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The goal of this work is to understand the structure and characteristics of technological knowledge flows
between countries, institutions, and technology fields in the field of organic photovoltaic cells. This study
was conducted in three stages: data collection, network creation, and network analysis. For network
analysis, network visualization, network topological analysis, and node centrality analysis were
performed in sequence. The network topological analysis revealed that all three citation networks, i.e.,
countries, institutions, and technology fields, are scale-free networks that follow the power law and
display, to a greater or lesser extent, a more efficient knowledge transfer capability than a random
network of the same size. The node centrality analysis showed that the United States, Japan, and
Germany are the most important citation centers in the country citation network, while Boeing, Konarka
Technologies, Eastman Kodak, and Sharp are the most important in the institution citation network, and
the U.S. patent classification (USPC) classes of 136, 257, and 428 are the most important in the technology
field citation network, each playing critical roles in each the network as core nodes. In this study, we
applied various concepts of centrality to the analysis of individual nodes and found that the results from
the network topological analysis and the node centrality analysis are not significantly different.
The proposed analysis framework in this paper is applicable to different science and technology domains.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the 19th century, mankind has depended mostly on fossil
fuels for energy needs. However, as the awareness of environmental
problems, such as the depletion of fossil fuels and global warming
caused by rising levels of GHGs, has increased, the development and
security of environmentally-friendly and sustainable energy sources
has emerged as a major concern for the global community. In 2006,
the U.S. announced its “Advanced Energy Initiative” and outlined a
challenging goal to reduce oil imports from the Middle East by 75%
by the year 2025 by developing new and renewable energy
resources [1]. The EU adopted the “SET-Plan” and set the target of
reducing EU emissions of GHGs by at least 20% by 2020, relative to
the emissions levels in 1990 [2]. The Korean Government estab-
lished “The 2nd National Plan for Energy Technology Development”
to improve its global competitiveness in energy technology and the
industrial sector. This plan aims to develop new and renewable
energy technologies and to improve power efficiency by doubling
the country's energy-related research and development (R&D)
investments by 2020. Additionally, Japan, China and Canada also
have set national agendas for the development of new and renew-
able energy technologies to reduce their dependency on fossil fuels
and to foster a strategic green growth industry.

New and renewable energy technologies cover various fields,
such as solar thermal, photovoltaics, wind, geothermal heat, and
fuel cells. Among these, solar energy, which includes solar thermal
and photovoltaics, is sometimes considered the perfect alternative
to fossil fuels because it is an inexhaustible source of energy and
does not produce GHGs or other pollutants [3]. Accordingly, many
countries are promoting the national importance of R&D in solar
energy as a key aspect of the new and renewable energy sector.

As mentioned earlier, solar energy is divided largely into two
categories, photovoltaics and solar thermal. The former is a
method of generating electrical power by the conversion of solar
radiation into electricity through the use of photovoltaic cells
made of semiconductors. The latter absorbs solar radiation, con-
verts it into heat, and then utilizes the stored heat for cooling,
heating, or power generation. Although photovoltaic energy pro-
duction varies by country, it is generally a significantly larger
component of the solar energy industry in comparison to solar
thermal energy.1

The core technology of photovoltaics is the photovoltaic cell,
which is a device that converts light energy into electrical energy.
Among the various photovoltaic cells, organic photovoltaic cells
have drawn significant attention as an eco-friendly energy source
for the future, incorporating active R&D and knowledge transfer
activities. The purpose of this paper is to understand the structure
al growth rates in the supply of the new and renewable energy
countries from 1995 to 2007 shows that photovoltaic energy

ighest growth rate (43.2%), while solar thermal energy remained at
ea, compared with 30,700 TOE of solar thermal energy supply in
ly of photovoltaic energy reached 121,700 TOE, which is almost
her [5]. In the U.S., photovoltaic energy occupies the largest
e solar energy industry [1], and the Solar Energy Program initiated
eral government places the highest priority on the photovoltaic
[6].
and characteristics of the technological knowledge flows between
countries, institutions and technology fields by using a patent
citation network in the field of organic photovoltaic cells.
2. Literature Review

The citation information contained in both scientific publications
and patents has been the most important and basic indicator by
which to measure the impact of such publications and patents [7].
Patent citations, in particular, are widely believed to represent
knowledge transfer or knowledge spillover [8] and have been much
used to measure disembodied knowledge flows between industries
or technology fields [9].

However, there are a few drawbacks to the use of patent data as an
indicator of technological knowledge flow. The first drawback involves
whetherpatents canbeused to represent technologicalknowledge. This
arises from the fact that not all inventions are patented and patentable
[10,11]. In reality, only some inventions are patented [12], and not all
patents become innovations [10]. The second drawback is that the
propensity to patent varies across technology sectors [10,13]. Patent
protection is less significant in some industries [14]. Other means of
protection, such as trade secrets or trademarks, might be preferred by
individual firms to protect their technological know-how [15]. This
propensity can cause bias in the analysis of technological knowledge
flow when using patent data. Third, the inventive quality of patents
varies greatly. That is, not all patents have equal value [16]. Few patents
actually possess high technological and economic value. These three
aspects may decrease the significance and value of patent data.

Despite these limitations to patent data, many attempts have
been made to date to analyze knowledge flows using patent data.
It is because the value of a patent is generally proportional to the
citation count number [17,18]; additionally, patent citations can
provide information on the diffusion of technologies in a certain
technology domain [19]. From the viewpoint of technological
knowledge flows, patents, as a medium for the disclosure of
technology, clearly show the developmental trace of the technol-
ogy because they contain the “prior art” [19]. Additionally, patent
citations provide good evidence of the links between technological
antecedents and descendants [20]. Therefore, patent citations have
become one of the main indicators used to explain technological
relationships.

In this sense, patents and patent citations are typically consid-
ered to be very useful in the study of technological knowledge
flows, as has already been demonstrated in previous studies. Huang
et al. [21] analyzed patent citation networks in the field of
nanoscale science and engineering, presenting the longitudinal
changes in R&D in this technology field. Hu and Jaffe [22] used
patent citation information to examine the patterns of knowledge
diffusion between countries. Kajikawa and Takeda [23] studied the
literature citation network of organic light-emitting diodes (OLED)
to investigate the structure of research and to detect emerging
research domains. No et al. [20] attempted to deepen the under-
standing of technological trajectories and trends by utilizing patent
citations in nanobiotechnology fields. Yoon et al. [24] constructed a
patent network based on semantic patent analysis, identifying the



Fig. 1. The research framework of patent citation networks.
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technological trends. Moreover, Lai and Wu [25] proposed a new
approach to patent classification for better technology positioning
and forecasting by using patent co-citation analysis of bibliometrics.

