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Abstract-A statistical model for citation processes is presented as a particular version 
of a nonhomogeneous birth process. The mean value function E(X(t) - X(s)lX(s) = i) 
and special transition probabilities such as P(X(t) - X(s) > 01X(s) = 0) and &Y(t) - 
X(s) = 01 X(s) > 0) give essential information on the change of citation impact in time. 
It is shown that the mean value functions and transition probabilities can readily be cal- 
culated on the basis of known and estimated parameters. The analysis is illustrated by 
five examples. The citation rate for papers published in 1980 has been recorded in the 
period 1980 through 1989 in five science fields. The model provides sufficiently good 
approximations for both the empirical mean value functions and the transition frequen- 
cies for the years 1985 and 1989 based on the number of citations the papers have received 
until 1982. 

1. INTRODUCTION 

The history of application of stochastic methods to bibliometrics and scientometrics is 
almost as long as the history of these specialties themselves. Although at the very begin- 
ning the detection and formulation of fundamental regularities regarding bibliometric phe- 
nomena such as the publication activity of scientists, the frequency of circulation in 
libraries, and citation frequencies of scientific publications were in the limelight, growing 
interest has recently been focussed on comprehending the mechanism of these phenomena 
and on modeling their change in time. In particular, bibliometricians are nowadays not only 
interested in knowing the distribution of papers researchers have published, circulations 
that monographs and scientific journals have, and citations that different papers receive, 
but also in understanding and predicting, for example, the consequences on the produc- 
tivity of a scientist if he or she becomes more experienced but less ambitious, or how the 
number of citations received reflects the changing impact of scientific information as time 
elapses since the paper was published. Thus, the concept of the stochastic process has been 
adopted by the bibliometric literature, too. Sichel (1985) has applied his Generalized Inverse 
Gaussian-Poisson Distribution (GIGP) model to different bibliometric problems (author 
and journal productivity, citation rates, journal use, etc.). His distribution has three free 
parameters, one of which depends on time. The model is, therefore, particularly appro- 
priate to reflect explicitly time-dependent phenomena. Burrell(l990) has used mixtures of 
Poisson processes to analyse predictive aspects of some bibliometric processes. In partic- 
ular, beside the application of the Gamma-Poisson and the GIGP process, he has con- 
structed the Generalized Waring process in his paper. Finally, we would like to mention 
the dynamic Waring model by Schubert and Gliinzel (1984), the limiting distribution of 
which has successfully been used to characterize publication activity of authors (Schubert 
& Gltinzel, 1984b; Boxenbaum et al., 1987). In what follows, a simple model closely related 
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to this latter one will be built for the citation process. The predictive power of the model 
will be demonstrated by several examples. 

2. THEORY 

2.1 The stochastic model 
The dynamic Waring model introduced by Schubert and Glanzel(1984a) will serve as 

a general basis of the stochastic model of citation processes, too. We shall, therefore, first 
recall this model in brief. Thereafter, we shall use a modified version of this model to reflect 
the specific mechanism of citation processes. 

2.1.1 The dynamic Waring model. Consider an infinite array of units indexed in suc- 
cession by the non-negative integers. The content of the ith unit is denoted by xi, the 
(finite) content of all units by x. Then the fraction _Vi = Xi/X (i 10) expresses the share of 
elements contained by the ith cell. The change of content is postulated to obey the follow- 
ing rules. 

1. Substance may enter the system from the external environment through 0th unit 
at a rate s. 

2. Substance may be transferred unidirectionally from the ith unit to the (i + 1)th 
one at a ratefi(i E No). 

3. Substance may leak out from the ith unit into the external environment at a rate 
gi (i 65 NoI. 

The next step towards a stochastic model is to interpret the above ratios yi as the 
(classical) probability with which an element is contained by the ith unit. The stochastic 
process is then formed by the change of the content of the units (i.e., by the change of 
papers published by the authors who have entered the system). X(t) denotes the (random) 
number of published papers, P(X( t) = i) = yi the probability that an author in the sys- 
tem has published exactly i papers in the period t. Finally, the stochastic model itself is 
obtained if X(t) is considered the publication activity process of an arbitrary author, 
and P(X( t) = i) = yi is the probability that he or she has published i papers in the inter- 
val (0, t). Figure 1 visualizes the scheme of substance flow of this process. 

