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a  b  s  t  r  a  c  t

The  age  of  researchers  is  a critical  factor  necessary  to study  the  bibliometric  characteristics
of  the  scholars  that  produce  new  knowledge.  In bibliometric  studies,  the  age  of  scientific
authors  is  generally  missing;  however,  the  year  of the  first publication  is frequently  con-
sidered  as a proxy  of  the  age  of researchers.  In this  article,  we  investigate  what  are  the most
important  bibibliometric  factors  that  can be  used  to  predict  the  age  of researchers  (birth
and  PhD  age).  Using  a dataset  of  3574  researchers  from  Québec  for whom  their  Web  of
Science  publications,  year  of  birth and  year  of their  PhD  are  known,  our  analysis  falls  under
the  linear  regression  setting  and  focuses  on  investigating  the  predictive  power  of  various
regression  models  rather  than data  fitting,  considering  also  a breakdown  by  fields.  The  year
of first  publication  proves  to be the  best  linear  predictor  for the  age  of  researchers.  When
using simple  linear  regression  models,  predicting  birth  and  PhD  years  result  in an  error  of
about  3.7  years  and  3.9  years,  respectively.  Including  other  bibliometric  data  marginally
improves  the  predictive  power  of the regression  models.  A  validation  analysis  for the  field
breakdown  shows  that the average  length  of  the  prediction  intervals  vary  from  2.5  years
for  Basic  Medical  Sciences  (for  birth  years)  up  to almost  10 years  for Education  (for  PhD
years).  The  average  models  perform  significantly  better  than  the models  using  individual
observations.  Nonetheless,  the  high  variability  of  data  and  the  uncertainty  inherited  by  the
models  advice  to  caution  when  using  linear  regression  models  for  predicting  the  age  of
researchers.

© 2017  Elsevier  Ltd.  All  rights  reserved.

. Introduction

Several sociodemographic factors have been shown to affect researchers’ scholarly output and impact (Costas & Bordons,
011; Gingras, Larivière, Macaluso, & Robitaille, 2008; Mauleón & Bordons, 2006). Among those, we can mention age (Costas

 Bordons, 2011; Gingras et al., 2008; Levin & Stephan, 1989), gender (Larivière, Gingras, Cronin, & Sugimoto, 2013; Mauleón
 Bordons, 2006), mobility and migration (Canibano, Otamendy, & Solis, 2011; Franzoni, Scellato, & Stephan, 2012; Moed &

alevi, 2014).

The development of large scale author-name disambiguation algorithms (Caron & Van Eck, 2014), as well as the increas-
ng quantity of indexed papers’ metadata (e.g. author names and surnames, affiliations, e-mail data, etc.) have expanded
he possibilities to study such sociodemographic variables. For example, the analysis of the first author names of authors
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(Larivière et al., 2013) allowed for the macro analysis of gender disparities worldwide. The large-scale analysis of the rela-
tionship between author names, affiliations and countries has also opened the possibility of studying academic migrations
at the world level (Moed, Aisati, & Plume, 2013), as well as the nationality (Costas & Noyons, 2013) or even the ethnic origin
(Freeman, 2014) of scholars.

One of the central sociodemographic characteristics of scholars is their age (Costas & Bordons, 2011; Gingras et al., 2008;
Levin & Stephan, 1989), as it has been shown to be a key predictor of research productivity (Bornmann & Leydesdorff, 2014;
Falagas et al., 2008; Levin & Stephan, 1989). However, such variable is generally not included in bibliometric analyses, given
its lack of availability. While several analyses have used the year of first publication as a proxy for their age, of a scholar
(e.g. Radicchi & Castellano, 2013), there has not been any analysis on the actual relationship between this proxy and the
real age of scholars. This paper is intended to fill this gap and shed some light on the underlying relationship between the
‘bibliometric’ age of scholars and their ‘real’ ages, defined as their biological age and time to PhD. In other words, we aim
to assess how reliable is the estimation of the real ages of scholars based on models that exclusively rely on bibliometric
indicators, such as the year of first publication, author order, co-authors, document types published, etc.

Firstly, we  will investigate the correlations between all the variables considered in the analysis. Furthermore, several
boxplots of the birth and PhD year will be presented and analysed in order to study the dispersion of the actual data. The
next step in our analysis will focus on linear regression model fitting.1 Therefore the birth (BIRTH hereafter) and PhD (PHD
hereafter) years will be most frequently referred to as the ‘dependent variables’, while the bibliometric variables will be
interchangeably referred to as the ‘independent variables’, covariates or predictors.

2. Methodology

For the study proposed it is absolutely necessary to have a dataset of scholars for whom the real ages of all the individuals
considered are certainly known as well, as the publication years of their scientific publications, conforming the ‘golden set’ of
the study. As golden set we have considered one of the (possibly) largest datasets of individual scholars for whom their actual
individual characteristics are known (this dataset has been used in some previous studies, e.g. Gingras et al., 2008; Larivière
et al., 2011). The dataset is composed by 13,626 university professors from Quebec (Canada) who have published at least one
article indexed in the Web  of Science (WoS) database during the 1980–2012 period. For every scholar in the dataset, different
information has been collected, including their biological (BIRTH) and academic (PHD) ages, along with other bibliometric
data, such as the year of first publication (YFP), number of publications in WoS  (P), the proportion of publications with
the scholar in the first position (PP POS FIRST), the proportion of publications with any type of international collaboration
(PP INT COLLAB), etc. The full list of variables considered can be found in Table A1 of the Appendix A.

The data also include information about the research domain of the scholars. A total of nine disciplinary fields of activity of
the scholars are considered, based on the 2000 revision of the U.S. Classification of Instructional Programs (CIP)2 developed
by the U.S. Department of Education’s National Center for Education Statistics (NCES). The nine fields of activity, as well as
the distribution of researchers among the fields can be seen in Table A2 in the Appendix A.

