
Technological Forecasting & Social Change 81 (2014) 49–55

Contents lists available at ScienceDirect

Technological Forecasting & Social Change
Predicting highly cited papers: A Method for Early Detection of
Candidate Breakthroughs

Ilya V. Ponomarev a,⁎, Duane E. Williams a, Charles J. Hackett b, Joshua D. Schnell a, Laurel L. Haak a

a Thomson Reuters, Rockville, MD, USA
b Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
a r t i c l e i n f o
⁎ Corresponding author at: 1455 Research Blvd., 2n
E-mail address: ilya.ponomarev@thomsonreuters.c

0040-1625/$ – see front matter © 2012 Elsevier Inc. A
http://dx.doi.org/10.1016/j.techfore.2012.09.017
a b s t r a c t
Article history:
Received 16 March 2012
Received in revised form 30 July 2012
Accepted 26 September 2012
Available online 21 November 2012
Scientific breakthroughs are rare events, and usually recognized retrospectively. We developed
methods for early detection of candidate breakthroughs, basedondynamics of publication citations
and used a quantitative approach to identify typical citation patterns of known breakthrough
papers and a larger group of highly cited papers. Based on these analyses, we proposed two
forecastingmodels that were validated using statistical methods to derive confidence levels. These
findings can be used to inform research portfolio management practices.
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1. Introduction

Understanding the process of scientific knowledge creation and measuring impact is vital from both a management and policy
standpoint. Scientific discoveries may be gradual and incremental, or transformative and abrupt. While both paths to discovery are
important, major advances in science strongly depend upon explosive breakthrough discoveries. By detecting these transformative
discoveries as early as possible, more time is gained to support these emerging research areas through workshops, new funding, or
collaborative research efforts.

The quantitative study of ground breaking research publications has a long history, and has been based typically on publication
citation statistics [1–3]. In particular, de Solla Price [4] showed that the citation count distribution for individual publications had a
power-law form. He noted that well-cited papers continued to be referenced more frequently than less-cited papers, and coined [5]
the term “cumulative advantage” [6] to describe the mechanism that causes a persistently higher rate. In the framework of network
models, this mechanism is now known as preferential attachment [7]. In the 1980s, Pendlebury [8] and Garfield [9] performed
analysis of total citations count of eminent researchers and showed [10] that most-cited author ranking effectively identified Nobel
Prize winners. This approach is used currently in the Essential Science IndicatorsSM (ESI) product from Thomson Reuters [11]. Aversa
[12] identified 2 different citation patterns for 400 highly cited papers published in the 1970s and analyzed aging rates for those
papers. Growth and aging effects were also analyzed and modeled by van Raan [13]. More recently, Redner [14] analyzed citation
statistics using a corpus of all papers published in Physics Review Journals during its 110 year history. He demonstrated temporal
features associated with citations, such as citation patterns, highly correlated burst of citations, and downturns in research activity.
Chen et al. [15] introduced the explanatory and computational theory of transformative discovery based on a network approach to
scientific knowledge diffusion.
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The present work pursues a different goal: to describe and to validate a scalable method for early identification of breakthrough
candidate publications (BPs) by predicting future citation patterns of individual papers in a collection using time dependent analysis of
citation rates. It is worth noting that, without a doubt, identifying influential discoveries is a multidimensional process like that of
research itself and should involvemetrics beyond simple cumulative citation counts. Examples include ranking citations by geographic
region, by interdisciplinary features [16–18], by prestige diversity, recognition by leading experts, by count and classifications of awards
received, media coverage, and by informal citations (names in titles, acknowledged methods abbreviations etc.). This manuscript is a
first step in developing such a multidimensional breakthrough paper indicator.
2. Method and analysis

In this paper we focus on ranked citation counts and monthly citation rates as proxies for scientific impact. Our approach can
be described in the following steps:

1. Consider a small set of known BPs in a particular research field.
2. For each BP identify a statistically large set of similar publications.
3. Rank by cumulative citations, establish and justify citation breakthrough thresholds.
4. Identify typical pattern of time-dependent citation behavior of highly cited papers.
5. Choose theoretical model which describes this behavior with high level of statistical confidence.
6. Using only knowledge about earlier times of citation curves (6–24 months) fit and interpolate results on later times.
7. Compare and validate predicted results empirically with actual citation behavior.
2.1. Citation data

For our studies we used citation data sets derived from Thomson Reuters Web of Science (WOS). Citation data were extracted
in January, 2012. Firstly, as a reference, an initial set of 11 known breakthrough publications in molecular biology and genetics
was compiled by subject matter experts in the Division of Allergy, Immunology, and Transplantation (DAIT) of the National
Institute of Allergy and Infectious Diseases (NIAID) of the US National Institutes of Health [19–29]. In our analysis we abbreviate
this set as “DAIT BPs” (see Table 1).

