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a b s t r a c t

The importance of a node in a directed graph can be measured by its PageRank. The
PageRank of a node is used in a number of application contexts – including rankingwebsites
– and can be interpreted as the average portion of time spent at the node by an infinite
randomwalk.We consider the problem of maximizing the PageRank of a node by selecting
some of the edges from a set of edges that are under our control. By applying results from
Markov decision theory, we show that an optimal solution to this problem can be found
in polynomial time. Our core solution results in a linear programming formulation, but we
also provide an alternative greedy algorithm, a variant of policy iteration, which runs in
polynomial time, as well. Finally, we show that, under the slight modification for which we
are givenmutually exclusive pairs of edges, the problemof PageRankoptimization becomes
NP-hard.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The importance of a node in a directed graph can be measured by its PageRank. The PageRank of a node [6] can be
interpreted as the average portion of time spent at the node by an infinite random walk [16], or in other words, the
weight of the node with respect to the stationary distribution of an associated homogeneous Markov chain. PageRank
is traditionally applied for ordering web-search results, but it also has many other applications [2], for example, in
bibliometrics, ecosystems, spam detection, web-crawling, semantic networks, relational databases and natural language
processing.

It is of natural interest to search for themaximumorminimumPageRank that a node (e.g., a website) can have depending
on the presence or absence of some of the edges (e.g., hyperlinks) in the graph [20]. For example, since PageRank is used
for ordering web-search results, a web-master could be interested in increasing the PageRank of some of his websites by
suitably placing hyperlinks on his own site or by buying advertisements or making alliances with other sites [1,9]. Another
motivation is that of estimating the PageRank of a node in the presence of missing information on the graph structure. If
some of the links on the internet are broken, for example, because the server is down or there are network traffic problems,
we may have only partial information on the link structure of the web-graph. However, we may still want to estimate the
PageRank of a website by computing the maximum andminimum PageRank that the nodemay possibly have depending on
the presence or absence of the unknown, hidden hyperlinks [14]. These hidden edges are often referred to as fragile links.
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It is known that if we place a new edge in a directed graph, the PageRank of the terminal node of the edge can only
increase. Optimal linkage strategies are known for the case in which we want to optimize the PageRank of a node and we
only have access to the edges starting from this node [1]. This first result has later been generalized to the case for which
we are allowed to configure all of the edges starting from a given set of nodes [9].

The general problem of optimizing the PageRank of a node in the case where we are allowed to decide the absence or
presence of the edges in a given arbitrary subset of edges is proposed by Ishii and Tempo [14]. They are motivated by the
problem of ‘‘fragile links’’ andmention the lack of efficient, polynomial-time algorithms to this problem. Then, using interval
matrices, they propose an approximate solution to the problem.

Here, we aim at showing that this general problem can be solved in polynomial time. To the best of our knowledge, an
earlier account of our method [8] was the first polynomial-time solution to this problem. Later, it was followed by another
polynomial-time approach given by Fercoq et al. [11].

In this paper we show that the PageRank optimization problem can be efficiently formulated as aMarkov decision process
(MDP), more precisely, as a stochastic shortest path (SSP) problem, and that it can therefore be solved in polynomial time. Our
proof provides a linear programming formulation that can then be solved by standard techniques, but we propose a greedy
algorithm, as well, which is a variant of the policy iteration algorithm. This latter method also runs in polynomial time, under
some assumptions. Our main result on polynomial-time computability remains valid even if the damping constant and the
personalization vector are part of the input and it does not depend on the particular way the dangling nodes are handled. We
also prove that under the slight modification for which we are given mutually exclusive constraints between pairs of edges,
the problem becomes NP-hard.

2. Definitions and preliminaries

In this section we define the concept of PageRank and the PageRank optimization problem as well as give a brief
introduction to stochastic shortest path problems, a special class of Markov decision processes (MDPs).

2.1. PageRank

Let G = (V, E) be a directed graph, where V = {1, . . . , n} is the set of vertices and E ⊆ V × V is the set of edges.
First, for simplicity, we assume that G is strongly connected. The adjacency matrix of G is denoted by A. Since G is strongly
connected, A is irreducible. We are going to define a randomwalk on the graph. If we are in node i, in the next step we will go
to node jwith probability 1/deg(i) if j is an out-neighbor of i, where deg(·) denotes out-degree. This defines aMarkov chain
with transition-matrix

P ,

D−1
A A

T
with DA , diag(A1) (1)

where 1 = ⟨1, . . . , 1⟩T is the all-one vector and diag(·) is an operator that creates a diagonal matrix from a vector, more
precisely, (DA)ii , (A1)i = deg(i). Note that P is a column (left) stochastic matrix and the chain can be interpreted as an
infinite random walk on the graph (e.g., a random surfing).

The PageRank vector, π, of the graph is defined as the stationary distribution of the above described Markov chain, more
precisely, as P π = π, where π ≥ 0 and πT1 = 1. Since P is an irreducible stochastic matrix, we know, e.g., from the
Perron–Frobenius theorem, that π exists and is unique.

Now, we turn to the general case, when we do not assume that G is strongly connected, it can be an arbitrary directed
graph. In this case, theremay be nodes which do not have any outgoing edges. They are usually referred to as dangling nodes.
There are many ways to handle them [2], for example, we can delete them, we can add a self-loop to them, each dangling
node can be linked to an artificial node (sink) or we can connect each dangling node to every other node. This last solution
can be interpreted as restarting the random walk from a random starting state if we reach a dangling node. Henceforth, we
will assume that we have already dealt with the dangling nodes and, therefore, every node has at least one outgoing edge.

We can then define aMarkov chain similarly to (1), but this chainmay not have a unique stationary distribution. To solve
this problem, the PageRank vector is defined as the stationary distribution of the ‘‘Google matrix’’ [16]

G , (1 − c) P + c z1T, (2)

where z > 0 is a personalization vector satisfying zT1 = 1, and c ∈ (0, 1) is a damping constant. In practice, values
between 0.1 and 0.15 are usually applied for c and z = (1/n) 1 [2]. The Markov chain defined by G is irreducible and
aperiodic, consequently, its stationary distribution uniquely exists and the Markov chain converges to it from any initial
distribution [17].

An application of PageRank is thatπ(i) can be interpreted as the ‘‘importance’’ of node i. Therefore, we can useπ to define
a total pre-order on the nodes of the graph by treating i . j if and only if π(i) ≤ π(j).

The PageRank vector can be approximated by the iteration xn+1 , G xn, where x0 is an arbitrary stochastic vector, or it
can be directly computed [1]

π = c (I − (1 − c)P)−1z, (3)
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where I denotes the n × n identity matrix. Since c ∈ (0, 1) and P is stochastic, matrix I − (1 − c)P is strictly diagonally
dominant, thus invertible.

