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a b s t r a c t

The Organic Rankine Cycle (ORC) is a technology commonly used for low-grade thermal energy conver-
sion in electricity. This technology is mature for large power scale and last research focused on small scale
units for domestic or onboard applications. This paper presents an extensive open-access database of
more than 100 ORC experiments collected from about 175 scientific literature references. Data harmo-
nization and database frame are presented. Clear and consistent components and ORC performance cri-
teria are proposed and applied to the data set of various ORC. An overview of the ORC experimental state-
of-the-art is displayed and major trends are drawn. Efficiency of key components such as expanders and
pumps are analyzed and used for ORC parametric optimization case study. Correlations of some param-
eters with ORC performances are statistically investigated, performance improvement of novel fluid or
cycles is evaluated.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The energy sector is facing major challenges in the upcoming
century as energy demand, driven by the world population and
economic growth, is rising and its major impact on the global
warming issue needs to be addressed. Among the solutions to
overcome these challenges, renewable energies and process energy
efficiency could be partially fulfill by the use of the Organic Rank-
ine Cycle (ORC) technology.

The organic Rankine cycle is a heat to power conversion tech-
nology used since the 19th century to transform energy from a
variety of sources such as geothermal, solar, biomass or waste heat
recovered (WHR) from the industrial process or internal combus-
tion engines (ICE). Current range of commercial ORC goes from
10 kWe to 10 MWe converting heat sources between 80 �C and
300 �C, but this range is extending as new application are devel-
oped such as ocean thermal energy conversion, micro-CHP (com-
bined heat and power) or vehicle engine heat recovery [1–3].

The organic Rankine cycle is derived from classic Rankine cycle,
the pressurized working fluid is heated and vaporized by the heat-
ing fluid, expands in an expander to produce mechanical work,
condensates at low pressure by the cooling fluid and is pumped
back to close the cycle. The major difference with the classic Rank-
ine cycle is the use of organic fluids as working fluid instead of
water, the working fluid can be selected according to the heat
source and usage [4].

Researches on ORC increased in the last decades, focusing on
design optimization, fluid selection, expander technologies or
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Nomenclature

cP specific heat capacity
E exergy
e specific exergy
h specific enthalpy
I electric current
m mass flowrate
P pressure
Q heat power
s specific entropy
T temperature
U electric tension
V volume flowrate
v specific volume
W power

Greek symbols
C torque
D difference
e exergetic efficiency
g energetic efficiency
n fluid saturated vapor slope
q Spearman’s coefficient
U dissipations
u electric phase
X rotating speed

Subscripts
ad adiabatic
aux auxiliaries
el electric
eva evaporator
exp expander

gen generator
hf hot fluid
hr heat recovery
hy hydraulic
in inlet
ind indicated
int internal
is isentropic
max maximum
me mechanic
out outlet
pp pump
rec recovery
sup supplied
wf working fluid
0 reference
II second law (efficiency)

Acronyms
AC Alternative Current
BWR Back Work Ratio
CHP Combined heat and power
DC Direct Current
HEx Heat Exchanger
HF Hot Fluid
ICE Internal Combustion Engine
IHE Internal Heat Exchanger
ORC Organic Rankine Cycle
VSD Variable Speed Drive
WHR Waste Heat Recovery
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dynamic control. To support those research, many experimental
benches were built for validation or models data-feeding purposes.
Colonna et al. [1], Quoilin et al. [2] and Tchanche et al. [5] pre-
sented general review of the Organic Rankine Cycle technology his-
tory and future, typical industrial applications and market trends
as well as ORC key components’ types and issues such as expander,
working fluid, heat exchanger or pump. Rahbar et al. [6] proposed a
similar review with a focus on small power scale (5 kW to 5 MW),
while Vélez et al. [7] proposed a focus on the economic and market
trends of the ORC technology. Other reviews focused on ORC work-
ing fluid characteristics and selection criteria [4,8,9], or expander
technologies, performances and modeling [4,10,11]. Lecompte
et al. [12] proposed an exhaustive review of ORC architectures
and advanced cycles such as recuperated, regenerative, flash or
multi-pressure. Previous reviews presented a qualitative state of
the art around the ORC technology. However, they present a given
time picture, with a limited number of experimental references.

In the present paper, an open-access and collaborative database
of ORC experimental work is presented in Section 2. This database
aims to be as exhaustive as possible and extensive as it can be con-
tinuously updated with new references. It allows an objective
review of ORC experiments through a factual and quantitative sur-
vey. Each ORC bench is tested in a different environment (heat and
sink sources), for different objectives and analyzed by different
methods. It results an addition of measurements, methods and def-
initions uncertainties on the cycle efficiency while the relative per-
formance difference between two fluids, expander or cycle
architecture can be rather small. Therefore, one of the major chal-
lenges to perform an objective comparison is to propose a clear
data discrimination and classification, as well as harmonized per-
formances criteria for both components and cycle that might be
applied to the present database. Lecompte et al. [12] already pro-
posed a number of clear ORC performance criteria using both ener-
getic and exergetic analysis for open and closed heat sources [13],
while Branchini et al. [14] proposed advanced indexes such as
expander volumetric expansion ratio or total heat exchangers sur-
face as size/economic parameters.

ORC design & parametric optimization is used at the early stage
of projects to evaluate the potential of the ORC implementation.
Contrary to advanced ORC modeling [15], parametric study uses
mostly constant isentropic efficiency for pump and expander per-
formances, but provides few references to justify the selected effi-
ciency, while it has a large impact on the optimization process [16].
In the literature, expander isentropic efficiency ranging from 70 to
85% are used and pump isentropic efficiency from 60 to 90% with
heat exchanger pinch point from 5 to 10 K [17–20]. The present
work and database provides a number of experimental references
for components efficiency, especially at small-scale. Examples of
parametric optimization will be performed and presented in
Section 3.

