987–1990

and 1991–1993 was internally group focused (i.e., divergent research based on the lower

entropy calculations) with each domain’s (i.e., factor group) knowledge expanding, as

Table 2

Autonomous navigation standard INSPEC factors co-occurrence matrix for 1994–1995
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depicted by the lower cohesion per group calculation. Between the 1991–1993 and the

1994–1995 periods, the INSPEC basic research factors’ entropy increased, suggesting a

global subject focus and/or knowledge diffusion. To determine which, if either, of these

events (i.e., global subject focus or knowledge diffusion) have occurred, we shall assess the

factors’ common records.

Table 2 presents the co-occurrencematrix of the records contained in the 1994–1995 factors.

Note the occurrence of clusters of factor groups with common records (i.e., the shaded areas).

The duplicate records within multiple groups occur because of common usage of the factor–

defining descriptors across the represented research clusters. This shared research documenta-

tion across categories appears to represent knowledge diffusion or convergent research, more so

than the application of common base or focus technology or application. The clusters of factors

(i.e., convergent research) may be analogous to the pieces of a puzzle coming together;

depicting the formation of subdisciplines within the technology. If so, ‘‘road vehicles,’’ ‘‘traffic

control,’’ and ‘‘inference mechanisms’’ would depict such a subdiscipline. Two factors,

(truncated from Table 2 and not shown), ‘‘space research’’ and ‘‘cameras,’’ are subsets of the

group ‘‘aerospace computing.’’ The existence of these subsets causes the derived entropy and F

measure calculations to increase more than might be expected, thus skewing the entropy and F

measure points in Fig. 3 higher than, perhaps, they should be.

Moving forward two periods, the entropy and F measure increases during the 1998–

1999 period appear to be due to the factor group ‘‘computerized navigation.’’ Note that the

F measure rate of change exceeds that for the entropy calculation. Table 3 shows the group

‘‘computerized navigation’’ to have common records with most of the other factor groups.

Does the research documented under the ‘‘computerized navigation’’ group represent a

Table 3

Autonomous navigation standard INSPEC factors co-occurrence matrix for 1998–1999
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base or focus for the other research factors? This factor’s descriptors—computerized

navigation, sensor fusion, fuzzy control, fuzzy logic, image sensors, distance measurement,

uncertainty handling, and software agents—provide a hint as to the overall subject matter

of the documented research. The clusters of factors (i.e., shaded areas) do not appear as

prevalent for the 1998–1999 factor groups (Table 3) as for the 1994–1995 factor groups

(Table 2).

Total entropy per group rises only slightly from 0.1408 to 0.1422 between the last two time

periods (Table 1). For the 2000–2001 period, Table 4 shows both a high entropy group,

‘‘image sequences,’’ and clusters of factors. At first, one might question the dissimilar base or

focus groups shown in Tables 3 and 4; however these groups’ difference may be largely in

name. In fact, the most frequent group-defining term of the ‘‘image sequences’’ group (Table

4) is ‘‘computerized navigation.’’2 Comparing the base or focus factors’ group defining terms,

the research emphasis also appears to have evolved from component level research to a

system level emphasis. For example, the 1998–1999 group-defining term, ‘‘image sensors,’’

is a component of the 2000–2001 group-defining term, ‘‘computer vision,’’ a system level

descriptor. A similar relationship exists for the 1998–1999 descriptor, ‘‘distance measure-

ment,’’ and the 2000–2001 descriptor, ‘‘motion estimation.’’ Note in Table 4 that there

appears to be a secondary focus group, ‘‘aircraft control,’’ an even more specific application

than ‘‘computerized navigation.’’

Table 4

Autonomous navigation standard INSPEC factors co-occurrence matrix for 2000–2001

2 The complete list of group defining terms for ‘‘image sequences’’ includes computerized navigation,

computer vision, real-time systems, vehicles, image sequences, and motion estimation.
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6.2. Applied research: analysis of EI compendex records

To determine whether the ‘‘innovation indicator’’ implications of the ‘‘factor quality

measures’ changes’’ can be more globally applied, the 1091 autonomous navigation

abstracts from EI Compendex were separately analyzed. These reflect more applied

research than the INSPEC records, so this assessment addresses a somewhat more mature

stage in the autonomous navigation research and development. As with the INSPEC

abstracts, the EI Compendex abstracts were subdivided into roughly equal-record periods

and subjected to the same type of analysis. The standard composite measures for entropy,

F measure, and cohesion were tallied (Table 5) and plotted over the six time periods

(Fig. 4).