2.2. PageRank optimization

We will investigate a problem in which a subset of links are ‘‘fragile’’, i.e., we do not know whether they are present in
the graph or we have control over them, and we want to compute the maximum (or minimum) PageRank that a specific
node can have [14]. More precisely, we are given a digraph G = (V, E), a node v ∈ V and a set F ⊆ E corresponding to
those edges which are under our control. It means that we can choose which edges in F are present and which are absent,
but the edges in E \ F are fixed, they must exist in the graph. We will call any F+ ⊆ F a configuration of fragile links:
F+ determines those edges that we add to the graph, while F− = F \ F+ denotes those edges which we remove. The
PageRank of v under the F+ configuration is defined as the PageRank of v w.r.t. the graph G0 = (V, E \ F−). The problem
is the following: how should we configure the fragile links to maximize (or minimize) the PageRank of a given node v?

The Max-PageRank Problem
Instance: A digraph G = (V, E), a node v ∈ V and a set of

controllable edges F ⊆ E .
Optional: A damping constant c ∈ (0, 1) and a stochastic

personalization vector z .
Task: Compute the maximum possible PageRank of v by

changing the edges in F and provide a configuration
of edges in F for which the maximum is taken.

TheMin-PageRank problem, which can be used, e.g., to obtain a sharp lower bound on the PageRank of a node in case the
link structure is only partially known, can be stated similarly. We will concentrate on Max-PageRank, but a straightforward
modification of our method can deal with the Min problem, as well. We will show that Max-PageRank can be solved in
polynomial time, under the Turing model of computation, even if the damping constant and the personalization vector are
part of the input, i.e., not fixed.

Of course, in a particular instance of the Max-PageRank problem, there are finitely many configurations, thus, we can try
to compute them one-by-one. If we have d fragile links, there are 2d possible graphs. The PageRank vector of a graph can be
computed in O(n3) via a matrix inversion.1 The resulting ‘‘exhaustive search’’ algorithm has O(n32d) time complexity.

Note that if the graph was undirected, the Max-PageRank problem would be easy. We know [19] that a random walk on
an undirected graph, a time-reversibleMarkov chain, has the stationary distributionπ(i) = deg(i)/2m for all nodes i, where
m denotes the number of edges and deg(i) is the degree of node i. Hence, in order to maximize the PageRank of a given node
v, we should keep edge (i, j) ∈ F if and only if i = v or j = v.

2.3. Stochastic shortest path problems

In this section we give an overview on stochastic shortest path problems, since our solutions to PageRank optimization
are built upon their theory.

Stochastic shortest path (SSP) problems are generalizations of (deterministic) shortest path problems [5]. In an SSP
problem the transitions between the nodes are uncertain, but we have some control over their probability distributions.
We aim at finding a control policy (a function from nodes to controls) that minimizes the expected (cumulative) cost of
reaching a given target state. SSP problems are finite, undiscounted Markov decision processes (MDPs) with an absorbing,
cost-free termination state.

An SSP problem can be stated as follows. We have given a finite set of states, S, and a finite set of control actions, U. For
simplicity, we assume that S = {1, . . . , n, n + 1}, where τ = n + 1 is a special state, the target or termination state. In each
state iwe can choose an action u ∈ U(i), whereU(i) ⊆ U is the set of allowed actions in state i. After the action was chosen,
the system moves to state j with probability p(j | i, u) and we incur cost g(i, u, j). The cost function is real valued and the
transition-probabilities are, of course, nonnegative as well as they sum to one for each state i and action u. The target state is
absorbing and cost-free that is, if we reach state τ , we remain there forever without incurring anymore costs. More precisely,
for all u ∈ U(τ ), p(τ | τ , u) = 1 and g(τ , u, τ ) = 0.

The problem is to find a control policy such that it reaches state τ with probability one andminimizes the expected costs,
as well. A (stationary, Markov) deterministic policy is a function from states to actions, µ : S → U. A randomized policy can
be formulated as µ : S → ∆(U), where ∆(U) denotes the set of all probability distributions over set U. It can be shown that
every such policy induces aMarkov chain on the state space [10]. A policy is called proper if, using this policy, the termination
state will be reached with probability one, and it is improper otherwise. The value or cost-to-go function of policy µ gives us

1 It can be done a little faster, in O(n2.376), using the Coppersmith–Winograd method.
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the expected total costs of starting from a state and following µ thereafter; that is,

Jµ(i) , lim
k→∞

Eµ


k−1
t=0

g(it , ut , it+1)

i0 = i


, (4)

for all states i, where it and ut are random variables representing the state and the action taken at time t , respectively.
Naturally, it+1 is of distribution p(· | it , ut) and ut is of distribution µ(it); or ut = µ(it) in case we apply a deterministic
policy. Note that by applying a proper policy, we arrive at a finite horizon problem, however, the length of the horizon may
be random and may depend on the applied control policy, as well.

We say that µ1 ≤ µ2 if and only if for all states i, Jµ1(i) ≤ Jµ2(i). A policy is (uniformly) optimal if it is better than or
equal to all other policies. Theremay bemany optimal policies, but assuming that (A1) there exists at least one proper policy
and (A2) every improper policy yields infinite cost for at least one initial state, they all share the same unique optimal value
function, J∗. Then, function J∗ is the unique solution of the Bellman optimality equation, TJ∗ = J∗, where T is the Bellman
operator [5], that is,

(T J)(i) , min
u∈U(i)

n+1
j=1

p(j | i, u)[g(i, u, j) + J(j)], (5)

for all states i ∈ S and value functions J : S → R. The Bellman operator of a (randomized) policy µ is defined for all state i
as

(TµJ)(i) ,


u∈U(i)

µ(i, u)
n+1
j=1

p(j | i, u)[g(i, u, j) + J(j)], (6)

where µ(i, u) is the probability that policy µ chooses action u in state i.
Given the assumptions above, value iteration converges in SSPs [4],

lim
k→∞

T k
µJ = Jµ, lim

k→∞

T kJ = J∗. (7)

Operators T and Tµ are monotone and, assuming that (APP) all policies are proper, T and Tµ are contractions w.r.t. a
weighted maximum norm [5].

From a given value function J , it is straightforward to get a policy, e.g., by applying a greedy policy [5] with respect to J
that is, for all state i,

µ(i) ∈ argmin
u∈U(i)

n+1
j=1

p(j | i, u)[g(i, u, j) + J(j)]. (8)

There are several solution methods for solving MDPs, e.g., in the fields of reinforcement learning and [neuro-] dynamic
programming. Many of these algorithms aim at finding (or approximating) the optimal value function, since good
approximations to J∗ directly lead to good policies [5]. General solution methods include value iteration, policy iteration,
Gauss–Seidel method, Q-learning, SARSA and TD(λ): temporal difference learning [5,10,23].

Later, we will apply a variant of the policy iteration (PI) algorithm. The basic version of PI works as follows. We start with
an arbitrary proper policy,µ0. In iteration kwe first evaluate the actual policy,µk, by solving the linear system, Tµk J

µk = Jµk ,
and then we improve the policy by defining µk+1 as the greedy policy w.r.t. Jµk . The algorithm terminates if Jµk = Jµk+1 .
Assuming (A1) and (A2), PI generates an improving sequence of proper policies and it always finds an optimal solution in a
finite number of iterations [5].