For the robustness of the results, we have selected researchers that are born after 1960 and have obtained their PhD
degree since 1980. Moreover, since the last recorded PhD year is 2005, we  have selected only the researchers that have their
first publication the latest in 2010. Therefore the variable YFP is bounded at 2010 and the data truncated correspondingly.

Our final dataset comprises of 3574 researchers. Using this sample, we will make inferences about the researchers, in
general, who represent our statistical population. We  believe our sample is representative for researchers, in general. The
external validation of our analyses, using another dataset, will be deferred to another manuscript.

The subsequent analysis is divided in two main parts. Firstly, we will perform an ‘overall analysis’, for all the selected
researchers in the dataset, regardless their field of activity. We  employ linear regression models for average birth and PhD
years, as well as for all individual observations. Secondly, we are also interested in the particular characteristics of researchers
in different fields and examine the potential disciplinary differences in the results. We  therefore apply a similar analysis at
the field level.

3. Overall analysis

We  start our analysis by investigating the Spearman rank correlation among all variables in the study (see Table A1 in
the Appendix A). The correlation matrix is depicted in Fig. 1. The correlation plot illustrates the correlations between BIRTH

and PHD with other variables, and also brings insight into the correlations between the different independent variables.
The age-related variables are well correlated among themselves. That is, birth (BIRTH) and PhD year (PHD) of researchers
exhibit a strong correlation. Moreover, the year of first publication (YFP) is the only independent variable that presents a
substantial correlation with these two age-related variables. Fig. 1 provides clear evidence to support the idea that YFP is the

1 Despite its strong (and sometimes unintuitive) assumptions that are frequently violated in practice, linear regression modelling remains nevertheless
the  typical (first) approach in investigating the relationships between the variables of interest and covariates.

2 The Classification of Instructional Programs (CIP) is developed by the U.S. Department of Education’s National Centre for Education Statistics (NCES).
More  details can be found at: http://nces.ed.gov/pubs2002/cip2000/

http://nces.ed.gov/pubs2002/cip2000/
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Fig. 1. Correlation plot of all variables in the analysis.
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Fig. 2. Boxplot of birth year (left) and PhD year (right) over year of first publication (YFP).

ost relevant bibliometric variable for the estimation and potential prediction of the real age of scholars. The correlations
etween BIRTH and PHD with the other variables are very low and hence barely visible on the plot. Although small, the

argest positive correlation is with the proportion of publications where the researcher has the first position in the author’s
ist (PP POS FIRST).

Some correlations observed in Fig. 1 also reflect, at the researcher level, expected relationships between variables, such as
he total number of publications (P) and the proportion of articles from the total output (PP ARTICLE), the average number of
ountries per paper (CO P) and the percentage of publications resulting from international collaborations (PP INT COLLAB),
r the correlation between the thee field-normalized size-independent impact indicators (MNCS, PP TOP 10 and MNJS).
lso the collaboration indicators (e.g. number of countries per paper (CO P)), the proportion of collaborative publications

PP COLLAB) and the proportion of publications in international collaboration (PP INT COLLAB) exhibit an expectedly strong
orrelation. Negative correlations emerge as well. For example, we  note the negative correlation between the mean number
uthors per publication (AUTHS P) and the proportion of publications where the researcher has been the first (PP POS FIRST)
s well as the last author (PP POS LAST). It suggests co-authoring publications with higher number of authors, on average,
educes the likelihood of being the first or the last author.

In Fig. 2, we focus now on the relationship between YFP and BIRTH and PHD, presenting the boxplots of BIRTH and PHD
gainst YFP. That is, for each distinct YFP, we consider the boxplot of BIRTH and PHD. Both distributions exhibit a large
egree of variation (spread) for almost all years of first publication. The low spread in the lowest and highest YFP is mainly
ue to the low number of observations in those cases. This suggests that, despite general incremental patterns, there is

lso a significant dispersion in the data concerning the age of researchers. Notably, the spread and thus the variation of
ata increases with the year of first publication, especially for the BIRTH variable. The interquartile range however remains
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Fig. 3. Simple average BIRTH model: the linear fit (black line), the confidence bounds (blue, dashed line), and the prediction bounds (red, dotted line). The
black  points denote the observations in the average model. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web  version of this article.)
Fig. 4. Simple average PHD model: the linear fit (black line), the confidence bounds (blue, dashed line), and the prediction bounds (red, dotted line). The
black  points denote the observations in the average model. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web  version of this article.)

approximately constant over the YFP. This indicates that the central 50% of values within the BIRTH and PHD years grouped
by YFP are similarly dispersed. With respect to outliers, we note more outliers for the PhD years.

3.1. Average model

In this section we focus on linear regression modelling in order to predict the BIRTH and PHD ages of researches based
on the YFP. Firstly, we consider an average model, that is for each distinct YFP we  average the BIRTH and PHD variables
for the researchers under analysis. Since our analysis contains 31 distinct YFP (1980–2010), the BIRTH and PHD models are
fitted using 31 observations. The regression line, as well as the confidence and prediction bounds are depicted in Fig. 3 (for
BIRTH) and Fig. 4 (for PHD). The dotted points represent the observed average BIRTH and PHD years. The confidence and
prediction intervals are computed by using the standard error of the residuals (the difference between the observed and
the fitted values). The confidence intervals account for the uncertainty in estimating the true BIRTH and PHD average years,
whereas the prediction intervals account for the uncertainty inherited by a random future BIRTH or PHD year. Consequently,
the prediction intervals are wider than the confidence intervals. Nonetheless, the prediction intervals are more appropriate

for making statistical inference.

The two simple linear models display a remarkable fit for the data on average BIRTH and PHD years, indicating a strong
linear relationship between average BIRTH and PHD with YFP and, moreover, that YPF is a very good linear predictor of
average BIRTH and PHD years.
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Table  1
R-squared, adjusted R-squared and residual standard error for the BIRTH and PHD average model.

Average Model R-squared Residual standard error
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BIRTH 0.97 0.49
PHD  0.93 1.17

To quantify the goodness of fit, we explore some standard error measurements. Apart from R-squared, we  report the
esidual standard error. The table below provides these statistics for the two  models.