The greatest advantage of patent data is that they represent a
direct outcome of the invention process [26,27]. By considering the
fact that inventions are the source of new technological knowl-
edge, even if not all inventions can be patented, it is obvious that
patent data represent some of the most significant indicators of
technological knowledge and innovation.

Patent citation analysis begins with an examination of the
citation relationship between different patents or between patents
and the scientific literature [28].2 The statistical analysis of patents
and patent citations is a conventional research method, used to
observe or measure technological knowledge flows [29]. However,
such a method can only inform us with partial characteristics of
the knowledge flow [30], which poses a limitation; hence, an
approach that incorporates patent citation information with social
network theory has been developed. Social network analysis is
a quantitative technique based on graph theory. It is used to
understand the interactions among actors (nodes). Social network
methods are continuously evolving, although network topological
analysis and node centrality analysis are commonly used.

The network topological analysis of either scientific literature or
patent citations is helpful in widening our understanding of the
structure of the citation network and provides a holistic perspective
of knowledge flow. Previous studies on the citation network found
that the network has the characteristics of a scale-free network with
a power-law degree distribution. Bilke and Peterson [31] confirmed
that the citation network in high energy physics publications is a
scale-free network with a power-law distribution. Chen and Hicks [7]
analyzed the link between science and technology by using the
paper-patent citations in the field of tissue engineering and found
that a power-law degree distribution phenomenon exists within that
citation network. Okamura and Vonortas [32] analyzed patent
citations in five industrial sectors and verified that their degree
distribution follows a power law. Li et al. [30] studied nanotechnol-
ogy patents and their citations and found that the corresponding
patent document citation network follows the scale-free model.
Hung and Wang [33] identified that the patent citation network
roughly follows a power-law distribution by analyzing patents in the
field of radio frequency identification (RFID).

Network topological analysis is very useful in understanding
the overall flow of technological knowledge by providing informa-
tion on the network structure, but it cannot provide quantitative
2 This paper does not examine the citation relationship between a patent and a
scientific publication but limits the scope of study to the analysis of the citation
relationship between patents.
information on the importance and value of individual nodes. This
paper makes more progress in identifying the importance and
value of individual nodes, presenting a centrality analysis that can
be a useful method for the measurement of the structural location
of an individual node and for assessing its importance. Centrality is
an index representing the extent to which a node is located at the
center of the entire network. Because the actual value and
importance that “a center” has within one network has been
proved [34–37], we can identify the value and importance of an
individual node by using the concept of centrality. There exist
various methods to measure the centrality of a node, each of
which has its own unique characteristics. This study analyzes
individual nodes by using the three types of centrality suggested
by Freeman [38].

We first review the structure and characteristics of the patent
citation network for each analytical unit of country, institution and
technology field through the use of network visualization and
network topological analysis. Then, we identify the value and
importance of an individual node by using centrality analysis.
3. Research Design

Organic photovoltaic cells have drawn significant attention as
a new energy source for the future because they are more flexible,
cheaper, and more eco-friendly than other photovoltaic cells.
Patent applications and registrations in the field of organic photo-
voltaic cells have increased rapidly since 2001, and as a result, the
corresponding knowledge flow has changed dynamically. There-
fore, the field of organic photovoltaic cells is well merited for
studying the structure and characteristics of technological
knowledge flows.

This paper presents the results of network visualization, net-
work topological analysis, and node centrality analysis in under-
standing the technological knowledge flows of patent citation
networks in the field of organic photovoltaic cells. The reported
results cover three analytical units. The research framework of this
study is presented in Fig. 1.

3.1. Analytical units

Because a patent can be both easily accessed in electronic form
and easily categorized according to various criteria, such as the
technology, inventor or assignee [39,40], its analytical units are
vary significantly. The most familiar analytical units of a patent are
the patent document, assignee, assignee country, and technology
field; additionally the inventor and industry also can be used as
the analytical units. With respect to a patent citation network, the
analytical units are regarded as nodes, while citing and the cited
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relationships between such analytical units are called links. Thus, a
patent citation network is a directed network and can be, accord-
ing to the analytical units, constructed in various forms, including
the patent document citation network, the patent assignee coun-
try citation network, the patent assignee institution citation net-
work, the patent technology field citation network, or the patent
industry citation network, among others. Because the analytical
units in this paper are country, institution, and technology field,
we establish the patent assignee country citation network, the
patent assignee institution citation network, and the patent
technology field citation network.

3.2. Network analysis

3.2.1. Network visualization and network topological analysis
We first visualize a network map to assess a general overall

structure of the network. Then, we analyze the structural and
topological characteristics of the network by using various statis-
tical indices, as suggested by Albert and Barabasi [40], and
compare these results with those from a random network of the
same size.
−
 The number of nodes and links: These are basic indices that
indicate the size of a network.
−
 Density: This is defined as the ratio of actual links to all possible
links in the network. Generally, as a network grows in size, the
density decreases.
−
 Average degree: The degree is defined as the number of links
that a given node has to other nodes. Thus, the average degree
is calculated by dividing the sum of all node degrees by the
total number of nodes in the network.
−

3 For details on the degree centrality, see Eq. (1).
4 The theoretically possible highest degree centrality appears in a star network.
Average path length: This is the average value of the geodesic
path length between any pair of nodes in the network. As the
average path length decreases, technology and information
diffuse faster through the network.
The star network is a network in which all nodes are connected to a certain node,
−

but the rest of nodes are not linked to each other. Thus, let n denote the total
Diameter: This is the length of the largest geodesic path in the
network.
number of nodes in the network, then the theoretically possible highest degree
centrality is (n-1)(n-2).
−
5 In the equation of Y ¼ aX−b , b is called “power-law exponent.”
6 For details on the test and p-value, refer to [42].
Number of components: A component is an isolated sub-
network in the network. There are no conditions for becoming
a component unless disconnection between nodes occurs. The
number of components indicates the number of independent
groups in the network.
−
 Clustering coefficient: A node's clustering coefficient is the ratio
of the number of actual links between the node's neighbors to
the maximum possible number of links between those neigh-
bors. The network's clustering coefficient is the average of the
clustering coefficients for all of the nodes. It indicates the
degree to which nodes in the network tend to cluster together.
−
 Centralization index: This indicates the extent to which a
network is concentrated in the center. The centralization
analysis suggests whether the network has a centralized
structure or not [41]. This study uses the degree centralization
to calculate the centralization index. The degree centralization
is calculated by finding the total sum of values gained by
subtracting the degree centrality3 of each node from the
maximum degree centrality within the network, followed by
dividing the total sum by the theoretically possible maximum
of degree centrality.4
−
 Power-law degree distribution: This indicates that a relation-
ship between the degree distribution (Y) and a node's rank on
the degree (X) in the network follows the function of Y ¼ aX−b.5