Many research on ORC focus on working fluids, expander and
cycle architecture. Out of the numerical modeling evaluation of
performance improvement, experimental validation can be com-
plex. A common way is to compare different cases with the same
test bench. Some authors compared different expanders with the
same fluid and set-up [21–25]. Other compared different fluids
or mixture proportions on the same ORC [26–36]. Some studies
compared simple configuration with recuperated configuration
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[25,37–43] or subcritical with transcritical conditions [32,36,44–
47]. The present database enables to identify same test benches
and track modifications in order to compare different cases, even
if data are collected from different references. However, a given
test bench can be design and optimized for a specific fluid, expan-
der or configuration and introducing a bias on the different cases
comparison. Therefore, the present work introduces in Section 4
an alternative way for performance comparison through the use
of statistical tools.
2. Organic Rankine cycle experiments database

2.1. Database construction

Data are collected from scientific journals or conference papers
and PhD theses. Only complete Rankine units are considered.
Therefore, prototypes without expander (simulated with a valve),
expander test benches (gas cycle) and flash cycles are excluded.
Since this study focuses on organic Rankine cycle, steam Rankine
cycles are excluded. It is decided to exclude CO2 cycles as it has
specific properties and is not an organic compound.

In references referring to identical test benches are identified
and grouped to avoid double counts. However, changes of expan-
der, fluid or heat sources are tracked as they can provide useful
information and significant changes on unit performances and
behavior. By the time of paper writing (beginning of 2017), the pre-
sent database includes 175 scientific references corresponding to
102 unique ORC prototypes. Table 1 summarizes references
according to the target application and the type of expander.

Both qualitative and quantitative information on prototypes
were collected. Table 2 summarizes the database layout and type
of data collected. For cycle numerical parameters (temperature,
pressure, power. . .), both minimum and maximum reached values
were collected. In addition, a second database gathers information
at a specific running point – maximum efficiency and/or maximum
power – but for a limited number of parameters: working fluid
temperatures and pressures, expander & pump powers, heat & cold
source temperatures, powers and flow rate.

Data are manually extracted from text, tables and graphs. Non-
available parameters are calculated, when possible, using the Cool-
prop library [48] or left empty. A data reduction is processed on
qualitative data in order to provide a uniform nomenclature (e.g.:
fluid names, expander and pump technologies).
2.2. Data discrimination

Colonna et al. [1] proposed a terminology for ORC power plants
classification, but there are currently no standards for ORC power
or efficiency nomenclature and definitions. Therefore, each author
uses his own nomenclature and definitions resulting in confusion
and complex comparisons. Those choices are based on the instru-
mentation available and personal choices. Table 3 summarizes
Table 1
Summary of experimental ORC database references.

Targetnexpander Piston Rotary Screw

Biomass [49,50]
Gas [57]
Geothermal [58,59]
Solar [42,69,70] [43,71]
Solar combined
WHR [95] [24,96–102] [26,27,45,103–109]
WHR from ICE [143–146] [147–150] [151–153]
Not indicated [21] [167–171]
the main type of power stated and used in the database references
for pump and expander with their measurement methods.

The isentropic power is the ideal power for a reversible adia-
batic machine. The adiabatic power is derived from energy conser-
vation and fluid enthalpy assuming an adiabatic machine. The
indicated power is the pressure forces work only. For a pump, as
the fluid is considered incompressible, it denotes to the hydraulic
power and equals the isentropic power. The mechanical power is
a pure power, but measurement can be complex or even impossi-
ble for hermetic expanders. The electrical power is easier to mea-
sure and allows fair comparison; however some references use
mechanical power only as the final output.

Figs. 1 and 2 show pump and expander power flow diagram,
locating the different powers. Dec denotes to the kinetic energy
and U to the mechanical losses and frictions. Potential energy is
neglected. Note that a variable speed drive (VSD) might be
installed or not. For the pump, Landelle et al. [194] have shown
that adiabatic power is not sufficient as motor losses are neglected,
and appropriate as it is very temperature sensitive. Since mechan-
ical power is never measured, electrical power will be preferred.

For expander, the relation between the final output power and
the adiabatic power depends on the expander type and the expan-
der adiabatic assumption (heat dissipation negligible with respect
to the output power). As Lemort et al. [127] have shown, volumet-
ric machines cannot be considered adiabatic (low power/size
ratio). Especially as most experimental volumetric expanders are
modified compressors, and compressors are designed to dissipate
heat in order to reduce the compression work. Large turbo-
expander are often considered as adiabatic machines, however this
assumption should be validated for micro-turbines.

Based on those power definitions, a combination of efficiencies
can be derived for the pump and the expander. The most common
and useful expander efficiencies are listed below:

� Isentropic efficiency: gis ¼ Wad=Wis

� Mechanical efficiency: gme ¼ Wme=Wis

� Electrical efficiency: gel ¼ Wel=Wis

� Generator efficiency: ggen ¼ Wel=Wme

� Adiabatic efficiency: gad ¼ Wme=Wad for open-type;
gad ¼ Wel=Wad for hermetic

The adiabatic efficiency represents the thermal insulation effec-
tiveness of the expander. For pump, only the electrical efficiency is
considered. An empirical correlation for generator efficiency, func-
tion of the mechanical power, is derived. This correlation is later
used to estimate expander electric power from mechanical power
when not available. Therefore, electric power is used as the refer-
ence power for both pumps and expanders.
2.3. ORC performance criteria

As for powers, different definitions are used to describe ORC
system efficiency. Most ORC efficiencies definitions are based on
Scroll Turbine Other & n/a

[51,52] [53–56]

[34,60–62] [36–39,63–68]
[46,47,72–88] [89] [90]
[91–93] [33] [94]
[22–24,110–128] [28,129–139] [140–142]
[147,154–161] [30,32,162–165] [166]
[21,25,29,35,172–182] [41,44,183–191] [21,40,192,193,31]



Table 2
Experimental ORC database layout.

