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Human beings often observe objects or deal with data hierarchically structured at different

levels of granulations. In this paper, we study optimal scale selection inmulti-scale decision

tables from the perspective of granular computation. A multi-scale information table is an

attribute-value system inwhich each object under each attribute is represented by different

scales at different levels of granulationshaving a granular information transformation froma

finer to a coarser labelled value. The concept ofmulti-scale information tables in the context

of rough sets is introduced. Lower and upper approximations with reference to different

levels of granulations in multi-scale information tables are defined and their properties are

examined. Optimal scale selection with various requirements in multi-scale decision tables

with the standard rough set model and a dual probabilistic rough set model are discussed

respectively. Relationships among different notions of optimal scales inmulti-scale decision

tables are further analyzed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Granular computing (GrC) is an approach for knowledge representation and data mining. The purpose of GrC is to seek

for an approximation scheme which can effectively solve a complex problem at a certain level of granulation. The root of

GrC comes from the concept of information granulation which was first introduced by Zadeh in the context of fuzzy sets in

1979 [57,58]. Since its conception, “Granular computing” has become a fast growing field of research in recent years (see

e.g., [1,2,10,17,18,22,28,29,39,40,43,46,47,49,53,54,62]).

A primitive notion in GrC is called a granulewhich is a clump of objects drawn together by the criteria of indistinguisha-

bility, similarity or functionality [58]. A granule may be interpreted as one of the numerous small particles forming a larger

unit. Alternatively, a granule may be considered as a localized view or a specific aspect of a large unit satisfying a given

specification. The set of granules provides a representation of the unit with respect to a particular level of granularity. The

construction, representation, and interpretation of granules, as well as the search for relations among granules represented

as IF–THEN rules having granular variables and granular values are some of the fundamental issues of GrC. The process

of constructing information granules is called information granulation. Granulation of a universe of discourse involves the

decomposition of the universe into parts, or the grouping of individual elements or objects into classes, based on available

information and knowledge [49,50].

An important and commonly used model for GrC is the partition model proposed by Yao [53]. This model is constructed

by granulating a finite universe of discourse through a family of pairwise disjoint subsets under an equivalence relation. An

equivalence relation allows us tomodel the passage from one level of detail to another, but does not, on its own, model more

than two levels of details needed in practice. For example, we have maps/geographical information systems represented

in multiple scales, and remotely sensed data obtained at multiple resolutions. Based on this observation and by employing

the notion of labelled partition, Bittner and Smith [3] developed an ontologically-motivated formal theory of granular
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partitions which is relatively comprehensive and useful for granular levels, but it does not address the types of aggregation

commonly used in datamining and conceptual datamodelling, and it has no functions, nomechanisms to dealwithmultiple

granulation hierarchies for different perspectives. In order to represent hierarchical structure of data measured at different

levels of granularities, Keet [11] explored a formal theory of granularity to build structure of the contents for different types

of granularities. More recently, Wu and Leung [42] developed a new knowledge representation system, called multi-scale

granular labelled partition structure, inwhich data are represented by different scales at different levels of granulations having

a granular information transformation from a finer to a coarser labelled partition.

A natural consequence of granulation is the problem of approximating concepts using granules. The theory of rough sets,

proposed by Pawlak [24] has been shown to perform well in constructing a granulated view of the universe of discourse

and for interpreting, representing, and processing concepts in the granulated universe. It enables us to precisely define and

analyzemanynotions of GrC. For example, the equivalence relation in a Pawlak approximation space groups together entities

which are in some sense indiscernible or similar, called equivalence classes. These equivalence classes are the basic building

blocks for the representation and approximation of any subset of the universe of discourse. Based on the approximation

space, the notions of lower and upper approximations of decision classes can be calculated. Using the lower and upper

approximations, knowledge hidden in data set may be unravelled and expressed in the form of IF–THEN granular rules. So,

rough set theory is one of the most advanced areas popularizing GrC.

The basic idea of rough set theory is the acquisition of knowledge in the form of a set of decision rules unravelled from

an information table via an objective knowledge induction process. Various approaches using rough set theory have been

proposed to induce decision rules from data sets taking the form of decision tables [4,6,8,13,14,19,25,30,60]. So far, in the

literature, each object under each attribute in almost all information tables can only take on one value, that is, almost all

information tables in the rough-set data analysis are single scale information tables. However, objects are usually measured

at different scales under the same attribute [15]. In many real-life multi-scale information tables, an object can take on as

manyvalues as there are scales under the sameattribute. A simple example is that the examination results ofmathematics for

students can be recorded as natural numbers between 0 to 100, and it can also be graded as “Excellent", “Good", “Moderate",

“Bad", and “Unacceptable". Sometimes, if needed, itmight be graded into twovalues, “Pass" and “Fail". Hence, how todiscover

knowledge in hierarchically organized information tables is of particular importance in real-life datamining. In [31,32], Qian

et al. extendedPawlak’s rough setmodel to the so-calledmulti-granulation rough setmodels for knowledge acquisition in the

context of complete and incomplete information tables. It can be seen that themulti-granulation rough setmodels proposed

in [31,32] are in fact obtained by adding/deleting attributes in the information tables. In [42], Wu and Leung introduced

the notion of multi-scale information tables from the perspective of granular computation, represented the structure of and

relationships among informationgranules, andanalyzedknowledgeacquisition inmulti-scaledecision tablesunderdifferent

levels of granularities. In a multi-scale information table, each object under each attribute is represented by different scales

at different levels of granulations having, a granular information transformation from a finer to a coarser labelled value.

Effective information and knowledge management must facilitate zooming in or zooming out of a section of interest for

diverse types of users, abstracting away detailswhen it is not needed, and focussing on a level of detail relevant to the domain

experts’ information needs. In short, accessing and using information and knowledge at the optimum level of granularity

must be considered [11]. So, for a givenmulti-scale information table, we believe that there are also two key issues crucial to

the discovery of knowledge in the sense of granular IF–THEN rules. One is the optimal scale selection for choosing a proper

decision table with some requirements for final decision or classification, and the other is knowledge reduction by reducing

attributes in the selected decision table to maintain structure consistency for the induction of concise decision rules. Since

many rough set approaches have been proposed to knowledge reduction in information tables, in the present paper we

mainly focus on the first issue. To this end, we will use two rough set models, one is the standard Pawlak rough set model

and the other is a dual probabilistic rough set model.

In the next section, we introduce some basic notions related to Pawlak’s rough sets, information tables with granular

knowledge representation, and the Dempster–Shafer theory of evidence. The concept of multi-scale decision tables with

representation of granules and rough set approximations are reviewed in Section 3. In Section 4, we investigate optimal scale

selection in multi-scale decision tables by employing the standard Pawlak rough set model and a dual probabilistic rough

set model respectively. We then conclude the paper with a summary and outlook for further research in Section 5.

2. Basic notions related to information tables, decision tables and rough set approximations

In this section we review some basic notions of information tables and rough set approximations.

Throughout this paper, for a nonempty set U, the class of all subsets of U is denoted by P(U). For X ∈ P(U), we denote

the complement of X in U as ∼ X , i.e. ∼ X = U − X = {x ∈ U|x /∈ X}.

2.1. Pawlak rough set approximations

Definition 1 [24]. Let U be a finite and nonempty set called the universe of discourse. If R ⊆ U × U is an equivalence

relation on U, that is, R is a reflexive, symmetric and transitive binary relation on U, then the pair (U, R) is called a Pawlak

approximation space.
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The equivalence relation R in a Pawlak approximation space (U, R) partitions the universe of discourse U into disjoint

subsets. Such a partition of the universe of discourse is a quotient set of U and is denoted by U/R = {[x]R|x ∈ U}, where

[x]R = {y ∈ U|(x, y) ∈ R} is the R-equivalence class containing x. Elements ofU/R are called elementary sets. The empty set

∅ and the union of one or more elementary sets are called definable. The equivalence relation and the induced equivalence

classes or the approximation space (U, R) may be regarded as the available information or knowledge about the objects

under consideration. For two elements x, y ∈ U, if (x, y) ∈ R, we say that x and y are indistinguishable. In view of granular

computing, equivalence classes are the basic building blocks for the representation and approximation of any subset of the

universe of discourse. Each equivalence class may be viewed as a granule consisting of indistinguishable elements, and it is

also referred to as an equivalence granule.

Definition 2 [24]. Let (U, R) be a Pawlak approximation space. For an arbitrary set X ∈ P(U), one can characterize X by a

pair of lower and upper approximations which are defined as follows:

R(X) = ∪{[x]R|[x]R ⊆ X}, R(X) = ∪{[x]R|[x]R ∩ X �= ∅}. (1)

The pair (R(X), R(X)) is called the Pawlak rough set of X with respect to (w.r.t.) (U, R).

Evidently, the lower and upper approximations can be equivalently defined by:

R(X) = {x ∈ U|[x]R ⊆ X}, R(X) = {x ∈ U|[x]R ∩ X �= ∅}. (2)

We can see from Definition 2 that X is definable if and only if R(X) = R(X).
Given a subset X ⊆ U, by using the lower and upper approximations, the universe of discourse can be divided into three

pair-wise disjoint regions, namely, the positive, the negative, and the boundary regions:

POSR(X) = R(X),
BNR(X) = R(X) − R(X),
NEGR(X) =∼ R(X) = U − R(X).
An element of the positive region POSR(X) definitely belongs to X , an element of the negative region NEGR(X) definitely

does not belong to X , and an element of the boundary region BNR(X) only possibly belongs to X .