Normally, a graph is used to determine whether the data follow
a power law. When logðYÞ ¼ logðaÞ−blogðXÞ, which is a con-
verted form of the function above in which the logs of both
sides are taken, leading to a linear plot, it is assumed to be
under the power law. However, this visual approach is vague
and more likely to lead to an error. Recently, a goodness-of-fit
test for a power-law degree distribution based on the Kolomo-
gorov–Smirnov (KS) statistic was proposed [42]. If the p-value
of the goodness-of-fit test is large (close to 1), then our dataset
fits the power-law distribution. If the p-value of the goodness-
of-fit test is smaller than 0.1, then the dataset does not fit the
power-law model.6

3.2.2. Critical node analysis using the node centrality
Following the structural and topological analysis of the whole

network, the centrality analysis is performed to examine the
importance and value of each node. The centrality is an actor-
related variable at the individual level but can be calculated under
consideration of the whole network [43]. We conduct the hub,
authority and broker analysis by using degree centrality, clos
eness centrality, and betweenness centrality, as suggested by
Freeman [38].

3.2.2.1. Hub and authority analysis. The patent citation network is a
directed network. The direction of a link is determined by the
citation relationship, i.e., citing or cited. Thus, two separate
degrees are defined, the in-degree and out-degree. The in-degree
represents the number of times a node cites other nodes. The out-
degree represents the number of times a node is cited by
other nodes.

Hubs and authorities in the citation network are identified
based on node degree. The former is related to the in-degree, and
the latter is related to the out-degree. In other words, a hub is a
node that cites many other nodes, and an authority is a node that
is cited by many other nodes [30]. Instead of using the node
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degree, we analyze hub and authority by using two types of
centrality, which adopt the concept of node degree for calculation.
−
 Local hub and authority: First, we use the degree centrality,
which is measured by the degree between a node and its
neighbors. Because the degree centrality is measured based on
the number of other nodes directly connected to one node, we
can deduce the local hub and local authority by using the
degree centrality. The degree centrality of Node i (CdðiÞ) is
calculated by the following equation [38]:

CdðiÞ ¼ ½Σn
k ¼ 1aðNi;NkÞ�=ðn−1Þ ð1Þ

where aðNi;NkÞ is 1, if and only if Node i (Ni) and Node k (Nk)
are connected by a line; otherwise it is 0. n is the number of
nodes in the network; therefore, ðn−1Þ is the theoretical
maximum degree of a node in the network.
According to Eq. (1), because the degree centrality calculation is
limited by the number of nodes that are directly connected to a
node, indirectly connected nodes that are more than two steps
apart are not included for the measurement. The degree is
measured only within the local range in which the node has a
direct link, so the degree centrality has the meaning of local
centrality. Thus, we can determine a local hub by using in-degree
centrality and a local authority by using out-degree centrality.
−
 Global hub and authority: We use closeness centrality for
global hub and authority analysis. The closeness centrality is
an index representing the degree to which a node is located to
the center. Thus, we can determine the global hub and
authority by using the closeness centrality. The shortest path
from every node to every other node is used for calculating the
closeness centrality. The closeness centrality of Node i (CcðiÞ) is
calculated by the following equation [38]:

CcðiÞ ¼ ðn−1Þ=½Σn
k ¼ 1dðNi;NkÞ� ð2Þ

where dðNi;NkÞ is the number of links in the geodesic linking
Node i (Ni) and Node k (Nk), and n is the number of nodes in the
network. Therefore, ðn−1Þ is the minimum sum of distances for
a node that is adjacent to all other nodes.
As can be seen from Eq. (2), unlike the degree centrality, the
closeness centrality is calculated by using both the direct and
indirect links; hence, the global centrality of a node can be
measured by the closeness centrality. That is, increasing closeness
centrality indicates the decreasing distance between a given node
and the other nodes. We can identify a global hub by using in-
closeness centrality and a global authority by using out-closeness
centrality.
7 Because many assignees tend to apply for a patent with their national
intellectual property office and the USPTO at the same time, the USPTO database
is the most representative and reliable [22].
3.2.2.2. Broker (gatekeeper) analysis. To measure the degree to
which a node plays the role of an intermediary or bridge
between the nodes in a network, betweenness centrality analysis
is performed. The betweenness centrality is an index that indicates
the degree to which a node is located in the shortest path between
other nodes. A node with high betweenness centrality is called a
broker or a gatekeeper [44]. Nodes with high betweenness
centrality play the role of bridging the flow and change of
information between other nodes throughout the whole
network. Thus, a node with higher betweenness centrality has
greater control of the information that it gains, and the more
dependent other nodes become on that node. The betweenness
centrality of node i that is located between node j and node k is
calculated as a ratio of the shortest paths connecting j and k that
also include i in the network. The betweenness centrality of Node i
(CbðiÞ) is calculated by the following equation [38]:

CbðiÞ ¼ ½Σj ¼ 1gjkðiÞ=gjk�=½ðn−2Þðn−1Þ=2� ð3Þ
where gjk is the number of geodesics linking Node j and Node k;
gjkðiÞ is the number of geodesics linking Node j and Node k (j≠k)
that contain Node i; and ðn−2Þðn−1Þ=2 is the maximum value taken
by Σj ¼ 1gjkðiÞ=gjk, achieved only by the central point in a star [45].
4. Data collection and network creation

This paper uses the online patent search service WIPS (wips.co.kr)
to construct a patent citation network in the field of organic
photovoltaic cells. WIPS provides patent data, which has been
collected from patent offices in Korea, the U.S., EU, China, and Japan.
For analysis, this study selected only the limited number of patents
currently registered in the USPTO7 (Figs. 2 and 3).

To extract the relevant patents in the field of organic photovoltaic
cells, we searched with a list of keywords in the title, abstract and
exemplary claim. The search was carried out on July 14, 2011, and
showed that a total of 172 patents were registered between February
22, 1977, when the first patent was filed, and December 31, 2010.
From a periodical perspective, from 1977 to 2000, less than five
patents were registered each year, but after 2001, the number of
patent registrations increased rapidly. In 2010, 37 patents were
registered. Among the 172 patents filed, 132 patents comprising
77% of the total were registered after 2001.