Unlike the more basic research (INSPEC record analyses), the factors’ entropy and F

measure increase significantly over the periods from 1987–1990 to 1991–1993. Initially,

the rate of increase for the composite F measure exceeds that of the composite entropy.

This is similar to the relationship observed for the INSPEC 1998–1999 and 2000–2001

periods. As observed in Tables 3 and 4, Table 6 also shows a base or focus group,

‘‘velocity control,’’ and the clusters of factor groups (i.e., shaded areas). The composite

factors’ cohesion decreases over the first three periods, depicting domain knowledge

Table 5

Autonomous navigation (EI Compendex) factor groups’ composite quality measures

Period Number

of factors

Percentage

clustered

Total

entropy

per group

Total

entropy

(normalized)

Total F

measure

per group

Total F

measure

(normalized)

Total

cohesion

per group

1987–1990 11 0.87 0.1292 0.3260 0.0380 0.4124 0.4758

1991–1993 10 0.89 0.1639 0.4137 0.0531 0.5757 0.4203

1994–1995 15 0.89 0.1806 0.4557 0.0314 0.3405 0.3864

1996–1997 21 0.93 0.1763 0.4450 0.0311 0.3371 0.3975

1998–1999 12 0.82 0.1187 0.2996 0.0250 0.2709 0.4114

2000–2002 13 0.89 0.2176 0.5491 0.0510 0.5525 0.3977

Fig. 4. Autonomous navigation (EI Compendex) factor groups’ composite quality measures evolution.
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Table 6

Autonomous navigation (EI Compendex) standard factors co-occurrence matrix for 1991–1993 R
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Table 7

Autonomous navigation (EI Compendex) standard factors co-occurrence matrix for 1998–1999

Table 8

Autonomous navigation (EI Compendex) standard factors co-occurrence matrix for 2000–2001
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expansion. Stated in different terms, the similarity among research factors increases, as the

similarity of the research within factors decreases. The global emphasis appears to be on

mobile or industrial robots.

Between the 1994–1995 and 1998–1999 periods, the factors’ composite entropy and F

measure decline. The rate of change of the composite entropy exceeds that of the composite

F measure. Table 7 shows that neither a base factor nor clusters of factor groups exist for

the low entropy period, 1998–1999. Both external cluster group relatedness measures then

rise significantly in the 2000–2002 period. The steep increase of the entropy and F

measure in the 2000–2001 period results from the reemergence of a base factor group,

‘‘intelligent vehicle highway systems’’ (IVHS), and clusters of factor groups, as shown in

Table 8. Note the focus shift from ‘‘mobile or industrial robots’’ to the IVHS. Does the

decline and rise cycle of entropy and F measure signal a shift in research focus? The

composite cohesion declines in all periods except for 1996–1997 and 1998–1999. As with

the full cycle changes of the INSPEC cluster group quality measures, the EI Compendex

factor grouping cohesion measure decreased and entropy increased. However, more period-

to-period variations occur in the EI Compendex abstracts’ analysis, as might be indicative

of a research focus change.

7. Additional observation

What else has been revealed? The entropy increase observed for the INSPEC and EI

Compendex factors would seem to relate to a cluster group ‘‘degree of focus.’’ Note in Table

9, the degree of focus (i.e., how specific the factors’ subjects appear) does seem to be

directly related to the entropy. Table 9 lists the high entropy groups derived for the EI

Compendex autonomous navigation abstracts for each period. The high entropy groups

would have the greatest effect on the composite entropy calculation. Observe how generic

the first set of factor group names appear (e.g., ‘‘systems science and cybernetics,’’

‘‘computer software,’’ etc.). Entropy per group was low for this period (1987–1990). The

next period’s group names, those for 1991–1993, appear more specific (e.g., ‘‘pattern

recognition,’’ velocity control,’’ ‘‘mobile robots,’’ etc.). Entropy increased during this period

(1991–1993).

There is also a direct relationship between entropy per group and the percentage of the

abstracts included in the factors (i.e., standard factor map). Columns 3 (percentage

clustered) and 4 (total entropy per group) of Tables 1 and 5 depict this relationship.