Observing that rules constructed from the three regions are associatedwith different actions and decisions, by employing

probabilistic rough sets and Bayesian decision theory Yao [51] proposed a new notion of three-way decision rules in which

a positive rule makes a decision of acceptance, a negative rule makes a decision of rejection, and a boundary rule makes a

decision of abstaining.

The lower and upper approximations can also be represented as the concept of rough membership functions defined

by a conditional probability [27]. Let P : P(U) → [0, 1] be a probability function defined on the power set P(U), and R

an equivalence relation on U. The triplet (U, R, P) is called a probabilistic approximation space [27]. For X ∈ P(U), its rough
membership function is given by the conditional probability as follows:

μ
X
(x) = P(X|[x]R), x ∈ U. (3)

Rough membership value of an element belonging to X is the probability of the element in X given that the element is in

[x]R. For a finite universe, the rough membership function is defined by Pawlak and Skowron as follows [26]:

μ
X
(x) = |X ∩ [x]R|

|[x]R| , x ∈ U. (4)

where |X| denotes the cardinality of the set X .

It is easy to see that the lower and upper approximations of a set X w.r.t. (U, R) are the core and support of the fuzzy set

μ
X
, respectively, i.e.,

R(X) = {x ∈ U|μ
X
(x) = 1}, R(X) = {x ∈ U|μ

X
(x) > 0}. (5)

The accuracy of rough set approximation is defined as follows [24]:

α
R
(X) = |R(X)|

|R(X)| , (6)

where for the empty set ∅, we define α
R
(∅) = 1. Clearly, 0 ≤ α

R
(X) ≤ 1. If X is definable, then α

R
(X) = 1.

2.2. Belief structures and belief functions

The Dempster–Shafer theory of evidence, also called the “evidence theory" or the “belief function theory", is treated

as a promising method of dealing with uncertainty in intelligence systems. The basic representational structure in the

Dempster–Shafer theory of evidence is a belief structure [33].
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Definition 3. Let U be a non-empty finite set, a set function m : P(U) → [0, 1] is referred to as a basic probability

assignment if it satisfies axioms (M1) and (M2):

(M1) m(∅) = 0, (M2)
∑
A⊆U

m(A) = 1.

The value m(A) represents the degree of belief that a specific element of U belongs to set A, but not to any particular

subset of A. A set A ∈ P(U) with nonzero basic probability assignment is referred to as a focal element. We denote byM the

family of all focal elements of m. The pair (M,m) is called a belief structure on U.

Associated with each belief structure, a pair of belief and plausibility functions can be defined [33].

Definition 4. Let (M,m) be a belief structure on U. A set function Bel : P(U) → [0, 1] is referred to as a belief function on

U if

Bel(X) = ∑
A⊆X

m(A), ∀X ∈ P(U). (7)

A set function Pl : P(U) → [0, 1] is referred to as a plausibility function on U if

Pl(X) = ∑
A∩X �=∅

m(A), ∀X ∈ P(U). (8)

Belief and plausibility functions based on the same belief structure are connected by the dual property

Pl(X) = 1 − Bel(∼ X), ∀X ∈ P(U), (9)

and furthermore,

Bel(X) ≤ Pl(X), ∀X ∈ P(U). (10)

There are strong connections between rough set theory and the Dempster–Shafer theory of evidence [35–37,44,55]. The

following theorem shows that probabilities of lower and upper approximations are a dual pair of belief and plausibility

functions [44,55].

Theorem 1. Let (U, R, P) be a probabilistic approximation space, for any X ⊆ U, denote

Bel(X) = P(R(X)), Pl(X) = P(R(X)). (11)

Then Bel and Pl are a dual pair of belief and plausibility functions on U respectively, and the corresponding basic probability

assignment is

m(Y) =
⎧⎨
⎩ P(Y), if Y ∈ U/R,

0, otherwise.

2.3. Information tables, decision tables, decision rules

Thenotion of information tables (sometimes called, information systems, data tables, attribute-value systems, knowledge

representation systems etc.) provides a convenient tool for the representation of objects in terms of their attribute values

[24,60].

Definition 5. An information table is a 2-tuple (U, A), whereU = {x1, x2, . . . , xn} is a non-empty, finite set of objects called

the universe of discourse and A = {a1, a2, . . . , am} is a non-empty, finite set of attributes, such that a : U → Va for any

a ∈ A, i.e. a(x) ∈ Va, x ∈ U, where Va = {a(x)|x ∈ U} is called the domain of a.

A decision table (sometimes called decision system) is a 2-tuple S = (U, C ∪{d})where (U, C) is an information table, and

d /∈ C is a special attribute called the decision. In this case, C is called the conditional attribute set, d is amapping d : U → Vd

from the universe of discourse U into the value set Vd, we assume, without any loss of generality, that Vd = {1, 2, . . . , r}.
Define

Rd = {(x, y) ∈ U × U|d(x) = d(y)}. (12)

Then we obtain a partition U/Rd = {D1,D2, . . . ,Dr} of U into decision classes, where Dj = {x ∈ U|d(x) = j}, j =
1, 2, . . . , r.
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For any B ⊆ C, denote an equivalence relation (also called indiscernibility relation) RB as

RB = ⋂
a∈B

Ra = {(x, y) ∈ U × U|a(x) = a(y), ∀a ∈ B}. (13)

Since RB is an equivalence relation on U, it forms a partition U/RB = {[x]B|x ∈ U} of U, where [x]B denotes the equivalence

class determined by x w.r.t. B, i.e., [x]B = {y ∈ U|(x, y) ∈ RB}.
If RC ⊆ Rd, then the decision table S = (U, C ∪ {d}) is referred to as consistent, it is said to be inconsistent otherwise.

For any B ⊆ C, define

∂B(x) = {d(y)|y ∈ [x]B}, x ∈ U, (14)

∂B(x) is referred to as the generalized decision value of x w.r.t. B in (U, C ∪ {d}) [12] and ∂B is called the generalized decision

functionw.r.t. B in (U, C∪{d}). It is straightforward that the decision table (U, C∪{d}) is consistent if and only if |∂C(x)| = 1

for all x ∈ U, and it is inconsistent otherwise.

In the discussion to follow, the symbols∧ and∨ denote the logical connectives “and" (conjunction) and “or"(disjunction),

respectively. Any attribute-value pair (a, v), v ∈ Va, a ∈ B, B ⊆ C, is called a B-atomic property. Any B-atomic property or

conjunction of different B-atomic properties is called a B-descriptor. Let t be a B-descriptor, the attribute set occurring in t is

denoted by B(t). If B(t) = B, then t is called a full B-descriptor. Denote

FDES(B) = {t|t is a full B-descriptor}. (15)

If (a, v) is an atomic property occurring in t, we simply say that (a, v) ∈ t.

The set of objects having descriptor t is called the support of t and is denoted by‖t‖, i.e.,‖t‖ = {x ∈ U|v = a(x), ∀(a, v) ∈
t}. If t and s are two atomic properties, then it can be observed that ‖t ∧ s‖ = ‖t‖ ∩ ‖s‖ and ‖t ∨ s‖ = ‖t‖ ∪ ‖s‖. Clearly,
if C(t) = B and x ∈ ‖t‖, then [x]B = ‖t‖.

For any B-descriptor t, let us define a function ∂ : U → P(Vd) as follows:

∂(t) = {d(y)|y ∈ ‖t‖}, (16)

which is called the generalized decision of t in S. Any (d, j), j ∈ ∂(t), is referred to as a generalized decision descriptor of t.

Let X ⊆ U and B ⊆ C. The lower and upper approximations of X w.r.t. B, denoted by RB(X) and RB(X) respectively, are

defined as follows:

RB(X) = ∪{‖t‖| ‖t‖ ⊆ X, t ∈ FDES(B)},
RB(X) = ∪{‖t‖| ‖t‖ ∩ X �= ∅, t ∈ FDES(B)}. (17)

Clearly,

RB(X) = ∪{[x]B| [x]B ⊆ X} = {x ∈ U| [x]B ⊆ X},
RB(X) = ∪{[x]B| [x]B ∩ X �= ∅} = {x ∈ U| [x]B ∩ X �= ∅}. (18)

Evidently, RB(X) ⊆ RB(X). Elements in RB(X) can be classified as members of X with complete certainty using attribute

set B, whereas elements in RB(X) can be classified as members of X with only partial certainty using attribute B. The class

RB(X) − RB(X) is referred to as boundary of X w.r.t B and is denoted by BNB(X).

Let j ∈ Vd and t ∈ FDES(B). If ‖t‖ ⊆ RB(‖(d, j)‖) (and, respectively, ‖t‖ ⊆ RB(‖(d, j)‖)), then we call t a lower

(and, respectively, upper) approximation B-descriptor of (d, j). The set of all lower (and, respectively, upper) approximation B-

descriptors of (d, j) is denoted by RB((d, j)) (and, respectively, RB((d, j))). And also, if ‖t‖ ⊆ BNB(‖(d, j)‖), then t is referred

to as a boundary descriptor of (d, j) w.r.t. B. The set of all boundary descriptors of (d, j) w.r.t. B is denoted by BNDESB((d, j)).
Proposition 1 below shows that the approximations of decision classes can be expressed by means of the generalized

decision.