Now, using the above notations, we can give a mathematical formulation for the equa- 
tions of change in the system. 

x6(t) = s(t) -AI(t) - go(t), 

(1) 

xi’(t) =.&r(t) -fi(t) -k!i(t), (i > 0). 

Here and in the following, the prime (‘) denotes time derivatives. 

S 1, f0 

L- 
O u go 

Fig. 1. Scheme of substance flow in the Waring process. 
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According to Schubert and Glanzel, the following particular forms of the above rate 
terms are used: 

s=u*x, (2) 

h = (a + 6-i) *xi; (i 1 O), (3) 

gi = Y-Xi; (i 2 0), (4) 

where u, a, b, and g are non-negative real values. Since x’(t) = C xi’ = (s - C gi) = 
(s - y)x (cf. eqn (l)), the distribution of the substance over the units during time t can be 
obtained as a solution of the following system of first-order linear differential equations: 

y;(t) = u - (a + a).y, 

Yi(t) = (a + 

with the initial conditions 

b.(i-l).y,_,-(a+bei+u).yi; i>O, 

(5) 

I 1 ifi=O 
Yi(O) = 

0 otherwise. 

For the entire population we can derive x( t) = x(0) .exp((u - y) -t); that is, the sys- 
tem is asymptotically time-invariant (stationary) if u = y, otherwise, if u > y or u < y, 
it exponentially grows or decays, respectively. The general solution of the above system 
of differential equations is 

yi = 2 bije-(a+b.i+41 + u(a + b). . . (a + b(i - 1)) 
(a + u)(a + b + a). . . (a + bi + a) ' (6) 

j=O 

where the coefficients bij are determined by the initial conditions. Finally, if u = y is 
assumed, the above process has a nondegenerated limit distribution, which is a Waring 
distribution with parameters N = a/b and cn = u/b. 

As the model suggests, the Waring distribution can be considered a reasonably good 
approximation for finite times large enough, when the substance can be supposed to reach 
a distribution sufficiently close to the limiting case. Otherwise, if t is small, the distribu- 
tion is less “handy” (see eqn (6)). 

Next we shall consider a model that does not assume any interaction with the exter- 
nal environment. 

2.1.2 A nonhomogeneous birth process. Consider now the same array of units as 
above. In contrast to the above model, we now assume that the system is completely iso- 
lated from external influences (i.e., no substance enters or leaves the system). Therefore, 
only rule (2) of the preceding section remains valid. Hence, x(t) = x(O) follows immedi- 
ately, where, of course, x(0) > 0 is assumed. The special assumption x(0) = 1 does not 
mean any restriction of generality. Now we reformulate eqns (2)-(4): 

u = 0, (2’) 

fi = (a + bi)*xi; a(t)/b(t) = const (>O), (3’) 

gi=O; (i20). (4’) 

The subsidiary condition to eqn (3’) says that the process is nonhomogeneous (i.e., the sub- 
stance flow may depend on the time elapsed). The proportionality coefficient in the sub- 
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sidiary condition is denoted by N (i.e., a(t) = N.b( t)). Figure 2 shows the scheme of 
substance flow of this process. 

By analogy to the Waring model, we have 

y;(t) = -N*yo.b(t) 

u;(t) = (N.yo(t) - (N+ l)r,(t))-b(t) 

(5’) 

y;(t) = ((N+ i- l).yi-l(t) - (N+ i)y,(t)).b(t), 

with the same initial conditions as above. 
Publication-activity dynamics is basically reflected by the distribution P(.Y( t) = i) of 

the process. Special conditional probabilities, the so-called transition probabilities, how- 
ever, permit a much deeper insight into scientific productivity processes. In our case, for 
example, the probability that an author publishes j papers during t years, provided he or 
she has already published i papers during s years, is called transition probability (i I j, 
s c t) . These probabilities reflect the influence of an initial period on the further publica- 
tion activity. In particular, the probability that at time t the substance is in the kth unit, 
provided it was in the ith one at time s, is denoted by pik (s, t) (k 2 i). With the transition 
rules as above, we can write (see, e.g., Karlin & Taylor, 1975) 

dpik(S,f)/df = ((N f k- l)Pik-I(S,f) - (N+ k)pik(s,t))‘b(t); k > i. (7) 

The initial conditions are 

1 ifk=i 
Pik(S,S) = 

0 otherwise. 