Note the high values for R-squared3 in both average models. It can be concluded that 97% of the total variation is explained
y the simple average BIRTH model, whereas 93% of the total variation is explained by the linear PHD model.

It is well known that, in general, R-squared does not necessarily indicate a good fit of the linear model. With this respect,
e quantify the goodness of fit by using the residual standard error (Table 1). The residual standard error yields that the
rediction of the average PhD year from the simple linear regression results, on average, in an error of about 1.2 years. For
he average birth year, the error is about 0.5 years. Furthermore, if the residuals are approximately normal, then about 95%
f the average birth years are in the range ±1 year (and the average PhD years are in the range ±2.4 years). The residuals
f the BIRTH model look approximately normal (see Fig. A1 in Appendix A).4 However, the residuals of the PHD model (see
ig. A2 in Appendix A) exhibit a long tail, hence the departure from normality. It has to be born in mind though that the
odels are fitted using a small number of observations (31 observations).
So far we have focused on the averages of BIRTH and PHD years. However, it would be of high interest to investigate how

ell do the average models describe the entire dataset at the observational level. That is, how well do the average models
ased on YFP predict the ages of the individual researchers in the analysis? We  report (Table 2) the percentage of covered
bservations within the confidence and prediction intervals, as well as the average length (in years) of the confidence and
rediction intervals.

Firstly, we observe higher coverage percentages and corresponding smaller average length intervals for BIRTH model
han for PHD model. Based on that, the average PHD model seems to cover, via the confidence and prediction intervals, twice
s many researchers as the BIRTH model. The average intervals are twice as small for the BIRTH model than for the PHD
odel. Differently put, it seems that the first publication year (YFP) is a better linear predictor (in the average model) for

cademic age than for biological age. Finally, we have investigated how well do confidence and prediction intervals cover
esearchers within their specific interquantile range (IQR). The IQR are determined for each distinct year of first publication,
s depicted in Fig. 2. It is noteworthy that almost 80% of the observations within the IQR fall within the prediction intervals
f the PHD average model. Nevertheless, the other percentages of coverage of prediction and confidence intervals are quite
ow (with less than 50% of all individual observations), indicating that the bounds obtained from the average model should
e used with care for single observations.

.2. Model selection

The main conclusion of previous section is that, in general, the promising results obtained in the average simple models
hould not be carelessly transferred for individual researchers. In this section we  investigate how well do linear regression
odels work, when performed at the level of individual researchers.
We will thus focus now on fitting linear regression models based on all observations (instead of averages). We  will

onsider simple linear regression models, with YFP as the independent variable for both BIRTH and PHD dependent variables.
oreover, we will explore whether other independent variables could also predict the BIRTH and PHD variables. Thus, we
ill consider all the variables presented in Table A1 (in the Appendix A) and employ model selection techniques to choose

he most influential independent variables for the prediction of the dependent variables.

The standard procedure for the linear regression models is the stepwise regression selection (see, for example, Fox,

008 and Freedman et al., 2007). The (stepwise) ‘forward’ selection starts with a model with no variables and adds at each
tep the independent variable that improves the model the most. The procedure terminates when no variable, if added,

3 For simple linear regression, R-squared is the squared Pearson correlation.
4 The density plots of the residuals, as well as the qqplots for the two  average models can be found in Figures A1 and A2 in the Appendix.

able 2
overage percentage and average length intervals (in years) of the average models confidence and prediction intervals for individual observations. The
overage percentages are reported for the entire dataset (all) and for the observations in the interquartile range (IQR).

Model Interval Coverage Percentage (all) Average length (years) Intervals Coverage Percentage (IQR)

BIRTH Confidence 4.17% 0.51 7.11%
Prediction 20.35% 2.11 34.58%

PHD Confidence 11.3% 1.21 18.64%
Prediction 46.25% 4.97 79.84%



718 G.F. Nane et al. / Journal of Informetrics 11 (2017) 713–729

Table 3
Stepwise regression birth and PhD models using BIC criterion.

Selection model Dependentvariable Independent Variables selected BIC

Stepwise
forward

BIRTH YFP, P, AUTHS, AUTHS P, CO P, PAGS, PAGS P, REFS, REFS P,
PP  POS FIRST, PP POS LAST, PROP SELF CITS, PP ARTICLE,
PP REVIEW, MCS, MNCS, PP TOP 10, MNJS, PP COLLAB,
PP INT COLLAB

18960

PHD YFP, P, AUTHS, AUTHS P, CO P, PAGS, PAGS P, REFS, REFS P,
PP POS FIRST, PP POS LAST, PROP SELF CITS, PP ARTICLE,
PP REVIEW, MCS, MNCS, PP TOP 10, MNJS, PP COLLAB,
PP INT COLLAB

19279.96

Stepwise
backward

BIRTH YFP, PP POS LAST, PROP SELF CITS, PP TOP 10 18864.3
PHD  YFP, REFS P, PP POS FIRST, PP POS LAST, PROP SELF CITS,

PP ARTICLE, MCS, MNCS, PP COLLAB, PP INT COLLAB
19212.38
Stepwise both BIRTH YFP, PP POS LAST, PROP SELF CITS, PP TOP 10 18864.3
PHD  YFP, REFS P, PP POS FIRST, PP POS LAST, PROP SELF CITS,

PP ARTICLE, MCS, MNCS, PP COLLAB, PP INT COLLAB
19212.38

would improve the model. The (stepwise) ‘backward’ selection starts with the full model, when all independent variables
are included and eliminates at each step the variable that, if deleted, would improve the model the most. The procedure is
repeated until no improvement is possible. The stepwise ‘both’ procedure is a combination of the two previous methods,
where, at each step, variables are either included or excluded in order to improve the model. The model improvement is
measured with the Bayesian information criterion (BIC) and is indicated by low values of BIC. BIC is expressed in terms of
the likelihood function of the model, as well as a penalty term that accounts for the number of independent variables and
the number of observations. The penalty term precludes overfitting. The results of the stepwise regression selection and the
BIC for the PHD and BIRTH models are provided in Table 3.

