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Abstract-Probability estimation is important for the application of probabilistic models 
as well as for any evaluation in IR. We discuss the interdependencies between param- 
eter estimation and certain properties of probabilistic models: dependence assumptions, 
binary vs. nonbinary features, estimation sample selection. Then we define an optimum 
estimate for binary features that can be applied to various typical estimation problems 
in IR. A method for computing this estimate using empirical data is described. Some 
experiments show the applicability of our method, whereas comparable approaches are 
partially based on false assumptions or yield biased estimates. 

I. PARAMETER ESTIMATION IN IR 

In IR the development of theoretical models and their evaluation in experiments is of equal 
importance: A model that cannot be evaluated (applied) is of very little use, while an eval- 
uation can show its weaknesses and strengths and give evidence for further developments. 
As will be discussed below, any evaluation in IR involves some kind of parameter estima- 
tion, even for nonprobabilistic models. So it is interesting to note that the problem of pa- 
rameter estimation has been discussed only by a few authors [1,2,3,4]. In this paper, an 
attempt is made to investigate the problem of parameter estimation in a more general way, 
showing that there are quite similar problems in different areas within IR. We define an 
optimum estimate and give also an appropriate estimation method which is compared with 
other methods discussed in the literature. 

It is well understood that IR experiments are stochastic experiments. Any evaluation 
within IR has to consider this fact, and thus all parameters derived from retrieval results 
are to be regarded as estimates with a certain bias. Especially when recall or precision val- 
ues for single queries are computed, very small numerators and denominators may occur. 
As an example, Table 1 shows data from an evaluation of the AIR retrieval test [5], where 
a representative sample of 15,000 documents (out of - 400,000) was used. Here 84 from 
the total of 309 queries have precision values of O/O (and 148 queries retrieved only between 
1 and 10 documents). This result is not very surprising, because most of the queries with 
empty answer sets on our test sample would retrieve some documents from the whole data- 
base. A similar case is reported in [6] for the PADOK retrieval test of the German patent 
documentation. Without probabilistic foundation, these cases cannot be handled appro- 
priately. Precision values are estimates of the probability P( relevant 1 retrieved), that is the 
probability that an arbitrary retrieved document is judged relevant by the user. Similarly, 
most other retrieval measures can (and should) be regarded as probabilities. Following this 
view of retrieval evaluation, the methods for parameter estimation described in this paper 
can be applied. 

For probabilistic information retrieval models, it is obvious that an estimation of the 
different parameters of the model is required for an application. Several authors have dis- 
cussed the problem of estimating probabilities for document retrieval on the basis of rel- 
evance feedback data (e.g. [1,4]). This means that in document retrieval, after submitting 
a request to the IR system, the user is presented with some documents. The relevance 

*This article is an extended version of a paper presented at the ACM SIGIR 1 lth International Conference 
on Research and Development in Information Retrieval, held in Grenoble, France, June 13-15, 1988. 
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Table 1. Frequency distribution (numerators and denominators of 
precision values) of queries from the AIR retrieval test with 

0. . . 10 documents retrieved (manual indexing, 
query formulations with descriptors only) 

# retrieved # relevant retrieved 

0 1 2 3 4 5 6 7 8 9 10 

0 84 

1 13 33 

2 2 10 23 

3 0 3 28 

4 1 0 3 3 10 

5 0 0 13 14 

6 0 110 0 1 3 

7 0 110 0 1 1 1 

8 0 0 0 1’ 0 1 1 4 1 

9 0 0 00 012111 

10 0 0 0 0 000000 3 

judgements of the user concerning these documents form the basis for the estimation of 
the parameters of a probabilistic model that is applied to the ranking of the remaining doc- 
uments. Here the required probabilities are mostfy of the form P(tiifj,r), the probability 
that term ti occurs in an arbitrary document that has relevance judgment r for request 4. 

Finally, we regard another situation where parameter estimation for a probabilistic IR 
model plays an important role: The Darmstadt Indexing Approach [7,8] is suited to auto- 
matic (probabilistic) indexing with descriptors from a prescribed indexing vocabulary. It 
uses parameters of the form P(s; 1 tj), the probability that descriptor si should be assigned 
to a document, given that it contains term tj. These values are derived from manually 
indexed documents, thus building up an indexing dictionary that stores the information 
necessary for the automatic indexing of new documents. Although large collections of 
manually indexed documents (up to 4~,~) have been processed for the estimation of the 
required parameters, most of the estimates are based on document feature frequencies less 
than 10 and thus have a certain bias that cannot be ignored. 