It is known that all of the three classical variants of MDPs (finite horizon, infinite horizon discounted cost and infinite
horizon average cost) can be solved in polynomial time [18]. Moreover, these classes of problems are P-complete [21]. In
the case of SSP problems, they can be reformulated as linear programming (LP) problems [5], more precisely, the optimal
cost-to-go, J∗(1), . . . , J∗(n), solves the following LP in variables x1, . . . , xn:

maximize
n

i=1

xi (9a)

subject to xi ≤

n+1
j=1

p(j | i, u)[g(i, u, j) + xj] (9b)

for all states i and actions u ∈ U(i). Note that the value of the termination state, xn+1, is fixed at zero. This LP has n
variables and O(nm) constraints, where m is the maximum number of allowed actions per state. Knowing that an LP can
be solved in polynomial time [13] (in the number of variables, the number of constraints and the binary size of the input),
this reformulation already provides a way to solve an SSP problem in polynomial time.
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Assuming that all policies are proper (APP), the state space can be partitioned into nonempty subsets S1, . . . , Sr such that
for any 1 ≤ q ≤ r , state i ∈ Sq and action u ∈ U(i), there exists some j ∈ {τ } ∪ S1 ∪ · · · ∪ Sq−1 such that p(j | i, u) > 0.
Then, if assumption (APP) holds, value iteration can find an optimal policy after a number of iterations that is bounded by
a polynomial in L (the binary input size) and η−2r , where η is the smallest positive transition probability [24]. Since policy
iteration converges no more slowly than value iteration [22], policy iteration also terminates in iterations bounded by a
polynomial in L and η−2r , assuming (APP).

3. PageRank optimization as a Markov decision process

Before we prove that efficient algorithms to Max-PageRank do exist, first, we recall a basic fact about stationary
distributions of Markov chains.

Let (X0, X1, . . .) denote a time-homogeneous Markov chain defined on a finite set Ω . The expected first return time of a
state i ∈ Ω is defined as

ϕ(i) , E [ inf { t ≥ 1 : Xt = i } | X0 = i ] . (10)

If state i is recurrent, then ϕ(i) is finite. Moreover, if the chain is irreducible,

π(i) =
1

ϕ(i)
, (11)

for all states i, where π is the stationary distribution of the Markov chain [17]. This naturally generalizes to unichain
processes, viz., when we have a single communicating class of states and possibly some transient states. In this case we need
the convention that 1/∞ = 0, since the expected first return time to transient states is∞. Hence, the stationary distribution
of state i can be interpreted as the average portion of time spent in i during an infinite random walk. It follows from Eq.
(11) that the problem of maximizing [minimizing] the PageRank of a node is equivalent to the problem of minimizing
[maximizing] the expected first return time to this node.

Wewill show that theMax-PageRank problem can be efficiently formulated as a stochastic shortest path (SSP) problem [5],
where ‘‘efficiently’’ means that the construction (reduction) takes polynomial time. First, we will consider the PageRank
optimizationwithout damping, namely c = 0, but later, wewill extend themodel to the case of damping and personalization,
as well. We will start with a simple, but intuitive reformulation of the problem. Though, this reformulation will not ensure
that Max-PageRank can be solved in polynomial time, it is good to demonstrate the main ideas and to motivate the refined
solution.

3.1. Assumptions

First, we will make two assumptions, in order to simplify the presentation of the construction, but later, in the main
theorem, they will be relaxed.

(AD) Dangling Nodes Assumption: We assume that there is a fixed (not fragile) outgoing edge from each node of the graph.
This assumption guarantees that there are no dangling nodes as well as there are no nodes with only fragile links
(which would be latent dangling nodes).

(AR) Reachability Assumption: We also assume that for at least one configuration of fragile links we have a unichain process
and node v is recurrent, namely, we can reach node v with positive probability from all nodes of the graph. This
assumption is required to have a well-defined PageRank for at least one configuration. In our SSP formulation this
assumption will be equivalent to assuming that there is at least one proper policy. In case of damping, this assumption
is automatically satisfied, as the Markov chain will be irreducible, and accordingly, unichain. On the other hand,
irrespective of how we configure fragile links, all policies in the corresponding SSP problem are proper.

3.2. Simple SSP formulation

First, let us consider an instance of Max-PageRank. We are going to build an associated SSP problem that solves the
original PageRank optimization problem. The states of theMDP are the nodes of the graph, except for v whichwe ‘‘split’’ into
two parts and replace by two new states: vs and vt . Intuitively, state vs will be our ‘‘starting’’ state: it has all the outgoing
edges of v (both fixed and fragile), but it does not have any incoming edges. The ‘‘target’’ state will be vt : it has all the
incoming edges of node v and, additionally, it has only one outgoing edge: a self-loop. Note that τ = vt , namely, vt is the
absorbing termination state of the associated SSP problem (see Fig. 1).

An action in state i is to select a subset of fragile links (starting from i) which we ‘‘turn on’’ (activate). All other fragile
links from i will be ‘‘turned off’’ (deactivated). Thus, in state i the allowed set of actions is U(i) , P (Fi), where P is the
power set and Fi is the set of outgoing fragile links from i.

Let us assume that we are in state i, where there are ai ≥ 1 fixed outgoing edges and we have activated bi(u) ≥ 0 fragile
links, determined by action u ∈ U(i). Then, the transition-probability to all states j that can be reached from state i using a
fixed or an activated fragile link is p(j | i, u) , 1/(ai + bi(u)).
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Fig. 1. SSP reformulation: the starting state is s = vs , the target state is t = vt and the dashed edges denote fragile links. The original nodes in the rectangle
exclude v.

We define the immediate-cost of all actions as one, except for the actions taken at the cost-free target state. Thus, the
immediate-cost function is

g(i, u, j) ,


0 if i = vt ,
1 otherwise, (12)

for all states i, j and actions u. Note that taking an action can be interpreted as performing a step in the random walk.
Therefore, the expected cumulative cost of starting from state vs until we reach the target state vt is equal to the expected
number of steps until we first return to node v according to our original randomwalk. It follows, that the above defined SSP
formalizes the problem ofminimizing the expected first return time to state v. Hence, its solution is equivalent tomaximizing
the PageRank of node v.

Each allowed deterministic policy µ defines a potential way to configure the fragile links. Moreover, the vs component of
the cost-to-go function, Jµ(vs), is the expected first return time to v using the fragile link configuration of µ. Therefore, we
can compute the PageRank of node v by

π(v) =
1

Jµ(vs)
, (13)

where we applied the convention of 1/∞ = 0, which is needed when v is not recurrent under µ. Thus, the maximal
PageRank of v is 1/J∗(vs).