To construct the patent citation network, we analyzed the
citation information displayed in the 172 registered patents,
extracting 1,643 backward citations and 1,215 forward citations.
Because the total number of registered patents in the field of
organic photovoltaic cells is 172, one registered patent has, on
average, 9.6 backward citations and 7.1 forward citations.

We constructed three patent citation networks for different
analytical units using a total of 2,858 elements of patent citation
information.
−
 The country citation network: This is the patent assignee
country citation network. In the country citation network, a
node is a country, and a link is a citing/cited relationship
between patents belonging to different countries.
−
 The institution citation network: This is the patent assignee
institution citation network. In the institution citation network,
a node is an institution, and a link is a citing/cited relationship
between patents belonging to different institutions.
−
 The technology field citation network: To construct the technol-
ogy field citation network, we used the USPC. The USPC uses
approximately 450 classes and 150,000 sub-classes to categorize
patents [46]. We built up the network based on classes. In the
technology field citation network, a node is a technology field,
namely, classes in the USPC, and a link is a citing/cited relation-
ship between patents belonging to different technology fields.
5. Network Analysis

5.1. Country citation network

5.1.1. Network visualization and the network topological analysis
results

The organic photovoltaic cells country citation network
between 1977 and 2010 is composed of 27 countries and 114
inter-country citation relations. The network is shown in Fig. 4.
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This figure shows the whole network of country citations. The
following results were found.
�
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The U.S. is the most important node in the country citation
network. U.S. patents actively interact with the patents of most
other countries, especially the patents of Japan (JP) and
Germany (DE).
�
 JP and DE form a secondary citation group.

�
 S. Korea (KR), Taiwan (TW), Great Britain (GB), and Switzerland

(CH) form a third citation group.

�
 A significant number of interactions are between the U.S., JP,

and DE.

�
 Belgium (BE), Malaysia (MY), New Zealand (NZ), and Denmark

(DK) only interact with the U.S.

The network topological measures of the country citation network
are shown in Table 1. In the network, the density is 0.148, and the
average degree of each node is 3.852. These measures are slightly
lower than those of a random network of the same size.

The country citation network also has a small average path length
(1.932) and a small diameter (4). These values are slightly smaller than
the average path length and diameter of a random network of the
same size. The average path length and diameter are indices that
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Fig. 4. The country citation network.
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27 114 0.148 3.852 1.932 4 1
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etwork

0.162 4.222 2.309 5 1
indicate the number of links necessary to disseminate knowledge from
one country to another. Thus, having a smaller average path length
and diameter means that the process of knowledge diffusion within
the country citation network is slightly more efficient than in a
randomly-connected network. The average path length also suggests
that nodes in the country citation network are connected to each other
through two steps, on average.

The country citation network has only one component, which
indicates that no isolated nodes exist in the network. In other words,
all countries in the country citation network are directly or indirectly
connected, and from the perspective of technological knowledge
flow, each country influences or is influenced by every other.

The country citation network has a significantly larger clustering
coefficient (0.750) than that of the same-sized random network.
This suggests that nodes are more closely connected in the country
citation network than in a random network of the same size.

The degree centralization index (in-degree: 0.546, out-degree:
0.712) is significantly higher than in a random network of the
same size. This means that network centralization for a node with
high degree centrality is significantly higher than that of a random
network. In particular, the fact that the out-degree centralization
index is higher than the in-degree centralization index indicates
that the degree to which the network is concentrated to a center is
higher in a cited network than in a citing network.

We analyzed whether the distribution of links follows the power
law in the country citation network. The p-values of both degree
distributions are significantly larger than 0.1 (in-degree: 0.72, out-
degree: 0.58). These values indicate that the country citation network,
unlike the random network, is a scale-free network that follows the
power law, where the number of links is unevenly distributed.

5.1.2. Critical node analysis results
5.1.2.1. Hub analysis. The hub analysis results for the country
citation network are shown in Table 2. The left side of the table
indicates the results of local hub analysis by using in-degree
centrality, while the results of global hub analysis based on the use
of in-closeness centrality are presented on the right side. The two
analytical results are very similar, due to the fact that the country
citation network is a small network consisting of 27 nodes and 114
links. From the top five hubs, the following results were found.
�

. of
po
The U.S., JP, DE, KR, and TW hubs play key roles in the country
citation network. In particular, the U.S., which ranks No. 1 in
both in-degree centrality and in-closeness centrality, is the
most important hub in the country citation network.
�
 JP, DE, KR, and TW form a group of secondary patent
citation hubs.

5.1.2.2. Authority analysis. The authority analysis results for the
country citation network are shown in Table 3. The left side of the
nents
Clustering
coefficient

Degree
centralization

Power-law distribution

Power-law
exponent (b)

KS
statistic

p-value

0.750 In: 0.546 In: 3.072 In: 0.076 In: 0.72
Out: 0.712 Out: 2.525 Out: 0.094 Out: 0.58

0.319 In: 0.115 – – –

Out: 0.157



Table 4
The top 5 brokers of the assignee country citation network.

Rank Country Betweenness centrality

1 United States (US) 0.3934
2 Japan (JP) 0.1234
3 Canada (CA) 0.0615
4 United Kingdom (GB) 0.0387
5 France (FR) 0.0359

Table 2
The top 5 hubs of the assignee country citation network.

Local hub Global hub

Rank Country In-degree
centrality

Rank Country In-closeness
centrality

1 United States (US) 0.6538 1 United States (US) 0.6689
2 Japan (JP) 0.4615 2 Japan (JP) 0.5495
3 Germany (DE) 0.3077 3 Germany (DE) 0.4662
4 S. Korea (KR) 0.2692 4 S. Korea (KR), 0.4396

Taiwan (TW)
5 Taiwan (TW), 0.2308

Finland (FI),
Israel (IL)

Table 3
The top 5 authorities of the assignee country citation network.

Local authority Global authority

Rank Country Out-degree
centrality

Rank Country Out-
closeness
centrality

1 United
States (US)

0.8077 1 United States (US) 0.8138

2 Japan (JP) 0.6154 2 Japan (JP) 0.6782
3 Germany (DE) 0.3846 3 Germany (DE) 0.5652
4 Great

Britain (GB),
0.2692 4 Great Britain (GB), 0.5087

Switzerland (CH) Switzerland (CH),
Canada (CA)
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table indicates the results of the local authority analysis based on
the use of out-degree centrality, while the results of the global
authority analysis based on the use of out-closeness centrality are
presented on the right side. Similar to the hub analysis, the two
analytical results are very similar. From the top five authorities, the
following results were obtained.
�
 The U.S., JP, DE, GB, and CH authorities play key roles in the
country citation network. In particular, the U.S., which ranks
No. 1 in both out-degree centrality and out-closeness centrality,
is the most important authority in the country citation
network.
�
 JP, DE, GB, and CH form a group of secondary patent citation
authorities.