For simplicity, let X(t) denote the (random) index of that unit in which the substance is 
at time t. Then the following distribution can be obtained from the first system of differ- 
ential equations by successive integration 

where r(t) = jib(u) du (i.e., the distribution of substance over the units is negative 
binomial at any time). Analogously, the second system of differential equations results in 

pG(s,t) = P(X(t) -X(s) = jlX(s) = i) 

N+i+j-1 = 
j 

.e-(‘(‘)-r(~))(N+i)(l _ ,-(r(I)--~(s))).i , 

Fig. 2. Scheme of substance flow in the nonhomogeneous birth process. 
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wherep;(s,t) =Pik(S,t) with i= k - j r 0. Equation (9) can be reformulated verbally as 
follows. The substance flow during the time period t-s has a negative binomial distribu- 
tion with parameters exp( -r( t) + r(s)) and N +j, where j is the index of the unit reached 
by the substance at time s. 

The mean value functions of the process are defined as 

Mi(S*t) = E(X(t) - X(S)(X(S) = i). (10) 

This function will play an important role in the applications. Under the above conditions 
we have 

Mi(sS,t) = (N+ i)(exp(r(t) - T(S)) - 1); i ?O,t 2 s (11) 

and 

M(s,t) =E(X(t) -X(s)) =N+(exp(r(t)) -exp(r(s))). (12) 

Equation (12) reflects the nonhomogeneity of the process; for example, M(s,s + h) # 
M( t, t + h) if s f t (h > 0). The process has a nondegenerated or degenerated limit distri- 
bution as lim r( t) < +oo or lim r( t) = +a, respectively. 

3. APPLICATIONS 

3.1 General remarks 
Both models above can usefully be applied in bibliometrics, each describing different 

phenomena. Let the main differences in their applications be outlined first. Consider an 
open population of scientists publishing papers regularly, say, in a given field of science. 
Newcomer authors enter the system through the 0th unit, and terminators are leaving it 
through the unit representing their highest productivity. The transition intensity follows 
the cumulative advantage principle. The dynamic Waring model seems to be an appropri- 
ate model to describe such a scientific community. The interaction with the external envi- 
ronment is obvious. If, on the other hand, a set of papers published within a certain time 
period, say, in a given year, is considered and the number of citations received by them 
in the subsequent years are counted, then the second model meets all formal requirements. 
The size of the set is a priori fixed; new publications do not enter the system, and papers 
do not leave it, either. The citation process requires a model that supplies a nondegener- 
ate limit distribution. Citation processes are obviously nonhomogeneous. 

One of the most interesting fields of application is the prediction of events, frequen- 
cies, and expectations. Thus, eqn (12) states that the expected number of citations received 
within a time span (t-s) is a linear function of the number of all citations that the paper(s) 
in question had received previously. The following results could also help to extrapolate 
citation-based indicators to longer time periods. 

3.2 Five examples 
In order to illustrate the applicability of the theoretical considerations above to empir- 

ical citation data, we have chosen five particular samples representing five different areas 
of science. Since it is practically impossible to compile lifetime citation data, only citations 
received during the first 10 years after the date of publication were counted. Within the 
limits of this restriction we will show that our model allows valid extrapolations and pre- 
dictions. All data used for the analysis were taken from the Corporate and Citation Index 
Files of the Science Citation Index@ (XI) and Social Science Citation Index@ (SSCI) data- 
bases of the Institute for Scientific Information (ISI, Philadelphia, PA). All papers indi- 
cated as research articles, letters, notes, and reviews were taken into consideration. Papers 
published in 1980 were selected, and all citations received by them in 1980 and the subse- 
quent nine years have been counted. If the sample size has been too small for reliable anal- 
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ysis data for the time period, 1981-1990 have been added to the set in analogous matter. 
The following five subject fields have been chosen: 

1. chemistry, 
2. condensed matter physics, 
3. general and internal medicine, 
4. psychology, and 
5. probability theory and mathematical statistics. 

The above science areas are represented by the following samples of source publications: 

1. all papers published in 1980 in the Journal of the American Chemical Society 
(JACS, 1916 papers), 

2. all papers published in 1980 in the subfield of condensed matter physics, that is, 
in journals classified in the SC1 into this subject category (CMPH, 7414 papers), 

3. all papers published in 1980 in the journal Lancet (LANCET, 2286 papers), 
4. all papers published in 1980 and 1981 in the journal Developmental Psychology 

(DP, 203 papers), and 
5. all papers published in 1980 and 1981 in the journal Zeitschriftftir Wahrscheinlich- 

keitstheorie und verwandte Gebiete (since 1985, Probability Theory and Related 
Fields) (ZWVG, 223 papers). 