Proposition 1. Let S = (U, C ∪ {d}) be a decision table. If j ∈ Vd, t is a C-descriptor, and B ⊆ C, then

(1) RB(‖(d, j)‖) = ∪{‖t‖|t ∈ FDES(B), ∂(t) = {j}},
(2) RB(‖(d, j)‖) = ∪{‖t‖|t ∈ FDES(B), j ∈ ∂(t)},
(3) RB((d, j)) = { t ∈ FDES(B)|∂(t) = {j}},
(4) RB((d, j)) = {t ∈ FDES(B)|j ∈ ∂(t)}.
The knowledge hidden in a decision table S = (U, C∪{d})may be discovered and expressed in the form of decision rules:

t → s, where t = ∧(a, v), a ∈ B ⊆ C, and s = (d, j), j ∈ Vd, t and s are, respectively, called the condition and decision parts

of the rule. We will say that an object x ∈ U supports a rule t → s in the decision table S if and only if x ∈ ‖t‖ ∩ ‖s‖.
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A decision rule t → (d, j) is referred to as certain in S if and only if ‖t‖ �= ∅ and ‖t‖ ⊆ ‖(d, j)‖, in such case, we

denote t ⇒ (d, j) instead of t → (d, j). A decision rule t → (d, j) is referred to as an association rule in S if and only

if ‖t‖ ∩ ‖(d, j)‖ �= ∅. A decision rule t → (d, j) is referred to as a possible rule in S if and only if it is not certain, but

‖t‖ ∩ ‖(d, j)‖ �= ∅.
With each decision rule t → s = (d, j) in a decision table S, we associate a quantitative measure, called the certainty, of

the rule in S and is defined by [25]:

Cer(t → s) = | |‖t‖ ∩ ‖s‖ |
| ‖t‖ | . (19)

The quantity Cer(t → s) shows the degree to which objects supporting descriptor t also support decision s in S. If Cer(t →
s) = α, then (100α)% of objects supporting t also support s in S.

The following proposition shows that the types of decision rules can be expressed by means of the certainty factors of

the rules as well as the lower and the upper approximations of each decision class w.r.t. the set of conditional attributes in

a decision table.

Proposition 2. Let S = (U, C ∪{d}) be a decision table. If j ∈ Vd, t is a C-descriptor, and s = (d, j), then the decision rule t → s

(1) is certain in S ⇐⇒ ‖t‖ ⊆ RC(t)(‖(d, j)‖)
⇐⇒ t ∈ RC(t)((d, j))

⇐⇒ ∂(t) = {j}
⇐⇒ Cer(t → (d, j)) = 1;

(2) is an association rule in S ⇐⇒ ‖t‖ ⊆ RC(t)(‖(d, j)‖)
⇐⇒ t ∈ RC(t)((d, j))

⇐⇒ j ∈ ∂(t)

⇐⇒ 0 < Cer(t → (d, j)) ≤ 1;

(3) is a possible rule in S ⇐⇒ ‖t‖ ⊆ BNC(t)(‖(d, j)‖)
⇐⇒ t ∈ BNDESC(t)((d, j))

⇐⇒ j ∈ ∂(t) and | ∂(t) |≥ 2

⇐⇒ 0 < Cer(t → (d, j)) < 1.

One can acquire certainty decision rules from consistent decision tables and uncertainty decision rules from inconsistent

decision tables. In fact, if | ∂C(x) |= 1, then the decision rule corresponding to (or supported by the objects in) the class [x]C
is certain, otherwise, | ∂C(x) |≥ 2, the decision rule corresponding to the class [x]C is uncertain.

A decision rule with too long a description means high prediction cost. To acquire concise decision rules from decision

tables, knowledge reduction is needed. It iswell-known that not all conditional attributes are necessary to depict thedecision

attributes before decision rules are generated. Thus knowledge reduction by reducing attributes is one of themain problems

in the study of rough set theory (see e.g., [7,9,16,23,24,34,38,41,43,45,60,61,63]).

3. Multi-scale decision tables

In this section, we introduce the concept of multi-scale decision tables from the perspective of granular computation.

3.1. Multi-scale information tables

In a Pawak information table, each object can only take on one value under each attribute. However, in some real-life

applications, one has to make decision with different levels of granulations. That is, an object may take on different values

under the sameattribute, depending on atwhich scale it ismeasured. In [42],we introduced anewconcept calledmulti-scale

information table from the perspective of granular computation which has different levels of granulations.

Definition 6. Amulti-scale information table is a tuple S = (U, A), where
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• U = {x1, x2, . . . , xn} is a non-empty, finite set of objects called the universe of discourse;
• A = {a1, a2, . . . , am} is a non-empty, finite set of attributes, and each aj ∈ A is a multi-scale attribute, i.e., for the same

object in U, attribute aj can take on different values at different scales.

In the discussion to follow, we always assume that all the attributes have the same number I of levels of granulations.

Hence, a multi-scale information table can be represented as a table (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}), where

akj : U → Vk
j is a surjective function and Vk

j is the domain of the kth scale attribute akj . For 1 ≤ k ≤ I − 1, there exists a

surjective function g
k,k+1
j : Vk

j → V
k+1
j such that a

k+1
j = g

k,k+1
j ◦ akj , i.e.

a
k+1
j (x) = g

k,k+1
j

(
akj (x)

)
, x ∈ U, (20)

where g
k,k+1
j is called a granular information transformation function.

Definition 7. Let U be a nonempty set, andA1 andA2 be two partitions of U. If for each A1 ∈ A1, there exists A2 ∈ A2 such

that A1 ⊆ A2, thenwe say thatA1 is finer thanA2 orA2 is coarser thanA1, and is denoted asA1 � A2. Furthermore, if there

exist A1 ∈ A1 and A2 ∈ A2 such that A1 ⊂ A2, then we say that A1 is strictly finer than A2, and is denoted as A1 � A2.

For k ∈ {1, 2, . . . , I}, we denote Ak =
{
akj |j = 1, 2, . . . ,m

}
. Then a multi-scale information table S = (U, A) can be

decomposed into I information tables Sk = (U, Ak), k = 1, 2, . . . , I. According to [42], we can conclude the following:

Proposition 3. Let S = (U, A) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

})
be a multi-scale information table, and B ⊆ A,

for k ∈ {1, 2, . . . , I}, denote
RBk = {(x, y) ∈ U × U|ak(x) = ak(y), ∀a ∈ B},
[x]

Bk
= {y ∈ U|(x, y) ∈ RBk} = {y ∈ U|ak(x) = ak(y), ∀a ∈ B}.

U/RBk = {[x]
Bk

|x ∈ U}.
(21)

Then

RB1 ⊆ RB2 ⊆ · · · ⊆ RBI ,

[x]
B1

⊆ [x]
B2

⊆ · · · ⊆ [x]
BI
, x ∈ U,

U/RB1 � U/RB2 � · · · � U/RBI .

(22)

For B ⊆ A and X ⊆ U, since U/RB1 � U/RB2 � · · · � U/RBI , according to Yao [48], we can obtain a nested sequence of

rough set approximations as follows:

RBI (X) ⊆ RBI−1(X) ⊆ · · · ⊆ RB2(X) ⊆ RB1(X) ⊆ X,

X ⊆ RB1(X) ⊆ RB2(X) ⊆ · · · ⊆ RBI−1(X) ⊆ RBI (X).
(23)

Therefore, we can have nested sequences of the positive, the boundary, the positive, and the negative regions:

POSBI (X) ⊆ POSBI−1(X) ⊆ · · · ⊆ POSB2(X) ⊆ POSB1(X),

BNB1(X) ⊆ BNB2(X) ⊆ · · · ⊆ BNBI−1(X) ⊆ BNBI (X),

NEGBI (X) ⊆ NEGBI−1(X) ⊆ · · · ⊆ NEGB2(X) ⊆ NEGB1(X),

(24)

Consequently, we obtain a sequence of accuracies for approximations w.r.t. different scales:

α
BI
(X) ≤ α

BI−1 (X) ≤ · · · ≤ α
B2

(X) ≤ α
B1

(X). (25)

By employing Theorem 1 and Eq. (23) we can conclude following
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Proposition 4. Let S = (U, A) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

})
be a multi-scale information table, and B ⊆ A,

for k ∈ {1, 2, . . . , I}, denote
BelBk(X) = P(RBk(X)) = |R

Bk
(X)|

|U| ,

PlBk(X) = P(RBk(X)) = |R
Bk

(X)|
|U| .

(26)

Then BelBk : P(U) → [0, 1] and PlBk : P(U) → [0, 1] are a dual pair of belief and plausibility functions on U, and the

corresponding basic probability assignment m
Bk

: P(U) → [0, 1] is

m
Bk

(Y) =
⎧⎨
⎩ P(Y) = |Y |

|U| , if Y ∈ U/R
Bk

,

0, otherwise.
(27)

Moreover, the belief and plausibility functions satisfy the following properties:

(1) BelBI (X) ≤ BelBI−1(X) ≤ · · · ≤ BelB2(X) ≤ BelB1(X) ≤ P(X),
(2) P(X) ≤ PlB1(X) ≤ PlB2(X) ≤ · · · ≤ PlBI−1(X) ≤ PlBI (X),
(3) B ⊆ C ⊆ A �⇒ BelBk(X) ≤ BelCk(X) ≤ P(X) ≤ PlCk(X) ≤ PlBk(X).

Definition 8. A system S = (U, C ∪ {d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
is referred to as a multi-

scale decision table, where (U, C) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

})
is a multi-scale information table and d /∈{

akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m
}
, d : U → Vd, is a special attribute called the decision.

