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a b s t r a c t

Multi-class classification can be addressed in a plethora of ways. One of the most promising research
directions is applying the divide and conquer rule, by decomposing the given problem into a set of
simpler sub-problems and then reconstructing the original decision space from local responses.

In this paper, we propose to investigate the usefulness of applying one-class classifiers to this task, by
assigning a dedicated one-class descriptor to each class, with three main approaches: one-versus-one,
one-versus-all and trained fusers. Despite not using all the knowledge available, one-class classifiers
display several desirable properties that may be of benefit to the decomposition task. They can adapt to
the unique properties of the target class, trying to fit a best concept description. Thus they are robust to
many difficulties embedded in the nature of data, such as noise, imbalanced or complex distribution. We
analyze the possibilities of applying an ensemble of one-class methods to tackle multi-class problems,
with a special attention paid to the final stage – reconstruction of the original multi-class problem.
Although binary decomposition is more suitable for most standard datasets, we identify the specific
areas of applicability for one-class classifier decomposition.

To do so, we develop a double study: first, for a given fusion method, we compare one-class and
binary classifiers to find the correlations between classifier models and fusion algorithms. Then, we
compare the best methods from each group (one-versus-one, one-versus-all and trained fusers) to draw
conclusions about the overall performance of one-class solutions. We show, backed-up by thorough
statistical analysis, that one-class decomposition is a worthwhile approach, especially in case of
problems with complex distribution and a large number of classes.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-class problems are abundant in real-life applications.
Ranging from several classes in chemometrics [4], medicine [10],
by dozens in object recognition [16] and computer vision [17] to
hundreds in biometrics [11]. Often with the increase in the number
of classes, comes the increased complexity of the estimated decision
rules. This leads to the possibility of overfitting and increasing the
computational cost of recognition system. Additionally, the difficul-
ties in classification may be present only for some classes, while
others can be separated with minimal error.

Building a classifier that handles only a reduced subset of classes
may be a solution to these problems. As binary classification itself is

well-studied in the last years [47], binary decomposition methods
have gained a significant attention of the machine learning commu-
nity [1]. Binary classifiers return simpler decision boundaries and
allow us to reduce the competence areas of each classifier, thus
producing locally specialized learners. This leads to a creation of an
ensemble of binary learners [63], each dedicated to a sub-problem.
From their local decision, the dedicated fusion method must recon-
struct the original multi-class problem. While binary decomposition
has been proven to perform very well in most multi-class problems
[21], it has some limitations as being very dependent on the selected
fusion method or low robustness to imbalanced and sparse distribu-
tion. That is why novel methods for tackling multi-class data need to
be examined, having in mind that binary decomposition is a well-
established point of reference.

In this work, we turn the attention towards one-class classifi-
cation (OCC), which is quite young, yet challenging machine
learning domain [35]. OCC seems a natural way of decomposing
a multi-class dataset. We consider each class as independent and
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train a one-class model on each of them. Then, we reconstruct the
original problem with a dedicated fusion algorithm, just as in
binary decomposition.

Application of OCC to problems, where generating negative
examples can be costly, dangerous or simply impossible [24] is
obvious. However, one may ask: What is the point of applying OCC
to multi-class problems, where the representatives of all classes are
given beforehand? Some studies show that when objects from all
classes are available it is preferable to use binary classifiers than
their one-class counterparts [8,26].

However, in this work we propose to evaluate a hypothesis that
one-class ensembles can achieve high accuracy for handling multi-
class datasets, despite discarding counterexamples during the
training phase.

OCC methods have several desirable properties that may aid the
process of multi-class decomposition. Their primal difference with
binary learners lie in the nature of the training phase. Binary classifiers
try to find such a decision boundary that will minimize the error on
objects from both classes. OCC aims at capturing the unique properties
of the target class, by finding the best possible description that at the
same time will describe the analyzed set and not be overfitted to the
given data. Due to this different principles, the decomposition with
OCC presents itself as an interesting tool for handling complex data
structures. Our previous studies point out that for some specific cases
OCC decomposition may be of better use than other methods [37].

We aim at presenting an exhaustive study on usefulness and
effectiveness of multi-class decomposition with one-class classi-
fiers. To put our findings into context, we compare our proposed
approach with state-of-the-art methods for binary decomposition,
which is contemporary the most popular approach for this task.
We show that for specific multi-class cases OCC can be a better
choice than binary approach, as opposed to the reports in the
literature [8,26]. Building up on our previous experiences, we
propose to analyze the influence of combination methods on the
decomposition ensembles and compare the most popular binary
and one-class classifiers.

The contribution of this work is as follows:

� We identify the areas of applicability for OCC decomposition.
We give an outlook on the potential high usefulness of OCC in
this domain. We emphasize that OCC is not a universal solution
for handling multi-class datasets. However, we aim at present-
ing the cases, in which OCC can outperform the binary
approach, despite having less information during the learning
phase. We discuss the reasons behind this and show that for
complex data OCC offer a worthwhile alternative to binary
methods.

� We study three types of aggregation methods for re-building
original multi-class problem – one-versus-one, one-versus-all
and trained fusers. Although such a comparison for binary
classifiers exists [21] (and we use its findings in our work), such
analysis in case of one-class classifiers is missing. So far only
combination strategies for one-class problems (not multi-class
decomposition) have been examined [52].

