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Abstract-Price’s well-known square root law states that half of the literature on a sub- 
ject will be contributed by the square root of the total number of authors publishing in 
that area. Price’s contention is treated here as a hypothesis and assessed against the evi- 
dence presented by both empirical and simulated author productivity distributions. The 
results do not support the square root hypothesis. The problem with Price’s original 
claim is traced to its basis in Lotka’s law, which is considered as an inverse square law 
rather than as a generalized model taking variable parameter values. Varying parame- 
ter values engender a family of related, but systematically different, distributions in 
which the nature of inequality in publication productivity, including the size and rela- 
tive contribution of the most prolific subset of authors, also varies. 

1. INTRODUCTION 

One of the many enduring contributions of Derek DeSolla Price’s classic Little Science, 
Big Science [l] was the statement of a relation that has come to be known as Price’s square 
root law, or simply, the Price law. Basically, Price’s contention was that half the published 
output in a subject field will be contributed by a highly productive subset of authors 
approximately equal to the square root of the total number of authors publishing in that 
area. With this, Price introduced to bibliometrics a concept that had long been known in 
the social sciences as Rousseau’s law: “any population of size N contains an effective elite 
of size N0.5” [2]. Price felt that such a phenomenon was directly implied by Lotka’s law 
131: 

Let us first examine the nature of the crude inverse-square law of productivity. If one 
computes the total production of those who write n papers, it emerges that the large 
number of low producers accounts for about as much of the total as the small number 
of large producers; in a simple schematic case, symmetry may be shown to a point cor- 
responding to the square root of the number of [authors]. . . . (11 

This claim has been rather uncritically accepted and accorded lawlike status within 
bibliometrics and scientometrics, without ever really having been subjected to validity test- 
ing: “Apart from the fact that his claim is based on poor evidence, it is yet to be tested by 
statistical techniques” [4]. The purpose of the present study is to assess the validity and 
generality of the Price law against both empirical and simulated author productivity 
distributions. 

2. LOTKA’S LAW 

The Price law is often associated with Lotka’s law; indeed, the basis for Price’s ini- 
tial hypothesis was an examination of the predictions of Lotka’s theoretical distribution. 
Although originally proposed as an inverse square model, Lotka’s law is now usually 
defined in the generalized form: 

g(x) = kx-b; x = 1,2,. . .,x,,,, k > 0, b > 1, (1) 
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where g(x) represents the probability of an author making x published contributions to 
a subject field, x,,, represents the maximum size or value of the productivity variable x, 
and k and b are parameters. Methods of estimating the parameters are discussed by 
Nicholls [5,6] and by Tague and Nicholls [7]. Usually, x,, is assumed to be infinite. The 
parameter k, however, which represents the proportion of authors contributing only once 
to the literature, is of logical necessity given by the inverse of the Riemann zeta function 
for b: 

k = 3_(b)-’ = 2x-b 

We will denote the total number of authors in a sample or population by t, and the total 
number of papers they generate by m: 

-GIlax 

t = c g(x), 
X=1 

-hax 

m = C g(x)x. 
,X=1 

(4) 

Recently, an alternative notation for defining Lotka’s model has been proposed by 
Chen and Leimkuhler [8]. This notation explicitly takes account of the fact that empiri- 
cal values of x will not increase without gaps from 1 to x,,,. 

For some time (more than 60 years) the empirical validity of Lotka’s law was ques- 
tionable [9]; recently, however, it began to be clear that the generalized Lotka model (eqn 
(1)) can provide an adequate description of empirical author productivity distributions 
[6,10,11]. At the same time, it has been shown that the original inverse square formula- 
tion, in which b = 2, provides very poor fits to empirical data and may now be viewed as 
invalid [6,10]. Price based his hypothesis on the inverse square model. 

3. THE PRICE LAW 

The Price law was originally presented in a verbal formulation. Recently, Glanzel and 
Schubert [12] have provided a more formal exact definition of the law. These authors 
adopted a rank-frequency approach; we shall reformulate the definition in size-frequency 
terms, corresponding to the presentation of Lotka’s law in eqn (1). In these terms, the Price 
law hinges on the definition of a productivity level x = h, such that 

where h satisfies the requirement that 

(5) 

(6) 

