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Abstract-Mathematical models are developed for describing and optimizing the way libraries organize 
information sources. By ordering the sources in a more relevant manner, the users’ search and retrieval costs 
are reduced, which leads to an increase in the value and amount of information processed. The cost of 
organizing collections so as to minimize user effort is dependent on the scatter of relevant sources in the 
literature and the specification of core classes. 

Libraries perform the useful function of collecting and organizing information sources for 
subsequent search and retrieval by users. The benefit of this service can be readily seen by 
considering the scatter of relevant information in the stock of information sources and the 
consequent cost of retrieving pertinent items of information. By grouping the sources into 
subject classes according to their potential productivity in an optimal way, libraries decrease user 
cost and increase the level and value of information usage. The benefits should more than off set 
the cost of organizing collections so as to reduce user effort. 

I. INFORMATION SCATTER 

The seminal work on information scatter was done by the British librarian BRADFORD[ 11 in the 
1930s. Bradford counted the number of articles in each of all the journals he could find with at 
least one relevant article on a given topic of interest. This enabled him to rank order the journals 
in descending order of their productivity, and to divide such a collection into successive zones of 
equal total productivity. He found that the number of journals in the successive zones tended to 
increase by a common constant ratio. He believed that this relationship defined a general law of 
scatter, which has come to be known as Bradford’s Law. 

If scientific journals are arranged in order of decreasing productivity of articles on a given 
subject, they may be divided into a nucleus of periodicals more particularly devoted to the 
subject, and several groups or zones containing the same number of articles as the 
nucleus, where the numbers of periodicals in the nucleus and succeeding zones will be as 
1:n:n*... ([l], p. 154). 

In reporting his results, Bradford plotted the cumulative number of articles as a linear 
logarithmic function of journal rank, i.e. 

R. = A log B, (1) 

where R. denotes the cumulative number of articles, or references, in the n most productive 
journals and A and B are parameters peculiar to specific topics. 

VICKERY [2] was the first to point out the inconsistency between eqn (1) and the verbal 
statement of Bradford’s Law. Subsequent studies by LEIMKUHLER[~, 51, BROOKES[~] and 
WILKINSON[~] have elaborated on this difference. They have shown that the verbal statement 
leads to the alternative formulation: 

R,=Alog(l+Bn). (2) 

BROOKES[~] has shown that formulation (I) is a form of Zipf’s Law and has called the formulation 
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the Bradford-Zipf model. More recently, MoRsE[~] has shown that if the productivity of journals 
follows a geometric pattern, the scatter over the most productive 80% of the collection is 
approximately defined by eqn (1). In two more recent papers, ihoKsTEI~[8,9] argues that 
formulations (1) and (2) represent special cases of a family of scatter formulas developed from a 
generalization of Lotka’s Law of author productivity. 

2. FORMULATION OF THE BRADFORD MODEL 

Let a collection of journals be ranked according to the number of pertinent articles they 
contain on a subject, and then be divided into zones of equal total productivity. Let ni denote the 
number of journals in the first j zones, and the rank position of the last journal in each zone. Then 
according to Bradford’s Law, the successive zone sizes, n, ~ n, ,, increase by some constant 
factor k, such that: 

II-~, = kn, 

n, - n, = k(nz ~ n,! 

n, - n, , = k(n, , - n, J 

and, by induction, 

n2=(l+k)n, 

nq = (I + k + k’)n, 

Equation (3) can be 

which implies that 

(3) 

(4) 

n,=(l+k+...+k’ ‘)n,. 

rewritten in the geometric form: 

ni/nl = (k’ - I)/(k - I) 

j = log [ 1 + (k - l)n,/n,]/log k (3 

when eqn (4) is inverted. 
Let R, denote the total articles or references contained in the n, most productive articles, and 

also the total references in the first j zones. Because each zone has the same number of 

references, then 

R,, = K, 

R, = R,, log [I + (k ~ I)n,/n,l/log k (6) 

from eqn (5). Equation (6) defines the accumulated references in the nl, nz, most productive 
journals, as proposed by Bradford. This relationship is readily generalized to all journals by 
letting R, denote the total references in the n most productive journals and 