� We present a comparison of multi-class decomposition
approaches, carried out with ensembles of one-class and binary
classifiers. We apply state-of-the-art combination strategies
over a diverse set of real-life datasets. With the use of thorough
statistical analysis, we look for best combinations of base
classifiers and aggregation methods. To the best of our knowl-
edge, so far such a comparison spanning over binary and one-
class decomposition ensembles and their fusion algorithms has
not been carried out.

We want to answer some question: Can OCC, despite discarding
information about counterexamples, be of use for dealing with

multi-class datasets? When doing the multi-class decomposition,
when it is preferable to try the OCC approach and when one
should use standard binarization? This paper does not concentrate
on the problem of when to use the decomposition (this topic has
been discussed in [21]) – it deals with the issue on how to use it.

We base our discussion on an extensive empirical study. A
diverse set of 19 multi-class benchmarks is used. We test two one-
class classifiers, representing main groups of methods in this area
(density estimation and boundary estimation), and compare them
with well-established binary methods [22]. Based on our previous
experience with binary [21] and one-class [61] fusion methods, we
selected the best representatives of each of the three combination
groups. We include an in-depth analysis of results to draw
conclusions about the performance of analyzed methods and areas
of suitability of OCC decomposition.

The rest of this paper is organized as follows. The next section
presents the background for one-class classification area. In
Section 3, we describe the essentials of decomposition techniques
for handling multi-class data, while in Section 4 we present in
detail the selected state-of-the-art combination methods for
reconstructing the multi-class task. Section 5 presents the setup
of the used experimental framework and its individual elements.
The results of experimental investigations, together with a thor-
ough discussion, are given in Section 6. The final Section 7
concludes the paper.

2. One-class classification

In this section, we present an overview of the topic of one-class
classification. We show the unique properties of this pattern
recognition problem and discuss the most popular families of
methods used to tackle this task.

Here it is assumed that during the training stage only objects
coming from a single class are available. These are called the target
concept and are denoted by ωT. The purpose of OCC is to calculate
a decision boundary that encloses all available data samples, thus
describing the concept [56]. During the exploitation phase, new
objects, unseen at the training phase, may appear. They may come
from one or more distributions and represent data outside the
target concept. Such objects are labeled as outliers and denoted by
ωO. Therefore, the OCC is often referred to as learning in the
absence of counterexamples.

OCC aims to distinguish the target concept objects from these
possible outliers. It is quite similar to binary classification but the
primary difference is how the one-class classifier is trained. In the
standard dichotomy problems we may expect objects from the
other classes to predominantly come from one direction. Here, the
available class should be separated from all the possible outliers –
this leads to a situation in which a decision boundary should be
estimated in all directions in the feature space around the target
class. An example of a OCC problem is depicted in Fig. 1.

OCC is a solution to many real-life problems where data from a
single class is abundant but is hard or even impossible to obtain
for other objects. This is often the case in problems such as
intrusion detection [24], machine fault diagnosis [7], or solid-
state fermentation [32].

Several methods dedicated to solving OCC problems have been
recently introduced. In the relevant literature two main
approaches can be distinguished:

� Methods based on density estimation of a target class, which
can be simple and effective in some cases. However, this
approach has limited applications, as it requires a high number
of available samples and the assumption of a flexible density
model [51]. Among the most popular density methods for OCC
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the Gaussian model, the mixture of Gaussians [65], and the
Parzen density [15] can be mentioned.

� Estimating the complete density or structure of a target concept
in one-class problems may very often be too demanding or even
impossible. Therefore, boundary methods have been proposed in
recent years. They concentrate on estimating only the close
boundary for a given data, assuming that such a boundary will
describe sufficiently the target class [34]. The main aim of these
methods is to find the optimal size of the volume enclosing
given training points [54], because one that is too small can lead
to an overtrained model, while one that is too big may lead to an
extensive acceptance of outliers into the target class. These
methods rely strongly on the distance between objects, there-
fore proper feature scaling is a very important data pre-
processing step. On the other hand, boundary methods require
a smaller number of objects to properly estimate the decision
criterion in comparison with two previous groups of methods.
The most popular methods of this group include the Support
Vector Data Description [53] and the One-class Support Vector
Machine [13].

In the literature sometimes a third group of methods is
mentioned. It is known as reconstruction methods which were
originally introduced as a tool for data modeling [14]. This group of
algorithms makes assumptions about the object distribution. Use
of reconstruction methods for OCC is based on the idea that
possibly the unknown outliers do not satisfy those assumptions
about the structure of objects under consideration. The most
popular techniques are the k-means [12], the self-organizing maps
[57] and the auto-encoder networks [45]. However, one can notice
that the basis of operation for this group of algorithms is similar to
the density-based methods estimating some distribution/structure
of the data. That is why it can be considered as a sub-group of this
family of one-class classifiers.

3. Decomposition techniques for multi-class problems

In the following section, we give a necessary background in the
area of multi-class decomposition and binarization. We describe
the groups of techniques for aggregating the binary classifiers, that
are used in this study – OVO, OVA and trained fusers. Finally, we
introduce the concept of applying one-class classifiers for handling
multi-class datasets and the differences and similarities between
this approach and binarization.

3.1. Binary classifiers for decomposing multi-class datasets

According to divide and conquer rule, we should aim at solving
each complex problem by dividing it into a series of subproblems,
each easier to solve than the original task [9]. This strategy can be
easily applied in machine learning, where dealing with complex,
multi-class datasets is a common practice [30]. The most popular
approach is to decompose the original dataset into a number of
binary problems [20,28]. This way we achieve locally specialized
classifiers that deal with simplified tasks [46]. The crucial part of
such a decomposition is the reconstruction of original multi-class
problem. Dividing the data into binary groups is relatively simple –

reconstructing the problem from individual outputs is far from
trivial. Therefore, a proper combination method plays a very
important role in the success of the decomposition scheme.