Using stepwise forward regression gives that all 20 independent variables enter the PHD and BIRTH models. When using
stepwise backward selection, the BIRTH model includes only 4 independent variables. According to this procedure, the most
influential variables for the biological age are YFP, proportion of publications where the researcher is on the last position
(PP POS LAST), the proportion of self-citations (PP SELF CITS), as well as PP TOP 10. The PHD final model when using stepwise
backward selection includes 10 independent variables. These variables include the predictors from the birth model, except
PP TOP 10, along with the references per publication (REFS P), the proportion of publications that are articles (PP ARTICLE),
MCS and MNCS and the proportion of publications that were the result of (international) collaborations (PP COLLAB and
PP INT COLLAB). The lowest BIC values are registered for the stepwise backward selection, indicating an improvement in the
goodness-of-fit of the model by excluding 16 variables for the birth model and 10 variables for the PhD model. The results
for stepwise backward and both selection coincide.

We  have also considered models that account for interactions between the independent variables. However, the model
included all the independent variables, along with 45 other interaction terms between the independent variables. The model
does not perform better in terms of BIC, residual standard error or adjusted R-squared. For this reason, we chose not to report
models including interactions and restrict only to full models (when including all the independent variables) and models
resulted from stepwise selection using backward elimination.

Predictive power of the observation-based models. Considering all the previous models discussed, the question that arises
now is, of course, which model can be considered the best in order to predict the real ages of researchers? In order to answer
this question, in this section we evaluate the models obtained via the chosen methods from a predictive point of view.

In order to simplify the discussion, we consider the following BIRTH and PHD models:

1) ‘Full model’, containing all the 20 independent bibliometric variables;
2) ‘Simple model’, that is the model with YFP as its unique independent variable (predictor)
3) ‘Backward model’, this is the model based on the stepwise backward elimination.

We first analyse the models according to how well they describe the data, by reporting R-squared and adjusted R-squared,
that corrects for the number of independent variables. The aim, however, is to quantify the predictive power of the three
linear regression models. With this respect, we employ the predicted residual sum of squares (PRESS) statistics, also known
as the P-square (Allen, 1974). The PRESS statistic performs cross-validation and the residual sum of squares is computed
by fitting the model for a subset of all the observations (a sample). Then it is calculated if the model is predicting well the
observations out of the sample, thus considering the squares of all the prediction errors. The smaller the PRESS statistics, the
higher the predictive power. Thus, checking the predictive power of the model constitutes a validity check for the models

as well. Results containing the R-squared, adjusted R-squared, Residual Standard Error and BIC and PRESS statistics are
presented in Table 4.

For all our 6 models, the differences between R-squared and adjusted R-squared are small, indicating that correcting for
the number of variables does not reduce the percentage of variation explained by the linear model. The differences between
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Fig. 5. Correlation plots for all the fields in the analysis. The variables are denoted by letters (A to V), which can be found in Table A1. in the Appendix A.

Table 4
Goodness-of-fit statistics and predictive analysis for BIRTH and PHD proposed models.

Model R-squared Adjusted R-squared Residual Std. Error BIC PRESS

Full model BIRTH 0.24 0.24 3.63 18960 46123.44
PHD  0.33 0.32 3.81 19279.96 50914.07

Simple model BIRTH 0.23 0.22 3.67 18903.33 46864.42
PHD  0.29 0.29 3.89 19303.13 52622.92

t
c

v
T
i
t
v

Backward model BIRTH 0.24 0.24 3.65 18864.3 46118.79
PHD  0.33 0.33 3.78 19212.38 50607.24

he R-squared values in all models is also small. Minor differences are noted for the residual standard errors as well. In
omparison with average models (see Table 1), the results are modest, for all models.

In terms of predictive power, we observe that, in general, BIRTH models have higher predictive power (lower PRESS
alues) than the PHD models. The best predictive models are those resulted from performing stepwise backward regression.

herefore, reducing the number of variables from 20 to 4 in the BIRTH model and to 10 in the PHD model results in an increase
n the predictive power. Even though the simple models have the lowest predictive power, the increase in predictive power of
he other models is modest. Differently put, reducing the models to the simple linear regression (with YFP as the independent
ariable) results in a decrease of less than 2% in the predictive power for the BIRTH model and less than 4% for the PHD model.
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Fig. 6. Boxplot of BIRTH vs. first publication year (YFP) for all fields.

To quantify the predictive error, we use the results of the residual standard error. Again, the differences are very small
between the three models. The lowest predictive error is observed for the models resulted from stepwise backward elim-
ination and the full models. Predicting BIRTH years when using the simple linear regression model results in an error of
about 3.7 years, while predicting PHD years when using simple linear regression results in an error of about 3.9. This error is
much higher than the error obtained for the simple average models, indicating that prediction errors significantly increase
when considering individual observations. When comparing the backward model with the simple model, the decrease in
the prediction error is 0.02 for the BIRTH models and 0. 09 for the PHD models, suggesting once more that adding more
variables amounts in a slight reduction of the prediction error.

3.3. Validation of the simple linear models

The results obtained so far support the idea that YFP is the single best linear predictor of BIRTH and PHD ages of schol-
ars. Accounting for other information marginally increases the performance of the linear models. To further validate this
conclusion, in this section we investigate the performance of the simple linear regression models (based only on YFP) by
splitting the dataset randomly in 2 dataset (A and B).5 Dataset A contains 2500 observations, whereas dataset B contains
the remaining 970 observations. We  fit the simple linear models on A and check how many observations in dataset B are
covered by the confidence and prediction bounds obtained from fitting the model on the training set A. We  also compute the
average length for the confidence and prediction intervals. We  repeat this procedure 1000 times and average the obtained
coverage percentages. The results are provided in Table 5.
The results indicate that the simple linear BIRTH and PhD models based on YFP can accurately predict, on average, more
than 95% of researcher’s birth and PhD years. This coverage is achieved by the prediction intervals, that have, in turn, an
average length of around 7 years for the BIRTH model and more than 7.5 years for the PHD model. The confidence intervals

5 Dataset A is usually referred to as the training set and dataset B is usually referred to as the test set.
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Fig. 7. Boxplot of year of first publication (YFP) vs. PHD for all fields.