Allison et al. [13] provided a similar exact formulation of the Price law. 
Glanzel and Schubert acknowledge two problems with the definition above. First, the 

square root of the total number of authors, to.‘, is not always integer valued, and there- 
fore the definition of h may be ambiguous. In practice, truncated or rounded values are 
employed. Second, they note that eqn (5) cannot be characteristic to a probability distri- 
bution, since its validity depends also on the sample size. We may add a third problem. 
For g(h) > 1, which is a common occurrence, a further ambiguity arises in defining the 
cutoff point between the prolific and less prolific author regions. This is because the quan- 
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tity to.’ will then often fall within one of the categories of the frequency distribution, 
Xnlax 

making it necessary to arbitrarily select the cutoff category so that c g(x) contains 
x=h 

either no more than to.’ authors (a narrow definition of the prolific subset) or at least this 
many authors (a broad definition). With very large data sets, the decision may be unneces- 
sary or its effects trivial, since there will be many categories, but with smaller data sets the 
consequences of the decision will have a more significant effect on analytical results. 

Therefore, Glanzel and Schubert formulate Price’s hypothesis as a limiting law: 

-Gnax 

Eh g(x)x 
lim I 1 1 = -, 

*maX--rm LTg(x)x 2 
(7) 

where h satisfies the requirement of eqn (6). 
Eqn (7) represents an exact definition of the Price law as originally proposed and with 

which this study is concerned. However, the Price law is clearly a special case of a more 
general relation. Egghe and Rousseau [14] have provided such a general formulation. Their 
generalized relation states that ta authors will generate a fraction 8 of the total number of 
papers, and that 01 = 0. Price’s square root law would then be regarded as the special case 
where CY = 0.5. Egghe and Rousseau mention also the familiar 80/20 rule, which in turn 
may be regarded as a particular case of a generalized arithmetic 100x/1006 rule, in which 
some fraction 100x% of prolific authors will be responsible for producing 10013% of the 
total output. Price’s remark [l] that 10% of the authors will produce 90% of the papers 
is a rule of this type (a “90110 rule”). The relation of the 80/20 rule to the bibliometric dis- 
tributions is examined in Egghe [ 151. 

4. VALIDITY OF THE PRICE LAW 

Two possible sources of validity for the Price law (eqn (7)) may be identified- 
empirical and theoretical. If empirical author productivity data sets conformed to Price’s 
hypothesis, then it would possess some degree of empirical validity. If, alternatively, the 
theoretical values generated by Lotka’s model were consistent with Price’s hypothesis, then 
it could be said to have some theoretical validity. Since Lotka’s model agrees so well with 
the empirical case, both avenues of validity testing would be expected to yield consistent 
results. 

Little empirical investigation of the Price law has been carried out to date [4,14]. Glan- 
zel and Schubert [12] have reported some empirical results. They analyzed Lotka’s Chem- 
ical Abstracts data and found that the most prolific to-5 authors contributed less that 20% 
of the total number of papers. They also refer, but without details, to the examination of 
“several dozens” of other empirical data sets and conclude that “in the usually studied 
populations of scientists, even the most productive authors are not productive enough to 
fulfill the requirements of Price’s conjecture” [ 121. Some incidental results of scientometric 
studies suggest that about 15% of the authors will be necessary to generate 50% of the 
papers [16,17]. 

To further examine the empirical validity of Price’s hypothesis, 50 data sets were col- 
lected and analyzed here. The origin and statistical characteristics of these are recorded in 
Ref. [ 111. Included are most of the data sets used in previously published studies of Lotka’s 
law. A wide range of disciplines, time frames, and sample sizes are represented; however, 
the complete count measurement method is used in all cases; that is, all coauthors are 
included in the counts. Table 1 illustrates how the data were tabulated for analysis. This 
is the well-known Dresden data on the productivity of American mathematicians [l 11. The 
first three columns contain the productivity level x; the number of authors having this pro- 
ductivity, g(x); and the number of papers produced, g(x)x. The next two columns tabulate 
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Table 1. Dresden data 

x g(x) g(x)x c &r(X) c g(x)x c (g(x)/t) c (g(x)x/m) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
19 
20 
21 
24 
27 
32 
35 
39 
42 
70 

133 
43 
24 
12 
11 
14 
5 
3 
9 

3 
5 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

133 133 133 0.4784 0.1183 
86 176 219 0.6331 0.1948 
72 200 291 0.7194 0.2589 
48 212 339 0.7627 0.3016 
55 223 394 0.8022 0.3505 
84 237 478 0.8525 0.4253 
35 242 513 0.8705 0.4564 
24 245 537 0.8813 0.4778 
81 254 618 0.9137 0.5498 
10 255 628 0.9173 0.5587 
33 258 661 0.928 I 0.5881 
60 263 721 0.9460 0.6415 
13 264 734 0.9496 0.6530 
14 265 748 0.9532 0.6655 
15 266 763 0.9568 0.6788 
32 268 795 0.9640 0.7073 
19 269 814 0.9676 0.7242 
20 270 834 0.9712 0.7420 
21 271 855 0.9748 0.7607 
24 272 879 0.9784 0.7820 
27 273 906 0.9820 0.8060 
32 274 938 0.9856 0.8345 
35 275 973 0.9892 0.8657 
39 276 1012 0.9928 0.9004 
42 277 1054 0.9964 0.9377 
70 278 1124 1.0000 1.0000 