The most popular decomposition schemes are OVO and OVA.
The former creates all possible pairwise combinations of classes,
while the latter selects one class as the positive class and uses all
the remaining ones as the negative class. For both cases the
simplest aggregation strategies are voting methods. For OVO the
class with the highest number of votes win. In OVA, one expect
that all but one classifiers will point out to the negative class.
Hence, this is identical to the Winner-Takes-All (WTA) strategy.
However, the limitations of simple voting methods were soon
discovered and more sophisticated methods, specialized for the
decomposition task, have been proposed.

In recent years the attention of researchers shifts towards the
OVO approach. It divides an M-class dataset into MðM�1Þ=2 binary
pairwise problems. Each classifier is trained on the basis of the
reduced training dataset, which consists only of two corresponding
classes. In the testing phase the new object is presented to each of
the classifiers from the pool. The possible output of the classifier is
given by yijA ½0;1�. This stands for a classifier discriminating
between classes i and j in favor of the former. The outputs are
stored in the confidence matrix for each possible pairwise combi-
nations. The OVO combination methods work directly on this
matrix.

In [21] it was showed that this aggregation strategy offers very
good results, regardless of the base classifier used. Most of the
works here were inspired by Support Vector Machines, yet they
are elastic enough to be applied to any kind of binary learner.
Some works were inspired by limitations of majority voting –

among the most important Decision Directed Acyclic Graph [42]
and Nesting OVO [43] should be mentioned. Alternative way was
proposed in Binary Trees [20] and similar hierarchical structures
[44] that discriminate against a group of classes at each node,
finally returning the final decision in the leaf. An interesting hybrid

Fig. 1. The idea of one-class classification. (Left) Data available during the classifier training procedure (green) representing the target concept. (Center) Boundary one-class
classifier with volume enclosing all the relevant samples. (Right) outlier objects (red) that appear during the exploitation of the model. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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approach, combining OVO with adaptive resonance theory net-
works was described in [59]. In OVO with the increase of the
number of classes, increases significantly the quantity of binary
ensembles in the committee. New ways for managing and redu-
cing a large number of individual OVO decisions were prop-
osed in [48].

OVA strategy did not receive the same attention as its counter-
part, although some report its similar performance [49]. By its
nature, OVA return a lower number of base classifiers for the
decomposition ensemble, yet they are more complex. It decom-
poses an M-class problem into M binary problems. During the
training phase each classifier selects its positive class. All other
examples are transformed to serve as negative examples. During
the testing phase, a new object is presented to each classifier and
the classifier with positive vote is selected as the winner. Using
simple binary voting, as in OVO, may lead to ties if more than one
classifier gives a positive prediction. That is why often the
continuous support function values of classifiers are used and
the classifier with the highest confidence value wins.

The main problem of OVA approach is the introduction of
imbalance into the training set. As objects from all but one classes
are used as negative examples, their quantity is much greater than
the positive examples. Negative effects of imbalanced distribution
on classifier systems are well-known [31]. This may be one of the
reasons behind reports about inferior performance of OVA in
comparison to OVO.

The aggregation strategies here are but a few. One should
mention the WTA, based on the maximum value of the support
function, and the Dynamically Ordered OVA, which is based on a
Naive Bayes classifier for establishing the order in which the OVA
learners are executed [27]. In [29] authors propose to combine
OVA with evolutionary computation to improve the aggregation
quality.

The third approach, that grew from the former ones, can be
described as trained combiners. They are based on constructing
prototypes for each classes, based on the training data, that will
guide the fusion process [3]. The most popular approach is the
Error-Correcting Output Codes (ECOC) [19], which creates a unique
code for each binary classifiers [62]. Many works regarding ECOC
concentrate on the design of compact and reliable codewords to
allow handling many classes [5]. Another popular approach from
this group is Decision Templates [39] that create prototypes of
support function values of each classifier for a given class. Then
during the prediction a new decision profile is formed from the
individual outputs and is compared to existing templates. The
template with the lowest distance from the profile is selected as
the output [40].

3.2. One-class classifiers for decomposing multi-class datasets

So far OCC was used for problems, when the counterexamples
were hard or impossible to collect. To the best of our knowledge
there exist only few works in applying OCC for handling multi-
class datasets. In [6] authors proposed a simple scheme based on
minimal distance from the class. An interesting extension of
boosting, where one-class classifiers were built iteratively on the
order of classes, was introduced in [64]. SVDD, with aim of
maximizing the separation margin, were implemented for multi-
class problems in [58]. Authors of this paper showed that introdu-
cing diverse one-class classifiers may be a useful tool for handling
multi-class datasets [37], and that using multi-criteria ensemble
pruning may result in a more stable one-class [36] decomposition.

One may doubt the idea of using OCC for decomposing multi-
class datasets. OCC uses only information about the target class,
therefore, we discard available useful information. Some articles
report that in case of sufficient number of counterexamples one
should abstain from using OCC and apply binary methods [8,26].
We would like to present a contrary opinion and prove that one-
class classifiers may be a useful tool for tackling multi-class
problems. However, we emphasize that OCC is by no means a
superior method to binary classifiers. For standard datasets, binary
classifiers will perform better, due to their access to counter-
examples. The applicability of OCC lies in complex data, where
standard binary classifiers tend to fail.