By comparing the percentage clustered between Table 1, which displays analysis results

for more basic research, and Table 5, providing the analyses of the more applied research,

one sees that a greater percentage of the applied research abstracts get clustered than do

for the basic research. The INSPEC percentage clustered ranges from a low of 69%

clustered to a high of 87% clustered, with an average of 80%. The EI Compendex

‘‘percentage clustered’’ ranges from a low of 82% clustered to a high of 93% clustered,

with an average of 88% (Tables 1 and 5). Most will accept the premise that basic

research is less focused than applied research. These observations and relationships would
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then support the premise that the composite entropy per group reflects a degree of focus

of the clustered research.

In technology management, R&D focus was found to be a factor for successful

innovation (i.e., at the organizational level of R&D management) [19]. This composite

entropy calculation might then provide a measure to extend the ‘‘degree of focus’’

Table 9

Autonomous navigation (EI Compendex) high entropy factors

Group names Group

entropy

Group

cohesion

Group

names

Group

entropy

Group

cohesion

1987–1990: Systems

science and

cybernetics (48)

0.4604 0.4460 1996–1997: Bandwidth (42) 0.4725 0.3417

1987–1990: Computer

software (33)

0.2447 0.3980 1996–1997: Kalman

filters (36)

0.4503 0.3660

1987–1990: Image

analysis (35)

0.2391 0.5338 1996–1997: Intelligent vehicle

highway systems (33)

0.3664 0.4402

1987–1990: Navigation

aids application (27)

0.1955 0.5047 1996–1997: Membership

functions (28)

0.2539 0.4275

1991–1993: Pattern

recognition (39)

0.3089 0.4444 1996–1997: Feature

extraction (27)

0.2519 0.4467

1991–1993: Velocity

control (37)

0.3083 0.3389 1996–1997: Obstacle

detectors (26)

0.2470 0.3606

1991–1993: Mobile

robots (36)

0.2785 0.4673 1996–1997: Genetic

algorithms (25)

0.2377 0.3629

1991–1993:

Algorithms (29)

0.2404 0.4788 1996–1997: Charge-

coupled devices (23)

0.2299 0.4031

1991–1993:

Lasers (32)

0.2021 0.4330 1996–1997: Optical

sensors (26)

0.2033 0.3602

1991–1993: Robots,

industrial (28)

0.1649 0.5195 1998–1999: Intelligent

control (28)

0.2023 0.4503

1994–1995: Control

system analysis (42)

0.3610 0.4261 1998–1999: Intelligent

vehicle highway systems (27)

0.1975 0.4100

1994–1995: Automobile

electronic equipment (36)

0.3055 0.4079 1998–1999: Image analysis (24) 0.1639 0.3939

1994–1995: Numerical

methods (36)

0.2767 0.3791 1998–1999: Real-time

systems (25)

0.1630 0.4339

1994–1995: Robotic

arms (32)

0.2683 0.3697 1998–1999: Fuzzy

control (26)

0.1530 0.4093

1994–1995: Recursive

functions (29)

0.2468 0.4066 2000–2001: Intelligent

robots (45)

0.4184 0.4066

1994–1995: Real-time

systems (30)

0.2417 0.4144 2000–2001: Intelligent vehicle

highway systems (43)

0.3919 0.4208

1994–1995: Cameras (29) 0.2238 0.3931 2000–2001: Vehicle wheels (36) 0.3227 0.3451

1994–1995: Fuzzy

control (27)

0.1973 0.4026 2000–2001: Dynamic

programming (34)

0.3217 0.3747

2000–2001: Bombs (ordnance) (34) 0.3185 0.3694

2000–2001: Satellites (39) 0.3120 0.3784
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Table 10

Autonomous navigation (INSPEC) 1987–2002 record-periods factors recombination groups

Group 6

(Recombo-4:

image sequences)

Group 5

(1998–1999:

computerized navigation)

Group 4

(Recombo-3:

Kalman filters)

1991–1993:

image segmentation

1991–1993:

sensor fusion

1994–1995:

marine systems

1994–1995:

digital simulation

1991–1993:

fuzzy set theory

1987–1990:

microcomputer applications

1998–1999:

image matching

Recombo-2:

fuzzy logic

1996–1997:

helicopters

1994–1995:

image texture

2000–2002:

image sensors

2000–2002:

aircraft control

1996–1997:

image colour analysis

1998–1999:

neural nets

2000–2002:

optimal control

Recombo-2:

neurocontrollers

1996–1997:

edge detection

Recombo-2:

control system synthesis

Recombo-2:

image recognition

Recombo-2:

inertial navigation

1996–1997:

co-operative systems

Recombo-2:

robot kinematics

Group 7

(Recombo-2:

robot vision)