General info Working fluid Cycle conditions Heat & cold
source

Pump Expander Heat
exchangers

Lubrication Additional
components

Country Name Expander inlet
temperature

Energy source Technology Technology Evaporator
Type

Oil
proportion

Subcooler

University Category Superheating Temperature Driver Generator Evaporator
Area

Injection
type

Filter

Target
application

Critical
temperature

Pump inlet
temperature

Heat power Control Control Condenser
Type

Separator Vapor Tank

Specificity Critical pressure Subcooling Flow rate Nominal
power

Nominal power Condenser
Area

Pump Liquid Tank

CHP Saturation slope
(n)

High pressure Heat transfer
fluid

Shaft speed Built-in volume
ratio

Internal HEx Tank Other

Low pressure Flow rate Swept volume Cooler
Net power Powers Shaft speed Filter
Cycle efficiencies Efficiencies Pressure ratio

Powers
Efficiencies

Table 3
Summary of power types.

Power name Equation Instrumentation required

Isentropic
power

Wis ¼ _m � ½hðT; PÞin � hðsin; PoutÞ� Pressure and temperature
sensors, flow-meter

Adiabatic
power

Wad ¼ _m � ½hðT; PÞin � hðT; PÞout � Pressure and temperature
sensors, flow-meter

Indicated
power
(exp.)

Wind ¼ _m � R out
in v � dP Internal pressure sensors,

tachometer

Hydraulic
power
(pp.)

Why ¼ _V � DP Pressure and temperature
sensors, flow-meter

Mechanical
power

Wme ¼ C � _X Torque-meter and
tachometer

Electrical
power

Wel ¼ U � I � cosðuÞ Power-meter/voltmeter

Fig. 2. Expander power flow diagram.

Fig. 1. Pump power flow diagram.
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the same template as Eq. (1). The ORC net power output WORC is
the difference between power produced by the expander and the
power consumed to run the cycle. Components power type used
to compute the net power must be consistent. Electrical power is
preferred, for the reasons cited previously. In this work, the auxil-
iaries power Waux (heat and cold fluid pumps, fans. . .) are not con-
sidered since they are not related to constrains and choices
exterior to the ORC.

gORC ¼ WORC

Qheat
¼ Wexp �Wpp �Waux

Qheat
ð1Þ

In some references, the pump consumption Wpp is assumed
small enough compared to the expander power Wexp to be
neglected. Quoilin et al. [2] introduced the back work ratio (BWR)
to compare pump with expander power and showed that pump
cannot be neglected for ORC especially when working fluid critical
temperature is low and ORC operates close to the critical pressure.
Since only a few references provide the pump electrical consump-
tion, the ORC gross electrical power WORC,gross = Wexp,el is also used
with the ORC net electrical power WORC,net = Wexp,el – Wpp,el for the
database analysis.

The heat power Qheat is the system input power and depends on
the system boundaries and input/output. ORC technology has dif-
ferent applications that can be divided in two categories: the
closed heat sources (biomass, solar) and open heat sources
(WHR, geothermal) [13]. Fig. 3 shows system scheme and T-Q dia-
gram of closed and open heat sources.

In closed sources, the input is a heat flow Qsup supplied to the
ORC. The hot fluid (HF) inlet depends on the hot fluid outlet and
the heat flow. In open sources, the input is a hot stream character-
ized by its mass flow rate (mHF), specific heat (cP) and temperature
(THF,in). This input is not influenced by the hot fluid outlet, which is
not recovered. Therefore, the supplied heat power Qsup is lower
than the maximum heat power Qmax that could be recovered if
the stream was cool down to the reference temperature T0.

In addition, a distinction can be made between the internal and
external input [12]. For internal input, the heat power is the work-
ing fluid enthalpy variation between the evaporator inlet and out-
let. For external input, this is the hot fluid enthalpy variation. For
heat power, the difference between internal and external input is
negligible and is only related to the evaporator thermal insulation.
However, the difference can be significant when considering the
exergy Eheat as the system input instead of Qheat.

DiPippo [195] and Schuster [196] explained that exergy is more
appropriate to evaluate thermodynamics performances. The speci-
fic exergy of a streaming fluid is defined in Eq. (2). The subscript 0
denotes the reference conditions, for ORC we will use the atmo-
spheric pressure and the cold source inlet temperature as the ref-
erence. Table 4 sum-up the different types of system inputs and
the related ORC efficiencies, assuming hot fluid constant specific
heat.

e ¼ h� h0 � T0 � ðs� s0Þ ð2Þ



Fig. 3. Scheme and temperature-heat diagram for closed and open heat source types.

Table 4
Summary of ORC system inputs for efficiency definition.