2. PARAMETER ESTIMATION FOR PROBABILISTIC MODELS 

In our view, parameter estimation is the crucial point of the application of probabi- 
listic IR models. Besides the fact that the retrieval quaIity observed in experiments depends, 
in a yet unknown extent, on the quality of the estimation procedure for the required pa- 
rameters of the model being tested, there are also several interdependencies between pa- 
rameter estimation and certain aspects of the model itself. In the following, we will point 
out some of the resulting problems. For our discussion, we will relate to the estimation of 
the parameters for a probabilistic retrieval model through relevance feedback. However, 
many of the problems mentioned below also occur in other types of probabilistic models 
in IR, e.g. models of probabilistic indexing. 

The form of documenr re~re~ent~t~on the model relates to determines the kind of pa- 
rameters to be estimated. Mainly three forms of representation have been discussed in the 
literature: 

l Binary features are most widespread in use. Here only the presence or absence of 
document features, e.g. terms, is regarded. The required parameters are the prob- 
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abilities that a specific feature will occur in a relevant/nonrelevant document. Well- 
known examples for models of this kind are described in [9] and [lo], but also 

already in [l l] for request features. 
l The within-document-frequency of terms is the basis of the two-Poisson model 

[12,13,14]. Here the expected frequencies of terms in relevant/nonrelevant docu- 
ments are the parameters to be estimated. 

l Probabilistic index term weights are used in the retrieval-with-probabilistic-indexing 
model [15,16]. For the application, the expected values of the index term weights 
in all documents and in relevant documents are to be estimated. 

From the descriptions given above, it can be seen that different kinds of representa- 
tion require quite different parameters to be estimated. In the following, we will only con- 
centrate on parameters for binary features, for several reasons: the binary case has been 
discussed most in the literature, the basic principles of parameter estimation are easier to 
explain in this case, and finally we haven’t yet evolved our approach for the nonbinary 
cases. 

The independence assumptions underlying the model determine which and how many 
parameters per feature regarded are to be estimated. Many models assume statistical inde- 
pendence [9,10,17,15,16]. In order to develop models that fit better to empirical data, sev- 
eral modifications of the basic models incorporating term dependence information have 
been proposed: 

l The Bahadur-Lazarsfeld expansion (BLE) [ 18,19,20] regards all possible dependen- 
cies of term pairs, triplets, etc. For its application, the BLE has to be truncated in 
order to limit the number of parameters to be estimated. However, in the truncated 
expression, negative probabilities might occur. 

l In the maximum spanning tree approach described in [l] only certain dependencies 
of term pairs are included in the model. The term pairs are selected in such a way 
that they form up a tree whose edge weights, representing the mutual information 
between the nodes (=terms), are maximized. 

l In the Generalized Term Dependence Model described by [19], the maximum span- 
ning tree approach is extended to include also higher order dependencies (e.g. term 
triplets) in the ranking formula. 

l The maximum entropy principle (MEP) has been suggested as an alternate approach 
to exploit available dependence information in probabilistic retrieval [21,22,23]. 
There is similar work in artificial intelligence research dealing with uncertainty rea- 
soning [24]. This principle is regarded as making as few assumptions as possible, 
but incorporating all known constraints and dependencies. However, because of the 
computational effort required for an application of the MEP there has been no 
experimental evaluation of this approach in IR to date. 

The crucial point of the inclusion of dependency information within a probabilistic 
model is that there are more parameters to be estimated, and for each parameter the 
amount of data available for its estimation is smaller than in the independence case. With 
less data, the bias of each parameter increases, and the statistical errors cumulate for the 
whole ranking formula of the model under consideration. This way, the advantage of 
incorporating dependency information within a probabilistic model can be nullified. In 
fact, there are no convincing experimental results up to now where dependence models 
would outperform independence models. 

The parameter estimation procedure used for the application of a model is in large 
part independent of the tested model itself. So any experimental evaluation of IR models 
does not only compare the models itself, it compares the combination of IR models with 
specific parameter estimation procedures. Here we want to subdivide the whole estimation 
procedure into two parts: the estimation sample selection and the estimation method that 
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uses the data from the sample in order to estimate the required parameters. The latter is 
the main topic of this paper and will be discussed in detail in the following sections. 