the cumulative number of authors, Cg(x), and the cumulative number of papers produced, 
Cg(x)x. The last two columns express these in relative frequencies: the cumulative percent 
of authors, C(g(x)/t), and of papers, C(g(x)x/m). 

The problem in defining the cutoff point, h, between the prolific and less prolific 
authors is evident. The Price law states that the square root of the total number of authors 
constitutes the prolific group. In this case, t = 278 and tO.j = 16.6733. Since this is not an 
integer, we round it up to 17. However, we are still faced with the problem of defining the 
cutoff point, since with h = 13 we have only 15 authors, and with h = 12 we have 20 in 
the prolific group. Therefore, if we adopt a narrow definition of the prolific group (h = 
13), we will have 15 authors (0.0540t) producing 403 papers (0.3585m); and if adopting 
a broad definition (h = 12), 20 authors (0.0719t) producing 463 papers (0.4119m). The 
Price law suggests that half the total of papers, or 562 (0.5m), will be contributed by 17 
authors (0.0612t). Since the productivity of the prolific authors falls short of 0.5m even 
when we define the group broadly and include 20 authors, the Price law does not appear 
to apply in this case. It is also of interest to know how many prolific authors are actually 

required to produce half the papers in this data set. Table 1 shows that 587 papers 
(0.5222m) were generated by 33 authors (O.l187t), about twice as many authors as the 
Price law would predict. 

In the 50 data sets examined here, the contribution of the most prolific to.’ group of 
authors fell considerably short of the 0.5m predicted by Price, whether the point of dis- 
section was defined broadly or narrowly. Furthermore, the actual proportion of all authors 
necessary to generate at least 50% of the papers was found to be much larger that to.‘. 
Table 2 summarizes these results. In some cases, h = 1; that is, half the papers are already 
contributed at x = 1, which is to say that more than half of the total number of papers is 
generated by those authors contributing only a single paper each. The absolute and rela- 
tive size of t0.5 for various population sizes t is given in Table 3. All the empirical results 
referred to here are consistent; and, unfortunately, there seems little reason to suppose that 
further empirical results would offer any support for the Price law. 

Price felt that the square root law followed directly from Lotka’s law. Allison et al. 
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Table 2. Empirical author productivity data 