Table 5
Confidence and prediction average coverage percentages (CP) of observations in the test set (B) for 1000 runs for BIRTH and PHD models fitted on the
training set (A). The average length (AL) of the confidence and prediction intervals.

Model CP (conf. int.) AL (conf. int.) CP (pred. int.) AL (pred. int.)

a
l
c
c

4

fi
r
d

l
p
S
o
y

BIRTH 2.70% 0.19 years 95.83% 7.21 years
PHD  3.57% 0.21 years 95.38% 7.63 years

re very small, on average, of around 3 months, and therefore lead to poor coverage percentages. Despite the somewhat
arger prediction intervals, the PHD years in the test dataset are slightly less covered. As mentioned beforehand, the high
overage percentages are due to the large prediction intervals, whereas the small confidence intervals lead to very small
overage percentages.

. Field analysis

As mentioned before (see Methodology section), the researchers in our dataset are assigned to 9 fields (divisions). The
elds, as well as the distribution of researchers over each field can be found in Table A2 in the Appendix A. Most of the
esearchers are assigned to the “Sciences”, “Basic Medical Sciences” and “Engineering” fields. The correlation plots in Fig. 5
epict graphically the differences in correlations among all 9 fields.

Some of the obvious correlations previously observed in Fig. 1 are also observed across fields. The most important simi-
arity is that the correlation between the age variables (BIRTH and PHD) and YFP is high across all fields. An exception to the

reviously observed strong correlation between MNCS and PP TOP 10 is that this is not observed in fields such as “Social
ciences”, “Humanities”, “Education” and “Non-health professional”, which is likely a consequence of the lower applicability
f citation analysis to those disciplines. Following the analysis for the entire dataset, Fig. 6 depicts the distribution of BIRTH
ears over the YFP for all the fields in the analysis.
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Fig. 8. Simple average BIRTH models for all the fields: the linear fit (black line), the confidence bounds (blue, dashed line), and the prediction bounds (red,
dotted line). The black points denote the observations in the average model. (For interpretation of the references to colour in this figure legend, the reader
is  referred to the web version of this article.)

In general, the boxplots for 7 of the 9 fields look quite similarly; showing a strong relationship BIRTH and YFP. The
distortions in the boxplots for “Education” and “Non-health professional” are produced by the small number of observations
in those fields. The variability of the data is evident for most of the fields via the whiskers of the boxplots. In “Basic Medical
Sciences”, “Engineering” and “Sciences” especially, it is notable that researchers born in 1960 have their first publication as
late as 2006.

Fig. 7 presents the boxplots of PHD years with respect to YFP. Once again, all graphs have a quite similar pattern, with
increasing trends in PhD years, although some fields seem to have more stable patterns (e.g. “Engineering”, “Sciences”, “Social
Sciences” or “Health Sciences”), while others have more unstable patterns (e.g. “Non-Health Professional” and “Education”).
The unstable patterns are mainly caused by the low number of observations in those fields.

4.1. Average model

For each distinct year of first publication and field, we can considered the average BIRTH and PHD years of researchers.
The simple linear regression models have been fitted to the data and the resulting fit, along with confidence and prediction
bounds are included in Fig. 8.

All in all, the linear pattern is noticeable across all fields considered. The simple average BIRTH models exhibit a very

good fit in “Basic Medical Sciences”, “Engineering”, “Sciences”, “Social Sciences” and “Humanities”. Despite higher variations
captured by larger confidence and prediction bounds, a linear pattern is also perceptible for “Business & Management”, as
well as for “Health Sciences”. Only for “Education” and “Non-Health Professional”, the linear average model does not really
fit the data very well. Once again, we should bear in mind the low number of observations used to fit the models.
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ig. 9. Simple average PHD models for all the fields: the linear fit (black line), the confidence bounds (blue, dashed line) as well as the prediction bounds
red,  dotted line). The black points denote the observations in the average model. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web  version of this article.)

The graphical representation for the PHD simple average models for all fields is included in Fig. 9. In general, patterns are
omparable to the overall BIRTH average models. Similar as to the overall analysis, we compute the coverage percentages
f the average BIRTH and PHD model for the individual researchers in the analysis, corresponding to each field. Results are
rovided only for the prediction intervals, in the Table 6 below.

An important observation regards the small percentage of covered observations for researchers in the “Science” field,
ith less than 25% of covered observations by the prediction interval of the BIRTH model and less than 40% of observations

overed by the prediction bounds of the PHD model. This result is caused by the very good fit of the average models in this
eld. Obviously, the smaller the average length of the prediction intervals, the smaller the percentage of the observations
overed by the prediction intervals. The good fit yields narrow prediction bounds, which in turn, do not cover many of
he observations. Concluding, the very small percentages in Science are explained by the very narrow prediction intervals.
eversely, the poor fit of the average models for Education and Non-Health fields generate wide prediction bounds which

nclude many individual observations.
The results also indicate high coverage percentages for observations within the IQR. Except for “Business and Manage-

ent” and “Humanities”, the coverage probabilities for the PHD model are higher than for the BIRTH model. When comparing
esults with the overall analysis (Table 2), we observe that the CP for the BIRTH models in the fields of “Basic Medical Sci-
nces” and “Sciences” are the closest with the overall result. This is not surprising, since the two fields are the largest in the
tudy, hence influencing the most the results.
Similar to the overall analysis, we can fairly conclude that, while the average models are performing reasonably well in
tting the data at the field level, the results again should not be transferred to the individual observations, as the dispersion of
he data indicate a bad fitting for the overall set of individuals. Analogous to the overall analysis, linear models for individual
esearchers need to be accounted.
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Table 6
Coverage percentage and average length intervals (in years) of the average models prediction intervals for individual observations, for all fields. The
number of researchers, for each field, is provided in brackets. The coverage percentages are reported for the entire dataset (all) and for the observations in
the  interquartile range (IQR).