5.1.2.3. Broker analysis. The broker analysis results for the country
citation network are shown in Table 4. From the top five brokers,
the following results were obtained.
�
 The results of the betweenness centrality analysis show that the U.
S. is the most important broker, which means that the U.S. plays a
key role in bridging the flow of technological knowledge between
many of the countries in the country citation network.
�
 After the U.S., JP is an important broker.

�
 Following the U.S. and JP, Canada (CA), GB, and France (FR)

play the next most important roles as brokers, in descending
order.

5.2. Institution citation network

5.2.1. Network visualization and the network topological analysis
results

The institution citation network of the organic photovoltaic
cells domain between 1977 and 2010 consists of 518 institutions
and 1,115 inter-institution citation relations. The network is shown
in Fig. 5. This figure shows the institution citations for which the
number of links is more than three. We observed the following
results.
�
 Konarka Technologies is located in the center of the network.
The patents owned by Konarka Technologies actively interact
with the patents of many other institutions.
�
 JX Crystals and Universal Display form a local citation cluster.

�
 Boeing is the only node located between the main cluster headed

by Konarka Technologies and the local cluster headed by
JX Crystals, playing a broker's role by bridging these two clusters.
�
 Several nodes connect the main cluster headed by Konarka
Technologies with a local cluster headed by Universal Display.

Table 5 shows the network topological measures of the institu-
tion citation network. The network has a small average degree
(2.066) with rare density (0.004). These measurements are very
close to those of a random network of the same size.

The institution citation network has a small average path
length (4.070). This figure suggests that the knowledge in one
institution can be transferred to others through four steps, on
average. The average path length and diameter (9) of the network
are significantly smaller than those of the same-sized random
network, which indicates that the knowledge diffusion process in
the institution citation network is more effective than that in a
randomly connected network.

The institution citation network is composed of 6 components
(see Table 6). The largest component contains 508 (98.069%)
institutions. The high percentage means that most institutions
directly or indirectly connect to each other. Therefore, almost all of
the institutions can influence or can be influenced by the other
institutions in the network.

The institution citation network has a significantly larger
clustering coefficient (0.311) than that of a random network of
the same size. This high clustering coefficient suggests that
institutions have a stronger tendency to gather together according
to either their technology fields or interests in the institution
citation network in comparison with the random network.

The degree centralization index (in-degree: 0.160, out-degree:
0.085) is higher than that of the same-sized random network.
These high figures indicate that network centralization for a node
with high degree centrality is significantly higher than that of the
same-sized random network.

The degree distribution measures show that the p-value of in-
degree distribution is 0.52, while that of the out-degree distribu-
tion is 0.71. These results mean that the institution citation
network is a scale-free network that follows the power law, where
a small number of nodes occupy a large number of links by
preferential attachment.
5.2.2. Critical node analysis results
5.2.2.1. Hub analysis. The results of the in-degree centrality and in-
closeness centrality analyses for the institution citation network
are shown in Table 7. We found the following results.
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Fig. 5. The institution citation core network.
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�
 Konarka Technologies ranks No. 1 in both in-degree centrality
and in-closeness centrality. This means that Konarka Technol-
ogies cites patents in the field of organic photovoltaic cells
most frequently, whether directly or indirectly. In other words,
Konarka Technologies is the most important local and global
hub in the institution citation network.
�
 Sharp also ranks high in both in-degree centrality and in-
closeness centrality. Sharp is an important local and global hub



Table 5
The institution citation network topological analysis results.

Network No. of
nodes

No. of
links

Density Average
degree

Average
path
length

Diameter No. of
components

Clustering
coefficient

Degree
centralization

Power-law distribution

Power-law
exponent (b)

KS
statistic

p-value

Institution citation network 518 1115 0.004 2.066 4.070 9 6 0.311
In: 0.160 In: 3.232 In: 0.075 In: 0.52
Out: 0.085 Out: 2.021 Out: 0.034 Out: 0.71

Random network 0.004 2.153 7.079 18 11 0.013
In: 0.011 – – –

Out: 0.011

Table 6
The components in the institution citation network.

Component Size Percent Density

1 508 98.069 0.004
2 4 0.772 0.250
3 2 0.386 0.500
4 2 0.386 0.500
5 1 0.193 –

6 1 0.193 –

Table 7
The top 5 hubs of the institution citation network.

Local hub Global hub

Rank Institution In-degree
centrality

Rank Institution In-closeness
centrality

1 Konarka
Technologies

0.0890 1 Konarka
Technologies

0.2713

2 JX Crystals 0.0290 2 Eastman Kodak 0.2185
3 Universal

Display
0.0232 3 Sharp 0.2143

4 AU Optronics 0.0174 4 Samsung SDI 0.2133
5 Sharp 0.0155 5 Seiko Epson 0.2008

Table 8
The top 5 authorities of the institution citation network.

Local authority Global authority

Rank Institution Out-degree
centrality

Rank Institution Out-closeness
centrality

1 Boeing 0.0387 1 Boeing, 0.2199
IBM2 Universal Display 0.0329

3 EPFL 0.0290 3 Sharp 0.1909
4 IBM 0.0213 4 Exxon

Research
0.1907

&
Engineering

5 Sharp, University
of California

0.0174 5 Eastman
Kodak

0.1896

Table 9
The top 5 brokers of the institution citation network.

Rank Institution Betweenness centrality

1 Boeing 0.0751
2 Eastman Kodak 0.0682
3 Sharp 0.0668
4 Konarka Technologies 0.0616
5 MIT 0.0526
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Fig. 6. The technology field citation core network.
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in the institution citation network, which frequently cites
patents in the field of organic photovoltaic cells, whether
directly or indirectly.
�
 JX Crystals, Universal Display and Au Optronics are major local
hubs that directly cite patents in the field of organic photo-
voltaic cells, while Eastman Kodak, Samsung SDI and Seiko
Epson are major global hubs that directly or indirectly cite
patents in the field of organic photovoltaic cells.
5.2.2.2. Authority analysis. The authority analysis results for the
institution citation network are shown in Table 8. Our findings are
reported as follows.
�
 The results show that Boeing, IBM and Sharp are important
authorities in the institution citation network. Boeing ranks
No. 1 in both out-degree centrality and out-closeness centrality.
More specifically, Boeing is the most important local and global
authority in the institution citation network.
�
 IBM and Sharp rank 4th and 5th, respectively, in out-degree
centrality, while ranking 1st and 3rd in out-closeness centrality.
IBM and Sharp also are core local and global authorities in the
institution citation network.
�
 Universal Display, EPFL and University of California are major
local authorities, while Exxon Research & Engineering and
Eastman Kodak are major global authorities.