Group 8

(Recombo-2:

road traffic)

Group 1

(1987–1990:

computerized control)

1991–1993:

feature extraction

1994–1995:

transportation

1987–1990:

radionavigation

1998–1999:

CCD image sensors

1994–1995:

road vehicles

1987–1990:

radar systems

1994–1995:

aerospace computing

Recombo-2:

inference mechanisms

1987–1990:

learning systems

1994–1995:

cameras

1994–1995:

traffic control

1987–1990:

computerized materials handling

1998–1999:

object detection

1987–1990:

pattern recognition

1994–1995:

self-organising feature maps

1987–1990:

automatic guided vehicles

1994–1995: planning

(artificial intelligence)

Recombo-2:

telecontrol

1994–1995:

parallel processing
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assessment of successful innovation to the next source level (e.g., industry segment, nation,

whatever).

8. Future research

The cluster quality measures for the individual factors (e.g., shown in Table 9) serve to

derive the composite quality measures for each factor grouping, as well as factor grouping

optimization for any given period. We hope to extend the analysis to evaluation of the

individual cluster group level. To do so, common or linked factors across periods are

necessary. Such a situation (i.e., obtaining common factors across periods) could be seeded,

or at least encouraged, by selecting the ‘‘subject specific keywords’’ to be analyzed. If a

thesaurus of terms and phrases specific to the subject matter (i.e., in this evaluation,

autonomous navigation) was available, it could be used to tag the ‘‘subject’’ relevant terms

to include in the cluster analyses. These ‘‘relevant’’ terms in the combined file could be used

to tag the ‘‘most relevant’’ terms in the files containing the abstracts from each period

analyzed. However, even with term seeding, common factors across time periods do not

always occur due to the changing research emphases, as reflected in the descriptors/keywords

record frequencies. The greater value that may be derived from usage of subject matter

specific thesauri may be in the generation of more relevant, domain-specific, factors.

Common factors across time periods do occur naturally without ‘‘subject matter term

seeding,’’ but less frequently than might be desired for a subtopic specific analysis (e.g., on

‘‘telecontrol’’ or ‘‘computerized pattern recognition’’ that appear in both Figs. 1 and 2). An

automated analysis process that uses a relatedness assessment of factor ‘‘group defining

terms,’’ as well as cross-group record commonality, has been developed to link factors across

the analyzed periods. Table 10 shows the recombined factors for each period’s derived factor

groups for the 1629 INSPEC ‘‘autonomous navigation’’ research literature abstracts. In Table

10, group names appended with ‘‘Recombo-#X’’ represent factors with identical names that

occurred in #X of the record periods. For example, ‘‘Recombo-2: robot vision’’ indicates that

Table 10 (continued )

Group 3

(Recombo-3: space vehicles)

Group 2

(Recombo-2:

computerized pattern recognition)

Recombo-2:

aerospace control

1991–1993:

intelligent control

1994–1995:

space research

1991–1993:

learning (artificial intelligence)

1998–1999:

remotely operated vehicles

1991–1993:

aerospace computer control

1996–1997:

feedback

1987–1990:

computerized signal processing

1996–1997:

virtual reality

Recombo-3:

automobiles
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the factor named ‘‘robot vision’’ was derived in two of the six record periods. Observe in

Group 3 of Table 10 that the previously discussed groups, ‘‘1987–1990: aerospace control’’

and ‘‘1991–1993: space vehicles,’’ have been recombined into a group titled ‘‘space

vehicles.’’ Observe in Fig. 2 that the group ‘‘1991–1993: space vehicles’’ has a ‘‘high-

factor-loading descriptor’’ (i.e., group defining term) of ‘‘Kalman filters.’’ Had the group

‘‘space vehicles’’ not occurred in two other periods’ factor groupings, one might argue that

the group ‘‘1991–1993: space vehicles’’ could be combined with the ‘‘Kalman filters’’

recombination group, Group 4 in Table 10. Obviously, research is not uniquely restricted to

single categories. However, to understand the primary evolution of the subcategories of a

field of research, the automated recombination algorithm attempts to uniquely recombine

period-derived factors. Due to the discussed ambiguities, the recombination process is still

under development and in need of subject-matter expert critique of combined categories.