R. = R., log [I + (k - I)n/n,]/log k. (7) 

Equation (7) implies eqn (6) and both depend on n,. the size of the first zone. 
Since the choice of the first zone is arbitrary, it is convenient to define a standardized model in 

terms of the single most productive journal, as follows: 

R, = R, log ]I +(k, ~ I)n]/log k, (8) 
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where R, denotes the number of references in the most productive journal, and k, defines the 
minimum number of additional journals needed to obtain R, additional references. Equation (8) 
implies eqn (6), since if a collection with the pattern of (8) is divided into equally productive 
zones, then the total references in the first i zones is the same as (6) where 

k = 1 +(k, - l)n (9) 

defines the change in the Bradford constant. 
Equation (8) is an idealized model of a collection of journals obeying Bradford’s law of 

scatter. In order to distinguish such modeis of collections from the collections themselves, it is 
useful to use different symbols for the parameters RI and k,, such as B for RI and 6 = k, - 1, 

whereby eqn (8) becomes: 

R,=Blog(l+bn)/log(l+b). (10) 

Note that B is a scale parameter and b is a d~~~er~i~~ parameter. 
If two collections have the same b value and different B values, then their respective 

productivity measures are directly proportional to the ratio of their B values. If two collections 
have the same B or R, values but differ in b, then the number of additional journals needed to get 

R, more articles is proportional to b, since 

nz= b+2. (11) 

In general, collections with high b values are more compact, i.e. articles are less evenly dispersed 
or scattered in different journals. 

3. ESTIMATION OF THE DISPERSION PARAMETER 

Estimates of the parameters B and b for a model of a particular reference collection might be 
made by merely counting the number of articles in the first few most important journals, and 
letting B and b equal R, and n2 - 2, respectively. In general, nz is not likely to be an integer; but it 
could be estimated by determining the number of journals, f, needed to accumulate af feast ZR, 

articles, and then letting 

nz = J -(R, - 2R,)l(R, - R,_,) (12) 

where RJ is the total number of articles in the first J journals such that the largest integer in R,/R, 
is 2. 

Another easy way to estimate b is to follow Bradford’s approach and divide a ranked 
collection into zones of equal productivity. If nl and nz denote the rank positions of the last 
journals in the first two zones, then 

R(n,)/R(n,) = 2 = log (1 + bnz)llog (1 + bn,) 

I + bn, = (1 + bn,)’ 

b = (nz - 2n,)h2. 

(13) 

Since a collection can be divided into an arbitrary number of zones, it is likely that different b 
estimates could be obtained for the same collection when using the above method. 

Bradford thought that if ranked collections were divided into three zones the ratio of the 
number of journals in the first and second zones would be constant for all collections of a similar 
type. However, by rearranging eqn (13), Bradford’s ratio is equal to: 

(n,- n,)/n, = bnt + I (14) 

and therefore depends on both the number of journals in the first zone and the parameter b. 
Comparison of this ratio value for different collections would only be meaningful if the number of 
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journals in the first zone of each collection is the same. Equation (14) may explain the rather wide 
variations in ratio values which Bradford reported. 

In order to develop estimation procedures which are more consistent with the observed 
journal productivity of a given collection. it is necessary to first separate the scale and dispersion 
parameters as far as possible, and to use estimators that make maximum use of the data available. 
Consider a ranked collection of m journals, then by (IO) 

and 

Or 

R,, =R~log(ltbm)/log(l+b) 

R,=R,,log(l~hn)llog(l+hmf 

RJR,,, = log (I + hn)/log (I t hnz) (IS) 

where eqn (15) defines the cumulative productivity in relative terms, i.e. the cumulative 
proportion of total productivity in a collection of m journals. 

For ease in subsequent computations, it is useful to carry this normalization process one step 
farther and to define I = n/m as the proportional equivalent of journal rank, and let 

F(x) = RJR, = log (1 t hnrx)[log (I t hm). (16) 

Equation (17) is a normalized version of eqn (IO), in which F(x) denotes the proportion of total 
articles contained in the most productive x proportion of a collection. 