For each DAIT paper we identified a set of similar papers. We considered a paper similar if it was published in the same research
field and during the same calendar year. Research field selection was based on ESI. Each journal was assigned to one of the 22 major
fields of sciences. Each paper was then assigned to a discipline—and only one discipline—based on the journal in which it appeared.
Such selection allows us to generate a data corpus that supported statistical significance testing. General information about DAIT BPs
and corresponding similar paper sets is given in Table 1.

Furthermore, to estimate breakthrough citation thresholds in all 22 ESI subject categories we evaluated annual data sets of
research articles, published from 1995 to 2005, that acknowledged NIH funding support. We call these data sets “MEDLINE Sets”.
We validated our findings using the 2005 data set (total 375,372 items). Citation data were analyzed in one-month intervals. A
time stamp of citation was determined by journal issue date of citing publication. In the rare events when journal issue date was
not available it was calculated by using the known journal issue frequency.
Table 1
DAIT BPs citation statistics. ‘1st Author Name’ — 1st author names in referenced set [15–25]; ‘Subject Category’ —WOS subject category (MD is formultidisciplinary, and
MBG is forMolecular Biology andGenetics); ‘Cites 6M/24/60’ — number of citations at 6/24/60 months since publication; ‘JCBI 24’ - Journal Citation Benchmark Indicator
(JCBI) — median value of citations after 24 months for papers published in the journal; ‘Cites Ratio’ — ratio between ‘JCBI 24’ and ‘Cites 24’; ‘# Sim Pubs’ — number of
similar publications in the comparison set; ‘Paper Rank’ — citation rank of thepaper in the set (#1 corresponds to thehighest citedpaper); ‘Top %’ —percentile position of
the article in the ranked list; ‘In Top 1%’ —whether or not (Y/N) paper made a top 1% cut; and ‘Cites Now’ — total number of citations received as of January 2012.

1st Author name Journal Subject
category

Pub
year

Cites
6 M

Cites
24 M

JCBI
24

Cites
Ratio

# Sim
pubs

Cites
60 M

Paper
rank

Top % In top
1%

Cites
now

Hammond Nature MD 2000 15 146 20 7.3 5105 603 38 0.74% Y 1317
Ketting Nature MD 2000 4 40 20 2 5105 87 1269 24.8% N 116
Domeier Science MD 2000 10 47 25 1.9 5105 75 1493 29.3% N 106
Caplen Gene MBG 2000 3 33 3 11 33,209 92 1885 5.68% N 131
Lagos-Quintana Science MD 2001 26 160 27 5.9 5135 491 68 1.32% N 1267
Fire Nature MD 1998 11 207 26 8 5299 995 13 0.25% Y 4856
Distel Cell MBG 1987 3 129 31 4.2 18,566 325 62 0.33% Y 498
McHeyzer-Williams Science MD 1995 0 59 22 2.7 4898 165 485 9.90% N 351
Hicke Cell MBG 1996 7 107 43 2.5 29,663 250 238 0.80% Y 513
Nussenzweig Nature MD 1996 6 67 28 2.4 5152 203 309 6.0% N 424
Altman Science MD 1996 5 81 21 3.9 5152 699 27 0.52% Y 2236



Fig. 1. Distribution of cumulative number of citations after 5 y for two data sets. MEDLINE set in the 2005 data set (blue, 375 K articles) show typical highly skewed
power law behavior with only about 1% of the papers being cited more than 100 times. In comparison, all DAIT BPs (orange) have been cited more than 75 times and
8 papers acquired more than 100 citations.
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2.2. Citation breakthrough threshold

Our initial retrospective analysis was performed using a 2005 MEDLINE data set. We established a 5 year time window after
publication date for a calculation of cumulative citation rankings, assuming that this time interval is sufficient for recognition of
seminal papers by the scientific community. Our criterion for a candidate breakthrough was a paper that exceeded a certain
threshold of cumulative citations count 5 years after publication. A comparison of cumulative citation distributions between DAIT
and 2005 MEDLINE set is shown in Fig. 1.