Another approach to time-slice R&D analysis would be to use document-oriented

mapping. We are exploring integration of another software package (e.g., VX Insight). One

form of mapping develops clusters of similar documents based on co-occurrence of terms, as

described herein, but to show document clusters rather than term clusters (factors). Such maps

can be generated for an entire time period. Then, documents for particular time periods can be

plotted as colored overlays on the full map. This is one way to overcome the difficulty of

dealing with dissimilar factors over time periods.

9. Conclusions

Research continues on developing a time-slice recombination process to link ‘‘similar,’’

but differently named factors across periods. However, the recombination process is still

experimental. Therefore, this paper focuses on the use and change implications of the

composite factor set quality indices. To do so, we introduce and apply the TECH OASIS

software system and the PCA-based factor map analysis. We present the factor grouping

quality measures: cohesion, entropy, and F measure.

Using the standard factor map analysis process (i.e., that which selects the optimal number

of factor groups based on a metric that strives to minimize factors’ composite entropy and F

measure, while maximizing cohesion), the most relevant terms (descriptors) for each time

period are analyzed and clustered. We generate factor maps, such as shown in Figs. 1 and 2.

We then plot and assess changes in the factors’ composite quality measures against empirical

hypotheses relating to the maturation of a technology, specifically domain knowledge

expansion and technology diffusion.

Within this limited case study of a particular technology, autonomous navigation, we

observe consistent patterns of factor set quality measure changes over the periods analyzed.

For both the basic and applied research, as represented by 1629 INSPEC and 1091 EI

Compendex R&D abstracts, respectively, factor sets’ cohesion declined and total entropy

increased over time. Lower factor cohesion results from each factor group’s R&D abstracts

becoming more dissimilar (i.e., domain knowledge expansion). Entropy increases as each set

of factors has greater commonality of constituent abstracts. Confirming whether the linear
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regression slopes of the cohesion and entropy measures, as shown in Figs. 3 and 4, serve to

measure domain knowledge expansion and technology diffusion requires further and

expanded analyses of other technologies.

We note that the relatedness of factor groups (i.e., entropy) can increase for several

reasons—a global topic focus, the use of common base technologies, and/or increasing

knowledge diffusion with the formation of subdisciplines within the field. Some differenti-

ation of the causes of periodic entropy rises are noted by comparing with the F measure.

Entropy increasing at a greater rate than the F measure appears to depict the formation of

clusters of factors (i.e., the formation of subdisciplines within the technology analyzed). F

measure rates of increase greater than that for entropy appear to signify the formation of a

common factor that can represent either a base technology or focal application.

We note the cycling of entropy rise and decline, within autonomous navigation applied

research, and observe that the research focus appears to shift from ‘‘industrial or mobile

robots’’ to the ‘‘intelligent vehicle highway system’’ as entropy again increases. We propose

that entropy can measure the ‘‘level-of-focus’’ of the information analyzed, based on derived

factor name specificity and percent of abstract clustered relationships. Whether the entropy

measure can assess macro ‘‘source’’ level (e.g., industry sectors, nations) R&D activity

patterns to project innovation success requires further research.

We have posed a number of questions regarding the potential of three factor quality

measures applied to compilations of R&D abstracts to help assess technology maturation. To

answer these questions, we have begun analyses of ‘‘automotive lightweight materials’’ in the

1990s and of ‘‘smart materials.’’ However, the most significant outcome of this case study is

that the observed logical patterns of factor quality measure trends seem to validate the

standard (i.e., cluster quality measures optimization) factor analysis process. A standard

factor map process permits such comparative periodic R&D assessments and expands the

innovation analysis capabilities of the TECH OASIS software system.

References

[1] A.F.J. van Raan, Advanced bibliometric methods to assess research performance and scientific development:

basic principles and recent practical applications, Res. Eval. 3 (3) (1992) 151–166 (see also http://sahara.fsw.

leidenuniv.nl/cwts/nnmap0.html).

[2] A.L. Porter, A.T. Roper, T.W. Mason, F.A. Rossini, J. Banks, Forecasting and Management of Technology,

Wiley, New York, 1991.

[3] A.L. Porter, X.-Y. Jin, J.E. Gilmour, S.W. Cunningham, H. Xu, C. Stanard, L. Wang, Technology oppor-

tunities analysis: integrating technology monitoring, forecasting & assessment with strategic planning, Soc.

Res. Adm. J. 21 (2) (1994) 21–31.

[4] A.L. Porter, M.J. Detampel, Technology opportunities analysis, Technol. Forecast. Soc. Change 49 (2) (1995)

237–255.