To understand the possible advantages of OCC, let us first take a
look on the differences between a binary and an one-class
classifier. Examples of each of these methods are given in Fig. 2.

Both types of classifiers consider two classes – positive (in OCC
called target class) and negative (in OCC called outlier class). The
difference lies in the training procedure. Binary classifier has an
access to object coming from both classes, while in OCC gathering
the counterexamples sufficient for training is impossible. Both
types of classifiers output a binary decision [þ1,�1], where for
OCC, �1 stands for an object that did not satisfied the description
of the target concept.

Binary classifiers shape their decision boundary in such a way,
that will minimize the error made on both classes. OCC aims at
capturing the unique properties of the target class, hoping that
they will allow for a sufficient dichotomization from unknown
outliers. While OCC uses less information about the problem being
considered, its properties allow us to deal with difficulties,
embedded in the nature of the data: imbalance, class noise or
inner outliers, to name a few [38,56].

Using OCC for decomposing a multi-class dataset is very
intuitive – each class is considered as independent and delegated

Fig. 2. The difference between binary and one-class classifier. (Left) A toy data problem handled by the binary classifier. (Right) The same dataset analyzed with the usage of
the one-class classifier, with a single class serving as the target concept.
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to a different one-class model. Therefore, for an M-class problem,
we get M separate one-class tasks. This can be recognized as
similar to OVA approach. An illustrative example of OCC decom-
position is given in Fig. 3.

In fact, OCC decomposition can be viewed as a special case of
OVA decomposition – its one class against the rest, with the
difference that it uses only the class for training and omit all
remaining ones. Although this may seem as a disadvantage, in
practice lifts one of the biggest problems related to OVA –

imbalanced object quantity between the target class and the
remaining ones.

Each base classifier aims at adjusting itself to the given target
class. In OCC the classifier is fit in such a way, that will allow for a
best possible separation form potential outliers. On the other
hand, OCC algorithms tend to avoid overfitting by not having tight
description around the data [41]. This is an especially important
feature in multi-class decomposition, as it allows us to discrimi-
nate between the classes and at the same time preserves the
generalization abilities of the base classifiers.

Some OCC methods, as SVDD have build-in methods for dealing
with irrelevant data in the target class (i.e., objects lying too far
from the main distribution). This is a desirable property for
handling multi-class problems, as such objects will cause the
decision boundary to become too big, leading in turn to a high
overlap between classifiers [37].

The training phase is independent for each classifier and thus
can be easily run in parallel environment to reduce the computa-
tional time [60]. The testing phase is based on presenting a new
object to each classifier. Then OCC decides if the target object
belongs to a target class or is labeled as an outlier. Then from each
of M-decisions the final multi-class decision is aggregated. Notice
that it is straightforward to implement OVA combiners to this case,
while OVO combiners must be slightly modified to deal with such
classifiers. The training set of each classifier consists only of
objects from a specific class. Testing set should have objects from
both the outlier and the target class, in order to evaluate both the
false acceptance and false rejection rates.

In case of all classifiers in the ensemble point out the new
object as an outlier, we assign it the class represented by the
closest one-class boundary, as expressed by Euclidean distance.

Some one-class classifiers (like SVDD) base their decision on
the distance from the decision boundary. To apply fusion methods
that require support function values for each class, one must use
the following heuristic mapping (from distance to probability):

Fðx;ωT Þ ¼
1
c1
expð�dðxjωT Þ=c2Þ; ð1Þ

which models a Gaussian distribution around the classifier, where
dðxjωT Þ is a distance (in case of this paper the Euclidean distance is
used) from the evaluated object to the support vectors describing
the target concept, c1 is the normalization constant and c2 is the
scale parameter. Parameters c1 and c2 should be fitted to the target
class distribution.

Finally, one must note that for standard one-class classifiers
one cannot compute the accuracy during the training phase and
other measures must be used [55]. For multi-class decomposition
however, during the testing phase, we have objects representing
all the classes available and we can use the accuracy as the
performance measure.

4. Ensemble fusion methods for aggregating local decisions

In this section, we will describe the five fusion methods for
aggregating decomposed decisions used in this paper. They
represent three different groups of fusers: OVA, OVO and trained
combiners. Our choice of OVO and OVA methods was dictated by
the results found in the comprehensive study on binary decom-
position [21]. Following suggestions presented in this paper, we
have selected three well-performing aggregation schemes. Addi-
tionally, we have expanded our study with two trained fusers that
were omitted in the former comparison. In our opinion they
represent an important direction in ensemble learning and should
be taken into consideration.

4.1. OVO and OVA fusers

� Maximum confidence strategy (MAX) is an OVA aggregation
scheme. It is developed in order to handle tie situations, in
which more than one classifier give a positive answer. The
final output is taken from the classifier with highest value of
the support function:

Classx ¼ arg max
m ¼ 1;2;…;M

Fðx;mÞ: ð2Þ

� Pairwise coupling (PC) [25] is an OVO aggregation scheme. It is
based on the estimation of the joint probability for M classes
from the pairwise probabilities of all possible binary combina-
tions. Therefore, for given Prob(Classi jClassi or Classj), the fuser
approximates the posteriori probabilities p̂ðxÞ ¼ ðp̂1 ðxÞ;…; ^pM
ðxÞÞ, based on the individual classifier outputs. The class with
the highest posteriori probability is selected as the final