Most solution algorithms compute the optimal cost-to-go function, J∗, but even if we use a direct policy search method,
it is still easy to get back the value function of the policy. We can compute, for example, the expected first return time if we
configure the fragile links according to policy µ as follows. For simplicity, assume that vs = 1, then

Jµ(1) = 1
T(I − Pµ)−1e1, (14)

where ej is jth canonical basis vector, I is an n × n identity matrix and Pµ is the substochastic transition matrix of the
corresponding SSP problem without the row and column of the target state, vt , if we configure the fragile links according
to policy µ. Regarding the invertibility of I − Pµ note that

(I − Pµ)−1
=

∞
n=0

Pn
µ, (15)

and we know that this Neumann series converges if ϱ(Pµ) < 1, where ϱ(·) denotes spectral radius. Thus, (I − Pµ)−1 is
well-defined for all proper policies, since it is easy to see that policy µ is proper if and only if ϱ(Pµ) < 1.

It is known that MDPs can be solved in polynomial time in the number of states, N , and the maximum number of actions
per state, M (and the maximum number of bits required to represent the components, L), e.g., by linear programming
[18,21]. The size of the state space of the current formulation is N = n + 1, where n is the number of vertices of the
original graph, but, unfortunately, its action space does not have a polynomial size. For example, if we have maximum m
fragile links leaving a node, we have 2m possible actions to take, namely, we could switch each fragile link independently on
or off, consequently, M = 2m. Since m = O(n), from the current reformulation of problem, we have that there is a solution
which is polynomial but in 2n, which is obviously not good enough. However, we can notice that if we restrict themaximum
number of fragile links per node to a constant, k, thenwe could have a solutionwhich is polynomial in n (since themaximum
number of actions per state becomes constant: 2k). This motivates our refined solution, in which we reduce the maximum
number of actions per state to two while only slightly increasing the number of states.

3.3. Refined SSP formulation

Now, we present a refined SSP formulation which will be the base of the proof that shows the polynomial-time
computability of Max-PageRank.
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Fig. 2. An example for inserting auxiliary states for fragile links. The left hand side presents the original situation, in which dashed edges are fragile links.
The right hand side shows the refined reformulation, where the dotted edges represent possible actions.

We are going to modify our previous SSP formulation. The key idea will be to introduce an auxiliary state for each fragile
link. Therefore, if we have a fragile link from node i to node j in the original graph, we place an artificial state, fij, ‘‘between’’
them in the refined reformulation. The refined transition-probabilities are as follows. Let us assume that in node i therewere
ai ≥ 1 fixed outgoing edges and bi ≥ 0 fragile links. Now, in the refined formulation, in state i we have only one available
action which brings us uniformly, with 1/(ai + bi) probability, to state j or to state fij depending respectively on whether
there was a fixed or a fragile link between i and j. Notice that this probability is independent of how many fragile links are
turned on, it is always the same. In each auxiliary state fij we have two possible actions: we could either turn the fragile link
on or off. If our action is ‘‘on’’ (activation), we go with probability one to state j, however, if our action is ‘‘off’’ (deactivation),
we return with probability one to state i.

We should check whether the transition-probabilities between the original nodes of graph are not affected by this
reformulation (it is illustrated by Fig. 2). Suppose we are in node i, where there are a fixed and b fragile links,2 and we
have turned k of the fragile links on. Then, the transition-probability to each node j, which can be reached via a fixed or an
activated fragile link, should be 1/(a+ k). In our refined reformulation, the immediate transition-probability from state i to
state j is 1/(a+b), however, we should not forget about those b−k auxiliary nodes in which the fragile links are deactivated
and which lead back to state iwith probability one, since, after we returned to state iwe have again 1/(a+ b) probability to
go to state j an so on. Now, we will compute the probability of eventually arriving at j if we start in i and only visit auxiliary
states meantime.

To simplify the calculations, let us temporarily replace each edge leading to an auxiliary state corresponding to a
deactivated fragile link with a self-loop. We can safely do so, since these states lead back to state i with probability one,
therefore, the probability of eventually arriving at node j does not change by this modification. After this modification, the
probability of arriving at state j if one starts in state i can be written as

P ( ∃ t : Xt = j | ∀ s < t : Xs = i ) (16a)

=

∞
t=1

P ( Xt = j | Xt−1 = i )
t−1
s=1

P ( Xs = i | Xs−1 = i ) (16b)

=

∞
t=1

1
a + b


b − k
a + b

t−1

=
1

a + b

∞
t=0


b − k
a + b

t

=
1

a + k
. (16c)

With this, we proved that the probability of eventually arriving at state j if we start in state i, before arriving at any
(non-auxiliary) state l that was reachable via a fixed or a fragile link from i in the original graph, is the same as the one-
step transition-probability was from state i to state j according to the original random walk. This partially justifies the
construction.

However, we should be careful, since we might have performed several steps in the auxiliary nodes before we finally
arrived at state j. Fortunately, this phenomenon does not ruin our ability to optimize the expected first return time to state
v in the original graph, since we count the steps with the help of the cost function, which can be refined according to
our needs. All we have to do is to allocate zero cost to those actions which lead us to auxiliary states. More precisely, the
immediate-cost function should be

g(i, u, j) ,


0 if i = vt or j = fil or u = ‘‘off’’,
1 otherwise, (17)

2 For simplicity, now we do not denote their dependence on node i.



80 B.Cs. Csáji et al. / Discrete Applied Mathematics 169 (2014) 73–87

for all states i, j, l and action u. Consequently, we only incur cost if we directly go from state i to state j, without visiting an
auxiliary node (it was a fixed link), or if we go to state j via an activated fragile link, since we have g(fij, u, j) = 1 if u = ‘‘on′′.
It is easy to see that in this way we only count the steps of the original random walk and, e.g., it does not matter howmany
times we visit auxiliary nodes, since these visits do not have any cost.

This reformulation also has the nice property that Jµ(vs) is the expected first return time to node v in the original random
walk, in case we have configured the fragile links according to policyµ. Theminimum expected first return time that can be
achieved with suitably setting the fragile links is J∗(vs), where J∗ is the optimal cost-to-go function of the above constructed
SSP problem. Thus, themaximum PageRank node v can have is 1/J∗(vs).

It is also easy to see that if we want to compute the minimum possible PageRank of v, we should simply define a new
immediate-cost function as ĝ = − g , where g is defined by Eq. (17). If the optimal cost-to-go function of this modified
SSP problem is Ĵ∗, the minimum PageRank v can have is 1/|Ĵ∗(vs)|. Thus, Min-PageRank can be handled with the same
construction.