Field (n. individuals) Model Coverage percentage (all) Average length of prediction interval Coverage percentage (IQR)

Basic Medical Sciences
(713)

BIRTH 27.89% 2.56 47.56%
PHD  52.82% 6.48 86.45%

Business &
Management (238)

BIRTH 72.46% 7.74 96.09%
PHD  63.56% 6.41 91.11%

Engineering (514) BIRTH 36.08% 4.07 59.57%
PHD  48.63% 5.41 79.51%

Sciences (824) BIRTH 24.48% 2.78 41.08%
PHD  36.91% 3.92 59.75%

Social Sciences (500) BIRTH 48.27% 5.11 75.60%
PHD  61.31% 6.03 90%

Humanities (342) BIRTH 65.82% 7.69 90.41%
PHD  58.18% 6.29 83.01%

Health Sciences (288) BIRTH 63.54% 7.49 86.16%
PHD  75.69% 8.27 96.91%

Education (47) BIRTH 65.12% 7.71 82.61%
PHD  95.34% 9.87 100%

Non-Health
Professional (108)

BIRTH 65.63% 7.73 81.13%
PHD  85.42% 9.29 96.36%

Table 7
Models resulting from the stepwise selection using backward elimination.

Field Dependent variable Independent Variables BIC

Basic medical sciences BIRTH YFP, REFS P, PP POS FIRST 1596.5
PHD  YFP, P, AUTHS, CO P, PAGS, PAGS P, PP POS FIRST, PROP SELF CITS,

PP INT COLLAB
2052.46

Business &
Management

BIRTH YFP, AUTHS, REFS P 617.39
PHD  YFP 601.58

Engineering BIRTH YFP, PAGS P, REFS P, PP POS FIRST, PROP SELF CITS 1362.46
PHD  YFP, PAGS P, REFS P, PP POS FIRST, PP POS LAST, PP INT COLLAB 1350.7

Sciences BIRTH YFP, CO P, PP POS FIRST, MNJS 2170.71
PHD  YFP, P, AUTHS, PAGS, REFS, PP POS LAST, PP INT COLLAB 2112.7

Social  Sciences BIRTH YFP, PP POS LAST, PROP SELF CITS 1281.69
PHD  YFP, PP POS LAST 1159.44

Humanities BIRTH YFP 706.33
PHD  YFP 710

Health BIRTH YFP, PAGS P, PP POS FIRST, PP INT COLLAB 778.79
PHD  YFP, PP POS LAST, PROP SELF CITS 751.16

Education BIRTH YFP, REFS, REFS P 115.31
PHD  YFP, P, PAGS, PP POS FIRST, MCS, MNCS, PP COLLAB, PP INT COLLAB 254.31
Non-health Sciences BIRTH YFP, PROP SELF CITS 279.6
PHD  YFP, PROP SELF CITS 259.78

4.2. Model selection by fields

We  apply the stepwise selection to identify the most important variables in predicting the BIRTH and PHD ages of the
scholars belonging to the different fields. For all fields, the backward selection yields the lowest values for BIC, just as for
the overall analysis. Table 7 presents the results of the stepwise backward model selection approach by fields.

The most important result of Table 7 is that in all fields the YFP is systematically selected as a linear predictor of both the
BIRTH and PHD ages of the researchers. Actually, for some fields (e.g. “Business & management” and “Humanities”) YFP was
selected as the only predictor. Some other predictors that are relevant are the those related with the positions of the authors

(i.e. PP POS FIRST or PP POS LAST), the proportion of self-citations (PP SELF CITS), the total number of authors (AUTHS) or
the number of publications (P), among others.
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Table  8
Prediction average coverage percentages (CP) of observations in the test set (B) for 1000 runs for BIRTH and PHD models fitted on the training set (A). The
average length (AL) of the prediction intervals.

Field Dependent variable CP AL

Basic medical sciences BIRTH 95.88% 2.51 years
PHD 95.55% 6.49 years

Business &
Management

BIRTH 94.77% 7.74 years
PHD 96.28% 6.41 years

Engineering BIRTH 95.53% 4.07 years
PHD 94.80% 5.41 years

Sciences BIRTH 95.98% 2.78 years
PHD 96.46% 3.92 years

Social  Sciences BIRTH 95.49% 5.10 years
PHD 94.13% 6.03 years

Humanities BIRTH 95.96% 6.70 years
PHD 94.22% 6.29 years

Health BIRTH 97.38% 7.49 years
PHD 95.98% 8.27 years

Education BIRTH 94.49% 7.70 years

4

s
‘
T
t

h
m
H
t
t

t
B
“

t
o
m

‘
s
w
w
o

4

d
t
r

f
9

PHD 95.75% 9.87 years

Non-health Sciences BIRTH 92.67% 7.73 years
PHD 93.14% 9.28 years

.3. Predictive power of the observation-based models

Similar to the overall analysis, three models have been considered for each field. The ‘simple model’ uses YFP as the
ingle independent variable, whereas the ‘full model’ uses all the independent variables in Table A1 in the Appendix A. The
backward model’ considers independent variables via stepwise selection using backward elimination, as specified in Table 7.
hese three linear regression models are investigated with respect to the goodness-of-fit and predictive power. Table A3 in
he Appendix A provides the statistics.

The models in all fields register low R-squared values, where only models in the field of “Education” have an R-squared
igher than 0.5. Adjusting for the number of predictors does not influence the goodness-of-fit, in general, given the relative
inor differences between the R-squared and adjusted R-squared. Nonetheless, the ‘full models’ in “Education” and “Non-
ealth Sciences” register a big difference between the two  measures. Overall, the PHD models seem to fit the data better

han the BIRTH models. The exception is given by the field of “Basic Medical Sciences”. An interesting observation regards
he field of “Education”, with a very poor fit of the BIRTH ‘backward model’ and very good fit of the PHD ‘backward model’.