413 

Percent of papers 
contributed by prolific 
authors, broadly defined 

Percent of papers 
contributed by prolific 
authors, narrowly defined 

Actual proportion of 
authors contributing 50% 
of the papers 

Mean 

.2259 

.1497 

6266 

Standard 
deviation 

.1050 

.0857 

.3830 

Median 

.2059 

.1328 

.7217 

Quartile 

Lower Upper 

,145s .2881 

.0958 .1915 

.2759 1.0000 

Interquartile 
range 

.1423 

.0957 

.7241 

Table 3. Absolute and relative size of &for various population sizes t 

Population size, Number of authors, Proportion 
t Ji %/Y/r 

10 3.16 .30 
50 7.07 .14 

100 10.00 .lO 
500 22.36 ,045 

1000 31.62 .032 
5000 70.71 .014 

10,000 100.00 ,010 
100,000 316.23 .003 
500,000 707.11 .OOl 

1 ,OOo,OOO 1000.00 ,001 

emphasized that “the validity of Price’s law does not necessarily depend on the validity of 
Lotka’s law, and hence can be judged on the basis of empirical evidence alone” [ 131. The- 
oretical derivations by these authors suggested that the Price law is implied by Lotka’s law 
only when an additional assumption is made concerning x,,,, the contribution of the 
most prolific author. Derivations by Egghe and Rousseau [14] suggested that Lotka’s law 
would not satisfy the Price law, but that it might approximate to some generalized form 
of the law. Price, Allison et al., and Egghe and Rousseau were all working with the inverse 
square form of Lotka’s law (i.e., with b = 2). It is not entirely clear that the Price law fol- 
lows from Lotka’s inverse square law; and it is not at all clear what the implications of the 
generalized Lotka model, with variable parameter values, might be for the Price law. 
Therefore, theoretical author productivity distributions were simulated by generating the 
values predicted by Lotka’s model (eqn (1)) with typical parameter values within a plau- 
sible range of b = 1.5, 2.0, 2.5, 3.0; x,,, = 100, 250, 500. As noted earlier, the parameter 
k is functionally dependent on b. A population of 10,000 authors was arbitrarily assumed 
in all cases. Table 4 shows the Lotka distributions resulting with various values of b (x = 
1 to 25 only). These data are graphed in Figs. 1 and 2. Again (Table 5), the productivity 
of the most prolific to.’ authors falls considerably short of 50%, although there is varia- 
tion according to the particular combination of parameter values. It is interesting to note 
that the theoretical case comes closest to Price’s claim with b = 2 and large x,,,. How- 
ever, even when x,,, = 1000, the theoretical contribution of to.’ reaches only 0.3793 of 
the total papers. The actual size of the prolific group producing 50% of the papers is again 
much larger than to.’ (Table 5). Therefore, the generalized Lotka model does not appear 
to be consistent with the Price law. We find no theoretical support, therefore, for Price’s 
hypothesis in Lotka’s law; in fact, the two are quite inconsistent. As shown in the previ- 
ous section, the Price law is also inconsistent with empirical author productivity data. 
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Table 4. Lotka distributions for various values of b 

b 

X 1.5 2.0 2.5 3.0 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0.382800 0.607900 0.745400 0.831900 
0.135340 0.151975 0.131769 0.103988 
0.073670 0.067544 0.047817 0.030811 
0.047850 0.037994 0.023294 0.012998 
0.034239 0.0243 16 0.013334 0.006655 
0.026046 0.016886 0.008453 0.003851 
0.020669 0.012406 0.005750 0.002425 
0.016918 0.009498 0.004118 0.001625 
0.014178 0.007505 0.003067 0.001141 
0.012105 0.006079 0.002357 0.000832 
0.010493 0.005024 0.001857 0.000625 
0.009209 0.004222 0.001494 0.000481 
0.008167 0.003597 0.001223 0.000379 
0.007308 0.003102 0.001016 0.000303 
0.006589 0.002702 0.000855 0.000246 
0.00598 1 0.002375 0.000728 0.000203 
0.005461 0.002103 0.000626 0.000169 
0.005013 0.001876 0.000542 0.000143 
0.004622 0.001684 0.000474 0.000121 
0.004280 0.001520 0.000417 0.000104 
0.003978 0.001378 0.000369 0.000090 
0.003710 0.001256 0.000328 0.000078 
0.003470 0.001149 0.000294 0.000068 
0.003256 0.001055 0.000264 0.000060 
0.003062 0.000973 0.000239 0.000053 

Table 5. Simulated author productivity data 

b 100 

Productivity of t 

&I,, 

250 500 

Actual proportion producing 0.5~1 

&I.?X 

100 250 500 

1.5 .1314 .1809 .2367 .1434 .0925 .0665 
2.0 .0978 .2328 .3295 .0810 .0529 .0369 
2.5 .1429 .1681 .1820 .2546 .2546 .2546 
3.0 .1047 .1060 .1060 1 .oOOo 1.0000 1.0000 

+ b=l 5 

+ b=20 

-r b=25 

- b=3 0 

0 04 

Cl(X) 0.03 

002 

0 01 

000 
0 5 10 15 20 25 

X 

Fig. 1. Lotka curves for various values of b. 
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Fig. 2. Linearized Lotka curves for various values of b. 

5. INEQUALITY 

The Price law, while invalid as stated, represents an attempt to summarize in quan- 
titative terms the inequality that characterizes the distribution of publication productivity. 
We know that such distributions are characterized by reverse J shape, pronounced posi- 
tive skewness, and a long straggling tail. The average rate of productivity, m/t, is low 
whereas variation in productivity is high. Two opposing effects are simultaneously in 
evidence-dispersal of papers over many low-productivity authors and concentration of 
papers in a small number of highly prolific authors. The Price law attempts to summarize 
the nature of inequality under Lotka’s inverse square model only and not quite accurately. 
Inequality is always present in author productivity distributions; however, the particular 
nature and degree of inequality varies. It is the failure of the Price law to take account of 
this variation that is its main deficiency. 

Yablonsky [18] has stated that inequality is determined in general by the relations 
among the parameters b, k, and x,,,,,. Table 5 clearly illustrates such a dependence. All 
three factors are determined, in turn, by extrinsic variables related to the discipline, sam- 
ple size, measurement procedure, and so on. Thus, inequality is not a static phenomenon 
but varies systematically according to the characteristics of the author population at hand. 