The number of states of this formulation is N = n + d + 1, where n is the number of nodes of the original graph and d
is the number of fragile links. Moreover, the maximum number of allowed actions per state is M = 2, therefore, this SSP
formulation provides a proof that, assuming (AD) and (AR), Max-PageRank can be solved in polynomial time. The resulted
SSP problem can be reformulated as a linear program, namely, the optimal cost-to-go function solves the following LP in
variables xi and xij,

maximize

i∈V

xi +


(i,j)∈F

xij (18a)

subject to xij ≤ xi , and xij ≤ xj + 1, and (18b)

xi ≤
1

deg(i)

 
(i,j)∈E\F

(xj + 1) +


(i,j)∈F

xij


, (18c)

for all i ∈ V \ {vt} and (i, j) ∈ F , where xi is the cost-to-go of state i, xij relates to the auxiliary states of the fragile edges,
and deg(·) denotes out-degree including both fixed and fragile links (independently of the configuration). Note that we can
only apply this LP after state v was ‘‘split’’ into a starting and a target state and the value of the target state, xvt , is fixed at
zero, since it is the termination state of the constructed SSP problem.

3.4. Handling dangling nodes

Now,wewill show that assumption (AD) can be omitted and our complexity result is independent of howdangling nodes
are particularly handled.

Suppose that we have chosen a rule according to which the dangling nodes are handled, e.g., we take one of the rules
discussed by Berkhin [2]. Then, in case (AD) is not satisfied, we can simply apply this rule to the dangling nodes before
the optimization. However, we may still have problems with the nodes which only have fragile links, since they are latent
dangling nodes, namely, they become dangling nodes if we deactivate all of their outgoing edges. We call them ‘‘fragile
nodes’’. Notice that in each fragile node we can safely restrict the optimization in a way that maximum one of the fragile
links can be activated. This does not affect the optimal PageRank of v, since the only link allowed should point to a node that
has the smallest expected hitting time to v. Even if there are several nodes with the same value, we can select one of them
arbitrarily. Naturally, this restriction of the optimization to only one allowed activated fragile link per state is only suitable
for fragile nodes, it is not applicable in general, when the node has fixed edges, as well.

It may also be the case that deactivating all of the edges is the optimal solution, for example, if the fragile links lead to
nodes that have very large hitting times to v. In this case, we should have an action that has the same effect as the dangling
node handling rule. Consequently, in casewe have a fragile node that hasm fragile links, wewill havem+1 available actions:
u1, . . . , um+1. If uj is selected, where 1 ≤ j ≤ m, it means that only the jth fragile link is activated and all other links are
deactivated, while if um+1 is selected, it means that all of the fragile links are deactivated and auxiliary links are introduced
according to the selected dangling node handling rule. If we treat the fragile nodes this way, we still arrive at an MDPwhich
has states and actions polynomial in n and d, therefore, the PageRank optimization problem can be solved in polynomial
time even if assumption (AD) is not satisfied and independently of the applied rule. The modification of the LP formulation
if fragile nodes are allowed is straightforward.

3.5. Damping and personalization

Now, we will extend our refined SSP formulation, in order to handle damping, as well. For the sake of simplicity, we will
assume (AD), but it is easy to remove it in a similar way as it was presented in Section 3.4. Note that assumption (AR) is
always satisfied in case of damping (cf. Section 3.1).

Damping can be interpreted as in each step we continue the random walk with probability 1 − c and we restart it
(‘‘zapping’’) with probability c , where c ∈ (0, 1) is a given damping constant. In this latter case, we choose the new starting
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Fig. 3. An illustration of damping: the substructure of a node of the original digraph. Circles represent states and boxes represent actions. State q denotes
the global ‘‘teleportation’’ state. Dashed edges help determining zero cost events: if a state-action-state path has only dashed edges, then this triple has
zero cost, otherwise, its cost is one.

state according to the probability distribution of a given positive and stochastic personalization vector z . In order to model
this, we introduce a new global auxiliary state, q, which we will call the teleportation state, since random restarting is
sometimes referred to as ‘‘teleportation’’ [16].

In order to take the effect of damping into account in each step, we place a new auxiliary state hi ‘‘before’’ each (non-
auxiliary) state i (see Fig. 3). Each action that leads to i in the previous formulation now leads to hi. In hi we have only one
available action (‘‘nop’’ abbreviating ‘‘no operation’’) which brings us to node iwith probability 1−c and to the teleportation
state q with probability c , except for the target state, vt , for which hvt leads with probability one to vt . In state q, we have
only one available action which brings us with distribution z to the newly defined nodes, that is we have

p(hi | q) , p( hi | q, u ) ,

z(i) if i ≠ vs and i ≠ vt
z(v) if i = vt
0 if i = vs.

(19)

All other transition-probabilities from q are zero. Regarding the cost function: it is easy to see that we should not count the
steps when we move through hi, therefore, g(hi, u, i) = 0 and g(hi, u, q) = 0. However, we should count when we move
out from state q, i.e., g(q, u, i) = 1 for all i and u.

The straightforward solution, namely, to connect i directly to q without an additional auxiliary state, hi, does not work,
since the transition-probability to q should be constant (i.e., equal to c), but the probabilities of taking a link starting from i
change as we change the configuration of fragile links.

In this variant, in which we take damping and personalization into account, the size of the state space is N = 2n+ d+ 2
and we still have maximum 2 actions per state, therefore, it can also be solved in polynomial time.

In this case, the LP formulation of finding the optimal cost-to-go is

maximize

i∈V

(xi + x̂i) +


(i,j)∈F

xij + xq (20a)

subject to xij ≤ x̂j + 1, and x̂i ≤ (1 − c) xi + c xq , (20b)

xij ≤ xi, and xq ≤


i∈V

ẑi (x̂i + 1), (20c)

xi ≤
1

deg(i)

 
(i,j)∈E\F

(x̂j + 1) +


(i,j)∈F

xij


, (20d)

for all i ∈ V \ {vt} and (i, j) ∈ F , where ẑi = p( hi | q), x̂i denotes the cost-to-go of hi and xq is the value of the teleportation
state. All other notations are the same as in (18) and we also have that xvt and x̂vt are fixed at zero.

The above LP problem has O(n + d) variables and O(n + d) constraints, which can thus be solved in O((n + d)3L), where
L is the binary input size (for rational coefficients) or in O((n + d)3 log 1

ε
), where ε is the desired precision [13]. The result

that was proved through Sections 3.3–3.5 is
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Theorem 1. The Max-PageRank Problem can be solved in polynomial time under the Turing model of computation even if the
damping constant and the personalization vector are part of the input.

Assumptions (AD) and (AR) are not needed for this theorem, since dangling and fragile nodes can be treated as discussed
in Section 3.4 (without increasing the complexity) and, in case of damping, all policies are proper.

Assuming that c and z can be represented using a number of bits polynomial in n, which is the case in practice, since c is
usually 0.1 or 0.15 and z = (1/n) 1 [2], we arrive at a strongly polynomial-time solution, because all other coefficients can
be represented using O(log n) bits.

3.6. State space reduction

In practical situations the state space may be very large which can make direct solutions impractical. Approximate,
sampling based methods are usually preferred in these circumstances [5,10,23]. In this section, we show that the state
space in the presented SSP formulation can often be reduced.