Fig. 3. The difference between decomposing a multi-class problem with binary and one-class classifiers. (Left) A toy problem with four classes decomposed with binary
classifiers applying OVA procedure. (Right) The same dataset decomposed with one-class classifiers, each delegated to a different class. Note that in this example we assumed
that all the data should be included in the decision boundaries, while some of the one-class methods can discard irrelevant objects.
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output of the system:

Classx ¼ arg max
m ¼ 1;2;…;M

^pm : ð3Þ

In order to calculate the posteriori probabilities, the Kullback–
Leibler distance between rij and μij is minimized:

lðpÞ ¼
X

1r ia jrM

nijrijlog
rij
μij

¼
X
io j

nij rijlog
rij
μij

þð1�rijÞlog
1�rij
1�μij

 !
;

ð4Þ
where μij ¼ pi=ðpiþpjÞ and nij stands for the number of objects
in the i-th and j-th classes.
For OCC methods, one needs to estimate the acceptance/
rejection probabilities for the target class [54].

� Decision Directed Acyclic Graph (DDAG) [42] is an OVO aggre-
gation scheme. It constructs a rooted binary acyclic graph with
each node having assigned a list of classes and a correspond-
ing classifier (binary or OCC). At each level the designated
classifier dichotomizes between given two classes, and the
class that is not predicted is removed. In case of OCC if the
classifiers predict the outlier, the target class is removed, and
vice versa. The last class remaining on the list is the final
output of the system.

4.2. Trained fusers

� Error-Correcting Output Codes (ECOC) [19] framework is a
simple yet effective framework created for dealing with the
multi-class categorization problem the reconstruction from the
decisions of binary classifiers. The basis of the ECOC framework
consists of designing a codeword for each of the classes. These
codewords encode the membership information of each class.
Arranging the codewords as rows of a matrix, we obtain an
encoding matrix. Each of these binary problems (or dichoto-
mizers) splits the set of classes into two partitions (coded by
þ1 or �1 according to their class set membership or 0 if the
class is not considered by the current binary problem). Then, at
the decoding step, applying the n trained binary classifiers, a
code is obtained for each data point in the test set. This code is
compared to the base codewords of each class denned in the
encoding matrix and the data point is assigned to the class with
the closest codeword [62]. ECOC can be easily used for OCCs

ensemble, as we can map the target class as þ1 and the
unknown, outlier class by �1.

� Decision templates (DT) [39] consists of typical, often average
values of discriminant functions, returned by classifiers from a
pool for each of the classes. During the classification step each
of the templates is compared to the input objects. A decision
template for the j-th class, labeled as DTj, is created by
averaging values of discriminant functions for objects in the
training set from the j-th class. The responses of classifiers are
organized as a matrix, with the number of columns equal to the
number of L classifiers in a pool and with the number of rows
equal to the number of M classes in the problem under
consideration. A decision profile for a new object x, labeled as
DP(x), is then compared to all existing decision templates:

ydtðxÞ ¼IðDTj;DPðxÞÞ; j¼ 1;…;M; ð5Þ
where J is called a similarity measure (or a distance from the
template). The most popular one is the Euclidean measure, for
which the value of discriminant function for the j-th class is
expressed as follows:

ydtðxÞ ¼ 1� 1
M � L

XM
i ¼ 1

XL
k�1

½DTjðk; iÞ�gk;iðxÞ�2; ð6Þ

where DTjðk; iÞ indicates an element at the (k, i) position in the
j-th decision template and gk;iðxÞ stands for the k-th classifier
for the i-th class.

5. Experimental setup

In this section, we describe the set-up of used experimental
framework. We give the details about the used data, classification
algorithms and statistical test used.

5.1. Datasets

For the purpose of the presented study, we selected 20 diverse
datasets from the UCI repository. Our aimwas to chose datasets, to
which the decomposition would be useful – in other words
datasets consisting of a larger number of classes. Selected data
are described by 4–95 classes. The details of used datasets are
presented in Table 1. Some of the largest datasets (nursery, page-
blocks, penbased, satimage, shuttle and led7digit) were sampled
with stratification and reduced to 10% of the original size, in order
to reduce the overall computational cost required for training. For
datasets with missing values, instances without full set of features
available were removed.

The selection of datasets for this study was motivated by
selecting sets with more than three classes, on which the standard
machine learning algorithms (without the decomposition proce-
dure) achieve an accuracy rate over 50%.

Experiments were done with the usage of 5�2 cross-
validation. In case of one-class classifiers, the classifier was trained
on the training fold consisting only objects from the target class
and tested on objects from all other classes (labeled as outliers)
and a testing sample from the target class (to check the false
rejection rate).

5.2. Classification algorithms

For this study, we aimed at a comparison between the one-class
and binary ensembles for decomposing multi-class data. Therefore, we
selected a well-known and popular machine learning algorithm, in
order to evaluate their performance over a diverse set of multi-class
benchmarks. Our choice of binary classifiers was dictated by the
lessons learned from a survey on binary decomposition techniques

Table 1
Details of datasets used in the experiments.