Energy Exergy

Internal Q int ¼ _mwf � ðheva;out � heva;inÞ Eint ¼ _mwf � ðeeva;out � eeva;inÞ
gint = WORC/Qint: ORC intern efficiency eint = WORC/Eint: ORC intern exergetic efficiency

Closed source Q sup ¼ _mhf � cP;hf � ðTHF;in � THF;outÞ Esup ¼ _mhf � ðeHF;in � eHF;outÞ
gth = WORC/Qsup: ORC thermal efficiency eORC = WORC/Esup: ORC exergetic efficiency

Open source Qmax ¼ _mhf � cP;hf � ðTHF;in � T0Þ Emax ¼ _mhf � ðeHF;in � eHF ðT ¼ T0ÞÞ
grec = WORC/Qmax: ORC recovery efficiency erec = WORC/Emax: ORC exergetic recovery efficiency
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The exergy requires precise data on the fluid properties to be
calculated. We only consider the thermal exergy for the hot fluid.
When assuming a constant specific heat, the hot fluid specific
exergy is expressed as:

ehf ¼
Z T

T0

cP 1� T0

T

� �
dT ¼ cP T � T0 � T0 � ln T

T0

� �� �
ð3Þ

Therefore, the supplied exergy of the hot fluid is:

Esup ¼ _mhf � cP ðTHF;in � THF;outÞ � T0 � ln THF;in

THF;out

� �� �

¼ Q sup 1� T0 � lnðTHF;in=THF;outÞ
THF;in � THF;out

� �
ð4Þ

In the same way, we can derive the maximum exergy of the hot
fluid:

Emax ¼ Q sup
THF;in � T0ð1þ lnðTHF;in=T0ÞÞ

THF;in � THF;out

� �
ð5Þ

Additionally, we can introduce the heat recovery efficiency ghr [20]
and the hot exergy recovery efficiency ehr:

ghr ¼
Q sup

Qmax
¼ ðTHF;in � THF;outÞ

ðTHF;in � T0Þ ð6Þ

ehr ¼ Esup

Emax
¼ 1� THF;out � T0ð1þ lnðTHF;out=T0ÞÞ

THF;in � T0ð1þ lnðTHF;in=T0ÞÞ ð7Þ

With those assumptions, ORC exergetic efficiencies (eORC & erec)
can be computed for a large number of database references, as it
only requires heat power and inlet/outlet temperatures of the
hot fluid. When the cold source inlet temperature is not available,
293 K is taken as the reference. The thermal loss of evaporators will
be assumed negligible and therefore Qint � Qsup. The ORC internal
exergetic efficiency eint is not considered, as it does not take into
account evaporator exergy destruction.

For closed source applications, the target is to maximize the
ORC thermal efficiency gth with heat power as system input. An
ideal closed source has an infinite heat capacity m.cP and the ideal
cycle is the Carnot cycle. In this ideal case, the hot fluid tempera-
ture glide tends toward zero and the ORC exergetic efficiency eORC
tends toward the second law efficiency gII, which is the ratio of the
thermal efficiency gth and the Carnot efficiency (Eq. (8)). The sec-
ond law efficiency is useful to compare the degree of perfectness of
the ORC without the influence of the heat source temperature.
However, the thermal efficiency gth is preferred when the heat
source temperature is a system optimization parameter.

limTHF;out!THF;in

WORC

Esup

� �
¼ WORC

Q supð1� T0=THF;inÞ ¼
gth

gCarnot
¼ gII ð8Þ

For open source applications, the target is to maximize the
power extracted from the hot stream. The ORC exergetic recovery
efficiency erec is more appropriate than the ORC recovery efficiency
grec to compare systems with different heat source temperature.
DiPippo [197] shows that ideal cycle for open sources is a triangu-
lar cycle. Finally, we keep three types of efficiency for ORC compar-
ison: gth, gII and erec. To have a significant number of data, they
are computed with the ORC gross power.

2.4. Database overview

Prototypes from the database cover a wide range of conditions,
going from a few Watts to 1 MW of gross output power with hot
source temperatures ranging from 60 to 675 �C. Fig. 4 shows a
hot temperature – power map of the references sorted by target



Fig. 5. Type of refrigerant used as working fluid over time in the referenced units.
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application. 23% of the ORCs don’t have a specified application.
Among the rest, 62% are dedicated to waste heat recovery, includ-
ing 19% specifically for ICE WHR. 23% are for solar application,
including 6% of solar combined with another heat source, 10% for
geothermal, 3% for biomass and 1% for gas (see references in
Table 1). 13% of ORCs are dedicated to combined heat & power
(CHP) production, but they are mostly closed source applications:
100% of the biomass or gas and 30% of the solar targeted applica-
tions aim to produce CHP.

In practice, most references use controllable and flexible heat
source: 48% use electric heaters and 20% oil or gas burner versus
14% for waste heat (including 11% of engine waste heat), 9% for
solar field, 5% biomass, 2% for geothermal stream. To transfer the
heat, water or glycol-water is widely used (54%, including 8% of
steam) as well as thermal oil (27%) or exhaust gas/air (15%). In
the same way, to condense the working fluid, 36% use cooling
tower, 34% water flow (sea or tap) and 27% air chillers. 88% of
the references use water or water-glycol mixture as a transfer fluid,
but 11% performs direct condensation usually with air chillers.

Fig. 5 shows the evolution of refrigerant categories used as ORC
working fluids over time. CFC quickly declined in the 80s due to
Montreal protocol and mostly replaced by HCFC in the 2000 dec-
ade. HFC are now the dominant refrigerants even if HCFC are still
used, mostly in Asia. Recently, HFO (R1233zdE) started to be tested
on ORCs [29–31] and research on fluid mixtures increased
[34,35,75,128]. Overall, 52% of the working fluid used are HFC,
20% HCFC, 7% Hydrocarbons, 6% HFE, 4% Mixtures, 2.5% PFC, 2.5%
CFC, 2.5% HFO and 5% of others. There are over 30 different fluids,
but only three fluids are used two times out of three: R245fa (38%),
R123 (18%) and R134a (7%).