Some relations among these characteristics are evident from the values obtained in the 
simulation described earlier. In general, the relative contribution of to-5 decreases as b 
grows larger, and varies directly with x,,,. The proportion of authors making only a sin- 
gle contribution increases rapidly as a nonlinear function of b, and their relative contri- 
bution to the total number of papers rises even faster (Table 6). At b = 3, more than half 
of the papers are dispersed over these minimum-productivity authors. Several investiga- 

Table 6. Single contributors: relative proportion and contribution 
for various values of b 

b 

Proportion of Proportion of 
single contributors total papers 

(k) (g(l)m/m) 

1.5 .3828 .0231 
2.0 .6019 .1472 
2.5 .7454 .3397 
3.0 .8319 .6108 
3.5 .8875 .7461 
4.0 .9239 .8321 
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tors [4,7,8] have noted the importance of the parameter b in characterizing such distribu- 
tions and have suggested that b may be considered, to some extent, as a summary measure 
of inequality. Viewed as a type-token relationship, in which m tokens (papers) are gener- 
ated by t types (authors), variation in the distribution of author productivity has the fol- 
lowing character: 

The parameter k represents the number of types with a single token. The parameter b, 
to some extent, represents the dispersion of the distribution of tokens over types. The 
larger b the larger the number of types with only one token and the more rapid the 
decline, with increasing x, of the frequencies g(x). If b is small the numbers g(x) decline 
very slowly with x, and the distribution has a very long tail. Hence a higher proportion 
of the tokens are concentrated among a few highly productive types. As b approaches 
0, all sizes approach an equiprobable state. [7] 

The resulting effects on the average productivity, m/t, are that “high values for aver- 
age productivity will be found in populations where the exponent is small and where, con- 
sequently, many of the tokens are distributed among the highly productive types. Low 
values of average productivity will be found in populations where the exponent is large and 
where, consequently, most tokens are distributed among types of low productivity” [7]. 
Depending on the particular combination of parameter values, therefore, Lotka’s model 
implies not one, but a family of related skewed curves (Figs. 1 and 2) all displaying marked 
inequality, but in varying manners, according to whether dispersal or concentration of 
papers is the more striking feature. 

The interrelationships of these characteristics are summarized in Table 7. Although 
such a characterization must be tentative at this point, Table 7 agrees well with empirical 
disciplinary evidence. The mean values of I, in the 50 data sets considered here were 2.49 
for scientific disciplines, 3.03 for social scientific disciplines, and 2.5 for the humanities. 
The mean values of k were 0.7244, 0.8160, and 0.7211, respectively. The similarity of nat- 
ural science and humanities distributions is surprising; a continuum of parameter values 
corresponding to the “hardness” of the disciplines was perhaps expected. This result may 
be an artefact of the samples involved, but deserves further investigation. O’Connor and 
Voos [ 191 refer to data suggesting that average annual productivity for scientists is on an 
order of 3.8 articles per year, whereas for social scientists the rate is more like 0.5 papers 
per year. 

6. CONCLUSIONS 

Although the validity of the Price law need not depend on that of Lotka’s law, the 
Price law is seen to be inconsistent with the generalized Lotka model. The Price law does 
not agree with empirical date very well; empirical results do not support the Price hypoth- 
esis. Since the empirical validity of Lotka’s law has recently been more firmly established, 
it is not surprising that the empirical and theoretical findings are consistent. 

Price articulated his law on the basis of a special case of the Lotka model, where 
b = 2. Inequality in author productivity is a fundamental, but not static, phenomenon - its 
nature varies according to parameter values that are determined in turn by characteristics 
of the particular author population at hand. Yablonsky [18] speaks of Lotka’s model as 
a deterministic structure “filled” by a stochastic process. Several investigators [7,12,13] 
including Price himself [13] have pointed out that it is necessary to regard x,,,,, as a ran- 

Table 7. Interrelationships of productivity distribution characteristics 

b k m/t Tail Discipline 

small 
large 

small 
large 

high 
low 

longer 
shorter 

science, humanities 
social sciences 
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dom variable depending on the underlying distribution and the sample size. The structure 
will be “filled” more evenly, particularly in the region of the tail of prolific contributors, 
as sample sizes increase. Even then, prolific authors are in some sense truly anomalous, 
and behavior in the tails of these distributions is likely to remain unreliable, as is the 
description of statistical patterns in the realm of very small numbers [13]. It is unlikely, 
therefore, that any convenient rule of thumb similar to the Price law could accurately and 
reliably summarize the size and relative contribution of the subset of highly prolific 
authors. 
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