The function F(x) in eqn (17) has the form and properties of a continuous probability 
distribution function over the interval 0 C: x 5 1. The density function f(l) and the mean value .f 
of F(x) are defined as follows: 

f(x) = (I + bfn.f)/( 1 + bmx) (17) 

Because of the correspondence between F(x) and R,, X provides a good way to estimate hm or h. 
Note that 

F(x = nim) = RAR,,, = s rj,,/s r, (19) 

where rj is the number of articles in the journal with rank j. and 

is a good estimator of ,i%n. By setting I = B/m, it is possible to use eqn (18) to find a numerical 
value for bm or h. Unfortunately, the inversion of eqn (18) is a bit tedious but results can be 
found by iterative methods. 

When using observations of journal productivity to estimate h. caution should be exercised in 
using data on journals which contain only one or two relevant articles. For reasons which are 
developed below, it would be better to limit the observations to journals with higher productivity 
and a higher assurance that all journals at or above that level of productivity have been included in the 

observations. Thus, in choosing a value for m in eqn ( IS) a balance must be made between setting it 
too small so as to exclude data and too Iarge so as to include questionable data. 

4. ESTIMATION OF THE SCALE PARAMETER 

Problems in estimating the scale parameter, B, in eqn (10) can be demonstrated by considering 

a rearrangement of eqn (IO), whereby 

B=R,log(li-fr)/log(l+hn). (21) 
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Using eqn (21) and a given value for b, the parameter B can be estimated from any or all observed 
values of n and R,, including the first and the last ranked journal. 

A basic problem in choosing estimators is the possibility of systematic bias in observations of 
R,. For low values of n, the most productive journals may be limited by physical restrictions on 
the number of relevant articles they can publish. For large values of n, many of the relatively less 
productive journals may contain only one or two occasional articles, some of which are likely to 
be missed in a search. Furthermore, the function in eqn (10) describes a continuous decline in 
incremental productivity and not the discrete jumps which may be particularly troublesome at 
higher values of n. 

Another problem is that, by definition, R, is accumulative and dependent on observations at 
n - 1, n - 2, etc. It is better to base an estimate on the independent variables, r,, where 

= [B/log (1 + b)][log (1 + bn) - log (1 + bn - b)] 

r, = [B/log (1 + b)] log [( I+ bn)/( 1 + bn - b)]. 

(22) 

By inverting eqn (22) i.e. 

B = r, log (1 + b)/log [( 1 + bn)/( 1 + bn - b)] (23) 

independent estimates of B can be obtained from the observations of journal productivity, and a 
specified value of b. 

The computation of an estimate of B can be done efficiently by fitting the regression of R, on 
log (1 + bn)/log (1 + b) or r,, on log (1 + bn)/log (1 + b) log (1 + bn - b). The correlation coefficient 
provides an indication of the appropriateness of eqn (10) for describing journal productivity. 

5. ESTIMATION OF TOTAL JOURNALS 

The problem of estimating the total number of relevant journals and references on a particular 
topic is closely related to the problem of estimating the scale parameter B. BROOKES[~] and 
WILKINSON[~] develop estimates of the totals by computing the value of n for which r, = 1, i.e. 
finding the rank position of a journal which yields one article or reference. More generally, eqn 
(22) can be solved for n, i.e. 

n = [ 1 - (1 + b)mrn’8]m’ - l/b (24) 

which could be used to estimate n for various values of r,. 
An interesting approximation to (24) can be found by rearranging eqn (10) as follows: 

R, = B log n(b + I/n)/log(l+ b) 

= B[log n + log (b + l/n)/log (1 + b). (25) 

Then, as n becomes very large, say n = N, l/n becomes insignificant and 

R, = [B/log (I + b)] log bN. (26) 

Equation (26) is a simple linear function of the logarithm of N, as in eqn (I). This is the same 
relationship that Bradford observed when plotting his data and BROOKES[~] called the 
“Bradford-Zipf” model because of its similarity to Zipf’s Law. 

When eqn (26) is used in an analogous way to eqn (22), 

r N = Rw - RN_, = B[log N - log (N - l)]/log (1 + b) 

r N= Blog[l/(l-l/N)]/log(l+b) 

r - B[(l/N)-(1/2N*)+. . .]/log(l + b) N- 

(27) 
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where the higher order terms in N can he ignored so that 

r~~~/Nlog(l~~) (28) 

or 

N = B/r, log (1 + 6). (29) 

Equation (29) is a simple, approximate estimator for large values of N as a function of rN. 
In particular, if N, denotes the number of journals with at least one article, then 

r -I N, - 

N, = B/log(l +b) 
(30) 

where N, can be estimated directly from B and b. Furthermore, eqn (26) could be rewritten in the 
approximate form 

R, = N, log (1 t bn) 01) 

where N, is the total number of journals which contain one or more articles and N, is a relatively 
large number. 