In terms of prediction, we conclude that the ‘backward models’ ensure the highest predictive power, as the PRESS statis-
ics are higher for the ‘backward model’ than for the other models, consistently throughout the fields. Furthermore, the
IRTH ‘backward model’ gives better predictions than PHD ‘backward model’ in the field of “Basic Medical Sciences” and
Humanities”. In all other fields, it seems that PHD is better predicted than BIRTH.

Interestingly, the results indicate that BIRTH and PHD ‘simple models’ in most fields have higher predictive power than
he ‘full models’. “Basic Medical Sciences”, “Engineering” (for BIRTH only), “Sciences” and “Basic Medical Sciences” are the
nly fields where the ‘full models’ register higher PRESS statistics than the ‘simple models’. The differences are, in general,
inor, and lead to small improvements in the predictive power.
Finally, we have investigated how much of the predictive power is lost when choosing the ‘simple model’ over the

backward model’. The smallest difference is registered for the field of “Social Sciences”, with 3.3% decrease in the PRESS
tatistic for BIRTH and 2.3% for PHD. The highest loss is registered in the field of “Education”, where the PRESS increases
ith almost 25% for BIRTH and 55% for PHD when using the ‘simple model’ instead of the ‘backward model’. Once again,
e stress that these results are also influenced by the small number of observations within the field of “Education”. For the

ther fields, the loss is lower than 10%.

.4. Validation of the simple linear models

We  conclude our analysis by repeating the validation procedure for the ‘simple models’ in all fields of analysis. The
atasets are split into the training set A, that accounts for approximately 70%-75% of the entire dataset, and the test set B,
hat includes the remaining observations. The same validation procedure has been applied as for the overall analysis. The

esults for all fields is presented in Table 8 below.

Similar to the overall analysis, the coverage probabilities (CP) are quite encouraging. The lower values of CP are obtained
or fields with few researchers, i.e. “Non-Health Sciences” and “Education”. Nonetheless, all coverage probabilities are above
2%. A very useful insight is provided with the average length of prediction intervals, which varies greatly among fields. The
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field of “Sciences” yields, on average, the smallest prediction intervals, whereas for the fields of “Education” and “Non-Health
Sciences”, the average prediction intervals for BIRTH are larger than 7 years and for PHD larger than 9 years.

It is quite remarkable that YFP, as a single linear predictor, provides very good coverage probabilities, as well as an average
length of around 3 years for BIRTH in the field of “Basic Medical Sciences” and “Sciences”. In fact, for the field of “Sciences”,
YFP seem to be quite accurate as a single linear predictor. Concluding, the results for the fields of “Basic Medical Sciences”,
“Engineering”, “Sciences” and even “Social Sciences” seem more promising than the overall results (see Table 5).

5. Discussion and conclusions

Bibliometric indicators are a rich source of information about the behaviour and characteristics of the individuals that
produce new scientific knowledge. Elements like names, affiliations or roles of scholars in papers provide valuable infor-
mation on the stratification and organization of research. Among those, age has been shown to be a key variable (Costas &
Bordons, 2011; Falagas et al., 2008; Gingras et al., 2008; Levin & Stephan, 1989). This variable of information is also important
for the normalization of indicators at the individual research level (cf. (Wildgaard, 2015)). As age is not indexed in biblio-
metric databases, nor easily available at a large-scale, the year of first publication has generally been considered to be the
best proxy for it. However, the accuracy and validity of such variable had not been tested.

This paper provided such as test, and considered the possibility of combining other bibliometric variables to increase
the capability of the YFP to approximate the real ages of the scholars. Our analysis has shown that indeed the year of first
publication is the best indicator of the actual age of scholars, when employing linear regression models. This is particularly
true when we work with average values. Thus the YFP works particularly well when working with large sets of scholars and
the interest of working with their ages is considered from a global (and ‘averaged’ point of view). This conclusion also holds
when working with scholars from different disciplinary origins.

However, when one wants to predict the ages of a specific set of individuals (e.g. at the individual observation level), the
model becomes more problematic, as the dispersion of the cases leads to high uncertainties and low coverage of individuals.
An important conclusion from this study is that the YFP is, in all cases, the most important linear predictor, and the inclusion of
other variables (e.g. including those variables that have a stronger relationship with career and academic rank of researchers,
such as the position of the authors in the by-line of the papers, their output or the accumulated number of collaborators)
does not add a substantial improvement.

In conclusion, the year of first publication is the best single linear estimator of the ages of individual researchers. Its
application and use at the average level and considering ample groups of scholars can be considered as valid. However, its
predictive power at the individual observational case is relatively limited, especially in some fields. It has to be borne in mind
though that for observations within the IQR, the coverage probability are consistently higher. Moreover, these observations
represent researchers that are, in fact, among the most policy relevant individuals.

Finally, we highlight some of the limitations of this study and we point to future research in order to expand this research
line:

– We  have worked only with researchers from Quebec as a golden set. Although we  believe that this set has some repre-
sentative global value, future research will need to consider a more international golden set, in order to incorporate the
potential specific differences across countries in the estimation of age values based on bibliometric indicators.

– The YFP has been determined using Web  of Science, however the consideration and combination of other bibliographic
database could help to more accurately calculate the debut year of the scholars (e.g. Conference proceedings, Scopus,
Google Scholar or repositories).

– We  haven’t studied the effect of other individual aspects such as gender or country of origin in our predictions.
– This analysis only explored the linear combination of the bibliometric date in predicting the ages of researchers. It is

desirable to consider more general models, which might incorporate the existing dependencies in the dataset. Ideally, the
methods would reduce the uncertainty in our predictions.
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Table  A1
Variables used in the models and description. Letters in brackets are used for the correlation plots.