5.2.2.3. Broker analysis. We performed a broker analysis of the
institution citation network by using the betweenness centrality,



Table 10
The technology field citation network topological analysis results.

Network No. of
nodes

No. of
links

Density Average
degree

Average
path
length

Diameter No. of
components

Clustering
coefficient

Degree
centralization

Power-law distribution

Power-law
exponent (b)

KS
statistic

p-value

Technology field
citation network

114 404 0.030 3.377 2.608 7 1 0.716 In: 0.384 In: 1.836 In: 0.068 In: 0.55
Out: 0.429 Out: 1.595 Out: 0.080 Out: 0.32

Random network 0.031 3.544 3.853 8 1 0.054 In: 0.049 – – –

Out: 0.040

Table 11
The top 5 hubs of the technology field citation network.
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the results of which are shown in Table 9. Our findings are
reported below.
Local hub Global hub
�

Rank Technology

field
In-degree
centrality

Rank Technology
field

In-closeness
centrality

1 136 0.4071 1 136 0.4838
2 257 0.2566 2 257 0.3941
3 428, 0.2301 3 428 0.3889

App
Boeing ranked No. 1 in the analysis of betweenness centrality
and was the most important broker in the institution citation
network. As can be seen from Fig. 5, Boeing plays the only role
as a bridge connecting the main cluster headed by Konarka
Technologies and the local cluster headed by JX Crystals.
438 4 438 0.3864
�

5 422 0.2035 5 252 0.3839

Table 12
The top 5 authorities of the technology field citation network.

Local authority Global authority

Rank Technology
field

Out-degree
centrality

Rank Technology
field

Out-closeness
centrality

1 136 0.4513 1 136 0.4921
2 428 0.2301 2 428 0.4306
3 257 0.2124 3 257 0.4116
Following Boeing, Eastman Kodak, Sharp, Konarka Technologies
and MIT were the next most important brokers in the institu-
tion citation network, in descending order.

5.3. Technology field citation network

5.3.1. Network visualization and the network topological analysis
results

The organic photovoltaic cells technology field citation network
between 1977 and 2010 is composed of 114 technology fields and
404 inter-technology field citation relations. The network is shown
in Fig. 68. This figure shows the technology field citations for
which the number of links is more than three. We observed the
following results in our analysis.
4 313, 0.1416 4 528 0.4040
528,
�

429 5 313 0.3919
The technology field “136 Batteries: thermoelectric and photo-
electric” is the largest node in the organic photovoltaic cells
domain.
�
 The technology fields “422 Chemical apparatus and disinfect-
ing, deodorizing, preserving or sterilizing” and “428 Stock
material or miscellaneous articles” form a local citation cluster.
�
 The technology fields “252 Compositions,” “257 Active solid-
state devices (e.g., transistors, solid-state diodes),” “313 Electric
lamp and discharge devices,” and “438 Semiconductor device
manufacturing: process” are closely related to each other.

The network topological measures of the technology field
citation network are shown in Table 10. The density (0.030) and
average degree (3.377) approximate those of a random network of
the same size.

The technology field citation network has a small average path
length (2.608) and a small diameter (7) in comparison with those
of the same-sized random network. The measurement of the
average path length indicates that the knowledge in one technol-
ogy field can be transferred to others through two or three steps,
on average. The smaller average path length and diameter mean
that the knowledge transfer process in the technology citation
network is faster than that in the random citation network.

The technology field citation network has only one component.
This can be interpreted such that, as in the country citation
network, all technology fields in the technology field citation
8 For the titles of the technology fields incorporated in Fig. 6, see Table A4 in
endix A.
network are directly or indirectly connected, and each influences
or is influenced by all others.

The technology field citation network has a significantly higher
clustering coefficient (0.716) than that of the same-sized random
network. This high measurement indicates that the nodes have
closer relationships with each other than those in a randomly
connected network.

The degree centralization index (in-degree: 0.384, out-degree:
0.429) is significantly higher than that of a random network of the
same size. This means that the degree to which a network is
concentrated to the center is significantly higher in the technology
field citation network than the random network.

The p-values of both degree distributions are shown in the
degree distribution measures in Table 10. The values show that the
technology field citation network follows the scale-free model,
which indicates that a few high degree technology fields exist in
the network.
5.3.2. Critical node analysis results
5.3.2.1. Hub analysis. The results of the in-degree centrality and in-
closeness centrality analyses for the technology field citation network
are shown in Table 11. Like the country citation network, both
analytical results are very similar, due to the fact that the technology
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field citation network also is a small-sized network composed of 114
nodes and 404 links. Our analysis suggests the following results.
�
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136, 257, 428, and 438 are the core hubs in the technology field
citation network.
�
 136 ranked No. 1 in both in-degree centrality and in-closeness
centrality, which means that the patents belonging to 136 most
frequently cite other patents in different technology fields
either directly or indirectly. In particular, 136 is the most
important local and global hub in the technology field citation
network.
�
 Following 136, 257, 428, and 438 form the group of secondary
patent citation hubs in the technology field citation network.
�
 422 is one of the major local hubs, directly citing other patents
in different technology fields. Meanwhile, 252 is one of the
major global hubs, directly or indirectly citing other patents in
different technology fields.
5.3.2.2. Authority analysis. The authority analysis results for the
technology field citation network are shown in Table 12. The
analysis suggests the following results.
�
 136, 428, 257, 313, and 528 are core authorities in the
technology field citation network.
le 13
top 5 brokers of the technology field citation network.

ank Technology field Betweenness centrality

136 0.3259
257 0.1010
428 0.0879
422 0.0540
528 0.0470

le A1
node centrality analysis results of the country citation network.