According to Definition 8, a multi-scale decision table S = (U, C ∪ {d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪{d}) can be decomposed into I decision tables Sk =

(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
= (U, Ck ∪ {d}),(

Ck =
{
akj |j = 1, 2, . . . ,m

})
, k = 1, 2, . . . , I, with the same decision d.

Table 1

A multi-scale decision table with three levels of granulations.

U a11 a21 a31 a12 a22 a32 a13 a23 a33 a14 a24 a34 d

x1 1 E Y 1 E Y 1 S Y 1 S Y 1

x2 2 G Y 2 E Y 1 S Y 1 S Y 1

x3 3 G Y 3 G Y 2 S Y 2 S Y 1

x4 4 F N 4 F N 3 M N 3 M N 1

x5 5 B N 5 F N 4 L N 4 L N 1

x6 6 B N 6 B N 5 L N 4 L N 1

x7 4 F N 4 F N 1 S Y 1 S Y 2

x8 5 B N 5 F N 1 S Y 1 S Y 2

x9 6 B N 6 B N 2 S Y 2 S Y 2

x10 4 F N 4 F N 3 M N 1 S Y 1

x11 5 B N 5 F N 4 L N 1 S Y 1

x12 6 B N 6 B N 5 L N 2 S Y 1

Table 2

The decision table with the first level of granulation of Table 1.

U a11 a12 a13 a14 d

x1 1 1 1 1 1

x2 2 2 1 1 1

x3 3 3 2 2 1

x4 4 4 3 3 1

x5 5 5 4 4 1

x6 6 6 5 4 1

x7 4 4 1 1 2

x8 5 5 1 1 2

x9 6 6 2 2 2

x10 4 4 3 1 1

x11 5 5 4 1 1

x12 6 6 5 2 1
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Table 3

The decision table with the second level of granulation of Table 1.

U a21 a22 a23 a24 d

x1 E E S S 1

x2 G E S S 1

x3 G G S S 1

x4 F F M M 1

x5 B F L L 1

x6 B B L L 1

x7 F F S S 2

x8 B F S S 2

x9 B B S S 2

x10 F F M S 1

x11 B F L S 1

x12 B B L S 1

Table 4

The decision table with the third level of granulation of Table 1.

U a31 a32 a33 a34 d

x1 Y Y Y Y 1

x2 Y Y Y Y 1

x3 Y Y Y Y 1

x4 N N N N 1

x5 N N N N 1

x6 N N N N 1

x7 N N Y Y 2

x8 N N Y Y 2

x9 N N Y Y 2

x10 N N N Y 1

x11 N N N Y 1

x12 N N N Y 1

Definition 9. A multi-scale decision table S is referred to as consistent if the decision table under the first (finest) level of

scale, S1 =
(
U,

{
a1j |j = 1, 2, . . . ,m

}
∪ {d}

)
= (U, C1∪{d}), is consistent, and S is called inconsistent if S1 is an inconsistent

decision table.

Example 1. Table 1 is an example of a multi-scale decision table
(
U,

{
akj |k = 1, 2, 3, j = 1, 2, 3, 4

}
∪ {d}

)
, where U =

{x1, x2, . . . , x12}, C = {a1, a2, a3, a4}. The table has three levels of granulations, where “E", “G", “F", “B", “S", “M", “L", “Y",

and “N" stand for, respectively, “Excellent", “Good", “Fair", “Bad", “Small", “Medium", “Large", “Yes", and “No". For these levels

of granularities, the system is associated with three decision tables which are described as Tables 2–4, respectively.

4. Optimal scale selection in multi-scale decision tables

Knowledge acquisition in the sense of rule induction from amulti-scale decision table is an important issue. As we know

from last section, a multi-scale decision table having I levels of granulations can be decomposed into I decision tables,

however, not all decision tables are consistent with some requirements to the decision table under the first (finest) level of

scale. So, it is critical to select the optimal level of details corresponding a suitable decision table before decision rules are

produced. In this section, we investigate optimal scale selection with different requirements in multi-scale decision tables.

4.1. Optimal scale selection in consistent multi-scale decision tables

For a consistent multi-scale decision table S = (U, C ∪ {d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
, we

have RC1 ⊆ Rd. For 1 ≤ i < k ≤ I, if Sk =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is a consistent decision table, i.e. R

Ck
⊆ Rd, then,

by Proposition 3, we can observe that R
Ci

⊆ R
Ck

⊆ Rd. Hence,
(
U,

{
aij|j = 1, 2, . . . ,m

}
∪ {d}

)
is also a consistent decision

table.

Definition10. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
bea consistentmulti-scaledecision

table. The kth level of scale is said to be optimal if Sk is consistent and Sk+1 (if there exists k + 1) is inconsistent.

According to Definition 10, we can see that the optimal scale of a consistentmulti-scale decision table is the best scale for

decision making or classification in the multi-scale decision table. And k is the optimal scale if and only if k is the maximal

number such that Sk is a consistent decision table.
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Theorem 2. Let S = (U, C ∪ {d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be a consistent multi-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, then the following statements are equivalent:

(1) Sk =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is a consistent decision table, i.e., RCk ⊆ Rd,

(2)
∑r

j=1 BelCk(Dj) = 1,

(3)
∑r

j=1 PlCk(Dj) = 1.

Proof

“(1) ⇒ (2)" For any j ∈ {1, 2, . . . , r}, denote
JCk(Dj) = {[y]Ck ∈ U/RCk |[y]Ck ⊆ Dj

}
.

Since RCk ⊆ Rd, we see that JCk(Dj) forms a partition of Dj . Then we have

BelCk(Dj) = ∑{m
Ck

(X)|X ⊆ Dj} = ∑{m
Ck

([x]Ck)|[x]Ck ∈ U/RCk , [x]Ck ⊆ Dj}

= ∑{m
Ck

([x]Ck)|[x]Ck ∈ JCk(Dj)} = ∑ {
P([x]Ck)|[x]Ck ∈ JCk(Dj)

}
= P(Dj).

It follows that

r∑
j=1

BelCk(Dj) =
r∑

j=1

P(Dj) = 1.

“(2) ⇒ (1)" Assume that
r∑

j=1

BelCk(Dj) = 1. Define

JC1([x]Ck) = {[y]C1 ∈ U/RC1 |[y]C1 ⊆ [x]Ck

}
, x ∈ U.

It is easy to see that JC1([x]Ck) forms a partition of [x]Ck . Then, for any j ∈ {1, 2, . . . , r}, we have

BelCk(Dj) = ∑ {
m

Ck
([x]Ck)|[x]Ck ∈ U/RCk , [x]Ck ⊆ Dj

}

= ∑ {
P([x]Ck)|[x]Ck ∈ U/RCk , [x]Ck ⊆ Dj

}
= ∑ {

P([y]C1)|[y]C1 ∈ JC1([x]Ck), [x]Ck ∈ U/RCk , [x]Ck ⊆ Dj

}
≤ ∑ {

P([x]C1)|[x]C1 ⊆ Dj

} = P(Dj).

Since 1 = ∑r
j=1 BelCk(Dj) ≤ ∑r

j=1 P(Dj) = 1, by Proposition 4, we can conclude that

BelCk(Dj) = P(Dj), ∀j ∈ {1, 2, . . . , r}.
From which we can see that

{[x]Ck |[x]Ck ∈ U/RCk , [x]Ck ⊆ Dj

}
forms a partition of Dj . Since {Dj|j ∈ {1, 2, . . . , r}} is a

partition of U, we conclude that
{[x]Ck |[x]Ck ⊆ Dj, j ∈ {1, 2, . . . , r}} forms a partition of U. Hence for any x ∈ U, there

exists j ∈ {1, 2, . . . , r} such that [x]Ck ⊆ Dj. Evidently,

x ∈ [x]Ck ⊆ Dj ⇐⇒ [x]d = Dj.

Thus [x]Ck ⊆ [x]d for all x ∈ U, that is, RCk ⊆ Rd.

“(1) ⇒ (3)" Since RCk ⊆ Rd, we have [x]Ck ⊆ [x]d for all x ∈ U. Define

JCk(Dj) = {[x]Ck ∈ U/RCk |[x]Ck ⊆ Dj}, j ∈ {1, 2, . . . , r}.
It is easy to see from RCk ⊆ Rd that JCk(Dj) forms a partition of Dj , and moreover,

[x]Ck ∩ Dj �= ∅ ⇐⇒ [x]Ck ⊆ Dj, ∀x ∈ U.
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Hence

PlCk(Dj) = ∑ {
m

Ck
(Y)|Y ∩ Dj �= ∅

}

= ∑ {
m

Ck
([x]Ck)|[x]Ck ∈ U/RCk , [x]Ck ∩ Dj �= ∅

}

= ∑ {
m

Ck
([x]Ck)|[x]Ck ∈ U/RCk , [x]Ck ⊆ Dj

}

= ∑ {
P([x]Ck)|[x]Ck ∈ JCk(Dj)

}
= P(Dj), ∀j ∈ {1, 2, . . . , r}.

It follows that

r∑
j=1

PlCk(Dj) =
r∑

j=1

P(Dj) = 1.

“(3) ⇒ (1)" Assume that
∑r

j=1 PlCk(Dj) = 1. Since S is consistent, we have 1 = ∑r
j=1 PlC1(Dj) ≥ ∑r

j=1 PlCk(Dj) = 1. Then

by Proposition 4 we have PlCk(Dj) = PlC1(Dj) = P(Dj) for all j ∈ {1, 2, . . . , r}, that is,
P

(
RCk(Dj)

) = P
(
RC1(Dj)

) = P(Dj).