The selection of the estimation sample can be done in principle in two different ways: 
following the definitions and assumptions of the model to be applied, in most cases it 
would be necessary to have a random sample of documents from which the parameters are 
to be derived. But this approach would require too large numbers of documents to be 
selected in order to provide any valuable information for the estimation method. So the 
only way out is to use some kind of best-first selection method, that is to apply an initial 
ranking formula and collect feedback information from the top ranking documents. This 
means that instead of P( lj / fj;t r), the probability that a term fj occurs in an arbitrary doc- 
ument judged relevant/nonrelevant w.r.t. request A, we estimate P(ti]J1,r,sel), the prob- 
ability that ti occurs in an arbitrary document with judgement r which is selected by the 
initial ranking function. As most of the ranking formulas used for the initial ranking (e.g. 
coordination level match or inverse document frequency weights) prefer documents that 
contain the query terms, it is obvious that these estimates in general will be higher than the 
probabilities f P(t;i fj,r) for which they are used. As long as this problem has not been 
solved, all experimental results for more sophisticated models (e.g. the dependence mod- 
els described above) are of preliminary nature. Few attempts have been made so far to 
overcome this dissatisfying situation: 

l In [25] the parameters relating to nonrelevant documents are derived from the doc- 
uments known to be nonrelevant as well as from all documents not known to be 
relevant. Although it is not mentioned in the original paper, it seems that this ap- 
proach compensates in some way the error resulting from the best-first strategy. 

l A quite different approach called “linear logistic model” has been investigated in 
[2]. It is claimed that this approach does not require a random sample for param- 
eter estimation, but the experimental results showed lower performance levels than 
comparable methods. 

l In [26], several models for best-first document retrieval models are discussed and 
compared with the older models based on the assumption of random document 
selection. It seems that the new models are more appropriate for the usual retrieval 
situation where users want to see only a few relevant documents. However, it is not 
yet clear what the estimation procedure for these models should look like. 

Despite of the problems described above, we will follow the assumption of random 
estimation samples in the remainder of this paper. As mentioned already in Section 1, there 
are quite different situations in IR where parameter estimation based on random samples 
plays an important role. On the other hand, the models for the best-first selection strat- 
egy need further development until appropriate estimation procedures can be proposed. 

3. OPTIMUM PARAMETER ESTIMATION 

Having described some of the peculiarities with parameter estimation for probabilistic 
IR models, we will now give a definition for an optimum parameter estimate and describe 
a method how this estimate can be achieved. For that, we will first give a more formal 
description of the three parameter estimation problems mentioned in Section 1 which shows 
that these three situations can be treated in the same way. 

The abstract situation is as follows: we have a collection of objects, where each object 
may have several features ei. For a fixed set of n feature pairs (ej,ej), we are seeking for 
estimates of P( e; 1 ej), the probability that a random object has feature ei, given that it has 
feature ej. In a random sample of g objects (called learning sample in the following), we 
observefobjects with feature e,, of which h objects also have the feature ej. In the three 
situations described in Section 1, the objects are documents. All probabilities mentioned 
in the following relate to the occurrence of the different features in these documents: 
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l For the estimation of precision values for probability estimation, we regard the fea- 
tures qj,rerr = “document retrieved for request qj” and qj,R = “document relevant 
w.r.t. request qj.” The parameter we want to estimate is P(qj,Rlqj,retr), the prob- 
ability that a random document which is retrieved for request qj will be judged 
relevant by the user. In a random sample of g documents from the collection, f doc- 
uments are retrieved for request qj of which h are relevant and n is the number of 
requests in the collection. 

l In the relevance feedback situation we regard the features “relevance” and the 
occurrence of terms. Our aim is to estimate P( ti 1 q,,r), the probability that a ran- 
dom document with relevance judgement r for request qj has term t;. Having rel- 
evance feedback information about g documents, f documents are judged with r of 
which h have document feature t,. The number of request-term pairs considered is n. 

l In the probabilistic indexing approach, each document has a set of manually 
assigned descriptors and its set of document features associated with it. The prob- 
ability we are asking for is P(s, 1 t,), the probability that the document would be 
assigned manually descriptor s,, given that it has document feature tj. In a random 
sample of g documents, f documents have feature tj of which h documents are 
indexed with descriptor s;. The total number of descriptor-document feature pairs 
considered is n. 

Our aim is to derive an optimum estimate? popr(e,, ej) for a feature pair with the pa- 
rameter triplet (h, f,g). We are regarding a total of n pairs, where Z( h, f, g) is the set of 
feature pairs with (h,f,g) and ,&,I Z( h, f,g)l = n. Based on this information we want to 
derive a point estimate for P( ej 1 ej), which is required for all known probabilistic IR mod- 
els (only for the case of evaluation measures, also interval estimates would be appropri- 
ate). We will justify our choice of popt (e; 1 ej) in two different ways: first, we give a 
plausible definition for popr, and second, we justify popr by means of a loss function. 