Variable Description

BIRTH (A) Year of birth of the scholars
PHD (B) Year when the scholar has obtained her (first) PhD
YFP  (C) Publication year of their first publication in the Web  of Science (WoS)
P  (D) Number of publications of the scholars in the WoS
AUTHS (E) Total accumulated number of authors with whom the scholars have collaborated
AUTHS P (F) Average number of authors per paper of the scholars
CO P (G) Average number of distinct countries per paper of the scholars
PAGS (H) Total number of pages of the papers of the scholars
PAGS P (I) Average number of pages per paper of the scholars
REFS (J) Total accumulated number of references of the scholars
REFS  P (K) Average number of references per paper of the scholars
PP  POS FIRST (L) Proportion of publications with the scholar in the first position
PP  POS LAST (M)  Proportion of publications with the scholar in the last position
PROP SELF CITS (N) Proportion of self-citations of the scholars’ publications
PP ARTICLE (O) Proportion of publications that are document type ‘article’
PP  REVIEW (P) Proportion of publications that are document type ‘review’
MCS  (Q) Average number of citations of the publication of each scholar
MNCS (R) Average number of field-normalized citation per publication of each scholar
PP  TOP 10 (S) Proportion of top 10% highly cited publications produced by the scholar
MNJS (T) Field-normalized impact indicator of the publication journals of the scholar
PP  COLLAB (U) Proportion of publications with any type of institutional collaboration produced by the scholars
PP  INT COLLAB (V) Proportion of publications with any type of international collaboration produced by the scholars

Fig. A1. Density plot and qqplot of residuals for the average BIRTH model.

Fig. A2. Density plot and qqplot of residuals for the average PHD model.
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Table A2
Distribution of researchers in the dataset over the 9 fields (divisions).

Field Number of researchers

Basic Medical Sciences 713
Business & Management 238
Engineering 514
Sciences 824
Social Sciences 500
Humanities 342
Health Sciences 288
Education 47
Non-Health Professional 108

Table A3
Goodness-of-fit statistics and predictive analysis for BIRTH and PHD proposed models for fields.

Field Model R-squared Adjusted R-squared Residual Std. Err. BIC PRESS

Basic Medical
Sciences

Full model BIRTH 0.25 0.23 3.02 3720.23 6660.37
PHD  0.21 0.19 4.04 4137.60 12398.37

Simple model BIRTH 0.18 0.18 3.10 3655.49 6842.62
PHD  0.09 0.09 4.30 4122.25 13152.12

Backward model BIRTH 0.23 0.22 3.01 3624.68 6558.79
PHD  0.20 0.19 4.06 4071.79 12068.77

Business &
Management

Full model BIRTH 0.35 0.29 3.60 1382.98 3482.95
PHD  0.39 0.33 3.49 1368.78 3341.84

Simple model BIRTH 0.27 0.27 3.67 1308.28 3169.45
PHD  0.34 0.34 3.52 1289.31 2928.17

Backward model BIRTH 0.27 0.27 3.63 1304.63 3041.47
PHD  0.34 0.34 3.52 1289.31 2928.17

Engineering Full model BIRTH 0.38 0.36 3.60 2892.57 7404.05
PHD  0.44 0.42 3.45 2848.69 10490.61

Simple model BIRTH 0.28 0.28 3.81 2849.36 7440
PHD  0.35 0.35 3.82 2852.35 7471.63

Backward model BIRTH 0.37 0.36 3.59 2815.85 7026.58
PHD  0.46 0.46 3.47 2769.27 6820.83

Sciences Full model BIRTH 0.28 0.26 3.68 4613.58 11339.68
PHD  0.39 0.38 3.52 4536.37 10481.47

Simple model BIRTH 0.24 0.24 3.75 4533.35 11540.92
PHD  0.32 0.32 3.68 4502.51 11097.86

Backward model BIRTH 0.26 0.26 3.70 4523.05 11191.97
PHD  0.37 0.37 3.53 4458.21 10286.15

Social  Sciences Full model BIRTH 0.32 0.29 3.64 2825.21 7278.95
PHD  0.47 0.44 3.17 2686.35 56539.5

Simple model BIRTH 0.27 0.27 3.70 2744.74 6679.97
PHD  0.41 0.41 3.25 2614.64 5194.93

Backward model BIRTH 0.30 0.29 3.64 2736.49 6462.93
PHD  0.44 0.44 3.18 2602.16 5075.28

Humanities Full model BIRTH 0.25 0.20 3.69 1970.28 4059.55
PHD  0.32 0.28 3.68 1968.99 3788.68

Simple model BIRTH 0.19 0.19 3.71 1882.56 3488.59
PHD  0.28 0.28 3.69 1878.56 3536.75

Backward model BIRTH 0.19 0.19 3.70 1881.80 3488.59
PHD  0.28 0.28 3.69 1878.56 3536.75

Health Full model BIRTH 0.21 0.15 3.67 1669.42 4236.12
PHD  0.39 0.35 3.38 1622.27 4282.84

Simple model BIRTH 0.09 0.09 3.79 1600.40 4174.79
PHD  0.22 0.22 3.70 1585.88 3975.24

Backward model BIRTH 0.14 0.13 3.70 1595.51 4038.29
PHD  0.36 0.35 3.37 1550.97 3728.19

Education Full model BIRTH 0.57 0.22 4.32 327.75 2111.98
PHD  0.82 0.67 2.53 277.44 698.92

Simple model BIRTH 0.08 0.08 3.99 273.18 634.43
PHD  0.45 0.45 2.96 244.90 373.88

Backward model BIRTH 0.08 0.07 3.99 273.18 508.88
PHD  0.75 0.65 2.33 254.31 241.33
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Table  A3 (Continued)

Field Model R-squared Adjusted R-squared Residual Std. Err. BIC PRESS

Non-Health
Sciences

Full model BIRTH 0.32 0.14 4.19 695.78 2436.65
PHD 0.49 0.35 3.96 683.55 1825.85

Simple model BIRTH 0.12 0.12 4.21 629.04 1768.96

R

A
B

C
C

C

C

F
F
F

F
F
G

L
L
M
M

M

R

W

PHD 0.26 0.26 3.98 616.82 1443.61
Backward model BIRTH 0.17 0.16 4.11 266.78 1619.39

PHD 0.35 0.33 3.77 612.71 1323.39
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