By Eq. (23), we observe that RCk(Dj) ⊇ RC1(Dj) ⊇ Dj , thenwe conclude that RCk(Dj) = RC1(Dj) = Dj for all j ∈ {1, 2, . . . , r}.
Thus

RCk([x]d) = RC1([x]d) = [x]d, ∀x ∈ U.

Givenx ∈ U and foranyy ∈ [x]Ck , notice that [y]Ck = [x]Ck , then [y]Ck∩[x]d = [x]Ck∩[x]d �= ∅, that is,y ∈ RCk([x]d) = [x]d,
and in turn, [x]Ck ⊆ [x]d. It follows that RCk ⊆ Rd. �

In terms of Theorem 2 and Proposition 4, we can conclude following

Theorem 3. Let S = (U, C ∪ {d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be a consistent multi-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, then the following statements are equivalent:

(1) the kth level of scale is the optimal scale.

(2)

r∑
j=1

BelCk(Dj) = 1. (28)

And (if there is k + 1 ≤ I)

r∑
j=1

BelCk+1(Dj) < 1. (29)

(3)

r∑
j=1

PlCk(Dj) = 1. (30)

And (if there is k + 1 ≤ I)

r∑
j=1

PlCk+1(Dj) > 1. (31)

Theorem 3 shows that, in a consistent multi-scale decision table, the kth level of scale is the optimal scale if and only if k

is the maximum number such that the sum of degrees of belief (as well as the degrees of plausibility) of all decision classes

in Sk is 1.
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After we select the optimal scale k, for making decision, we can obtain the classification rule set based on the computing

reducts of the kth decision table Sk , because this issue is not the main objective of this paper, we will not discuss it here, and

for the detail we refer the readers to [42].

4.2. Optimal scale selection in inconsistent multi-scale decision tables

Let S = (U, C ∪ {d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be a multi-scale decision table which has I

levels of granulations. For 1 ≤ i < k ≤ I, if
(
U,

{
aij|j = 1, 2, . . . ,m

}
∪ {d}

)
is an inconsistent decision table, then it can

easily be observed that
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is also an inconsistent decision table.

For k ∈ {1, 2, . . . , I}, and X ⊆ U, define

RCk(X) = {x ∈ U|[x]Ck ⊆ X} = {x ∈ U|P(X|[x]Ck) = 1},
RCk(X) = {x ∈ U|[x]Ck ∩ X �= ∅} = {x ∈ U|P(X|[x]Ck) > 0}, (32)

where RCk = {(x, y) ∈ U × U|ak(x) = ak(y), ∀a ∈ C} and [x]Ck = {
y ∈ U|(x, y) ∈ RCk

}
.

We denote

LCk(d) =
(
RCk(D1), RCk(D2), . . . , RCk(Dr)

)
,

HCk(d) = (
RCk(D1), RCk(D2), . . . , RCk(Dr)

)
,

μ
Ck

(x) = (
P(D1|[x]Ck), P(D2|[x]Ck), . . . , P(Dr |[x]Ck)

)
, x ∈ U,

γ
Ck

(x) = {Dji ∈ U/Rd|P(Dji |[x]Ck) = max
1≤j≤r

P(Dj|[x]Ck)}, x ∈ U,

BelCk(d) = (
BelCk(D1), BelCk(D2), . . . , BelCk(Dr)

)
,

PlCk(d) = (
PlCk(D1), PlCk(D2), . . . , PlCk(Dr)

)
,

∂
Ck

(x) = {d(y)|y ∈ [x]Ck}, x ∈ U,

where P(Dj|[x]Ck) = |Dj∩[x]
Ck

|
|[x]

Ck
| , BelCk(Dj) = P(RCk(Dj)) = |R

Ck
(Dj)|

|U| , and PlCk(Dj) = P(RCk(Dj)) = |R
Ck

(Dj)|
|U| .

LCk(d) and HCk are referred to as the lower approximation distribution and upper approximation distribution of decision

classes U/Rd under the kth scale in S, respectively. μ
Ck

(x) is called the probability distribution of decision classes U/Rd for

object x under the kth scale in S, and γ
Ck

(x) is called the maximum distribution of decision classes U/Rd for object x under

the kth scale in S. BelCk(d) and PlCk(d) are said to be the belief distribution and plausibility distribution of decision classes

U/Rd under the kth scale in S, respectively. And ∂
Ck

(x) is the generalized decision values of object x under the kth scale in S.

According to Proposition 3 it is easy to see that

∂
C1

(x) ⊆ ∂
C2

(x) ⊆ · · · ⊆ ∂
CI−1 (x) ⊆ ∂

CI
(x), x ∈ U. (33)

Definition 11. Let S = (U, C ∪ {d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistent multi-scale

decision table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, we say that

(1) Sk = (U, Ck∪{d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is lower approximation consistent to S if LCk(d) = LC1(d). And,

the kth level of scale is said to be the lower approximation optimal scale of S if Sk is lower approximation consistent

to S and Sk+1 (if there is k + 1) is not lower approximation consistent to S.

(2) Sk = (U, Ck ∪ {d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is upper approximation consistent to S if HCk(d) = HC1(d).

And, the kth level of scale is said to be the upper approximation optimal scale of S if Sk is upper approximation

consistent to S and Sk+1 (if there is k + 1) is not upper approximation consistent to S.

(3) Sk = (U, Ck ∪{d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is distribution consistent to S ifμ

Ck
(x) = μ

C1
(x) for all x ∈ U.

And, the kth level of scale is said to be the distribution optimal scale of S if Sk is distribution consistent to S and Sk+1

(if there is k + 1) is not distribution consistent to S.

(4) Sk = (U, Ck ∪ {d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is maximum distribution consistent to S if γ

Ck
(x) = γ

C1
(x)

for all x ∈ U. And, the kth level of scale is said to be the maximum distribution optimal scale of S if Sk is maximum

distribution consistent to S and Sk+1 (if there is k + 1) is not maximum distribution consistent to S.
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(5) Sk = (U, Ck ∪ {d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is belief distribution consistent to S if BelCk(d) = BelC1(d).

And, the kth level of scale is said to be the belief distribution optimal scale of S if Sk is belief distribution consistent to

S and Sk+1 (if there is k + 1) is not belief distribution consistent to S.

(6) Sk = (U, Ck ∪{d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is plausibility distribution consistent to S if PlCk(d) = PlC1(d).

And, the kth level of scale is said to be the plausibility distribution optimal scale of S if Sk is plausibility distribution

consistent to S and Sk+1 (if there is k + 1) is not plausibility distribution consistent to S.

(7) Sk = (U, Ck ∪ {d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is generalized decision consistent to S if ∂

Ck
(x) = ∂

C1
(x) for

all x ∈ U. And, the kth level of scale is said to be the generalized decision optimal scale of S if Sk is generalized decision

consistent to S and Sk+1 (if there is k + 1) is not generalized decision consistent to S.

In an inconsistent multi-scale decision table which has I levels of granulations, it can be observed that

Sk =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is an inconsistent decision table for all k ∈ {1, 2, . . . , I}. Moreover, we can see

that

• Sk is lower approximation consistent to S if and only if Sk preserves the lower approximations of all decision classes of

the finest scale decision table S1, in this case, an object supports a certain decision rule derived from S1 if and only if it

supports a certain decision rule derived from Sk . And k is the lower approximation optimal scale of S if and only if k is

the maximal number such that Sk preserves the lower approximations of all decision classes of S1.
• Sk is upper approximation consistent to S if and only if Sk preserves the upper approximations of all decision classes

of the finest scale decision table S1, in this case, an object supports an association rule derived from S1 if and only if it

supports an association rule derived from Sk . And k is the upper approximation optimal scale of S if and only if k is the

maximal number such that Sk preserves the upper approximations of all decision classes of S1.
• Sk is distribution consistent to S if and only if Sk preserves the degree inwhich every object belongs to each decision class

of the finest scale decision table S1. And k is the distribution optimal scale of S if and only if k is the maximal number

such that Sk preserves the degree in which every object belongs to each decision class of S1.
• Sk is maximum distribution consistent to S if and only if Sk preserves all maximum confidence degree of decision rules

of the finest scale decision table S1. And k is the maximum distribution optimal scale of S if and only if k is the maximal

number such that Sk preserves all maximum confidence degree of decision rules of S1.
• Sk is belief distribution consistent to S if and only if Sk preserves the same belief degree of each decision class in the finest

scale decision table S1. And k is the belief distribution optimal scale of S if and only if k is the maximal number such that

Sk preserves the same belief degree of each decision class in S1.
• Sk is plausibility distribution consistent to S if and only if Sk preserves the same plausibility degree of each decision class

in the finest scale decision table S1. And k is the plausibility distribution optimal scale of S if and only if k is the maximal

number such that Sk preserves the same plausibility degree of each decision class in S1.
• Sk is generalized decision consistent to S if and only if Sk keeps the generalized decision values of the finest scale decision

table S1. And k is the generalized decision optimal scale of S if and only if k is the maximal number such that Sk keeps

the generalized decision values of S1.

It is important to clarify the interrelationships among the defined types of optimal scale in Definition 11.

Theorem 4. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistent multi-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, if μ
Ck

(x) = μ
C1

(x) for all x ∈ U, then

(1) LCk(d) = LC1(d).
(2) HCk(d) = HC1(d).
(3) γ

Ck
(x) = γ

C1
(x) for all x ∈ U.