In the last SSP formulation in 2n + 1 states there is no real choice (there is only one available action) which allows the
reduction of the state space. In this complementary section we are going to show that given an SSP problemwith N = r + s
states, in which in r states there is only one available action, we can ‘‘safely’’ reduce the number of states to s. More precisely,
we will prove that we can construct another SSP problem with only s states which is ‘‘compatible’’ with the original one in
the sense that there is a one-to-one correspondence between the policies of the reduced and the original problems, and the
value functions of the policies (restricted to the remaining s states) are the same in both problems. Hence, finding an optimal
policy for the reduced problem is equivalent to solving the original one. The computational complexity of the construction
isO(r3+r2sm+s2rm), wherem denotes themaximumnumber of allowed actions per state.Wewill often omit L, the binary
size of the input or the desired precision of the computations.

3.6.1. Assumptions
We will apply immediate-cost functions of the form g : S × U → R. If we have a cost function that also depends on the

arrival state (like in the refined variant above), we can redefine it using the expected cost per stage,

g(i, u) =

N
j=1

p(j | i, u) g̃(i, u, j), (21)

which would not affect the outcome of the optimization [3]. The new cost function can be computed using O(N2m) =

O(r2m + rsm + s2m) operations.
We will call the states in which there is only one available action as ‘‘non-decision’’ states, while the other states will

be called ‘‘decision’’ states. By convention, we classify the target state, τ , as a decision state. We assume, without loss of
generality, that the (indices of the) non-decision states are 1, . . . , r and the decision states are r + 1, . . . , r + s. Finally, we
also assume that there exists at least one proper control policy.

3.6.2. Constructing the reduced SSP problem
Notice that the transition-matrix of theMarkov chain induced by (any) control policyµ of the original SSP problem looks

like

Pµ =


R0 Rµ

Q0 Qµ


, (22)

where R0 ∈ Rr×r describes the transition-probabilities between the non-decision states; Q0 ∈ Rs×r contains the transitions
from the non-decision states to the decision states; Qµ ∈ Rs×s describes the transitions between the decision states and,
finally, Rµ ∈ Rr×s contains the transitions from the decision states to the non-decision states. Note that R0 and Q0 do not
depend on the policy, since they correspond to non-decision states.

In the reduced problem we will only keep the s decision states and remove the r non-decision states. We will redefine
the transition-probabilities between the decision states as if we would ‘‘simulate’’ the progress of the system through the
non-decision states until we finally arrive at a decision state. In order to calculate the probabilities of arriving at specific
decision states if we started in specific non-decision states, we can define a new Markov chain

P0 =


R0 0
Q0 I


, (23)

where 0 is a r × s zero matrix and I is an s × s identity matrix. We can interpret this matrix as if we would replace each
decision state by an absorbing state. We assumed that there is at least one proper policy and we know that R0 and Q0 are
the same for all policies as well as the target state is a decision state, therefore, Rk

0 converges to the zero matrix as k → ∞,
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thus

lim
k→∞

Pk
0 =


0 0
Q ∗ I


, (24)

where Q ∗ contains the arrival distributions to the decision states if we started in one of the non-decision states. More
precisely, Q ∗

ij is the probability of arriving at (decision) state i if we start at (non-decision) state j. It is known [15] that
these probabilities can be calculated using the fundamental matrix of the Markov chain, F = (I − R0)

−1. More precisely,

Q ∗
= Q0F = Q0(I − R0)

−1, (25)

and the computation requires a matrix inversion and a matrix multiplication. If we use classical methods, Q ∗ can be
calculated in O(r3 + r2s) (the method of Coppersmith and Winograd [7] could also be applied). Using Q ∗ the transition
matrix of µ in the reduced problem should bePµ = Qµ + Q ∗Rµ. (26)

This matrix encodes the idea that if we arrive at a non-decision state, we simulate the progress of the system until we
arrive at a decision state. Fortunately, we do not have to compute it for all possible policies, we only need to define the
transition-probabilities accordingly:

p(j | i, u) , p(j | i, u) +

r
k=1

p(k | i, u)Q ∗

jk (27)

for all states i, j > r and action u ∈ U(i). Note that states i and j are decision states (their indices are larger than r). Thus,
computing the new transition-probability function can be accomplished using O(s2rm) operations.

We should also modify the immediate-cost function, in order to include the expected costs of those stages that we
spend in the non-decision states, as well. It is known that the fundamental matrix contains information about the expected
absorbing times. More precisely, Fjk is the expected time spent in (non-decision) state j before arriving at a (decision) state
(absorption), if the process started in (non-decision) state k [15]. Therefore,

g(i, u) , g(i, u) +

r
k=1

p(k | i, u)
r

j=1

Fjk g(j), (28)

for all i > r and u ∈ U(i), where we did not denote the dependence of the cost function on the actions for non-decision
states, since there is only one available action in each such state. Thus, g(j) , g(j, u), where u denotes the only available
action in state j. Computing the new cost-function needs O(r2sm) operations, if we already have the fundamental matrix.

We have only removed non-decision states, in which there is only one allowed action, consequently, it is trivial to extend
a policy of the reduced problem to a policy of the original one, and there is a bijection between such policies. Sincewe defined
the transition-probabilities and the immediate-cost function in a way that it mimics the behavior of the original problem,
solving the reduced problem is equivalent to solving the original one. Summing all computations together, we can conclude
that the time complexity of the construction is O((r3 + r2sm + s2rm)L), where L is the binary size or precision.

3.6.3. Reducing the SSP formulation of Max-PageRank
Applying this result to the refined SSP formulation of Max-PageRank, we can reduce the number of states to d (without

τ ) by constructing another SSP problem as demonstrated above. It can be summarized as

Lemma 2. TheMax-PageRank problemwith a digraph having n nodes and d fragile links can be reduced to an SSP problemwith
only d states (plus the termination state) by using O((n3

+ d2n + n2d)L) operations.

4. PageRank iteration

In the previous sections we saw how to reformulate efficiently the Max-PageRank problem as an SSP problem. This SSP
formulation could then be further reformulated as an LP problem, which type of problems are known to be solvable in
polynomial time, for example, by interior point methods.

Now, we will provide an alternative solution to the Max-PageRank problem. We will build on the previous SSP
formulation, but instead of using an LP-based solution, we will define a simple iterative algorithm that in each step updates
the configuration of the fragile links in a greedyway. Yet, aswewill see, thismethod is efficient inmany sense. For simplicity,
we will only consider the case without damping (c = 0) and we will apply the assumption:

(AB) Bounded Reachability Assumption: We assume that the target node, v, can be reached from all nodes of the graph via a
bounded length path of fixed edges. In otherwords, there is a universal constant κ such that node v can be reached from
all nodes by taking at most κ fixed edges. The fact that κ is universal means that it does not depend on the particular
problem instance.
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The algorithm starts with a configuration in which each fragile link is activated. In iteration k it computes the expected
first hitting time to v if we start in i and use the current configuration, that is it calculates

Hk(i) , E [ inf { t ≥ 1 : Xt = v } | X0 = i ] , (29)

for all nodes i, where the transition matrix of the Markov chain (X0, X1, . . .) is Pk defined by Eq. (1) using the adjacency
matrix corresponding to the fragile link configuration in iteration k. Then, the configuration is updated in a greedy way: a
fragile link from node i to node j is activated if and only if Hk(i) ≥ Hk(j) + 1. The algorithm terminates if the configuration
cannot be improved by this way. We call this method the PageRank Iteration (PRI) algorithm. The pseudo-code of PRI can be
found below.