Estimates of the number of journals with 2 or more, and j or more articles per journal can be 
determined by 

N, = B/2 log (I+ b) = NJ2 

Nj = Ni/j N, large 
(32) 

and the number of journals with j articles is approx. 

N, - Ni+, = NJj(j + 1). (33) 

Thus, approximately one-half of the journals with one or more articles have 2 or more articles, 

while the other half have only one article per journal. Only one-sixth of the N, journals have two 
articles, one-twelfth have three articles, and one-twelfth have four articles. These numbers 
indicate that there are relatively many journals with very low productivity when a collection 
attempts to include all references on a topic. The use of N, as an estimate of this total is 
somewhat arbitrary, since it cuts off the tail of the function where journal productivity is 

approximately equal to 

r rv = N,JN (34) 

for large values of n = N. 
Equations (lo), (26) and (31) apply to infinitely large values of n; and as n goes to infinity, R, 

goes to infinity, and R, - R, has an infinitely large value also. Thus, the mode1 does not define in a 
finite way the number of references in the tail-end of the ranked journals. Only by truncating the 
function at some point n = M is it possible to define a finite amount of productivity for journals 
with rank n or more. Truncated models are used in eqns (15) and (16). Although the use of N, as 
the point of truncation is arbitrary, it probably is as good a choice as any. N, can be easily 
estimated from B and h in eqn (30), and N, is a useful parameter for describing the pattern of 
productivity for journals with very large rank positions. 

The cumulative number of articles in all journals with j or more articles can be estimated with 
the aid of eqns (26), (30) and (32) as approx. 

RN! = N, log bN, 

= R,, - N1 log j. (3% 
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6. OPTIMAL SEARCHING METHODS 
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Ordinary classification systems divide collections into zones of more and less relevant 
materials, and in effect define sub-collections which contain the most relevant sources on a 
subject. A good criterion for making such divisions in a collection is the effect it will have on the 
effort required to search the collection for particular queries, and a good measure is the expected 
search length. 

If p(n) denotes the probability that the nth journal examined will successfully terminate a 
search and provide the desired information, then the expected search effort can be defined as 

E(n) = 2, rip(n)) 

O<p(n)s 1 (36) 

2 p(n)= 1. 
n= I 

The last equation states that the information is contained in the collection. The partial sum 

P(n) = 2 p(i) (37) 

defines the cumulative probability of finding the sought item in the nth journal. 
If the collection is searched in order of decreasing probability, i.e. p(n) 2 p(n + l), then E(n) 

achieves a minimum value and P(n) is maximized for each value of n. This is the most efficient 
way to search a collection. However, it may be necessary or desirable in many circumstances to 
merely divide a collection into two zones of more and less probability. The imputed probability is 
the same for every member of each zone, and any search sequence within a zone is equally 
optimal. 

When a collection is divided into two zones of size n, and m - n,, the expected search length 
is 

&(n,) = 5 nP(n,)/n, + 2 n[l - P(ndll(m - nJ 
n=l “=“,+I 

= [m + n, + 1 - mP(n,)l/2. (38) 

Furthermore, if p(n) 1 p(n + l), then P(n,) increases at a decreasing rate as the size of the first 
zone increases, and 

AEdnd = Edn,) - Ez(nl - 1) 

= [U/n)-p(ndlbn/2) 

CO if p(n,)> l/m 

>O if p(n,) < l/m. (39) 

Thus, E,(n,) is minimized when p(n,) is approximately equal to I/m, or n, is approximately equal 
to n,” where 

p(n,“) = l/m. (40) 

Here, n,” is a guide for dividing a collection in an optimal manner; and, in effect, determining the 
optimal size of sub-collections or core collections on a specific topic. 