[5] R.J. Watts, A.L. Porter, S.W. Cunningham, D. Zhu, Vantage point intelligence mining: analysis of natural

language processing and computational linguistics, in: J. Komorowski, J. Zytkow (Eds.), Principles of Data

Mining and Knowledge Discovery, First European Symposium, PKDD’97, Trondheim, Norway, Springer-

Verlag, Tiergartenstr 17, D-69121 Heidelberg, Germany, 1997, pp. 323–335.

[6] A.L. Porter, A. Kongthon, J.-C. Lu, Research profiling: improving the literature review, Scientometrics 53

(2002) 351–370.

R.J. Watts, A.L. Porter / Technological Forecasting & Social Change 70 (2003) 735–758 757

 http:\\sahara.fsw.leidenuniv.nl\cwts\nnmap0.html 


[7] R.J. Watts, A.L. Porter, C. Courseault, Functional analysis: deriving systems knowledge from bibliographic

information resources, Inf. Knowl. Syst. Manage. 1 (1) (1999) 45–61.

[8] R.J. Watts, A.L. Porter, N.C. Newman, Innovation forecasting using bibliometrics, Compet. Intell. Rev. 9 (4)

(1998) 1–9.

[9] R.J. Watts, A.L. Porter, Innovation forecasting, Technol. Forecast. Soc. Change 56 (1997) 25–47.

[10] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, D. Harshman, Indexing by latent semantic

analysis, J. Am. Soc. Inf. Sci. 41 (1990) 391–407.

[11] J.P. Carlisle, S.W. Cunningham, A. Nayak, A.L. Porter, Related problems of knowledge discovery, Hawaii

International Conference on System Sciences (HICSS) Proceedings on CD—Modeling Technologies and

Intelligent Systems Track; Data Mining and Knowledge Discovery Mini-Track, January, 1999.

[12] D. Zhu, A.L. Porter, S. Cunningham, J. Carlisle, A. Nayak, A process for mining science & technology

documents databases, illustrated for the case of knowledge discovery and data mining, Cienc. Inf. 28 (1)

(1999) 1–8.

[13] D. Zhu, A.L. Porter, S.W. Cunningham, J. Carlisle, A. Nayak, A process for mining science & technology

documents databases, illustrated for the case of ‘‘knowledge discovery and data mining,’’ Internal TOA

Paper #94 (available on request).

[14] P. Losiewicz, D.W. Oard, R.N. Kostoff, Textual data mining to support science and technology management,

J. Intell. Inf. Syst. 15 (2) (2000) 99–119.

[15] K. Borner, C. Chen, K.W. Boyack, Visualizing knowledge domains, ARIST 37. In Press.

[16] M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering techniques, Technical Report

#00-034, University of Minnesota, 2000 (http://www.cs.umn.edu/tech_reports/).

[17] R.J. Watts, A.L. Porter, D. Zhu, Factor analysis standardization: demonstrated on natural language knowl-

edge discovery, J. Am. Soc. Inf. Sci. Technol. (submitted for publication).

[18] C. Chen, T. Cribbin, R. Macredie, S. Morar, Visualizing and tracking the growth of competing paradigms:

two case studies, J. Am. Soc. Inf. Sci. Technol. 53 (8) (2002) 678–689.

[19] W.E. Souder, Managing New Product Innovations, Lexington Books, New York, 1987, pp. 199–216.

Robert Watts currently works for the Tank-Automotive and Armaments Command (TACOM), Advanced Vehicle

Technologies, as team leader for technology assessments. He is both managing and participating in the

development of the competitive intelligence software system, Technology Opportunities Analysis of Scientific

Information System (TECH OASIS).

Alan Porter is professor emeritus of industrial and systems engineering and public policy at the Georgia Institute

of Technology.

R.J. Watts, A.L. Porter / Technological Forecasting & Social Change 70 (2003) 735–758758

 http:\\www.cs.umn.edu\tech_reports\ 

	RD cluster quality measures and technology maturity
	Background: TECH OASIS and RD profiling
	The present research case: autonomous navigation
	Three criteria for term factors
	Cluster quality measures and change implications
	Cohesion
	Entropy
	F measure

	Expected patterns and hypotheses
	Analysis of autonomous navigation RD evolution
	Basic research: analysis of INSPEC records
	Applied research: analysis of EI Compendex records

	Additional observation
	Future research
	Conclusions
	References