According to our model, the annual citation rates of each process have to obey a neg- 
ative binomial distribution with one constant parameter (N) and one parameter q( t ), 
which may depend on time. This property of q(t) is reflected by the increments in Figs. 3 
to 7, which illustrate that the citation processes are nonhomogeneous, indeed. The param- 
eters of the distribution can be estimated by the help of the maximum likelihood estima- 
tion or the method of moments. Unfortunately, both methods tend to fail in case of social 
processes such as bibliometric distributions, since the outstanding performance of a very 
small “elite” used to differ significantly from those that were expected on the basis of the 
performance of all other members of the population (see Glanzel & Schubert, 1988). This 
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Fig. 3. Empirical and estimated values of the mean value functions Mi(s,t) with s = 1982, I = 1985 
and 1989 for papers published in J.&X (1980). 
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Fig. 4. Empirical and estimated values of the mean value functions M,(s, 1) with s = 1982, t = 1985 
and 1989 for papers published in 1980 and concerned with physics of condensed matter. 

effect may cause heavy distortions for the variance estimate, as well as in case of the ML 
estimates. Therefore, we have used an estimation method using the sample mean and the 
fraction of uncited papers. This method was already used by Schubert and Gltinzel (1983) 
in order to obtain less distorted standard deviation estimates for negative binomial distri- 

LANCET 
120 

110 - 

100 - 

90 - 

80 - 

70 - 
S 
d 

v 
60 - 

ET 
50 - 

40 - 

30 - 

20 - 

10 - 

0 5 10 15 

Year after publication 

20 25 

Fig. 5. Empirical and estimated values of the mean value functions Mi(s, t) with s = 1982, t = 1985 
and 1989 for papers published in Lancer (1980). 
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Fig. 6. Empirical and estimated values of the mean value functions M,(s, t) with s = 1982 (1983), 
t = 1985 (1986) and 1989 (1990) for papers published in Zeitschrift fiir Wahrscheinlichkeitstheorie 
und verwandte Gebiete (1980-1981). 

butions, and proved to be extremely stable, even if the fraction of uncited papers is small. 
We have 

Q*(t) = 1 - x(t)(hs Q*(tV(lmh(t)) 

0 ! I I t I I I 1 

0 1 2 3 4 5 6 7 8 

Year after publication 

Fig. 7. Empirical and estimated values of the mean value functions Mi(S, t) with s = 1982 (1983), 
I = 1985 (1986) and 1989 (1990) for papers published in Developmental Psychology (1980-1981). 
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N’ = x(t)/(l/q*(t) - l), 

77 

where N’ and q*(t) = l/Q*(t) are estimates of the parameters of the distribution, and 
x( t ) and fO( t ) are the sample mean and the relative frequency of uncited papers at time 
t, respectively. The estimated parameter values for all five samples can be found in Table 1. 

As the predictive aspects are regarded, the mean value function and certain transition 
probabilities play a particularly important part. We will estimate the probability and the 
expected values of future citation rates based on available data for an initial time period 
if the constant parameter N is known and if we have enough information about the change 
of substance flow in time (see above model). The function r(t) in the exponent of the 
parameter q(t) = exp( -r( t)) (cf. eqn (8)) is supposed to have one of two classical forms, 
namely an exponential or a hyperbolic one. Since we do not have any information about 
the limiting values r(m), it is, however, quite impracticable to obtain reliable estimates of 
all parameters of the function r(t) from nine empirical data each. Therefore, we use the 
estimates of q(t) directly without caring about its particular mathematical form. From 
eqns (8), (9), and (12), we thus obtain the following two important equations: 

P(X(t) -X(s) = k(X(s) = i) = 
N+i+k-1 

k 
.q(s, ty+’ (1 - q(s,t))k, (13) 

where 

q(s,t) = (E(X(s)) + N)/(E(X(t)) + N) 

and 

Mj(s, t) = (N + i)(E(X(t) - X(s)))/(E(X(s) + N). (14) 

Equation (14) expresses the expected citation rate during the time period (t - s) under the 
condition that the paper in question has received i citations during the time span s. With 
regard to the applications, this function may be the most important one. 