7. OPTIMAL BRADFORD-TYPE CORE COLLECTIONS 

The Bradford-type journal collection is one that conforms to the model in eqn (10) with 
scatter parameter b and scale parameter B. Let the probability that a particular journal contains 
some desired information be proportional to the productivity of the journal as measured by eqn 
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(lo), then 

P,=R,IR,,=log(l+hn)/log(l+hm) (41) 

where m is the total number of relevant journals and P, = 1. 
The Bradford-type collection is arranged in order of decreasing probability and if searched in 

that way the expected search length is 

E(n)=[hm/log(l +hm)]- l/h. (42) 

If m = N, as defined in eqn (30) it is possible to evaluate E(n) in terms of h and B. 
If the collection is divided into two zones according to the optimality rule in eqn (40) then 

~(n,“) = l/m = [R,,o- R,,o ,1/R,,, 

1/m=l0g[(1+hn,“)/(1+hn,“-h)]/l0g(l+hm) 

(Ilm)log(l+bm)=log[1-l/(n,“+I/b)] ’ 

l/(n,“+ I/h) = I - (1 + hm) ““I 

n ,“=[l-(l+he”“] ‘-l/b. 

(43) 

Equation (43) can be evaluated in terms of h and B by letting m = N, and using eqn (30). 
A simplified approximation of eqn (43) can be obtained by letting 

(I + he”” = 1 -(l/m)log(l +bm) 

n,‘= m/log(l +hm)- l/b 
(4) 

and 

x,“= n,“/m = [I/log(l +bm)]- l/hm 

= l/log bm approx. (45) 

for relatively large values of m and bm. Here, x,” is the proportion of the total relevant journals 
that should be included in an optimal special collection. 

Optimal core collections for various values of m are computed using the approximate eqns 
(44) and (45) in Table 1. This table indicates that over a very wide range of values for m and b the 

percent of m that should be included in the core is confined to a rather tight range of about 
lO-20%. The size of the core is largely determined by the value of m. 

In summary, the procedure suggested is to estimate m by assuming m = N, and using eqn 
(30). This provides an estimate of m in terms of b and B, which can be estimated from 

Table I. Optimal core collection sizes 

Total Core size and 9% for different scatter 
journals 

(m) h = 0.1 h=! h : IO 

50 31 
62% 

IO0 43 
43% 

500 127 
25% 

IO00 220 
(22%) 

5000 800 
(16%) 

10,000 1450 
(15%) 

13 

25% 

22 
(20%) 

(& 
145 

(15%) 
588 
(12%) 
IOU7 
(II%) 

8 
2% 

IS 
(15%) 
59 

(12%) 
IO9 

(11%) 
463 
(9%) 
870 
(9%) 



Operational analysis of library systems 87 

observations of the more productive journals in a field. The estimate of m can then be used in 

eqns (44) and (45) or (46) to give estimates of the optimal dimensions of the core collection. 

8. GENERALIZED SEARCH MODEL 

A more general model for evaluating the implications of zone searching can be developed by 
considering the continuous version of the Bradford model, eqn (17). Figure 1 shows the 
application of this model to the results of a very thorough search of 1282 journals for 9810 useful 
papers on the thermophysical properties of materials made by the CINDAS group at Purdue 
University[lO]. The data indicates a good fit to the continuous Bradford model with a b value of 
0.21 or bm = 269. The value of b was estimated by first computing rI = 15.75 for the 50 most 
productive journals, using eqn (20) and then setting P = $m = 0.3 15. By substituting this value of 
Z in eqn (18), a value of .5Ob = 10.5 or b = 0.21 was obtained by iteration. 

In Fig. 2, the collection is optimally divided into two search zones so as to minimize the 

i 

bm = 269 
F=O.l75 

I I I --.- 
0 02 04 06 08 1.0 

Proportion of journals, x 

Fig. 1. Bradford distribution of the relative productivity of 1282 ranked journals yielding 9810 papers on 
thermophysical properties of materials identified in Ref. 10. 

0 02 04 06 08 IO 

Proporttcn of collection, x 

Fig. 2. Search functions F,“’ defining the cumulative probability of success for z-zone searches of a 
collection with Bradford parameter bm = 269. 
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expected search effort according to the decision rule 

f(-q)=(F,4,rF, !)/(.~,,I--r, I). j=r.2. --I . . _ 
(46) 

F,, = 0 = x,, < s, < x, = F: = I 

where F, = F(x,) defines the proportion of total productivity in the most productive fraction, x,, 
of the collection; j = I, 2, ., z - I denotes the zones: and X, is the fraction of the collection in the 
first j zones, x0 = 0, x, = I. 