The number of experimental references can be a good track of
R&D investments on the ORC technology. The 2011–2015 periods
show a strong increase in the number of references, but a decline
is observed in 2016. However, by the time of paper writing (begin-
ning of 2017), not all 2016 references may be available. In addition,
18 references are extracted from the International Seminar on ORC
Power Systems from 2015 and increase the 2015 peaks. A biblio-
metric analysis on the global ORC scientific literature shows a sim-
ilar, but softer trend.

Fig. 6 shows the maximum operating condition of those work-
ing fluids in the cycle. In average, the reduced temperature – ratio
over the critical temperature in Kelvin – is about 0.9 at the evapo-
rator outlet, and the reduced pressure is about 0.4. Four ORCs run-
ning at supercritical conditions are reported [32,45,47,190].
Fig. 4. Hot source temperature and ORC gross power map of the references.
3. Data for ORC design

3.1. Components performances and analysis

The expander is the most investigated ORC components and
many different technologies are tested. A fourth of the references
are turbo-expanders, for three quarters of them radial type. Others
technologies are volumetric expanders. Scroll is the most used
(45%), both hermetic and open-drive types, followed by screw
and rotary expanders (12% each) plus a few references of piston
or swash-plate piston expanders.

The adiabatic efficiency of expanders (see Section 2.2) has an
upper quartile at 77% and a lower quartile at 35% for an average
of 56%, whatever the expander technology. Therefore, isentropic
efficiency and adiabatic power are not sufficient to evaluate and
compare expanders.

As described in Section 2.2, an empirical correlation for genera-
tor efficiency is used to derive electrical power from mechanical
power when it is not available (Fig. 7). When electric generator is
used, 41% of them are alternative current (AC) synchronous gener-
ators, 35% AC asynchronous and 24% direct current (DC). Fig. 8
shows the expander electric power-efficiency map.

Expander efficiency is strongly correlated with its power scale.
As expected by Quoilin et al. [198] there is an optimal technology
depending on the power scale. Scroll expander seems more
adapted below 5 kWe, screw expander for the 5–50 kWe scale
and turboexpander above. Rotary technology is in the same power
scale than scroll, but efficiency is lower.

Fig. 9 shows boxplots of expander pressure ratio and shaft
speeds for the main technologies. Turboexpander covers the all
range of pressure ratio; however its higher shaft speed requires
high speed generator or speed reduction. If scroll, rotary and piston
have the same power scale range, each one covers a different pres-
sure ratio range. To control the expander speed, there are two main
strategies. Two thirds use the expander load with electrical resis-
tances or mechanical brakes, the other third use speed control with
variable frequency drive or connection to the electrical grid and
mainly AC asynchronous generators.

Different lubrication strategies are implemented depending on
expander technology (Fig. 10). Turbines are mostly oil-free expan-
ders, but bearings lubrication may be necessary. Some authors
used working fluid liquid injection for bearings lubrication [30].
Some volumetric expanders, especially scrolls, run without lubri-
cation. When oil is added, there are two main strategies. Create a



Fig. 6. Working fluids maximum operating conditions on the ORC.

Fig. 7. Expander generator efficiency empirical correlation.

Fig. 8. Electric power and efficiency map of expander references.

1178 A. Landelle et al. / Applied Energy 204 (2017) 1172–1187
mixture of working fluid and oil that circulates in the ORC – in
average 5% of oil mass fraction. Use an additional oil-loop. This
solution is more complex as it requires a secondary oil circuit to
separate the oil from the fluid and pump it back to the expander
inlet or bearings. However, it reduces the oil fraction circulation
in the rest of the ORC. 43% of the lubricated ORCs (circulating mix-
ture + additional oil-loop) added an oil pump, 39% an oil-fluid sep-
arator, 13% an oil tank, 8% a filter and 5% a cooler.
To study lubrication effect on expander efficiency, we select
data of scroll, screw and rotary expanders in the 0.5–10 kWe scale.
The average expander efficiency increases from 47% to 53% when
using lubrication. But it is based on 32 data and therefore this
hypothesis is not statistically strong.

Many different pump technologies can be used on ORC, we
group them in 3 categories: reciprocating (56%) grouping dia-
phragm, piston and plunger pumps; rotary (11%) grouping gear,
rotary piston and rotary vane pumps; and centrifugal (30%) mono
or multistage pumps. A pumpless concept is experienced by
Yamada et al. [121] or Gao et al. [181]. 95% of the pumps are driven
by electric motor, Larjola and Turunen et al. [129,130] directly used
the expander mechanical shaft to drive the pump.

Fig. 11 shows a pumps operating conditions map with the max-
imummass flow rate and the maximum pressure lift. Fig. 12 shows
a pumps performances map. Centrifugal pump performs better
above 1 kW of hydraulic power and are the dominant technology
for flow rates above 1 kg/s. They can handle high pressure increase
of 20 bar, even at low flow rate. Reciprocating pump perform bet-
ter below 1 kW of hydraulic power and can handle very high pres-
sure lift. As for expanders, pump electric efficiency is correlated
with its power scale. Pump low electrical efficiency could be
explained by poor motor performances, especially if running at
part-load and speed [194].

The ORC is usually composed by at least two heat exchangers:
the evaporator and the condenser. Some authors added heat
exchanger in series (pre-heater) or in parallel. A common supple-
mentary heat exchanger is the internal heat exchanger (IHE) or
regenerator. The IHE recovers expander exhaust superheat to
pre-heat the pressurized liquid before entering the evaporator.

Fig. 13 shows the types of heat exchangers used for those 3
main ORC components. Plate heat exchanger is the dominant tech-
nology, almost 75% of evaporators and condensers. Then, comes
shell & tubes and various types of tube exchangers. Only 23% of
ORCs have an IHE. As expected by Bao et al. [4], the IHE usage
increase with the organic fluid dryness, as they have more de-
superheating potential from the expander outlet.