No. Name Objects Features Classes

1. Autos 159 25 6
2. Car 1728 6 4
3. Cleveland 297 13 5
4. Dermatology 366 33 6
5. Ecoli 336 7 8
6. Flare 1389 10 6
7. Glass 214 9 6
8. Led7digit 500 7 10
9. Lymphography 148 18 4

10. Nursery 1296 8 5
11. Page-blocks 548 10 5
12. Penbased 1099 16 10
13. Satimage 643 36 7
14. Segment 2310 19 7
15. Shuttle 2175 9 7
16. Vehicle 846 18 4
17. Vowel 990 13 11
18. Yeast 1484 8 10
19. Zoo 101 16 7
20. Auslan 2565 128 95
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[21], which pointed out C4.5 and SVM as stable and robust base
classifiers for the decomposition. As for the one-class models, we
described in Section 2 that they come from two main groups. We
decided to chose two representative from each of them, based on their
well-documented performance and popularity. We decided that
density methods will be represented by Parzen Density Data Descrip-
tion and Mixture of Gaussians Data Description, while boundary
methods are represented by One-Class Support Vector Machine and
Support Vector Data Description. Below each of the used classifiers is
described shortly:

� Parzen Density Data Description [15] is a kernel density
estimator. It is a flexible density model with a Gaussian model
around each of the training objects. For OCC purposes it
estimates the complete density of the target class, and checks
if the new, unseen object may be drawn from the estimated
distribution.

� Mixture of Gaussians Data Description [65] is another density
estimator that uses a combination of K Gaussians to achieve a
more flexible description of the target class. EM algorithm is
used to optimize parameters of this classifier. For high-
dimensional data, one needs to remember that the number of
free parameters grows significantly.

� One-Class Support Vector Machine [50] is a modification of
popular support vector classifier for one-class problems. It
maps the training data onto an enclosing hyperplane with the
usage of function f χ : Rd↦R such that most of the data in χ
belong to the set Rχ ¼ fxARd; f χ ðxÞZ0g and the volume of Rχ

is minimal. This problem is known as minimal volume set (MVS)
estimation. Because we are considering an M-class recognition
problem, we have to learn M membership functions f χ i – one
for each class. A kernel function can be used to estimate MVS.

� Support Vector Data Description (SVDD) [53] is a model which
gives a closed boundary around the data in a form of a
hypersphere. It is characterized by a center a and radius R. In
its basic form it assumes that all objects from the training set
must be enclosed by this hypersphere. Yet this approach often
leads to a poor performance due to too big enclosing volume.
Therefore, identically as in canonical Support Vector Machine
one may introduce slack variables to include the possibility
inner outliers in the training set. It uses a kernel function for
mapping the data into higher dimensions with a better
representation.

� C4.5 is a decision tree induction algorithm. It constructs a
hierarchical classification rule structure in a form of top-down
tree construction, with the normalized information gain for
splitting criterion. The feature with the highest value of this
criterion is used to split the tree at the considered level.

� Support Vector Machine (SVM) is a maximum separating
margin-based classifier. It applies the kernel function to map
the original data into a high-dimensional feature space, in
which the linear separation will be possible. A maximum
margin between the classes is selected in the new, artificial
space to minimize an upper bound of the expected risk, and
avoid using empirical risk.

Parameters used for the algorithms are given in Table 2. They
are standard values used normally for these types of classifiers,
examined in our previous works on binary and one-class ensem-
bles [21,37]. We notice that careful tuning of each classifier may
result in an improvement of the accuracy. However, our aimwas to
propose a decomposition method comparison, not a detailed study
on optimizing classifier features. Furthermore, in a framework
where no method is tuned, winner methods tend to correspond to
the most robust, which is also a desirable characteristic.

We used identical parameters for each dataset.

5.3. Statistical tests

In order to present a detailed comparison among a group of
machine learning algorithms, one must use statistical tests to
prove that the reported differences among classifiers are signifi-
cant [23]. We use both pairwise and multiple comparison tests.
Pairwise tests give as an outlook on the specific performance of
methods for a given dataset, while multiple comparison allows us
to gain a global perspective on the performance of the algorithms
over all benchmarks. With this, we get a full statistical information
about the quality of the examined classifiers.

� For a pairwise comparison, we use a 5�2 combined CV F-test
[2]. It repeats five-time two fold cross-validation so that in each
of the folds the size of the training and testing sets is equal. This
test is conducted by comparison of all versus all. As a test score
the probability of rejecting the null hypothesis is adopted, i.e.
that classifiers have the same error rates. As an alternative
hypothesis, it is conjectured that tested classifiers have differ-
ent error rates. A small difference in the error rate implies that
the different algorithms construct two similar classifiers with
similar error rates; thus, the hypothesis should not be rejected.
For a large difference, the classifiers have different error rates
and the hypothesis should be rejected.

� For assessing the ranks of classifiers over all examined bench-
marks, we use a Friedman ranking test [18]. It checks, if the
assigned ranks are significantly different from assigning to each
classifier an average rank.

� We use the Shaffer post hoc test to find out which of the tested
methods are distinctive among an n �n comparison. The post
hoc procedure is based on a specific value of the significance
level α. Additionally, the obtained p-values should be examined
in order to check how different given two algorithms are.

We fix the significance level α¼ 0:05 for all comparisons.

6. Experimental results

We have carried an extensive experimental comparison, using
the framework described in Section 5. By this, we wanted to
answer the following questions:

Table 2
Details of classifier parameters used in the experiments.

Algorithm Parameters

Parzen kernel type¼normal
parameter optimization¼max. likelihood

MoG no. of components¼[2;10] (best setting selected)
OSCVM kernel type¼RBF

C¼1.0
Tolerance¼0.05
Epsilon¼1.0E�12
parameter optimization¼SMO

SVDD kernel type¼RBF
C¼5.0
Tolerance¼0.01
Epsilon¼1.0E�12
parameter optimization¼quadratic programming

C4.5 pruning¼true
confidence level¼0.25
Minimum number of items per leaf¼2

SVM kernel type¼RBF
polynomial degree¼1
C¼1.0
Tolerance¼0.01
Epsilon¼1.0E�12
parameter optimization¼SMO
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� Can applying one-class classifiers for decomposing multi-class
datasets bring better results than using binarization, despite
rejecting the information about counterexamples?