ountry In-degree
centrality

Rank Out-
degree
centrality

Rank

.S. (US) 0.6538 1 0.8077 1
pan (JP) 0.4615 2 0.6154 2
ermany (DE) 0.3077 3 0.3846 3
. Korea (KR) 0.2692 4 0.2308 6
aiwan (TW) 0.2308 5 0.1538 8
nland (FI) 0.2308 5 0.1154
rael (IL) 0.2308 5 0.0385
ustralia (AU) 0.1923 8 0.1538 9
etherlands (NL) 0.1923 8 0.1154
K (GB) 0.1538 10 0.2692 4
anada (CA) 0.1538 10 0.2308 7
ance (FR) 0.1538 10 0.1538 10
ustria (AT) 0.1538 10 0.1538
weden (SE) 0.1154 0.0769
witzerland (CH) 0.0769 0.2692 5
hina (CN) 0.0769 0.0385
reece (GR) 0.0769 0.0000
elgium (BE) 0.0385 0.0385
aly (IT) 0.0385 0.0385
ew Zealand (NZ) 0.0385 0.0000
alaysia (MY) 0.0385 0.0000
enmark (DK) 0.0385 0.0000
echtenstein (LI) 0.0385 0.0000
ingapore (SG) 0.0385 0.0000
SSR (SU) 0.0000 0.0385
rgentina (AR) 0.0000 0.0385
ungary (HU) 0.0000 0.0385
�

In-
close
cent

0.66
0.54
0.46
0.43
0.43
0.42
0.42
0.41
0.40
0.41
0.40
0.40
0.40
0.38
0.37
0.38
0.39
0.36
0.27
0.38
0.38
0.38
0.38
0.34
0.00
0.00
0.00
136 ranked No. 1 in both out-degree centrality and out-
closeness centrality, which means that the patents belonging
to 136 are cited most frequently either directly or indirectly. In
other words, 136 is the most important local and global
authority in the technology field citation network.
�
 428, 257, 313, and 528 are ranked from 2nd to 5th in both out-
degree centrality and out-closeness centrality. These technol-
ogy fields form a group of secondary patent citation authorities
in the technology field citation network.
5.3.2.3. Broker analysis. We performed a broker analysis of the
technology field citation network by using the betweenness
centrality, the results of which are shown in Table 13. The
following results were obtained.
�
 136 ranked No. 1 in the betweenness centrality analysis and
was the most important broker in the technology field citation
network.
�
 Following 136, 257, 428, 422, and 528 were found to play core
roles as brokers in the technology field citation network.

6. Conclusions and limitations

This study was undertaken to understand the structure and
characteristics of the technological knowledge flow in the field of
organic photovoltaic cells and to identify the importance and value
of individual nodes. The research framework of the study is
outlined in three steps: data collection, network creation, and
network analysis. For network analysis, network visualization,
network topological analysis, and node centrality analysis were
carried out.

The network topological analysis suggests the following results.
�
 Patent citation networks of three analytical units: countries,
institutions, and technology fields, are scale-free networks that
follow the power law.
ness
rality

Rank Out-
closeness
centrality

Rank Between-
ness
centrality

Rank

89 1 0.8138 1 0.3934 1
95 2 0.6782 2 0.1234 2
62 3 0.5652 3 0.0243 6
96 4 0.4962 7 0.0099 7
96 4 0.4732 8 0.0022 9
74 6 0.4624 0.0018 10
74 6 0.3282 0.0026 8
58 8 0.4732 8 0.0012
49 0.4624 0.0008
58 8 0.5087 4 0.0387 4
49 10 0.5087 4 0.0615 3
49 0.4732 8 0.0359 5
49 0.4732 8 0.0012
46 0.4423 0.0003
52 0.5087 4 0.0000
46 0.3335 0.0000
45 0.0000 0.0000
63 0.4329 0.0000
47 0.4423 0.0000
55 0.0000 0.0000
55 0.0000 0.0000
55 0.0000 0.0000
55 0.0000 0.0000
62 0.0000 0.0000
00 0.4521 0.0000
00 0.4521 0.0000
00 0.3307 0.0000



Table A2
The node centrality analysis results of the institution citation network (Top 30).

Institution In-degree
centrality

Rank Out-
degree
centrality

Rank In-
closeness
centrality

Rank Out-
closeness
centrality

Rank Between-
ness
centrality

Rank

Konarka Technologies 0.0890 1 0.0019 0.2713 1 0.1516 0.0616 4
JX Crystals 0.0290 2 0.0000 0.1566 0.0039 0.0022
Universal Display 0.0232 3 0.0329 2 0.1948 0.1656 0.0276 7
AU Optronics 0.0174 4 0.0000 0.1827 0.0019 0.0001
Sharp 0.0155 5 0.0174 5 0.2143 3 0.1909 3 0.0668 3
Showa Denko 0.0135 6 0.0000 0.1698 0.1398 0.0033
Boeing 0.0116 7 0.0387 1 0.1707 0.2199 1 0.0751 1
Matsushita Electric
Industrial

0.0116 7 0.0077 0.1763 0.1685 0.0152

GE 0.0116 7 0.0039 0.1820 0.1569 0.0184
Semiconductor Energy
Laboratory

0.0116 7 0.0019 0.1810 0.1632 0.0105

Samsung SDI 0.0116 7 0.0000 0.2133 4 0.0060 0.0014
Du Pont 0.0116 7 0.0000 0.1733 0.1319 0.0126
Eastman Kodak 0.0097 0.0155 6 0.2185 2 0.1896 5 0.0682 2
Seiko Epson 0.0097 0.0019 0.2008 5 0.1419 0.0060
Princeton University 0.0077 0.0155 6 0.1919 0.1518 0.0189
Canon 0.0077 0.0135 10 0.1322 0.1660 0.0070
MIT 0.0077 0.0058 0.2003 6 0.1706 0.0526 5
Nomadics 0.0077 0.0019 0.1985 7 0.1280 0.0000
University of California 0.0058 0.0174 5 0.1579 0.1586 0.0068
Nokia 0.0058 0.0000 0.1955 10 0.0058 0.0028
IBM 0.0039 0.0213 4 0.1816 0.2199 1 0.0525 6
Mitsubishi Denki 0.0039 0.0097 0.1459 0.1783 8 0.0059
Exxon Research &
Engineering

0.0019 0.0097 0.0026 0.1907 4 0.0008

Samsung Electronics 0.0019 0.0019 0.1967 9 0.1202 0.0076
EPFL 0.0000 0.0290 3 0.1610 0.1744 9 0.0258 8
Motorola 0.0000 0.0155 6 0.0029 0.1875 6 0.0003
Toshiba 0.0000 0.0116 0.1603 0.1837 7 0.0206 10
Polaroid 0.0000 0.0058 0.0000 0.1734 10 0.0000
Agilent Technologies 0.0000 0.0019 0.0000 0.1294 0.0000
KIST 0.0000 0.0000 0.1977 8 0.1544 0.0220 9

Table A3
The node centrality analysis results of the technology field citation network (Top 30).