Auxiliaries are often added to the simple ORC configuration.
58% of the authors declare using a liquid tank at the condenser out-
let to absorb the charge variation. 18% uses working fluid filter. 12%
use vapor separator or vapor tank at the evaporator outlet to avoid
liquid droplets at the expander inlet. To prevent cavitation 6% use a
subcooler prior to the pump and 3% a pre-feed pump. A pulsation
dumper can be added (3%) to reduce reciprocating pumps pressure
and flow rate pulsations.



Fig. 9. Expander pressure ratio and shaft speed.

Fig. 10. Expander lubrication strategies.

Fig. 11. Pumps operating conditions map.

Fig. 12. Pumps performances map.
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3.2. ORC parametric optimization

Two different case study are presented and analyzed through a
parametric optimization of a small scale ORC design. The first case
is a closed heat source (e.g. thermal solar) able to deliver 50 kWth
at 125 �C. The second case is an open heat source (e.g. waste heat)
of 0.5 kg/s of pressurized hot water at 125 �C. The heat sink is sup-
posed to be a quasi-isothermal source at 20 �C. The evaporator
pinch is set to 10 K, the condenser pinch to 5 K. The regenerator
configuration is also tested for the closed heat source, with a pinch
set to 5 K. The subcooling is set to 10 K and the minimum super-
heating to 5 K. Since output power is expected to be in the kW
range, the expander isentropic is set to 65% according to Fig. 8.
For the pump efficiency, an empirical correlation is created from
pump data (cf. Fig. 12):gis,pp = 0.55 + 0.15 log10(Why,pp) with pump
hydraulic power in kW, valid for Why from 0.05 kW to 10 kW.

For closed heat source, the optimization criterion is the second
law efficiency, while the evaporation pressure and working fluid
flow rate are used as optimization variables. For open heat source,
the evaporation pressure, expander inlet temperature and working
fluid flow rate are the optimization variable and the exergetic
recovery efficiency the optimization criteria. Six fluids are tested:
R134a, R152a, R236fa, R245fa, R404a and SES36. Table 5 summa-
rizes the optimization results for the different cases and fluids. It
presents the relative pressure, working fluid flow rate and expan-
der inlet superheating at the optimum as well as the net output
power and related efficiency.

R245fa is found to be the optimum fluid for closed heat source,
both with the simple or regenerated configuration, with a net sec-
ond law efficiency of 33.8% and 39.6% respectively. In both cases,
the expander pressure ratio is found to be around 7.5 for gross out-
put power around 5 kW, therefore small-scale screw expander or a
turbine could be found and used. The pressure difference is only
14 bar, therefore either reciprocating or centrifugal pump technol-
ogy can be considered. When considering an open heat source, the
optimum fluid is found to be R404a running at transcritical condi-
tions, with a relative pressure of 1.35. In this case, the expander has
a pressure ratio of 3 with a gross output power of 12 kW. There-



Fig. 13. Heat exchanger technologies.

Table 5
Parametric optimization results (most efficient case in bold).

Closed source without regenerator Closed source with regenerator Open source

R134a rP: 0.99 – m: 0.23 kg/s – Tsh: 14.4 K rP: 1.02 – m: 0.23 kg/s – Tsh: 13.9 K rP: 0.63 – m: 0.47 kg/s – Tsh: 36.0 K
Wnet: 3.5 kWe – gII: 26.4% Wnet: 3.8 kWe – gII: 29.0% Wnet: 6.9 kWe – erec: 21.4%

R152a rP: 0.85 – m: 0.16 kg/s – Tsh: 10 K rP: 0.75 – m: 0.16 kg/s – Tsh: 16.5 K rP: 0.48 – m: 0.34 kg/s – Tsh: 24.6 K
Wnet: 3.9 kWe – gII: 29.4% Wnet: 4.1 kWe – gII: 31.2% Wnet: 6.9 kWe – erec: 21.5%

R236fa rP: 0.74 – m: 0.26 kg/s – Tsh: 5 K rP: 0.33 – m: 0.32 kg/s – Tsh: 41.9 K rP: 0.37 – m: 0.69 kg/s – Tsh: 5 K
Wnet: 3.9 kWe – gII: 29.8% Wnet: 3.6 kWe – gII: 27.1% Wnet: 7.2 kWe – erec: 22.4%

R245fa rP: 0.43 – m: 0.20 kg/s – Tsh: 5 K rP: 0.43 – m: 0.23 kg/s – Tsh: 5 K rP: 0.20 – m: 0.50 kg/s – Tsh: 5.2 K
Wnet: 4.5 kWe – gII: 33.8% Wnet: 5.2 kWe – gII: 39.6% Wnet: 7.1 kWe – erec: 22.0%

R404a rP: 1.41 – m: 0.27 kg/s – Tsh: 42.9 K rP: 1.66 – m: 0.33 kg/s – Tsh: 42.9 K rP: 1.35 – m: 0.87 kg/s – Tsh: 34.2 K
Wnet: 2.6 kWe – gII: 19.6% Wnet: 2.8 kWe – gII: 21.0% Wnet: 7.9 kWe – erec: 24.5%

SES36 rP: 0.28 – m: 0.22 kg/s – Tsh: 5 K rP: 0.27 – m: 0.27 kg/s – Tsh: 6.2 K rP: 0.12 – m: 0.56 kg/s – Tsh: 6.9 K
Wnet: 4.1 kWe – gII: 31.4% Wnet: 5.1 kWe – gII: 38.7% Wnet: 6.4 kWe – erec: 19.8%

Fig. 14. ORC power and thermal efficiency map. Fig. 15. Hot temperature and ORC thermal efficiency map.
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fore, a large scroll expander, a screw expander or a turbine might
be used. With a pressure difference up to 35 bar, reciprocating
pump might be more appropriate.