� Is there a difference from the decomposition point of view,
between the density and boundary-based one-class methods?

� What kind of aggregation method is most suitable for reconstruct-
ing an original multi-class dataset from one-class responses?

The results for examined methods are given in Tables 3–7, one
table dedicated to each fusion method under consideration. Apart
from the accuracies, the results of statistical pairwise and ranking tests
are presented. Table 8 presents collected results – for each fusion
method statistically best one-class and binary classifiers were chosen.

Results of the Shaffer post hoc test are depicted in Tables 9 and
12. Note that we are doing such a comparison only for one-class
classifiers. Post hoc analysis for binary classifiers and their fusion
methods was presented in [21].

6.1. Can one-class ensembles outperform binary approach?

The main aim of this study was to answer if investigating the
decomposition methods with one-class classifiers is worthwhile,

and if this approach has any advantages over the well-established
binarization.

Our initial assumption was that OCC will not be superior to
binarization for all cases, and that was confirmed. For standard,
well-sampled and balanced datasets, with lack of noise, binary
classifiers tend to outperform significantly their one-class counter-
parts. This is an obvious situation, as binary classifiers have an
access to counterexamples during the training phase. Both SVM
and C4.5 work reasonably well for standard decomposition sce-
narios. As there are no difficulties embedded in the nature of the
data, that can deteriorate their performance, binary methods can
estimate an efficient separation plane that allows for a good
dichotomization, and in result for a high quality multi-class
recognition. SVM works very well, due to its natural binary nature
and efficient maximum margin separation. C4.5 is a weak classi-
fier, but can work surprisingly well for simplified problems, due to
its space partitioning nature which is proven by these tests and
other done in the literature [21].

However, the results clearly show that one cannot assume the
lack of applicability of OCC for the decomposition approach. For
more than half of the datasets one-class methods achieved not
worse performance than binary classifiers. This proves that they

Table 3
Results (accuracy [%]) for one-class and binary classifiers combined using Max-
imum Confidence Strategy (MAX). Small numbers under accuracies stand for
indexes of methods, from which the considered one is statistically superior.

Dataset Parzen1 MoG2 OCSVM3 SVDD4 C4.55 SVM6

1. 68.94 68.02 70.88 71.95 65.43 67.42
5 5 1;2;5;6 1;2;5;6 � 5

2. 85.23 83.47 87.90 88.64 89.24 89.12
2 � 1;2 1;2 1;2 1;2

3. 47.32 47.32 55.87 55.87 54.21 57.53
� � 1;2;5 1;2;5 1;2 1;2;5

4. 90.36 90.36 95.41 95.41 90.12 95.75
� � 1;2;5 1;2;5 � 1;2;5

5. 71.18 71.76 72.90 72.74 77.58 77.43
� � 1;2 1;2 1;2;3;4 1;2;3;4

6. 75.56 75.56 74.91 74.91 73.73 75.49
5 5 � � � 5

7. 63.22 63.22 62.89 62.89 65.32 60.84
6 6 � � 1;2;3;4;6 �

8. 70.45 68.18 75.18 75.65 69.86 71.20
2 � 1;2;5;6 1;2;5;6 2 2;3

9. 67.32 67.82 76.72 76.72 74.94 82.27
� � 1;2 1;2 1;2 1;2;4;5

10. 90.21 91.16 85.64 86.62 79.35 91.05
4;5 1;4;5 5 5 � 3;4;5

11. 88.48 88.48 92.05 92.05 94.53 95.34
� � 1;2 1;2 1;2;3;4 1;2;3;4

12. 95.02 94.26 96.11 95.76 84.80 90.45
5;6 5;6 5;6 5;6 � 5

13. 76.26 77.14 81.72 81.96 80.01 82.02
� 1 1;2;5 1;2;5 1;2 1;2;5

14. 89.67 87.82 90.47 90.47 94.72 91.21
2 � 1;2 1;2 1;2;3;4;6 �

15. 96.23 96.23 94.25 94.25 97.51 92.74
3;4;6 3;4;6 6 6 1;2;3;4;6 �

16. 65.21 65.79 70.93 69.33 70.06 75.15
� � 1;2;4 1;2 1;2 1;2;3;4;5

17. 71.78 71.78 70.09 70.09 75.76 51.23
4;5;6 4;5;6 6 6 1;2;3;4;6 �

18. 55.23 53.82 57.07 57.98 54.24 56.20
2 � 1;2;5;6 1;2;5;6 � 1;2

19. 83.22 83.22 87.14 87.96 88.27 96.05
� � 1;2 1;2 1;2 1;2;3;4;5

20. 78.39 77.83 81.58 82.86 67.90 74.12
5;6 5;6 1;2;5;6 1;2;5;6 � 5

Avg. rank 4.26 4.88 2.89 2.59 3.94 2.44

Table 4
Results (accuracy [%]) for one-class and binary classifiers combined using classifica-
tion by Pairwise Coupling (PC). Small numbers under accuracies stand for indexes
of methods, from which the considered one is statistically superior.