For the definition of poprr we assume that we have the empirical data mentioned 
before from a learning sample of size g. Now we regard a (not necessarily different) set of 
g’ objects. Let Egs (ej,ej) denote the expected value of the occurrences of the pair (e;,ej) 
within this set and Egz (ej) the expected number of occurrences of feature ej. Then the op- 

timum estimate for P( ej 1 ej) for which we have observed the frequency pair (h, f) within 
the g objects is defined as follows: 

Here we sum up over all n feature pairs (ek,e,), taking the probability that we would 
observe (h, f,g) for each pair and multiplying it with the expected numbers of occurrences. 
In the numerator, we count the expected numbers of these pairs (ek,e,) within the g’ 
objects, and in the denominator, the expected numbers of occurrences of the features el 
are summed up. Our definition can be regarded as a kind of micro average of the under- 
lying probabilities (similar to the micro average of retrieval measures). 

In order to express the expectations in the above formula (1) as functions of the under- 
lying probabilities we introduce the fO]]OWing notations: let pk/ = P( ek 1 e,) and pl = P(e,) 
denote the probability that a random object has feature el. Furthermore, assume that Q 
is a random variable of the prior distribution of the PkI’s. In contrast to the approaches 
described in the following section, no specific assumption about this prior distribution is 
made. Finally let Z, be the random variable for the frequency pairs (h, f) we observed 
within the g objects, such that P(Z, = (h, f)l Q = pkl) gives us the probability that a fea- 

‘fA preliminary version of this approach has been described in [27]. In [28] a more detailed derivation for 
pop, is given. 
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ture pair (ekrel) with underlying probability Pk/ has the frequencies (h,f) within the g 
objects. With these notations, we can rewrite (1) as 

c n-g’-Pk,*P,‘P(Z, = (W)l Q = Pkl) 

P,t(e;lej,(h,f,g)) = (k”) 
* 

(2) 
c n*g’*P,*P(Z, = (kf )IQ = Pkl) 

(k,l) 

It is obvious that the definition of popt is independent of the size g’. As we have only 
data about the g objects in most cases, we will set g’ = g in the following. Furthermore 
we will drop the constant factors n and g. 

The second justification for our definition of popt is based on the well-known loss 
function 

L1 (P,Pij) = (B - Pij12 

Now an estimate pmin is chosen such that the expected 

P,;,(e;Ie,,(h,.Lg)) = Ozn& tEtLi(B9P;j)) 

value of L1 is minimized: 

= min 
oz$% 1 

c (@ - Pkl)2P,p(zg = (W)l Q = Pkl) 

(k-l) 

dE 

dd = (k,l) 
c 2PP/P(z, = (kf)l Q = Pkl) - c 2Pk,P,p(z, = (hf)l Q = Pkl) 

(k,l) 

dE iOa 

G= 

c Pk/PIp(z, = (h,f)l Q = Pkl) 

(k,l) 
Ptnin = 

c P/p(z, = (W)lQ = Pkl) 

(k,l) 

Having justified our choice of pop, this way, we now want to show how pop{ can be 
estimated on the basis of data from our learning sample of size g. 

Therefore we define E+(h,f,g) as the numerator of (2), i.e. 

E+(h,f,g) = c Pkl*Pl’P(Zg = (h,f)lQ =Pkl) 

(k.0 

(the expected number of occurrences of ( ek, e,)) and 

E-(Wg) = (5, (1 -Pkl) .P/.P(Z, = (hJ)lQ =Pk/) 

(the expected number of occurrences of el without ek), so that we get 

p~pt(e;Iej,(Wg)) = 
E+(h,.Lg) 

E+(kLg) + E-(h,.Lg) 
(3) 
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The expectations E ‘( h,f, g) and E -( h, f, g) can be approximated by the expected 
values E( h,f,g) of the frequency distribution ( Z( h,f,g)l : 

E+(k.Lg) = c ; 
k,I 0 

pi% - P,)~-~ ; ~/i’,(l - PH)~-~*PI*PH 
0 

h+l 
= - E(h + 1,f + 1,g + 1) 

g+l 

h+l 
= ~ E(h + 1,f + 1,g). 

g 

(4) 

The approximation used above is not critical, in comparison to the probability esti- 
mation the error is of second order. 

f 0 h P:,(l -Pk,)f-hPl’(l -Pkl) 

=f+l-h 

g+l 
E(h,f + l,g + 1) 