The decision rule (46) is developed in Ref. 5 by setting the partial derivatives equal to zero for 

the function 

E.(x,,x, ,.... xr ,)=;&x,+*, ,)(6-F, ,) (47) 
-,-I 

E, = 0.5 1 E: --> .r = E,,, (48) 

where E*(x) defines the expected search effort with z search zones. If only one zone is used the 
entire collection is searched randomly and the relative search effort is E, = 0.5. i.e. on the average 
half of the collection is examined per search attempt. 

If two zones are used and the collection has a Bradford distribution, the optimal size of the 
first zone is XT = f, as defined in eqn (18); and the expected search effort ET is defined by 

ET = [x t I - F(.r)]/2. (49) 

The lowest search effort is obtained by use of an “m zone” search or search all m items in the 
rank order of relative productivity. For a Bradford-type collection, this method has an expected 
search effort of EZ = X. 

When bm = 269 in eqn (l8), X = XT = Ez = 0.175; and from eqn (49), E,*, = 0.24. This indicates 
that going from a “one zone” random search to an optimal two zone search would reduce the 
search effort more than 50%. By going on to an “m zone” search only reduces the random search 
effort an additional 14%. Put another way, the best that could be done is to reduce the search 
effort from 0.50 to 0.175 by going from random searching to rank order searching. However, a 

simple two zone search could be used whereby the most productive 17.5% of the collection is 
searched randomly before randomly searching the balance of the collection. This type of search 
would reduce the search effort to 0.24 and accomplish 74% of the maximum possible reduction 
in search effort. These results are plotted in Fig. 3 for various values of the Bradford parameter bm. 

scattering parameter, bm 

Fig. 3. Optimal expected search effort ET for .~-~one searching a~ a function of the Bradford parameter hm. 
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Figure 3 indicates that the relative advantage of optimal two zone searching holds steady over a 
fairly large range of values for bm. 

In general Fig. 3 suggests that a two zone system with an initial search zone of about 20% of 
the collection is a highly cost-effective way to conduct searches. If a search is confined to the 
more productive region of a collection so that bm is relatively small, then the optimal size of the 
first zone is greater than 20% of this smaller collection and the benefit of two zone searching is 
not as large. However, if bm is unusually large, the optimal size of the first zone is less than 20% 
of the collection and the benefit of two zone searching is increased. In particular, if the collection 
is heavily diluted with irrelevant material, then the gains from two zone searching can be 
exceptionally high, as shown in Fig. 4, where the shaded area represents the reduction in search 
time, when compared with effort required by random search which is the area above the diagonal 
line. The area between the curved line and the shaded area is the additional reduction possible by 
an m zone search. 

Fig, 4. One and two zone search when the collection contains irrelevant material. 

9. COST OF INFORMATION 

The above arguments indicate how substantial reduction in user search cost can be obtained 
by systematically searching a collection in zones of decreasing average productivity. The larger 
part of these savings can be obtained by using a simple two-zone search, with the first zone 
containing 10-200/G of the more productive items in the collection. A search technique of this 
kind requires some prior organization of the collection to classify core and non-core items. 

The results indicate that an appropriate cost function would have the form 

C(I) = co + c,l (50) 

where co is the initial classification cost, c, is the marginal retrieval cost and I is the amount of 
information processed. Note that co could include such initial costs as acquisition and storage as 
well as classification, i.e. typical library costs. Furthermore, these costs are likely to be 
proportional to the size of the collection, i.e. 

(51) 

From the user viewpoint, such cost is a sunk cost and not marginal cost, However, it could be 
made marginal, if all or part is recovered by a lump sum user access charge, or a unit charge on 
the information processed, or by a combination of both kinds of charges. 

The user marginal cost rate, c,, is sensitive to the skill and extent with which items are 
properly classified into core and non-core tiems. If done optimally, the marginal search or 
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processing cost could be reduced by 50% or more depending on the scattering characteristics of 
the information processed. In order to gain some insight about how this could affect library 
performance, it is necessary to measure the value of information. 