4. Data for ORC performance comparison

4.1. General performances

The present database is merged with commercial ORC refer-
ences from Tauveron et al. [3], without duplicates. Figs. 14and 15
show respectively the evolution of ORC thermal efficiency gth with
ORC power and hot temperature, distinction is made between the
different expander technologies. A centered sliding average is plot-
ted and provides the mean evolution. The ORC thermal efficiency is
closely linked to its power scale, and as expected, to the hot source
temperature.
Fig. 16 shows a map of ORC second law efficiency gII with ORC
power scale. The moving average has an inflection point for ORC
power around 20–50 kWe. This inflection point could represent a
technological maturity limit. But it is located at the transition zone
between both databases and may be due to intrinsic methodology
difference between the two databases.

Fig. 17 shows the ORC exergetic recovery efficiency erec, as
defined in Section 2.3. Fewer references are available as it requires
more information to compute. This efficiency follows the same
relations with the power scale. Closed source target applications
(biomass, gas, solar) and open source target applications (geother-
mal, WHR) are differentiate as exergetic recovery efficiency might
be more appropriate to evaluate performances of open heat
sources.

All the previous efficiencies and power are gross. The ORC net
efficiency is linked to the BWR and the gross efficiency by Eq. (9)



Fig. 16. ORC power and second law efficiency map.

Fig. 17. ORC power and exergetic recovery efficiency map for different target
application types.

Fig. 18. ORC power and back work ratio map.
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relation. Fig. 18 shows the back work ratio (BWR) in relation with
the ORC gross power. The BWR as well is closely linked to the
power scale. From around 5% at 100 kW scale, it reaches around
30% at 1 kW scale. This is due to the combined relation of expander
and pump efficiencies with the power scale. We can introduce the
back work ratio efficiency (Eq. (10)) to compare actual BWR with
the minimum ideal BWR and establish the relation with pump
and expander efficiencies. This efficiency reaches a maximum of
40% for a 100 kW scale ORC and drops around 15% for 1 kW scale
ORC.

gnet ¼ ggross � ð1� BWRÞ ð9Þ
gBWR ¼ BWRis

BWR
¼ Wpp;is=Wexp;is

Wpp;el=Wexp;el
¼ gpp � gexp ð10Þ
4.2. Statistical analysis of ORC global performances

With 175 references of more than a hundred unique prototypes,
the database has a sufficient size to perform some statistical anal-
ysis. The Spearman’s rank correlation is used to evaluate the influ-
ence of some parameters over the ORC efficiency. Spearman’s
correlation measures the monotonic relationship between two
variables [186]. The sign of the correlation coefficient q shows if
variables have similar (positive) or opposed (negative) trends, its
value reaches zero when there is no correlation and +/�1 for a
strictly monotone correlation. The p-value shows the statistical
significance of the correlation. Below 0.05, the test result is consid-
ered as significant.

For this statistical analysis, duplicates are removed except
change of expander or fluid. Table 6 shows the main correlation
results for ORC thermal and second law efficiency in relation with
the power scale, the hot temperature, the expander efficiency, the
use of regenerator (IHE) or the use of lubricant. ORC thermal effi-
ciency is strongly and significantly related to power scale and
expander efficiency, and more than the hot temperature. The use
of regenerator also increase the efficiency, but in a smaller propor-
tion. Lubrication effect is not significant. ORC second law efficiency
is also strongly related to power scale and expander efficiency. But,
as theoretically expected, there is no more influence of the hot
temperature on this efficiency. Regenerator influence on second
law efficiency is weak, as well as lubrication.
4.3. Evaluation of specific innovative ORC

Exergetic efficiency criteria are not affected by the heat source
temperature, and therefore, are useful for different ORC compari-
son. However, the ORC power scale has a major impact on the
achievable efficiency, therefore, a specific ORC must be compared
with same scale ORC bench. Different test bench using innovative
ORC solutions are evaluated and compared with other ORC.
Fig. 19 compare specific ORC with similar power scale ORC based
on second law or exergetic recovery efficiency. Every ORC refer-
ence in the selected power range is sorted by increasing efficiency.
Based on its efficiency, the relative ranking of a specific ORC can be
identified.

Two transcritical ORC performances are evaluated. The first
transcritical ORC tested by Kosmadakis et al. [47] is dedicated to
a closed source application (solar energy) and reached a power of
3.3 kW. Therefore, it is compared with ORC in the 1–10 kW range
based on second law efficiency in Fig. 19(a). With a 38.8% effi-
ciency, it ranked in the first fifth of same-scale ORC with a relative
ranking of 0.84. The second transcritical ORC tested by Hsieh et al.
[45] is dedicated to an open source application (waste heat recov-
ery) and reached a maximum power of 20 kW. With 18.1% of exer-



Table 6
Spearman’s correlations for ORC thermal and second law efficiency.

ORC thermal efficiency ORC second law efficiency

q p-value q p-value

ORC power 0.6805 1.26 e�10 0.7197 4.38 e�11
Hot temperature 0.4363 5.51 e�4 �0.0558 0.67
Expander efficiency 0.7308 5.81 e�8 0.7655 2.16 e�8
IHE 0.2951 0.0125 0.1925 0.128
Lubrication 0.1942 0.250 0.1523 0.390
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Fig. 19. Comparison of specific ORC benches with same scale ORC: (a) transcritical ORC for solar application – (b) transcritical ORC for WHR application – (c) & (d) ORC with
mixture fluid.

Table 7
Comparison of HFO R1233zdE with R245fa and same scale benches {Citation}.