=f+l-h 
E(h,f + l,g). 

g 
(7) 

With these approximations for E+( h, f,g) and E-( h, f,g), we can estimate popr 

according to eqn (3) as 

p,,(eiIej,(h,f,g)) = 
th + 1)Eth + l,f + l,g) 

(h + l)E(h + 1,f + 1,g) + (f + 1 - h).E(h,f + l,g). 
(8) 

To apply this formula, we need a sufficient amount of data about our learning sam- 
ple of size g (that is, we have to observe a large number of feature pairs ( ek, e,)). Then we 
can use the numbers 1 Z( h, f, g)l of the frequency distribution as approximation of the 
expected values E( h, f,g). We will return to this problem in Section 5. 

4. OTHER METHODS OF PARAMETER ESTIMATION 

In this section, we discuss some other estimation methods that have been applied in 
IR research. The most simple method is the method of moments which suggests that the 
population moments (e.g. mean and variance) can be estimated from sample moments. 
This method has been used in the experiments described in [ 12,131 for the estimation of 
the parameters of the two-Poisson model. The problem of this approach is that in many 
applications, most of the parameter values lie outside the proper range, for which ad hoc 
estimates have to be defined (291. 
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The maximum likelihood method estimates the value of a parameter as that value 
which maximizes the likelihood function. For our estimation problem, the maximum likeli- 
hood estimate of P( e; ) ej) is simply h/J Besides the problem with the quotient O/O for 
which an ad hoc estimate has to be defined, the maximum likelihood estimate may also 
bear a bias, as will be shown in the following section. 

Bayesian estimates are preferred most in IR research. This method assumes that we 
have previous knowledge about the parameter Q to be estimated. Based on the knowledge 
of the prior distribution of this parameter, we use the sample data in order to derive the 
posterior distribution of the parameter: Assume that X is a random variable that can have 
discrete values x, ,x1, . . depending on parameter Q which is a continuous random vari- 
able (it is also possible to assume Q as a discrete variable, but all applications described 
in the following assume a continuous one). Then P(X = xk 1 Q = q) is the probability that 
X will take the value xk given that parameter Q has the value q. Withy(q) describing the 
prior distribution of parameter Q we get the posterior distribution 

g(dxk) = 

f(4) .p(x = & 1 Q = 4) 
(9) PC0 

J f(q) .P(x = x/t I Q = q)dq 
--m 

Further methods have to be applied in order to derive an estimate for q from this formula. 
In the following discussion we will restrict a specific application of the Bayesian 

method to our problem where a beta distribution is assumed as prior distribution. The den- 
sity of the beta distribution is given by the formula 

f(P) = & P”_‘(l - PJb-’ 
7 

with B(a,b) = I’(a).I’(b)/r(a + b) and a,b > 0 are parameters to be chosen. The 
assumption of a beta distribution is made (explicitly or implicitly) for most applications 
of the Bayesian method in IR [9,1,3,26]. In contrast to our approach, these authors assume 

a single (beta) distribution for the parameters pjJ, independently of the probabilities pj. 
This can be regarded as a kind of macro estimate, so the comparison with our micro esti- 
mate may not be quite appropriate. Furthermore, our optimum estimate also depends on 
the collection size g, while the sequential learning model described in [3] assumes that the 
prior distribution is independent of g. With the beta distribution as prior and the fact that 
we have observed the frequencies (h,f), we get: 

pa-‘( 1 - p)b-’ f 0 h Ph(l - PPh 

pa-‘(l _ p)‘b-” f 0 h ~~(1 -p)f-hdp 

s I 

Using the relationship B( a, 6) = p”-‘( 1 - P)~-’ dp, we get as posterior distribu- 
0 

tion: 

P 
h+a-I(1 _P)f-h+b-l 

B(h + a,f - h + b) ’ 
(10) 

From this distribution, different estimates can be derived. One possibility is to choose 

that value pmax takes its maximum value. This approach is quite sim- 

ilar to the maximum likelihood method. With 
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we get 

h+a-1 
P 

max=f+a+b-2. 

A second approach is based on the definition of a loss function. Besides our function 
L, , we also regard the loss function 

Lz(P,ti) = 
(P - Ijj2 

P(1 -PI 

discussed in [l]. 
Now we seek for estimates pL minimizing the expectation of the loss function, that is 

This yields the estimates 

h+a 
PL1=f+a+b 

and 

h+a-1 
PL2=f+a+b_2 =Pmax. 