Concerning eqn (13), two special probabilities are of particular interest: 

P(X(t) - X(s) > 01X(s) = 0) = 1 - q(s,ty; (15) 

that is, the probability that a hitherto uncited paper gets cited, and 

mX(t) - X(s) = OIX(s) = i) = q(s, ty+‘; (16) 

that is, the probability that a paper that has received i(i 2 0) citations will not be cited 
anymore (if t zs s). Note that the latter probabilities form a strict geometric sequence. 

3.2.1 Choice of time parameters for observation and prediction. When the time 
parameters for the observation and the prediction period are to be chosen, first of all the 

Table 1. Estimated parameters of the mean value functions IV, (s, I) = U. i + u 
for s = 1982, t = 1985 and t = 1989, respectively (v = U./V) 

JACS CMPH LANCET DP ZWVG 

ts f9 f5 19 ts 19 t5 19 fs 19 

N 1.91 0.79 0.44 1.18 0.58 
n 1 .oo 1.95 1.00 1.81 0.86 1.54 2.30 4.01 1.81 2.90 
V 1.92 3.71 0.79 1.43 0.38 0.68 2.34 4.73 0.88 1.67 
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fact should be taken into consideration that neither eqns (15) nor (16) would yield relevant 
information for arbitrary time parameters s and t. Whereas eqn (15) gives interesting infor- 
mation if s is rather small, eqn (16) should be applied if the observation period s already 
covers a greater time span and t tends to infinity. Equations (15) and (16) are therefore 
rather designed for alternative use. Equation (14), however, gives relevant information for 
any pair of time parameters (s, t) . In case of citation processes, choosing a rather small 
observation period s and an arbitrary prediction time t may obviously be reasonable. On 
the other hand, one should resist any temptation to extrapolate data based on a too small 
observation period, since the standard deviation grows rapidly as s tends to zero. Thus, 
the standard deviation of the estimated values of the mean value function Mxs, t ) can be 
approximated by 

D(M:(s,t)) = [(l + i/N)D(X(t) - X(s))]“v[nP(X(s) = i)]“2, (17) 

where the denominator almost vanishes ifs is close to zero and i is positive. By theoreti- 
cal and practical reasons, an observation period of two years seems reasonable. For our 
analysis we have therefore chosen the time period 1980-1982 (s = t2) for observations and 
the years t5 = 1985 and tg = 1989 for predictions. The mean value functions have the 
forms Mi(S, ts) = 1.4~.i + u5 and Mi(s,t,) = u9-i + v9, respectively. The parameters u and 
u were calculated based on eqn (14), and can be found in Table 1. The empirical means 
were calculated as the average citation rates during 1983-1985 and 1983-1989, provided 
the papers had received up to 1982 i = 0,1,2, . . . citations. Empirical means and estimated 
mean function values for JACS, CMPH, LANCET, DP, and ZWVG papers are presented 
in Figs. 3 to 7. Data for i 1 30 are not shown, since absolute frequency values start to be 
zero at i = 30, and therefore the empirical conditional means are not defined at this point. 
According to eqn (17), the standard deviation of the estimated conditional means grows 
rapidly with increasing argument i, since the numerator is a strictly ascending function and 
the denominator a descending function of i, if i is great enough. This effect can be observed 
in all five figures. 

Finally, we would like to have a look at the transition probabilities P(X( t) - X(s) = 
klX(s) = 0). For the analysis, all papers of the above five samples were taken into con- 
sideration; they remained uncited during the first three years. We have arranged the 
observed citation rates into frequency distributions according to how many citations these 
papers received during 1983 and 1989. The corresponding theoretical values were estimated 
based on the parameter values presented in Table 1. Table 2 shows the results. The great 
chi-squared figures in case of the CMPH and ZWVG are obviously caused by the unex- 
pected long tail of the distribution, since the fit is otherwise absolutely acceptable. Accord- 
ing to eqn (15) we have in particular: 1106 out of 2010 uncited CMPH papers were cited 
during 1983 and 1989 (estimated value 1093), 38 out of 49 uncited JACS papers were cited 
during the same time period (estimated value 43), 225 out of the 750 uncited LANCET 
papers received citation after 1982 (estimated value 283), 32 out of the 35 uncited DP papers 
received citations after 1982 (estimated value 30), and 77 out of 109 uncited ZWVG papers 
were cited during 1983 and 1989 (estimated valued 59). 