The PageRank Iteration Algorithm

Input: A digraph G = (V, E), a node v ∈ V and a set of fragile links F ⊆ E .

1. k := 0 % initialize the iteration counter
2. F0 := F % initialize the starting configuration
3. Repeat % iterative evaluation and improvement
4. Hk := 1T(I − Qk)

−1 % compute the mean hitting times to v
5. Fk+1 := {(i, j) ∈ F : Hk(i) ≥ Hk(j) + 1} % improve the configuration
6. k := k + 1 % increase the iteration counter
7. Until Fk−1 ≠ Fk % until no more improvements are possible

Output:1/Hk(v), the Max-PageRank of v, and Fk, an optimal configuration.

Note that the expected first hitting times can be calculated by a system of linear equations [17]. In our case, the vector of
hitting times, Hk, is

Hk = 1
T(I − Qk)

−1, (30)

where Qk is obtained from Pk by setting to zero the row corresponding to node v, namely, Qk = diag (1 − ev) Pk, where ev

is the vth n dimensional canonical basis vector. To see why this is true, recall the trick of Section 3.2, when we split node
v into a starting node and an absorbing target node. Then, the expected hitting times of the target state can be calculated
by the fundamental matrix [15]. If v can be reached from all nodes, then I − Qk is guaranteed to be invertible. Note that
Hk(v) = ϕk(v), where ϕk(v) is the expected first return time to v under the configuration in iteration k, therefore, the
PageRank of v in the kth iteration is πk(v) = 1/Hk(v).

Theorem 3. PageRank Iteration has the following properties:

(I) Assuming (AD) and (AR), the algorithm always terminates in a finite number of iterations and the final configuration is
optimal.

(II) Assuming (AB), it finds an optimal solution in polynomial time.

Proof. Part I: We can notice that this algorithm is almost the policy iteration (PI) method, in case we apply a formulation
similar to the previously presented simple SSP formulation. However, it does not check every possible action in each
state. It optimizes each fragile link separately, but as the refined SSP formulation demonstrates, we are allowed to do
so. Consequently, PRI is the policy iteration algorithm of the refined SSP formulation. However, by exploiting the special
structure of the auxiliary states corresponding to the fragile links, we do not have to include them explicitly. For all allowed
policies µ (for all configurations of fragile links) we have

Jµ(fij) =


Jµ(i) if µ(fij) = ‘‘off’’,
Jµ(j) + 1 if µ(fij) = ‘‘on’’, (31)

for all auxiliary states fij corresponding to a fragile link. Thus, we do not have to store the value of these states, since they
can be calculated if needed.

Notice that Jµk(i) = Hk(i), where µk is the policy corresponding to the configuration in iteration k. Thus, calculating Hk
is the policy evaluation step of PI, while computing Fk+1 is the policy improvement step. Since PRI is a PI algorithm, it follows
that it always terminates finitely and finds an optimal solution [5] if we start with a proper policy and under assumptions
(A1) and (A2). Recall that the initial policy is defined by the full configuration, F0 = F and that we assumed (AR), that is
node v can be reached from all nodes for at least one configuration which means that the corresponding policy is proper.
If this holds for an arbitrary configuration, it must also hold for the full configuration, therefore, the initial policy is always
proper under (AR). Assumption (A1) immediately follows from (AR) and assumption (A2) follows from the fact that if the
policy is improper, we must take infinitely often fixed or activated fragile links with probability one. Since each of these
edges has unit cost, the total cost is infinite for at least one state.

Part II: First, note that assumption (AB) implies (AR) and (AD), therefore, we know from Part I that PRI terminates in finite
stepswith an optimal solution. Calculating themean first hitting times,Hk, basically requires amatrix inversion, therefore, it
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can be done in O(n3). In order to update the configuration and obtain Fk+1, we need to consider each fragile link individually,
hence, it can be computed in O(d). Consequently, the problem of whether PRI runs in polynomial time depends only on the
number of iterations required to reach an optimal configuration.

Since we assumed (AB), there is a universal constant κ such that for all nodes of the graph there is a directed path of fixed
edges from this node to node v which path has at most κ edges. These paths contain fixed (not fragile) edges, therefore,
even if all fragile links are deactivated, node v can still be reached with positive probability from all nodes. Consequently,
all policies are proper (APP). It is easy to see that we can partition the state space to subsequent classes of states S1, . . . , Sr ,
where r ≤ κ , by allocating node i to class Sq if and only if the smallest length path of fixed edges that leads to node v has
length q. This partition satisfies the required property described in Section 2.3. Because PRI is a PI variant, PRI terminates
with an optimal solution in iterations bounded by a polynomial in L and η−2κ . Since η = 1/m, wherem ≤ n is themaximum
out-degree in the graph, η−2κ

= O(n2κ), therefore, PRI runs in polynomial time. �

Though, for the sake of concision, we only presented PRI for the problem without damping and personalization, it is
easy to modify the algorithm for the other case, as well. Moreover, since if we apply damping each node can be reached
from all other nodes by a constant number of edges, namely via the teleportation state, assumption (AB) is automatically
satisfied. Then, the smallest transitionprobability of the associated SSPproblemmaybedeterminedby the damping constant
and the personalization vector, however, this can be arbitrary small. On the other hand, if the damping constant and the
personalization vector are fixed, not part of the input, we do not have this problem and hence PRI finds an optimal solution
in polynomial time.

5. PageRank optimization with constraints

In this section we are going to investigate a variant of the PageRank optimization problem in which there are mutually
exclusive constraints between the fragile links. More precisely, we will consider the case in which we are given a set of
fragile link pairs, C ⊆ F × F , that cannot be activated simultaneously. The resulting problem is summarized below.

The Max-PageRank Problem under Exclusive Constraints
Instance: A digraph G = (V, E), a node v ∈ V , a set of controllable edges F ⊆ E and a

set C ⊆ F × F of those edge-pairs that cannot be activated together. A
damping constant c ∈ (0, 1) and a stochastic personalization vector z .

Task: Compute the maximum possible PageRank of v by activating edges in F and
provide a configuration of edges in F for which the maximum is taken.

We will show that the Max-PageRank problem under exclusive constraints is already NP-hard, more precisely, we will
show that the decision version of it is NP-complete. In the decision version, one is given a real number p ∈ (0, 1) and is
asked whether there is a fragile link configuration such that the PageRank of a given node v is larger or equal to p.