(In Rijsbergen’s paper, a false value (that of pL,) is given as result for pLz.) 
Finally, in [3] a proposal is made to use the expectation of p as estimate: 

For the beta prior, we get 

h+a 

f+a+b =pL2’ 

It is interesting to notice that the four different methods for deriving an estimate from 
posterior distribution yield only two different results when a beta distribution is assumed 
as prior. In any case there is still the problem of the estimation of the parameters a and 
b (see also the following section). In [4] several heuristic strategies for the choice of these 
parameters are evaluated. Reference [9] assumed a = b = $ in their experiments (follow- 
ing a proposal in [30]), and in [31] parameter combinations with a + b = 1 are discussed 
(according to our definition of pL, ) . For a = b = 1 the beta distribution is identical with 
the uniform distribution. In this case pL2 = pmax yields the same estimate as the maximum 
likelihood method. 

We will now show how the parameters of the beta distribution can be interpreted in 
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our approach (although we think that the assumption of a beta distribution is not suitable). 
Using the approximation 

P,,(W) = 
(h + l).E(h + l,f+ 1) 

(h + l).E(h + l,f+ 1) + (f+ 1 - h).E(h,f+ 1) 

and setting this equal to 

h+a 

PL1=f+a+b 

we get the relationship 

E(h + 1,f + 1) 

E(h,f + 1) 
= (h+a)(f+l -h) (frhrO) 

(h + l)(f + b -h) 

This gives us a relationship between frequencies of our distribution Z(h,f,g) for the 
same f value. The above formula can be transformed into 

E(h,f) = E(“‘f) (f+h-l).(f+h-2)...:f 

h.B(a,b) ’ (f+b-h)*(f+b-h+ l)*..:(f+b- 1) 
(f 2 h 2 1). 

5. SOME EXPERIMENTAL EVIDENCE 

Having presented different approaches to the problem of parameter estimation in the 
last two sections, we now want to discuss the problem of their application and illustrate 
the resulting problems. For our further discussion, we will only consider the estimate pL, 
besides popr, because the other approaches can be regarded as variants of pL, . 

In order to overcome the lack of experimental data which prevented most of the 
authors cited in this paper from a deeper investigation in probability estimation, we use 
some data from an application of the Darmstadt Indexing Approach. Tables 2 and 3 are 
derived from the computation of the probabilities P(sj 1 tj) from 78,000 documents of 
PHYS database from the Fachinformationszentrum Energie Physik Mathematik, Karls- 
ruhe, Germany. Here the occurrences of noun phrases in the documents are regarded as 
document features. The frequency distribution given in Table 1 indicates that this collec- 
tion is sufficiently large for an application of our approach, so that we can assume 
1 Z(h,f,g)l = E(h,f,g). Table 3 shows the corresponding values of popt according to eqn 
(6). From these results two main conclusions can be drawn (see also the tables given below): 

Table 2. Frequency distribution IZ(h,f,g)l for the estimation 
of P(s, 1 f,) (f, = occurrence of noun phrases) from 

78,000 manually indexed PHYS documents 

1 f\h 1 4 5 6 7 8 9 10 11 

4 

5 

6 

7 

8 

9 

10 

11 

2388 

2487 1015 

2289 1144 539 

2289 1081 623 317 

2129 1105 583 382 235 

2064 999 614 358 201 125 

950 550 348 227 161 89 

884 546 308 229 187 105 62 
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Table 3. Estimates P,,, for the frequency distribution of Table 2 

503 

~_ 

f\h 1 4 5 6 7 8 9 10 

4 

5 

6 

7 

8 

9 

10 

0.671 

0.555 0.739 

0.440 0.634 0.781 

0.393 0.513 0.696 0.831 

0.326 0.480 0.576 0.692 0.848 

0.410 0.525 0.635 0.761 0.847 

0.382 0.441 0.598 0.710 0.737 0.867 

l Since all values of popt are smaller than the corresponding maximum likelihood 
h 

estimates (MLE) pML = -, 
f 

it can be said that the MLE are biased (in this case). 

l The difference between popt and pML is substantial for small h and f values, it de- 
creases for higher frequencies. So the estimate pop, seems to yield a substantial 
improvement for low f frequencies. 

For the approach based on the assumption of beta distribution values for the param- 
eters a and b were computed in two different ways: 

l Optimum values for (I and b were estimated on a test sample of 1000 documents in 
such a way that the quadratic error (k - pL, (a, b))2 on this sample was minimized 

(k = O/l is the intellectual descriptor assignment decision). 
l The values a’ and b’ are derived from the pop, values given in Table 3 by minimiz- 

ing the quadratic difference (pop, - pL, (a, b))‘. 