4. DISCUSSION 

The above calculations are not real predictions in the sense of forecasting probabil- 
ities and expectations of future events, since estimates of the parameters q(s, t) based 
on five and ten years’ observations were used. Nevertheless, some important conclusions 
can be derived for possible medium-term forecasts. The JACS sample shows the “most 
correct” behaviour. LANCET allows the least reliable predictions. The two samples from 
hard science fields seem to represent similar regularities regarding the time parameter u(t) 
(cf. eqn (5’) and Table 1). u1985 is very close to the value 1, and u1989 is roughly equal to 
1.9 in either case. The different constant parameter N, however, causes completely differ- 
ent distributions. While the annual distributions of the citation rate of CMPH papers 
remain extremely skewed for all t = 0,. . . ,9, the peak of the annual citation distributions 
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Table 2. Absolute frequencies (ohs.), estimated transition probabilities (esf.) of the citation rate 
distribution of previously uncited papers with a x2 test and critical values 

at a confidence level at 95% and 99% 

79 

k obs. est. obs. est. obs. est. obs. est. obs. est. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
>lO 

11 6.2 904 889.9 
9 7.9 487 451.9 
4 7.5 245 260.3 
7 6.5 137 155.3 
4 5.3 90 95.1 
3 4.1 46 58.7 
2 3.1 32 36.5 
4 2.3 24 22.8 
1 1.7 12 14.3 
0 1.2 13 9.0 
1 0.9 2 5.7 
3 2.2 18 9.8 

Uncited 80-82 49 2010 
Sample mean 3.71 1.43 
Total size 1916 7414 
Uncited 80-89 0.6% 12.2% 
Total mean 31.5 10.28 
XL 6.58 42.82 
Dg.f. 6 14 
95% 12.6 23.7 
99% 16.8 29.1 

JACS CMPH LANCET DP ZWVG 

525 496.0 
110 133.4 
54 58.4 
26 28.8 
12 15.0 
6 8.1 
4 4.5 
5 2.5 
1 1.4 
3 0.8 
2 0.5 
2 0.5 

750 
0.68 

2286 
23.0% 
14.0 
17.61 
7 

14.1 
18.5 

3 5.2 32 49.7 
7 4.9 35 21.3 
4 4.3 11 12.5 
4 3.7 7 8.0 
4 3.1 7 5.3 
0 2.5 4 3.6 
2 2.1 3 2.5 
1 1.7 2 1.7 
2 1.4 0 1.2 
2 1.1 1 0.8 
1 0.9 1 0.6 
5 4.0 6 1.6 

35 109 
4.74 2.45 

203 223 
1.5% 13.3% 

15.0 5.9 
6.14 19.26 
9 6 

16.9 12.6 
21.7 16.8 

of the JACS papers differs from 0 (cf. total mean and portion of total uncited papers in 
Table 2). A further consequence is the difference in the transition probabilities. Anyway, 
it is remarkable that more than three quarters (78%) of all JACS papers uncited up to 1982 
received citations during 1983 and 1989. In the subfield physics of condensed matter, this 
portion was somewhat smaller, but still greater than one half (55qo). The citation rates of 
papers published in LANCET seems to form a completely different citation process. On 
one hand, the constant parameter N is strikingly small, expressed by the extremely skewed 
annual distributions (cf. the portion of uncited papers in Table 2). On the other hand the 
increments as well as the parameter u(t) reflect the fact that processes here proceed much 
faster than in the case of the other examples. Further evidence is that only 30% of uncited 
papers have received citations during 1983 and 1989. This phenomenon may be caused par- 
tially by subject characteristics, but also by the fact that only a relatively small part of 
papers published in LANCET are research articles; a major part are letters. The regulari- 
ties of citation processes are, however, well reflected by the chosen model in this case, too. 
The two “small” samples representing mathematical statistics and psychology show surpris- 
ingly correct behaviour. The mathematical journal behaves more like a social science jour- 
nal than a natural science one. The u parameters are in both cases much greater than in 
the case of the other three journals. The parameters of the DP sample (cf. Table 1) show 
that the shape of the annual distribution resembles that of JAG. As in the case of JACS, 
the mean citation rate of those papers uncited during the first three years is remarkably 
great (4.74). On the other hand, the small parameter N of the ZWVG sample reflects much 
more skewed annual distributions. Finally, we wish to note that an interesting application 
field of the above mentioned model may be the extrapolation of citation-based indicators, 
which are often calculated for a time period of one or two years following the publication 
date. The mean value function may then help to estimate mean citation rates for longer 
or overlapping time periods. 
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