Technology
field

In-degree
centrality

Rank Out-degree
centrality

Rank In-closeness
centrality

Rank Out-closeness
centrality

Rank Betweenness
centrality

Rank

136 0.4071 1 0.4513 1 0.4838 1 0.4921 1 0.3259 1
257 0.2566 2 0.2124 3 0.3941 2 0.4116 3 0.1010 2
428 0.2301 3 0.2301 2 0.3889 3 0.4306 2 0.0879 3
438 0.2301 4 0.1327 7 0.3864 4 0.3873 6 0.0451 6
422 0.2035 5 0.0442 0.3521 8 0.3339 0.0540 4
252 0.1770 6 0.0796 0.3839 5 0.3719 0.0228 10
528 0.1416 7 0.1416 4 0.3165 0.4040 4 0.0470 5
313 0.1239 8 0.1416 5 0.3563 7 0.3919 5 0.0116
310 0.1150 9 0.0177 0.3606 6 0.2196 0.0348 7
359 0.1062 10 0.0796 0.3500 9 0.3719 0.0099
524 0.0885 0.0796 0.3460 10 0.3538 0.0091
525 0.0619 0.1062 8 0.3269 0.3828 8 0.0126
427 0.0619 0.0885 9 0.3324 0.3783 10 0.0071
548 0.0531 0.0708 0.3269 0.3427 0.0175
546 0.0531 0.0265 0.3165 0.3339 0.0146
264 0.0531 0.0177 0.3306 0.3162 0.0000
564 0.0531 0.0177 0.2755 0.2682 0.0002
429 0.0354 0.1416 6 0.3036 0.3850 7 0.0102
106 0.0354 0.0354 0.2521 0.3030 0.0007
204 0.0354 0.0265 0.3115 0.2821 0.0007
362 0.0354 0.0089 0.3083 0.2773 0.0003
430 0.0265 0.0885 10 0.3083 0.3805 9 0.0028
385 0.0265 0.0442 0.2990 0.3374 0.0000
526 0.0265 0.0354 0.2990 0.2975 0.0010
156 0.0265 0.0265 0.3148 0.3339 0.0000
345 0.0265 0.0265 0.3099 0.3445 0.0000
423 0.0265 0.0265 0.2975 0.3193 0.0000
340 0.0265 0.0000 0.3143 0.0000 0.0000
374 0.0177 0.0089 0.2755 0.3016 0.0330 8
435 0.0177 0.0531 0.2459 0.2517 0.0262 9
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Table A4
The USPC Class list of the Top 30 technology fields in the organic photovoltaic cells domain.
Source: Derived from USPTO [47].

Class Title Class Title

136 Batteries: thermoelectric and photoelectric 264 Plastic and nonmetallic article shaping or treating: processes
257 Active solid-state devices (e.g., transistors, solid-state diodes) 564 Organic compounds—part of the class 532–570 series
428 Stock material or miscellaneous articles 429 Chemistry: electrical current producing apparatus, product, and

process
438 Semiconductor device manufacturing: process 106 Compositions: coating or plastic
422 Chemical apparatus and process disinfecting, deodorizing, preserving, or

sterilizing
204 Chemistry: electrical and wave energy

252 Compositions 362 Illumination
528 Synthetic resins or natural rubbers—part of the class 520 series 430 Radiation imagery chemistry: process, composition, or product thereof
313 Electric lamp and discharge devices 385 Optical waveguides
310 Electric generator or motor structure 526 Synthetic resins or natural rubbers—part of the class 520 series
359 Optics systems (including communication) and devices 156 Adhesive bonding and miscellaneous chemical manufacture
524 Synthetic resins or natural rubbers—part of the class 520 series 345 Computer graphics processing and selective visual display systems
525 Synthetic resins or natural rubbers—part of the class 520 series 423 Chemistry of inorganic compounds
427 Coating processes 340 Communications: electrical
548 Organic compounds—part of the class 532–570 series 374 Thermal measuring and testing
546 Organic compounds—part of the class 532–570 series 435 Chemistry: molecular biology and microbiology
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�
 The measurements of average path length and diameter show
that the knowledge transfer processes of three patent citation
networks can be more effective than those of a random
network of the same size.
�
 The clustering coefficients are significantly higher in all three
citation networks than in a random network of the same size.
This fact suggests that nodes in the three citation networks
cooperate more closely, exchanging more information than
those in the random network.

The critical node analysis using the node centrality indicates
that the following facts.
�
 The U.S., Japan and Germany are the most important local and
global hubs as well as the most important local and global
authorities, while the U.S., Japan and Canada are important
brokers, bridging technological knowledge transfer between
countries.
�
 The hub and authority analysis of the institution citation
network indicate that Konarka Technologies is the largest local
and global hub and Boeing is the largest local and global
authority. The broker analysis displays Boeing, Eastman Kodak,
and Sharp are important brokers, bridging technological
knowledge transfer between institutions.
�
 136, 257, and 428 are the most important local and global hubs,
local and global authorities and brokers in the technology field
citation network.

The social network analyses presented in previous studies that
analyzed the patent citation network were limited to network map
drawing or use for network topological analyses. However, in this
paper, we proceed one step further by identifying the importance
and value of individual nodes adopting various concepts of
centrality. We determined that the results from the node centrality
analysis and the network topological analysis did not differ. The
results of the node centrality analysis clearly show that, in all three
patent citation networks, a small number of nodes have the
majority of links, while most nodes have only a few links (see
Table A1–A3 in Appendix A).

The patent citation network provides insight into the knowl-
edge transfer process at the different levels of respective analytical
units, and the directivity of links helps us understand the direction
of knowledge flow [30]. The centrality analysis of individual nodes
is very useful for measuring the structural location of each node
and assessing its importance. Thus, the analytical framework in
this paper is applicable to other science and technology domains.

Despite all our efforts to perform an accurate analysis, some
inevitable limitations still exist. One is the time lag between a
patent and its forward citations. The existence of the time lag
means that recently registered patents are likely to display fewer
forward citations. Second, the weight (number of citations) is not
reflected in the process of network creation. For cases in which
more than one citing/cited data exist, we consider that an inflow/
outflow link exists between the two nodes. Because of this, it is
likely that the importance and value of a critical node are under-
estimated in the network.
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