Theorem 4. The decision version of theMax-PageRank Problem under Exclusive Constraints is NP-complete.

Proof. The problem is in NP because given a solution (viz., a configuration), it is easy to verify in polynomial time, e.g., via a
simple matrix inversion, cf. Eq. (3), whether the corresponding PageRank is larger or equal to p.

We now reduce the 3SAT problem, whose NP-completeness is well known [12], to this problem. In an instance of the
3SAT problem, we are given a Boolean formula containing m disjunctive clauses of three literals that can be a variable or
its negation, and one is asked whether there is a truth assignment to the variables so that the formula (or equivalently:
each clause) is satisfied. Suppose nowwe are given an instance of 3SAT. We will construct an instance of the Max-PageRank
problem under exclusive constraints that solves this particular instance of 3SAT.

We construct a graph having m + 2 nodes in the following way: we first put a node s and a node t . Figure it as a source
node and a sink node respectively. Each clause in the given 3SAT instance can bewritten as yj,1∨yj,2∨yj,3, 1 ≤ j ≤ m, where
yj,l is a variable or its negation. For each such clause, we add a node vj between s and t , we put an edge from vj to itself (a
self-loop), we put an edge from s to vj, and we put three edges between vj and t , labeled respectively with yj,1, yj,2, and yj,3.
We finally add an edge from t to s. We now define the set of exclusive constraints, C, which concludes the reduction. For all
pairs (yj,l, yj′,l′) such that yj,l = ȳj′,l′ (i.e., yj,l is a variable and ȳj′,l′ is its negation, or conversely), we forbid the corresponding
pair of edges. Also, for all pairs of edges (yj,l, yj,l′) corresponding to a same clause node, we forbid the corresponding pair.
This reduction is suitable, since the sizes of the graph and C are polynomial in the size of the 3SAT instance.

We claim that for c small enough, say c = 1/(100m), it is possible to obtain an expected return time from t to itself which
is smaller than 77 if and only if the instance of 3SAT is satisfiable. The reason for that is easy to understand with c = 0: if the
instance is not satisfiable, there is a node vj with no edge from it to t . In that case, the graph is not strongly connected, and
the expected return time from t to itself is infinite. Now, if the instance is satisfiable, let us consider a particular satisfiable
assignment. We activate all edges which correspond to a literal which is true and, if necessary, we deactivate some edges so
that for all clause nodes, there is exactly one leaving edge to t . This graph, which is clearly satisfiable, is strongly connected,
and so the expected return time to t is finite.
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Now if c ≠ 0 is small enough, one can still show by continuity that the expected return time is much larger if some
clause node does not have an outgoing edge to t . To see this, let us first suppose that the instance is not satisfiable, and thus
that a clause node (say, v1), has no leaving edge. Then, for all l ≥ 3, we describe a path of length l from t to itself: this path
passes through s, and then remains during l − 2 steps in v1, and then jumps to t (with a zapping). This path has probability
(1 − c) 1

m (1 − c)l−2c. Therefore, the expected return time is larger than

E1 ≥

∞
l=3

lp(l) ≥
c
m

∞
l=3

l(1 − c)l−1
≥

c
m


c−2

− 3


≥ 99, (32)

where we assumed that c = 1/(100 m) and the personalization vector is z = (1/n) 1. Note that c and z are part of the
input, thus they can be determined.

Consider now a satisfiable instance, and build a corresponding graph so that for all clause nodes, there is exactly one
leaving edge. It appears that the expected return time from t to itself satisfies E2 ≤ 77. To see this, one can aggregate all
the clause nodes in one macro-node, and then define a Markov chain on three nodes that allows us to derive a bound on
the expected return time from vt to itself. This bound does not depend onm because one can approximate the probabilities
m/(m+2) and 1/(m+2) that occur in the auxiliaryMarkov chain by one so that the bound remains true. Then, by bounding
c with 1/8 > 1/(100 m), one gets an upper bound on the expected return time. For the sake of conciseness, we skip the
details of the calculations. To conclude the proof, it is possible to find an edge assignment in the graph so that the PageRank
is greater than p = 1/77 if and only if the original instance of 3SAT is satisfiable. �

Wehave tried to keep the NP-hardness proof as short as possible. Several variants are possible. In the above construction,
each clause node has three parallel edges linking it to the node t . This might seem not elegant, but it is not difficult to get
rid of them by adding auxiliary nodes. Also, it is not difficult to get rid of the self-loops by adding auxiliary nodes. Finally we
have not tried to optimize the factor c = 1/(100 m), nor the bound on E2. An interesting question is whether a reduction is
possible if the damping factor c and the personalization vector z cannot depend on the instance.

6. Conclusions

The task of ordering the nodes of a directed graph according to their importance arises in many applications from the
problem of ranking the results of web-searches to bibliometrics and ecosystems. A promising and popular way to define
such an ordering is to use the PageRankmethod [6] and associate the importance of a node with the weight of the node with
respect to the stationary distribution of a uniform randomwalk. The problem of optimizing the PageRank of a given node by
changing some of the edges caused a lot of recent interest [20,1,9,14,11]. We considered the general problem of finding the
extremal values of the PageRank a given node can have in the case we are allowed to control (activate or deactivate) some
of the edges from a given arbitrary subset of edges, which we referred to as fragile links.

Our main contribution is that we proved that this general problem can be solved optimally in polynomial time under
the Turing model of computation, even if the damping constant and the personalization vector are part of the input and
independently of the way the dangling nodes are handled. The proof is based on reformulating the problem as a stochastic
shortest path problem (a special Markov decision process) and it results in a linear programming formulation that can then
be solved by standard techniques.

This solution is weakly polynomial in general, however, if the damping constant and the personalization vector can be
represented with bits polynomial in the number of nodes, it becomes strongly polynomial.

We do not need to assume that the graph is simple, namely, it can have multiple edges (and self-loops). This allows the
generalization of our results to weighted graphs, in case the weights are positive integers or rationals.

Based on the observation that in some of the states of the reformulated SSP problem there is only one available action
(thus, we do not have a real choice in them), we showed that the number of states (and therefore the needed computation
to solve the problem) could be further reduced.

We also suggested an alternative greedy solution, called the PageRank Iteration (PRI) algorithm, which had appealing
properties.We analyzed PRI for theMax-PageRank problemwithout damping and showed that it can find an optimal solution
in finite steps and it runs in polynomial time, under the bounded reachability assumption. This latter assumption is always
satisfied if we consider the problem with damping which indicates that PRI always finds an optimal solution in polynomial
time for such problems, in case the damping constant and the personalization vector are fixed.

Finally, we also showed that slight modifications of the problem, as for instance adding mutual exclusive constraints
between the activation of several fragile links, may turn the problem NP-hard. We conjecture that several other slightly
modified variants of the problem are also NP-hard, e.g., the Max-PageRank problem with restrictions on the number of
fragile links that can be simultaneously activated. We left their analysis for further work.
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