IO. VALUE OF INFORMATION 

The marginal economic value of information is what users are willing to pay for incremental 
increases in information, as measured by a demand curve. There is very little data on information 
demand curves, however, in a recent report, KING[ 1 I] suggests that information demand curves 
may have the form: 

v(I) = 0, e-3’ VI >o, v* > 0. (52) 

King’s data on the demand for scientific and technical books is reproduced in Fig. 5. 
Equation (52) implies that the total value of information has the form shown in Fig. 6, i.e. 

V(I)=(c,/vz)(l -emv2’) (53) 

L.. I___L-- _~_I__ --I__ -i J 
0 XXI loo0 ,500 Em 2!xx 

ccples sold per tltk 

Fig. 5. Price vs demand for scientific and technical books as reported by KING[I I] 

Fig. 6. Value, co\t, benefit and information output at equilibrium 
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where u, is a scale parameter, an 1 vZ governs the elasticity of demand, defined by: 

91 

The demand is generally inelastic and is more inelastic as uZ increases. A recent study by ZAIS[ 121 
indicates that information demr nd is inelastic. 

11. MARKET EQUILIBRIUM 

If the users process inform:ltion up to the point where marginal value equals marginal cost, 
then the equilibrium level of information processing is defined by: 

This relationship indicates thar the amount of information processed is inversely proportional to 
the elasticity parameter vZ, i.e. greater elasticity in demand leads to more information processing. 
This level is also influenced positively by the scale parameter v,, and negatively by the marginal 
cost parameter c,. Both of these latter effects are tempered by the Iogarithmic nature of the 
relationships. 

The value of the information processed at the equilibrium level is 

v* = (u, -c-,)/v, (56) 

which is linearly related to c,. V* and the equilibrium variable cost are plotted in Fig. 6, where 

The net difference is: 

c*, = (c,/vz) log (VJCJ. (57) 

B” = V*-CC= (v,/vz)-(c,/vz)(I +log u,--log c,). (58) 

The amount B* represents the maximum user surplus made possible by the existence of the 
library. In principle, therefore, this sum could be tapped for paying all or part of the library 
overhead cost, cc. B* defines the maximum amount available for this purpose, if it is recovered in 
the form of a lump sum user charge so as to not affect the equilibrium position I*. 

12. COST AND BENEFITCHANGES 

Increases in the marginal cost by the imposition of marginal fees would decrease the amount 
of information processed, the value of that information to the user and the benefit of the library 
transaction, since 

d&I*<o, (59) 

These effects are shown in Fig. 7. The amount recovered by the marginal fee would always be 
less than the equilibrium benefit B* defined above, but it may be sufficient for the purpose of 
recovering co. However, the lump sum charge would appear to be preferred since it could recover 
more funds without reducing the information activity level. 

The reduction in marginal cost by improved library organization would tend to increase the 
amount of information processed, its value, and the benefit to the users, as in Fig. 8. For example, 
a SO% reduction in the value of cl would establish a new equ~ibrium where: 

I$ = zt +0.7/v, (60) 

V$ = v?: - 0.5c,/v* (61) 

B$ = BT + 0.1k,/th. (62) 

The increase in the amount of benefit, 0. 15c,/uZ, is the amount available to cover the cost of the 
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Fig. 7. Loss in benefit due to imposition of marginal fee c:. on user marginal cost (‘, 

Fig. 8. Increase in value. benefit and output level when rn~rgi~~i cost is reduced 50% from c, to cI 

improved search methods. Users should be indifferent between the payment of a lump sum equal 
to 0.15cllv2 for the improved ease of processing information. Yet, more information is processed 
and greater information value is generated. It should be noted that the changes in I*, V* and B* 

are all inversely proportional to ul. With greater inelasticity of demand, there is less beneficial 
effect of zone searching. 

If there is an increase in the initial effort required from the user in order to search in a more 
systematic way, this cost should be added to the additional system cost when determining 
whether or not the increased benefits are sufficient. User initial costs probably diminish with 
frequency of use, but would be significant when users are forced to change their ways of 
processing information. This is a good argument for subsidizing new systems during the learning 
period. 
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