Proof

(1) Notice that RC1 ⊆ RCk , by Eq. (23), we have RCk(Dj) ⊆ RC1(Dj) for allDj ∈ U/Rd.On the other hand, for any Dj ∈ U/Rd
and x ∈ U, if x ∈ RC1(Dj), by the definition of lower approximation, we have [x]C1 ⊆ Dj , then P(Dj|[x]C1) = 1.

By the assumption we conclude that P(Dj|[x]Ck) = P(Dj|[x]C1) = 1, thus x ∈ RCk(Dj), from which follows that

RCk(Dj) = RC1(Dj). Consequently, LCk(d) = LC1(d).

(2) Since RC1 ⊆ RCk , by Eq. (23), we have RC1(Dj) ⊆ RCk(Dj) for all Dj ∈ U/Rd. On the other hand, for any Dj ∈ U/Rd
and x ∈ U, if x ∈ RCk(Dj), by the definition of upper approximation, we see that P(Dj|[x]Ck) > 0. By the assumption

we conclude that P(Dj|[x]C1) = P(Dj|[x]Ck) > 0, thus x ∈ RC1(Dj), from which follows that RCk(Dj) ⊆ RC1(Dj).

Therefore, RCk(Dj) = RC1(Dj) for all Dj ∈ U/Rd. Consequently, HCk(d) = HC1(d).
(3) It is straightforward. �
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Table 5

A multi-scale decision table.

U a1 a2 d ∂
a1

∂
a2

μ
a1

μ
a2

x1 1 S 1 {1} {1, 2} 1 4/5
x2 1 S 1 {1} {1, 2} 1 4/5
x3 2 S 1 {1, 2} {1, 2} 2/3 4/5
x4 2 S 1 {1, 2} {1, 2} 2/3 4/5
x5 2 S 2 {1, 2} {1, 2} 1/3 1/5
x6 3 L 2 {2} {2} 1 1

Table 6

A multi-scale decision table.

U a1 a2 d ∂
a1

∂
a2

μ
a1

μ
a2

x1 1 S 1 {1, 2} {1, 2} 1/2 2/5
x2 1 S 2 {1, 2} {1, 2} 1/2 3/5
x3 2 S 2 {1, 2} {1, 2} 2/3 3/5
x4 2 S 1 {1, 2} {1, 2} 1/3 2/5
x5 2 S 2 {1, 2} {1, 2} 2/3 3/5
x6 3 L 2 {2} {2} 1 1

The converse of Theorem 4 is not always true, to see following two examples.

Example 2. Table 5 gives an example of multi-scale decision table S = (U, C ∪ {d}) which has 2 levels of granulations

and one attribute a, where U = {x1, x2, . . . , x6}, C = {a}. We also list the generalized decision functions and the rough

membership functions (decision distribution functions) for the two levels of granulations. It can easily be verified from

Table 5 that k = 1 is the distribution optimal scale of S, it is also the lower approximation optimal scale and the upper

approximation optimal scale. However, the maximum distribution optimal scale of S is 2. That is, in general, the maximum

distribution optimal scale of S is not less than the distribution optimal scale of S.

Example 3. Table 6 gives another example of multi-scale decision table S = (U, C ∪ {d})which has 2 levels of granulations

and one attribute a, where U = {x1, x2, . . . , x6}, C = {a}. It can be calculated that La1(d) = La2(d) = (∅, {x6}) and

Ha1(d) = Ha2(d) = ({x1, x2, x3, x4, x5},U), thus we see that k = 2 is the generalized decision optimal scale of S, and it

is also the lower approximation optimal scale as well as the upper approximation optimal scale. However, the distribution

optimal scale of S is k = 1. At the same time, we can check that the maximum distribution optimal scale of S is 1.

From Examples 2 and 3, we can see that there is no static relationship between the generalized decision optimal scale

and the maximum distribution optimal scale.

Theorem 5. Let S = (U, C ∪{d}) =
(
U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}

)
be an inconsistent multi-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, then the following statements are equivalent:

(1) LCk(d) = LC1(d).
(2) BelCk(d) = BelC1(d).
(3)

∑r
j=1 BelCk(Dj) = ∑r

j=1 BelC1(Dj).

Proof

“(1)⇒(2)".

LCk(d) = LC1(d) �⇒ RCk(Dj) = RC1(Dj), ∀j ∈ {1, 2, . . . , r},
�⇒ P(RCk(Dj)) = P(RC1(Dj)), ∀j ∈ {1, 2, . . . , r},
�⇒ BelCk(Dj) = BelC1(Dj), ∀j ∈ {1, 2, . . . , r},
�⇒ BelCk(d) = BelC1(d).

“(2)⇒(3)". It is obvious.
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“(3)⇒(1)". Since
∑r

j=1 BelCk(Dj) = r∑
j=1

BelC1(Dj), we have

r∑
j=1

|RCk(Dj)| =
r∑

j=1

|RC1(Dj)|. (34)

Since

RCk(Dj) ⊆ RC1(Dj), ∀j ∈ {1, 2, . . . , r}, (35)

we have

|RCk(Dj)| ≤ |RC1(Dj)|, ∀j ∈ {1, 2, . . . , r}. (36)

Hence, according to Eq. (36), Eq. (34) implies that

|RCk(Dj)| = |RC1(Dj)|, ∀j ∈ {1, 2, . . . , r}. (37)

In terms of Eq. (35), we must have

RCk(Dj) = RC1(Dj), ∀j ∈ {1, 2, . . . , r}. (38)

It follows that LCk(d) = LC1(d). �

Theorem 5 shows that the kth level of scale is the lower approximation optimal scale of S if and only if it is the belief

distribution optimal scale of S. Moreover, it can easily be conclude following

Theorem 6. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistent multi-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, then the kth level of scale is the lower approximation optimal scale

of S if and only if

r∑
j=1

BelCk(Dj) =
r∑

j=1

BelC1(Dj). (39)

And (if there is k + 1 ≤ I)

r∑
j=1

BelCk+1(Dj) <
r∑

j=1

BelC1(Dj). (40)

Theorem 7. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistent multi-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, then the following statements are equivalent:

(1) HCk(d) = HC1(d).
(2) PlCk(d) = PlC1(d).
(3)

∑r
j=1 PlCk(Dj) = ∑r

j=1 PlC1(Dj).

(4) ∂
Ck

(x) = ∂
C1

(x), ∀x ∈ U.

Proof

“(1)⇒(2)".

HCk(d) = HC1(d) �⇒ RCk(Dj) = RC1(Dj), ∀j ∈ {1, 2, . . . , r},
�⇒ P(RCk(Dj)) = P(RC1(Dj)), ∀j ∈ {1, 2, . . . , r},
�⇒ PlCk(Dj) = PlC1(Dj), ∀j ∈ {1, 2, . . . , r},
�⇒ PlCk(d) = PlC1(d).

“(2)⇒(3)". It is obvious.

“(3)⇒(1)". Since
∑r

j=1 PlCk(Dj) = ∑r
j=1 PlC1(Dj), we have

r∑
j=1

|RCk(Dj)| =
r∑

j=1

|RC1(Dj)|. (41)
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By Eq. (23), we see that

RC1(Dj) ⊆ RCk(Dj), ∀j ∈ {1, 2, . . . , r}, (42)

then we have∣∣RC1(Dj)
∣∣ ≤ ∣∣RCk(Dj)

∣∣ , ∀j ∈ {1, 2, . . . , r}. (43)

Hence, according to Eq. (43), Eq. (41) implies that∣∣RCk(Dj)
∣∣ = ∣∣RC1(Dj)

∣∣ , ∀j ∈ {1, 2, . . . , r}. (44)

In terms of Eq. (42), we must have

RCk(Dj) = RC1(Dj), ∀j ∈ {1, 2, . . . , r}. (45)

It follows that HCk(d) = HC1(d).
“(4)⇒(1)". Assume that ∂

Ck
(x) = ∂

C1
(x) for all x ∈ U. For any Dj ∈ U/Rd and y ∈ U, it is easy to see that [y]Ck ∩ Dj �= ∅

if and only if j ∈ ∂
Ck

(y), then we have

y ∈ RCk(Dj) �⇒ [y]Ck ∩ Dj �= ∅
�⇒ j ∈ ∂

Ck
(y)

�⇒ j ∈ ∂
C1

(y)

�⇒ [y]C1 ∩ Dj �= ∅
�⇒ y ∈ RC1(Dj).

Thus we have proved that

RCk(Dj) ⊆ RC1(Dj). (46)

By Eq. (23), we then conclude that

RCk(Dj) = RC1(Dj).

“(1)⇒(4)". Assume that HCk(d) = HC1(d), that is,

RCk(Dj) = RC1(Dj), ∀Dj ∈ U/Rd. (47)

For any x ∈ U, since RC1 ⊆ RCk , we have

∂
C1

(x) ⊆ ∂
Ck

(x). (48)

On the on the hand, for j ∈ Vd, by Eq. (47), we have

j ∈ ∂
Ck

(x) �⇒ [x]Ck ∩ Dj �= ∅
�⇒ x ∈ RCk(Dj)

�⇒ x ∈ RC1(Dj)

�⇒ [x]C1 ∩ Dj �= ∅
�⇒ j ∈ ∂

C1
(x).