Thus an important question was the determination of the numeric value for the breakthrough citation threshold. A simple
assignment of the same high value of citations (e.g., 100) is not feasible, as it does not account for variation in citation behavior
between fields. As shown in Fig. 2, a threshold of 100 citations would lead to 1858 BP candidates in Clinical Medicine in 2005
alone, and more than 500 papers in four other subject categories. Such a high rate of BPs does not correspond with the intuitive
expectation regarding rareness of breakthrough discoveries. On the other hand, using this threshold, some categories like Space
Science or Economics would have no breakthrough candidates. The reason for such divergence is that the number of citations
depends strongly on publication volumes and on the size of a particular scientific community, which vary substantially by field of
research (see right column in Fig. 2).
Fig. 2. BPs citation thresholds and corresponding number of papers, by subject category for numeric (blue) and percentile (orange) threshold selection.

image of Fig.�2


Fig. 3. Paper count at 0.1% citation threshold by year for several select fields of study.
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We found that a percentile approach for establishing the threshold value is more effective than a strict numerical cutoff. In
general, the top percentage of publications in a set should be selected as a cutoff point. Selectivity with inclusiveness needs to be
balanced so as to choose a selective group for future monitoring, and then apply other metrics to further filter the results. We
determined that for topical sets containing more than 20,000 publications, a 0.1% cutoff is optimal (Figs. 2 and 3). For smaller sets,
it may be desirable to increase the cutoff to 1% or more.

We also studied MEDLINE annual data sets for each of the years 1995–2004 to test whether the citation threshold changes
with time (see Fig. 3). While some of the subject categories have monotonic dependencies or strong fluctuations, we found that
research fields related to medicine and biology have a stable citation threshold. This is a very important finding since it allows us
to project current average value of citation threshold in future years.
2.3. Identifying typical citation patterns

The next step of our detection method was to identify citation patterns of top-cited publications using monthly citation counts
and rates. In Fig. 4, the cumulative citation count (left panel) and its derivative – a monthly citation rate – (right panel) are shown.
In general, a typical citation pattern has an initial period of slow citation growth that lasts from 5 to 20 months (monthly rate is
proportional ta with 1≤α≤2). Following this initial slow growth phase, the citation rates accelerate. Then citation rates reach
saturation plateaus, after which they decrease (memory or aging effect). While for a majority of top ranked publication citations
count will follow this scenario, the time transitions between these phases vary substantially from paper to paper. We analyzed the
top cited papers in several datasets. We found that after 5 years, approximately 25% are still in the first stage of growth (Type A,
right panel of Fig. 4), 50% are in saturation (Type B) and 25% have started aging (Type C).
Fig. 4. Three typical citation count patterns. Due to strong fluctuations, monthly citation rates were smoothed by applying a moving average window with a
5 month span. Please note the different upper limits for y-axis for monthly citation rates.

image of Fig.�3
image of Fig.�4


Fig. 5. Citation curves of the actual paper (dashed line), linear (green) and nonlinear (red) fitting curves. The fitting procedure used only citation data for the first
several months (shown in blue). Data were extrapolated to predict future citations and compared with actual citation curve.
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2.4. Forecasting models

Based on these observations, we developed a forecasting model that allowed us to predict most citation trajectories with a
minimum number of fitting parameters. Our approach was the following: using data for the first n months (n=6, 12, and 24), we
curve-fit citation data and extrapolated results to time t=5 years and predicted whether or not the paper had breakthrough
potential (e.g., the citation threshold will be above what is expected for a given subject category).

In our method, we chose linear model (LM) f1 and non-linear model (NLM) f2 theoretical curves to fit the citation behavior
(Fig. 5):
Table 2
Precisio

1
2
3
4
5

f 1 tð Þ ¼ a1t þ b1;

f 2 tð Þ ¼ a2b2t−a2b
2
2 log 1þ t

b2

� �
:

3. Model validation and results

We used the 2005 MEDLINE BPs for the Chemistry Subject Category as a test set. This set comprises 169 journals and 51,575
publications. There were 51 papers above the 0.1% citation breakthrough threshold (262 citations after 5 years). We experimented
with optimization of the initial detection time window (i.e., the initial time span in which citation data necessary for forecasting
model input are collected). Optimization of this window is driven by a tradeoff between three contradicting requirements. First, from
the perspective of science policy makers, this window should be as short as possible to allow BPs to be detected as early as possible.
Second, for a fitting process themore data (citations events) you have, the better the fit quality, and thus there needs to be aminimum
number of data points to generate a reasonable data fit (e.g., if you have only three data points, varying different fitting parameters
will result in an infinite number of solutions through them, which renders the results meaningless). Third, the initial time window
should be long enough to account for the editorial cycles of different journals. To be cited, a paper must be incorporated into a new
manuscript that must then be submitted to a journal, peer-reviewed, revised, and then finally published. Choosing too short a
window eliminates paper journals with longer editorial cycles from consideration. Therefore, the initial time window should be
adjusted to be relevant for a statistically large enough group of journals. It should be noted that application of a minimum citation
count cutoff at the early months inevitably risks omission of a group of papers which became highly cited later (aka “sleeping
beauties” or “late bloomers” [30]) as well as those from journals with longer editorial cycles.
n and recall for linear model.

Months of data 6 12 24 36 60

# Papers predicted 1 5 13 22 27
# Correctly predicted 1 4 12 20 26
# Incorrectly predicted 0 1 1 2 1
Precision (row#2/row#1, %) 100 80 92 91 96
Recall (row #2/30 actual, %) 3 13 40 67 87
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Table 3
Precision and recall for non-linear model.

Months of data 6 12 24 36 60

1 # Papers predicted 266 51 34 32 29
2 # Correctly predicted 12 19 23 25 28
3 # Incorrectly predicted 254 32 11 7 1
4 Precision (row#2/row#1, %) 5 37 68 78 97
5 Recall (row #2/30 actual, %) 40 63 77 83 93
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As expected, the citation distribution is skewed strongly towards many papers with few citations. We found that application of
a lower citation cutoff of at least 5 citations within 6 months of publication resulted in elimination of more than 98.5% of papers
but left 59% of breakthrough candidates (30 out of 51). A citation cutoff of 10 citations within 12 months dropped 97.7% of all
papers but increased the number of BPs retained to 94% (48 out of 51).

As an example, we present results for the “5 citations within 6 months cutoff” that comprise 794 papers set in Tables 2 and 3.
The quality of prediction versus initial detection time window was assessed by calculating precision (the ratio of actual BPs
detected to the total number of predicted BPs) and recall (the ratio of actual BPs detected to the total number of BPs in data set).

In general, we found that the linear model tended to underestimate actual citations while the non-linear model tended to
overestimate actual citation values. The linear model better predicts Type B and C citation patterns, or about 75% of all papers in
the set. To demonstrate this statement, we analyzed top 200 ranked papers with cumulative citation count >96. The histograms
in Fig. 6 show the differences between predicted and actual cumulative count for linear (A1) and non-linear (B1) models are
shown. Continuous curves (black color for linear model and red color for non-linear model) represent the best fit by the Student's
t-distribution.
4. Conclusions

Wehave developedmethods that combine curve-fitting and thresholding strategies for early detection of candidate breakthrough
papers.We have shown the efficacy of this method empirically by testing precision and recall on known breakthrough papers and on
detection of highly cited papers by topic area and across years. Our method is scalable to larger datasets, and is tunable by threshold
and initial citation cutoff. A fraction of correctly predicted BPs increases with increase of the initial time window. For example, one
year following publication, approximately 60% of BPs will be predicted correctly with 40% recall rate. Further experiments are needed
to test and incorporate additional dimensions, such as interdisciplinarity of cited or citing articles, geographical diversity, and citations
prestige to further refine the detection and qualification of candidate breakthrough papers. Even in this initial stage, our findings can
be used to inform portfolio management practices. Application of an early detection indicator can be used to flag emerging research
areas and stimulate attention through workshops, new funding, or collaborative research efforts.
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Fig. 6. Distribution of deviations of the predicted values from exact citation counts for 200 top ranked papers (see text). X-axis shows differences between predicted
values and actual citations counts. Bins are normalized frequencies for linear (blue) and non-linear (green) models. Data fitted by the Student's t-distribution. Linear
model fit (black) has a mean=−24.5, variance=29.7, and ν (degrees of freedom)=1.7. Non-linear model fit (red) has a mean=26, variance=42.8, and ν=2.5.
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