Power Scale ORC second law efficiency ORC exergetic recovery efficiency

R245fa R1233zdE R245fa R1233zdE

Eyerer et al. [29] 0.1–1.2 kW gII: 19.2% gII: 19.4% erec: 11.3% erec: 10.2%
Rel. Rank: 0.73 Rel. Rank: 0.80 Rel. Rank: 0.95 Rel. Rank: 0.89

Guillaume et al. [30] 0.9–8.9 kW gII: 9.6% gII: 9.5% erec: 5.0% erec: 4.5%
Rel. Rank: 0.10 Rel. Rank: 0.08 Rel. Rank: 0.27 Rel. Rank: 0.23

Moles et al. [31] 0.4–4.2 kW gII: 37.7% gII: 38.7% n/a n/a
Rel. Rank: 0.93 Rel. Rank: 0.98
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getic recovery efficiency, it has a relative ranks of 0.81 compared to
ORC in the 5–50 kW range (Fig. 19(b)). However, transcritical cycle
has a large BWR, so similar evaluation based on net efficiency
could led to less optimistic results for transcritical ORC.

Four ORC using fluid mixture are evaluated. The four benches
reached a maximum power of 0.5–0.9 kW, and therefore are com-
pared with ORC in the 0.2–2 kW power range. Li et al. [34] used a
mixture of R245fa and R601 with a fixed mixing ratio of 0.72/0.28
and proposed a comparison with pure R245fa. Jung et al. [128]
used a mixture of R245fa and R365mfc with a mixing ratio of
0.485/0.515 for exhaust gas heat recovery application. Bamorova-
t et al. [75] tested a mixture of R245fa and R134a with a ratio of
0.6/0.4, while Wang et al. [35] tested mixture of R601a and R600a
with different fluid ratio and achieved the highest efficiency and
output power for a mixing ratio of 0.6/0.4. Based on the second
law efficiency (Fig. 19(c)), ORC using fluid mixture does not appear
to have significantly higher potential for heat conversion since they
are in the mean of same-scale ORC. For recovery potential, Wang
et al. [35] performes very well, but others do not. However, the
average relative ranking of ORC using fluid mixture is higher based
on exergetic recovery efficiency (0.47) than based on second law
efficiency (0.44). Therefore, fluid mixture may have a good poten-
tial for open heat source applications and fluctuating heat sources
[75].

In the same way, three ORC using last generation of organic flu-
ids, the HFO R1233zdE are evaluated. The three reference tested
their ORC both with R245fa and R1233zdE as working fluid. Table 7
summarize for each bench its power scale for statistical compar-
ison, performance and relative ranking base on both second law
and exergetic recovery efficiency for both R245fa and R1233zdE.
Based on second law efficiency, R1233zdE seems to have slightly
higher efficiency – 1% efficiency increase in average. However,
based on exergetic recovery efficiency, R1233zdE has efficiency
decreased by 10%. If R1233zdE seems to be a great R245fa replace-
ment fluid for closed source applications, a deeper evaluation must
be performed for open source applications.

5. Conclusion

In this paper, an open-access database of Organic Rankine Cycle
experiments is introduced. The database architecture and con-
struction is described. ORC and component main parameters are
recorded, discriminated and harmonized among the different sci-
entific references.

The wide disparity of power types and definitions used for ORC
power output is highlighted. A clarification of ORC performance
criteria is proposed, based on heat source type and energy/exergy
distinction. Three main criteria are selected for ORC comparison
and analysis: thermal efficiency, second law efficiency and exer-
getic recovery efficiency.

The 175 references database is presented. Power scale ranges
from a few Watts to a MW with hot source temperature between



A. Landelle et al. / Applied Energy 204 (2017) 1172–1187 1183
60 �C and 600 �C. Most ORCs experiments run with R245fa as
working fluids and are dedicated to waste heat recovery
applications.

Then, a focus is made on ORCs main components such as the
expander or the pump. A strong correlation between component
efficiency and power scale is highlighted. Optimal expander tech-
nology is identified based on power scale and pressure ratio. Based
on reported components performance, a parametric optimization
of an ORC is proposed, considering two case study. The closed
source case would achieve the highest second law efficiency using
a subcritical regenerative ORC with R245fa as working fluid, while
the open source case would achieve the highest exergetic recovery
efficiency using a transcritical ORC with R404a.

The experiments database is merged with a commercial unit
database and the three proposed ORCs gross performance criteria
are presented as a function of ORC power scale or hot temperature.
Influence of five parameters on ORC performance are statistically
tested. Expander efficiency has the highest correlation on the ther-
mal efficiency, closely followed by the power scale, then the hot
temperature and the use of regenerator. The lubrication has no sig-
nificant influence.

Back work ratio is found to be strongly related to the power
scale due to its relation with pump and expander efficiency. For
1 kW scale, the ORC net efficiency can be 20–40% lower than gross
efficiency due to pump consumption.

Performance of innovative ORC experiments like transcritical
cycle, zeotropic fluid mixtures or environmentally friendly HFO
fluids are highlighted and each specific bench is compared with
same power scale ORC to evaluate their potential.

Database linking

The database ‘‘Experimental ORC database – v2016.12” is

licensed under a Creative Commons Attribution 4.0 International

License and available via the Zenodo.org repository at http://
dx.doi.org/10.5281/zenodo.400556. Collaborative and updated
database is available via Github.com or Zenodo.org.
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[96] Kolasiński P, Błasiak P. Numerical and experimental investigation on the
rotary vane expander operation in micro ORC system. ASME-ORC, Brussels.
<www.asme-orc2015.be/online/proceedings/display_manuscript/78.htm>;
2015.
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