Hence

∂
Ck

(x) ⊆ ∂
C1

(x). (49)

Combining Eqs. (48) and (49), we conclude ∂
Ck

(x) = ∂
C1

(x) for all x ∈ U. �

Theorem 7 shows that, in an inconsistent multi-scale decision table, the kth level of scale is the upper approximation

optimal scale if and only if it is the plausibility distribution optimal scale if and only if it is the generalized decision op-

timal scale, in other words, all the upper approximation optimal scale, the plausibility distribution optimal scale, and the

generalized decision optimal scale are the same. Similar to Theorem 6, we have following

Theorem 8. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistent multi-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, then the kth level of scale is the upper approximation optimal scale

of S if and only if



W. Wu, Y. Leung / International Journal of Approximate Reasoning 54 (2013) 1107–1129 1123

r∑
j=1

PlCk(Dj) =
r∑

j=1

PlC1(Dj). (50)

And (if there is k + 1 ≤ I)
r∑

j=1

PlCk+1(Dj) >
r∑

j=1

PlC1(Dj). (51)

Theorem 9. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistent multi-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I}, then
HCk(d) = HC1(d) �⇒ LCk(d) = LC1(d). (52)

Proof. Assume that HCk(d) = HC1(d), that is, RCk(Dj) = RC1(Dj) for all j ∈ {1, 2, . . . , r}. Then, for any j ∈ {1, 2, . . . , r}
and y ∈ U, we have

[y]Ck ∩ Dj �= ∅ ⇐⇒ [y]C1 ∩ Dj �= ∅. (53)

For any j ∈ {1, 2, . . . , r} and x ∈ U, if x ∈ RC1(Dj), by the definition, we have

[x]C1 ⊆ Dj. (54)

Since {Dj|j = 1, 2, . . . , r} forms a partition of U, Eq. (54) means that

[y]C1 ∩ Dj �= ∅ and [y]C1 ∩ Di = ∅, ∀i �= j. (55)

Then, by Eq. (53), we conclude that

[y]Ck ∩ Dj �= ∅ and [y]Ck ∩ Di = ∅, ∀i �= j. (56)

Consequently, [x]Ck ⊆ Dj , which follows that x ∈ RCk(Dj). Thus we have proved that RC1(Dj) ⊆ RCk(Dj). On the other hand,

by Eq. (23), we know that RCk(Dj) ⊆ RC1(Dj). Therefore RCk(Dj) = RC1(Dj) for all j ∈ {1, 2, . . . , r}, i.e. LCk(d) = LC1(d). �

Theorem 9 shows that if Sk is upper approximation consistent to S then it must be lower approximation consistent to

S. Moreover, if k1 is the upper approximation optimal scale of S and k2 is the lower approximation optimal scale of S then

k1 ≤ k2, alternatively, the lower approximation optimal scale of S is, in general, not less than the upper approximation

optimal scale of S. The next example shows that the converse of Theorem 9 is not always true.

Example 4. Table 7 gives an example of multi-scale decision table S = (U, C ∪ {d}) which has 2 levels of granulations and

one attribute a, where U = {x1, x2, . . . , x7}, C = {a}. It can be calculated that

La1(d) = La2(d) = (∅, {x2, x4}, ∅),
Ha1(d) = ({x1, x3, x5, x6, x7}, {x2, x3, x4, x5, x6}, {x1, x7}),
Ha2(d) = ({x1, x3, x5, x6, x7},U, {x1, x3, x5, x6, x7}) �= Ha1(d),
thus we see that k = 2 is the lower approximation optimal scale of S, but the upper approximation optimal scale

of S is 1.

In summary, if we use kl, ku, kd, km, kb, kp, and kg to represent the lower approximation, the upper approximation, the

distribution, the maximum distribution, the belief distribution, the plausibility distribution, and the generalized decision

optimal scale of an inconsistentmulti-scale decision table S, respectively, then according to Theorems 4-9,we have following

equalities:

kd ≤ ku = kp = kg ≤ kl = kb, and kd ≤ km.

Table 7

A multi-scale decision table.

U a1 a2 d

x1 1 S 1

x2 3 L 2

x3 2 S 2

x4 3 L 2

x5 2 S 1

x6 2 S 1

x7 1 S 3
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4.3. Optimal scale selection in multi-scale decision tables with a probabilistic rough set model

In the Pawlak rough set model, the lower approximation is the union of those equivalence classes that are included in

the set and the upper approximation is the union of those that have a non-empty overlap with the set. The rules induced

by the lower approximation must be absolutely consistent or correct, namely, the classification must be completely correct

or certain. However, the definitions of approximations do not allow any errors, which rarely happens in practice. So, sev-

eral probabilistic rough set models were developed to solve these problems [5,21,20,52,59,64,65]. Probabilistic rough set

approximations were formulated based on the notions of rough membership functions which can be interpreted in terms

of conditional probabilities or a posteriori probabilities. Threshold values, known as parameters, are applied to a rough

membership function to obtain probabilistic or parameterized approximations.

Let (U, R) be a Pawlak approximation space, 0 ≤ α < β ≤ 1, and X ∈ P(U), the standard rough approximations were

extended to generalized probabilistic approximations by Yao and Wong [56]:

Rβ(X) = {x ∈ U|P(X|[x]R) ≥ β},
R
1−α

(X) = {x ∈ U|P(X|[x]R) > α}, (57)

The conditionα < β ensures that the lower approximation is smaller than the upper approximation in order to be consistent

with existing approximation operators. A pair of parameters (α, β) with 0 ≤ α < β ≤ 1 can be determined from a loss

(cost) function within the decision-theoretic rough set model proposed by Yao and Wong [51,56].

With a pair of arbitrary α and β , the probabilistic approximation operators defined as Eq. (57) are not necessarily dual to

each other. By setting α = 1 − β , then, the lower and upper probabilistic approximation operators are dual operators. On

the other hand, to ensure that the lower approximation is smaller than the upper approximation we set β ∈ (0.5, 1], then
Rβ(X) = {x ∈ U|P(X|[x]R) ≥ β},
R
β
(X) = {x ∈ U|P(X|[x]R) > 1 − β}, (58)

Rβ(X) and R
β
(X) are called the β lower approximation and the β upper approximation of X w.r.t. (U, R) respectively, and

the pair (Rβ(X), Rβ(X)) is called rough set with β-precision.

In the discussion to follow, we will use the dual probabilistic approximation operators.

Proposition 5. Let (U, R) be a Pawlak approximation space and β ∈ (0.5, 1], then RB
β and RB

β
satisfy the following properties:

for X, Y ∈ P(U),

(1) Rβ(X) =∼ R
β
(∼ X).

(2) Rβ(X) ⊆ R
β
(X).

(3) R1(X) = R(X), R
1
(X) = R(X).

(4) X ⊆ Y �⇒ Rβ(X) ⊆ Rβ(Y), R
β
(X) ⊆ R

β
(Y).

(5) 0.5 < β ≤ α ≤ 1 �⇒ Rα(X) ⊆ Rβ(X), R
β
(X) ⊆ R

α
(X).

Let S = (U, C ∪ {d}) =
(
U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}

)
be a multi-scale decision table which has I

levels of granulations. For 1 ≤ k ≤ I and β ∈ (0.5, 1], denote
L
β

Ck(d) =
(
RCk

β(D1), RCk
β(D2), . . . , RCk

β(Dr)
)
,

H
β

Ck(d) =
(
RCk

β
(D1), RCk

β
(D2), . . . , RCk

β
(Dr)

)
,

Bel
β

Ck(d) = r∑
j=1

Bel
β

Ck(Dj) =: r∑
j=1

|R
Ck

β(Dj)|
|U| ,

Pl
β

Ck(d) = r∑
j=1

Pl
β

Ck(Dj) =: r∑
j=1

|R
Ck

β
(Dj)|

|U| .

(59)

Definition 12. Let S = (U, C ∪ {d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistent multi-scale

decision table which has I levels of granulations. For k ∈ {1, 2, . . . , I} and β ∈ (0.5, 1], we say that

(1) Sk = (U, Ck ∪ {d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is β lower approximation consistent to S if L

β

Ck(d) = L
β

C1(d).

And, the kth level of scale is said to be the β lower approximation optimal scale if Sk is β lower approximation

consistent to S and Sk+1 (if there is k + 1) is not β lower approximation consistent to S.
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(2) Sk = (U, Ck ∪ {d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is β upper approximation consistent to S if H

β

Ck(d) = H
β

C1(d).

And, the kth level of scale is said to be the β upper approximation optimal scale if Sk is β upper approximation

consistent to S and Sk+1 (if there is k + 1) is not β upper approximation consistent to S.

(3) Sk = (U, Ck ∪ {d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is β belief distribution consistent to S if Bel

β

Ck(d) = Bel
β

C1(d).

And, the kth level of scale is said to be theβ belief distribution optimal scale of S if Sk isβ belief distribution consistent

to S and Sk+1 (if there is k + 1) is not β belief distribution consistent to S.

(4) Sk = (U, Ck ∪ {d}) =
(
U,

{
akj |j = 1, 2, . . . ,m

}
∪ {d}

)
is β plausibility distribution consistent to S if Pl

β

Ck(d) =
Pl

β

C1(d). And, the kth level of scale is said to be the β plausibility distribution optimal scale of S if Sk is β plausibility

distribution consistent to S and Sk+1 (if there is k + 1) is not β plausibility distribution consistent to S.

Theorem10. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistentmulti-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I} and β ∈ (0.5, 1], then

(1) L
β

Ck(d) = L
β

C1(d) �⇒ Bel
β

Ck(d) = Bel
β

C1(d).