These computations were performed for different term frequencies which is more 
appropriate for the macro-oriented p L, estimate. From the results given in Table 4, two 
interesting conclusions can be drawn: 

. 

. 

The assumption of a beta distribution is not appropriate in this case, because most 
a values are smaller than 0, which is not allowed for the beta distribution. 
Despite a large scattering of these parameter estimates, it seems that the assump- 
tion of a single (a, b)-pair (a single beta-like distribution) for different f frequen- 
cies is not appropriate. 

Table 4. Estimates for the parameters of the beta 
distribution. The values a and b are derived from 
a sample of 1,000 PHYS documents (sample X of 

Table 5), where Z,, gives the number of pairs (e, /e,) 
in this collection which had the term frequencies in 

the learning sample (g = 78,000). The values a’ and 
b’ are derived from the pup, values of Table 3 

%(h, f) 
139 

341 

349 

546 

526 

816 

374 

a b a’ b’ 

-3.42 0.47 -1.01 1.47 

2.64 5.85 -0.97 1.43 

-1.54 1.48 -1.37 1.24 

-1.61 1.33 -1.43 1.12 

-1.54 1.76 -1.35 1.31 

-1.29 1.84 -1.28 1.28 

-1.46 1.31 -1.13 1.35 
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Because of some problems with the numeric algorithms used for the optimum search, the 
values a and b given here are of limited precision. Also, the values pairs (a, b) and (a’,b’) 
cannot be compared directly, because two different methods of term identification were 
used in order to derive these values. This has the effect that the pLI estimates are smaller 
than the corresponding pop, values. 

In order to show the effect of improved estimation methods, experiments were made 
where the average quadratic error .s* = (k - p)* for the different estimates were computed 
on the basis of two test samples with 1000 documents each. Here only estimates for fea- 
ture pairs with f 5 10 (and h 2 4, h/f > 0.4) were regarded, and for the pL, estimates, 
constant values a = - 1.13 and b = 2.13 for all term frequencies were used. The results are 
given in Table 5. It is obvious that the MLE are far worse than the improved estimates, 

In fact, the quadratic error for PML is even worse than in the case where all feature pairs 
considered would be given the same estimate (s* = 0.249 for both samples). This is a clear 
justification for the improved estimates. On the other hand, the difference in the results 

for PL, and popr is negligible, so we can conclude that we get almost optimum estimates 
with pI,. Although the pL, estimate is easier to apply, its theoretical justification is doubt- 
ful. The popt approach requires more experimental data for its application, but it has a 
clear theoretical justification. 

Tables 6-9 show the results of an experiment regarding the influence of the collection 
size g on the estimates popr. The frequency distribution given in Table 8 and the corre- 
sponding estimates (Table 9) are derived from a half of the collection used for Tables 6 

and 7. Here it can be seen that the estimates poDt for the same (h,f)-pair depend heavily 

Table 5. Comparison of different kinds of 
estimates for f = 4. 10, h 2 4 and ,$ > 0.4 

on two samples of 1,000 documents from 
the PHYS database: Z,. gives the number 

of feature pairs in these documents fulfilling 
the above conditions, x2 is the average value 

of the error function (k - p)‘, where 
k = O/l is the intellectual descriptor 

assignment decision 

estimate 

PML 

PL, 

PG-Pt 

PML 

PL1 

Pm 

2 

0.271 

0.231 

0.231 

0.265 

0.226 

0.224 

Table 6. Frequency distribution Z(h,f,g) for the estimation of 
P(s, 1 I,) (f, = occurrence of single words or noun phrases) 
for the DIA from 22,000 manually indexed documents of 

the Food Science and Technology Abstract Service. 

f\h 
4 

5 

6 

7 

8 

9 

10 

4 5 6 7 8 9 10 

1489 

1078 833 

1005 633 510 

875 540 368 319 

896 469 326 238 250 

866 455 271 201 158 186 

751 368 245 154 139 115 106 



Optimum probability estimation 

Table 7. Estimates pop, for the frequency 
distribution of Table 6 

f\h 4 5 6 7 8 9 

4 0.79 

5 0.61 0.83 

6 0.51 0.67 0.86 

7 0.39 0.59 0.72 0.89 

8 0.34 0.47 0.63 0.76 0.91 

9 0.29 0.44 0.52 0.71 0.79 0.90 
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Table 8. Frequency distribution Z(h,f,g) for the 
estimation of P(s, 1 I,) (I, = occurrence of single 
words or noun phrases) for the DIA from 11,000 
manually indexed documents of the Food Science 