(2) H
β

Ck(d) = H
β

C1(d) �⇒ Pl
β

Ck(d) = Pl
β

C1(d).

Proof. It follows directly from the definitions. �

Theorem11. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistentmulti-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I} and β ∈ (0.5, 1], let

β
Ck

= min

{
max
1≤j≤r

P(Dj|[x]Ck)|x ∈ U

}
,

β0 = min{β
Ck

, β
C1

}.
(60)

If β0 > 0.5, then

(1) For β ∈ (0.5, β0], if Sk is β lower approximation consistent to S, then Sk is maximum distribution consistent to S.

(2) For β ∈ (0.5, β
C1

], if Sk is maximum distribution consistent to S, then Sk is β lower approximation consistent to S.

(3) For β ∈ (0.5, β0], the kth level of scale is the maximum distribution optimal scale of S if and only if k is the β lower

approximation optimal scale of S.

Proof

(1) If Sk is β lower approximation consistent to S and β ∈ (0.5, β0], then RCk
β(Dj) = RC1

β(Dj) for all j ∈ {1, 2, . . . , r}.
For any x ∈ U, we know from β0 > 0.5 that both γ

C1
(x) and γ

Ck
(x) are singletons. Then, we have

Dj ∈ γ
C1

(x) �⇒ P(Dj|[x]C1) ≥ β0 �⇒ P(Dj|[x]C1) ≥ β

�⇒ x ∈ RC1
β(Dj) �⇒ x ∈ RCk

β(Dj)

�⇒ P(Dj|[x]Ck) ≥ β �⇒ Dj ∈ γ
Ck

(x),

and

Dj ∈ γ
Ck

(x) �⇒ P(Dj|[x]Ck) ≥ β0 �⇒ P(Dj|[x]Ck) ≥ β

�⇒ x ∈ RCk
β(Dj) �⇒ x ∈ RC1

β(Dj)

�⇒ P(Dj|[x]C1) ≥ β �⇒ Dj ∈ γ
C1

(x).

Therefore γ
Ck

(x) = γ
C1

(x) for all x ∈ U, which follows that Sk is maximum distribution consistent to S.

(2) Assume that Sk is maximum distribution consistent to S, then for any x ∈ U, we have γ
Ck

(x) = γ
C1

(x). Denote

J ([x]Ck) = {[y]C1 ∈ U/RC1 |[y]C1 ⊆ [x]Ck}.
Since RC1 ⊆ RCk , it can easily be verified that J ([x]Ck) forms a partition of [x]Ck .

For any j ∈ {1, 2, . . . , r}, we have
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x ∈ RC1
β(Dj) �⇒ P(Dj|[x]C1) ≥ β > 0.5

�⇒ γ
C1

(x) = {Dj}
�⇒ γ

Ck
(x) = {Dj}.

If [y]C1 ∈ J ([x]Ck), then γ
Ck

(x) = γ
C1

(y). By the assumption that γ
C1

(y) = γ
Ck

(y), we then have γ
C1

(y) = γ
Ck

(x) =
{Dj}, which implies that P(Dj|[y]C1) ≥ β

C1
> β . Thus we have

P(Dj|[x]Ck) = (∑{|[y]C1 ∩ Dj||[y]A ∈ J ([x]Ck)}) /|[x]kC |
= ∑ {

P(Dj|[y]C1) · |[y]
C1

|
|[x]

Ck
| |[y]C1 ∈ J ([x]Ck)

}

≥ β · ∑ { |[y]
C1

|
|[x]

Ck
| |[y]C1 ∈ J ([x]Ck)

}
= β.

Consequently x ∈ RCk
β(Dj), from which follows that

RC1
β(Dj) ⊆ RCk

β(Dj). (61)

Conversely, for any x ∈ U, since

x ∈ RCk
β(Dj) �⇒ P(Dj|[x]Ck) ≥ β > 0.5

�⇒ γ
Ck

(x) = {Dj}
�⇒ γ

C1
(x) = {Dj},

we have

P(Dj|[x]C1) = max
i∈{1,2,...,r} P(Di|[x]C1) ≥ β

C1
> β. (62)

Then, by the definition, we have x ∈ RC1
β(Dj), and consequently,

RCk
β(Dj) ⊆ RC1

β(Dj). (63)

Thus, from Eqs. (61) and (63), we have proved that RCk
β(Dj) = RC1

β(Dj) for all j ∈ {1, 2, . . . , r}, that is, Sk is β lower

approximation consistent to S.

(3) For β ∈ (0.5, β0], we can conclude from (1) and (2) that Sk is maximum distribution consistent to S if and only if Sk

is β lower approximation consistent to S. Therefore k is the maximum distribution optimal scale of S if and only if k

is the β lower approximation optimal scale of S. �

Theorem12. Let S = (U, C∪{d}) =
(
U,

{
akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m

}
∪ {d}

)
be an inconsistentmulti-scale decision

table which has I levels of granulations. For k ∈ {1, 2, . . . , I} and β ∈ (0.5, 1], let
α

Ck
= min

{
P(Dj|[x]Ck)|x ∈ U,Dj ∩ [x]Ck �= ∅}

= min{P(Dj|[x]Ck)|x ∈ U, P(Dj|[x]Ck) > 0},
α0 = min{α

C1
, α

Ck
}.

(64)

Then

(1) For β ∈ (1 − α0, 1], if Sk is generalized decision consistent to S, then Sk is β upper approximation consistent to S.

(2) For β ∈ (1 − α
Ck

, 1], if Sk is β upper approximation consistent to S, then Sk is generalized decision consistent to S.

(3) For β ∈ (1 − α0, 1], k is the generalized decision optimal scale of S if and only if k is the β upper approximation optimal

scale of S.

Proof

(1) If Sk is generalized decision consistent to S, that is, ∂
Ck

(x) = ∂
C1

(x) for all x ∈ U. Then, for any j ∈ {1, 2, . . . , r}, notice
that

j ∈ ∂
Ck

(x) ⇐⇒ Dj ∩ [x]Ck �= ∅ ⇐⇒ P(Dj|[x]Ck) > 0, (65)
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we have

x ∈ RCk
β
(Dj) �⇒ P(Dj|[x]Ck) > 1 − β �⇒ Dj ∩ [x]Ck �= ∅

�⇒ j ∈ ∂
Ck

(x) �⇒ j ∈ ∂
C1

(x)

�⇒ Dj ∩ [x]C1 �= ∅ �⇒ P(Dj|[x]C1) ≥ α
C1

≥ α0 > 1 − β

�⇒ x ∈ RC1
β
(Dj).

Conversely,

x ∈ RC1
β
(Dj) �⇒ P(Dj|[x]C1) > 1 − β �⇒ j ∈ ∂C1(x)

�⇒ j ∈ ∂Ck(x) �⇒ Dj ∩ [x]Ck �= ∅
�⇒ P(Dj|[x]Ck) ≥ α

Ck
≥ α0 > 1 − β

�⇒ x ∈ RCk
β
(Dj).

Thuswehave proved that RCk
β
(Dj) = RC1

β
(Dj) for all j ∈ {1, 2, . . . , r}, that is, Sk isβ upper approximation consistent

to S.

(2) Assume that Sk is β upper approximation consistent to S. For β ∈ (1−α
Ck

, 1], by the definition, we have RCk
β
(Dj) =

RC1
β
(Dj) for all j ∈ {1, 2, . . . , r}. Then, for any x ∈ U,

j ∈ ∂
Ck

(x) �⇒ P(Dj|[x]Ck) ≥ α
Ck

> 1 − β

�⇒ x ∈ RCk
β
(Dj) �⇒ x ∈ RC1

β
(Dj)

�⇒ P(Dj|[x]C1) > 1 − β �⇒ j ∈ ∂
C1

(x).

It follows that ∂
Ck

(x) ⊆ ∂
C1

(x). On the other hand, by Eq. (33) we see that ∂
C1

(x) ⊆ ∂
Ck

(x). Thus we have proved that

∂
C1

(x) = ∂
Ck

(x) for all x ∈ U, that is, Sk is generalized decision consistent to S.

(3) For β ∈ (1 − α0, 1], we can see from (1) and (2) that Sk is generalized decision consistent to S if and only if Sk is β
upper approximation consistent to S. Therefore k is the generalized decision optimal scale of S if and only if k is the β
upper approximation optimal scale of S. �

5. Conclusions

In rough-set data analysis, each object can only take on one value under each attribute in almost all information tables.

However, in some real-life applications, one has to make decision with data measured at different levels of granulations.

That is, an object may take on different values under the same attribute, depending on at which scale it is measured. In

this paper, we have introduced the concept of multi-scale information table from the perspective of granular computation

which has different levels of granulations. In such a system, each object under each attribute is represented by different

scales at different levels of granulations having a granular information transformation from a finer to a coarser labelled

value. We have also defined lower and upper approximations with reference to different levels of granulations in multi-

scale information tables and examined their properties. We have further discussed optimal scale selection with various

requirements in multi-scale decision tables with the standard rough set model and a dual probabilistic rough set model,

where the rough membership functions and the belief functions are employed to measure uncertainty. With reference to

the optimal levels of granulations, one can analyze corresponding knowledge acquisition in the sense of rule induction in

multi-scale decision tables. Finally, we have presented relationship among different notions of optimal scales in multi-scale

information tables. For further study, new approaches to granular representation and newmodels for knowledge acquisition

in complicated multi-scale information tables such as incomplete information tables, fuzzy information tables, set-valued

information tables, interval-valued information tables need to be formulated in future studies.
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