and Technology Abstract Service 

f\h 4 5 6 7 8 9 10 

4 1016 

5 636 466 

6 562 366 273 

7 418 252 232 172 

8 412 206 124 125 127 

9 342 162 119 97 70 85 

10 310 137 78 74 46 56 46 

Table 9. Estimates PC>,,, for the frequency 
distribution of Table 8 

f\h 
4 

5 

6 

7 

8 

9 

4 5 6 7 8 9 

0.79 

0.62 0.82 

0.50 0.73 0.84 

0.38 0.55 0.78 0.89 

0.32 0.52 0.66 0.74 0.92 

0.27 0.41 0.62 0.62 0.85 0.89 

on the collection size g: except for the cases 4/f and f/f, we get significant differences in 
the estimates for the two collections. Although we are not able to draw any specific con- 
clusions for very small collections (e.g. in feedback experiments), we should say that we 
have only contrary evidence for the assumption of the estimate being independent of g (see 

e.g. 131). 
Finally we want to mention the problem of the insufficient data for the application 

of the P+ estimate. Table 10 shows the frequency distribution for relevance feedback 
from 10 documents per query for a sample of 122 queries of the AIR retrieval test [5]. Be- 
cause of the large scattering of the frequencies shown here, it is not suitable to apply the 
popt estimate directly. In our view, the only possibility is the development of an appropriate 
bibliometric distribution describing these data. With such a distribution, a smoothing of 
the experimental data could be performed so that we would get better estimates 1 Z( h,f,g)l’ 
for the expectations E(h,f,g), and then our formula for pop, could be applied. 
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Table 10. Frequency distribution IZ( h,f,g)l for relevance feedback 
from 122 queries of the AIR retrieval test (g = 10) 

1 f\h 1 0 1 234567 8 9 10 

0 43 

1 44 17 

2 40 24 15 

3 5 144 

4 18 18 3 6 13 

5 35 12 10 7 5 10 

6 48 14 15 7 7 9 10 

7 12 5 5 5 6 6 4 10 

8 9 0 03 0 2 3 35 

9 6 6 11 0 10 5 3 4 

10 4 6 53 14 4 0 4 4 

6. CONCLUSIONS 

3 

In this paper, we have tried to show the importance of probability estimation in IR 
research, and we have developed a new kind of estimation method which seems to be supe- 
rior to former approaches. 

We think that the problem of probability estimation is central to most of the work in 
IR, and that more attention should be paid to this problem: nearly any result of experi- 
mental work is only valid in combination with the parameter estimation method used. We 
have shown that there are situations where the simple maximum likelihood method yields 
biased estimates. This fact may have serious consequences in IR for the results of evalu- 
ations as well as for the application of probabilistic models. So it is necessary to investi- 
gate the influence of the choice of the estimation method on experimental results. 

The definition of the optimum estimate popr is suited to the given constraints in a 
variety of typical IR situations. Furthermore, an estimation method for pop, is described. 
In contrast to other approaches, our method is not based on (possibly unrealistic) assump- 
tions that are hard to verify. The experimental results given here show that the assump- 
tion of a beta distribution may not be appropriate in certain situations. The problem with 
insufficient data for the application of our method occurs only with small experimental col- 
lections. For example, in a practical application for relevance feedback, the IR system 
could gather enough data from new queries while running, so that the parameter estimates 
could be improved step by step. 

Our work should be regarded as a starting point for further investigations, because 
there are a number of related problems: 

As a variant to our approach, one could also define an optimum estimate accord- 
ing to the macro method (arithmetic mean), that is p&,,( e, (e,, (h,f,g)) = 

C,k,I,P(Z, = (h,f)l Q = pkl) ‘pk/. However, we do not yet have a method for the 
computation of this estimate. 
For nonbinary features like the within-document frequency of terms or indexing 
weights, our approach has to be extended. 
In order to cope with insufficient data for the application for pop,, appropriate 
two-dimensional bibliometric distributions for 1 Z( h,f, g)J have to be investigated. 
The estimation of probabilistic parameters for retrieval with relevance feedback 
poses special problems: either specific estimation methods have to be developed, or 
we need other retrieval models. 

Finally it should be noted that the usage of the optimum estimate in the application 
of IR models does not necessarily improve retrieval quality: There may be several system- 
atic errors in the application of a model that might compensate each other partially, so that 
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the correction of one of these errors also could increase the overall error. Only further 
research work with careful analysis of the test design used will give us new insights in these 
problems. 
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