Dataset Parzen1 MoG2 OCSVM3 SVDD4 C4.55 SVM6

1. 66.89 66.24 69.42 70.45 77.71 74.12
� � 1;2 1;2 1;2;3;4;6 1;2;3;4

2. 83.24 81.97 82.05 82.91 92.38 92.76
2 � � � 1;2;3;4 1;2;3;4

3. 39.37 39.37 48.29 48.29 50.47 58.62
� � 1;2 1;2 1;2;3;4 1;2;3;4;5

4. 87.38 87.38 91.24 91.24 96.03 93.82
� � 1;2 1;2 1;2;3;4;6 1;2;3;4

5. 71.45 72.00 72.74 72.30 79.27 77.26
� � � � 1;2;3;4;6 1;2;3;4

6. 72.05 72.05 69.32 69.32 74.19 74.95
3;4 3;4 � � 1;2;3;4 1;2;3;4

7. 59.23 59.23 65.11 65.11 71.48 63.22
� � 1;2;6 1;2;6 1;2;3;4;6 1;2

8. 69.32 67.04 73.61 74.13 72.24 72.76
2 � 1;2;5;6 1;2;5;6 1;2 1;2

9. 67.48 68.32 73.74 73.74 74.97 81.54
� � 1;2 1;2 1;2 1;2;3;4;5

10. 87.23 88.46 84.02 84.59 88.63 91.82
3;4 1;3;4 � � 3;4 1;2;3;4;5

11. 88.32 88.32 90.68 90.68 95.20 94.58
� � 1;2 1;2 1;2;3;4;6 1;2;3;4

12. 94.45 93.74 94.26 93.87 90.36 95.15
5 5 5 5 � 1;2;3;4;5

13. 72.34 74.01 76.28 76.64 81.98 83.47
� 1 1;2 1;2 1;2;3;4 1;2;3;4;5

14. 90.15 88.66 88.02 88.02 96.79 92.81
1;3;4 � � � 1;2;3;4;6 1;2;3;4

15. 95.23 95.23 92.71 92.71 99.34 96.17
3;4 3;4 � � 1;2;3;4;6 3;4

16. 62.18 62.48 67.02 65.44 71.03 72.93
� � 1;2;4 1;2 1;2;3;4 1;2;3;4;5

17. 68.28 68.28 65.32 65.32 80.00 69.78
3;4 3;4 � � 1;2;3;4;6 3;4

18. 55.47 54.03 54.88 55.21 57.04 58.39
2 � � 2 1;2;3;4 1;2;3;4;5

19. 80.41 80.41 83.97 84.39 92.77 95.12
� � 1;2 1;2 1;2;3;4 1;2;3;4;5

20. 76.14 75.22 79.18 80.23 61.25 70.38
5;6 5;6 1;2;5;6 1;2;5;6 � 5

Avg. rank 4.10 4.97 3.51 3.19 2.86 2.37
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are able to successfully capture the nature of their target classes
and sufficiently cover the decision space. Even without the access
to counterexamples, one-class ensembles can display at the same
time robustness to novelties (high true rejection rate, in our case
ability to recognize objects from other classes) and a good
generalization ability (which allows for a high true acceptance
rate). This means that OCC can be in many cases an alternative to
binary approaches, with easy decomposition, parallel implemen-
tation and high robustness to complex data structures.

But what is of greatest interest, are the situations in which one-
class ensembles outperform in a statistically significant way binary
counterparts. This happens in case of seven datasets: glass,
led7digit, penbased, shuttle, vowel, yeast and auslan. Let us take
a closer look at these particular situations.

First observation is the fact that five of these datasets (led7digit,
penbased, vowel, yeast and auslan) are the four datasets with the
highest number of classes among all the used benchmarks (from 10
to 95). In all these cases specific one-class ensembles returned
statistically better performance than binary methods. This can be
explained by the nature of used OVA and OVO decompositions. In
case of OVO for a large number of classes the number of ensemble
members in a committee rises significantly (for 10 classes, we need

to train 45 classifiers). It is known that ensemble with a large
number of base classifiers will have a high computational complex-
ity and can behave unstable, especially with respect to their fusion
method [63]. It is very possible that in such a large pool of classifiers
some model will be non-competent [22], thus causing the aggrega-
tion function to drop the performance quality. One-class ensembles
return significantly smaller ensembles (for 10 classes, we need to
train 10 classifiers). This quality is also displayed by OVA decom-
positions, as they also train a number of base learners equal to the
number of classes. However, for a large number of classes they will
create a highly imbalanced dataset (for 10 classes with similar
quantities of objects, after applying OVA, we get an imbalance ratio
1:9). This may cause a significant drop of the final accuracy. OCC is
robust to such situations, as the negative examples are not used
during the training process, thus there is no possibility of bias
towards the majority class. Additionally, one-class ensembles have
proven themselves as capable tools for dealing with imbalanced
datasets [37].

In case of the two remaining datasets (glass and shuttle) can be
explained by the robustness of one-class algorithms to some
atypical properties of data. In these datasets there are several
inner outliers within each class that can influence the shape of the

Table 5
Results (accuracy [%]) for one-class and binary classifiers combined using Decision
Directed Acyclic Graph (DDAG). Small numbers under accuracies stand for indexes
of methods, from which the considered one is statistically superior.

Dataset Parzen1 MoG2 OCSVM3 SVDD4 C4.55 SVM6

1. 67.56 67.04 70.45 71.05 78.56 74.73
� � 1;2 1;2 1;2;3;4;6 1;2;3;4

2. 83.11 81.62 83.24 84.02 92.03 92.51
2 � 2 2 1;2;3;4 1;2;3;4

3. 40.05 40.05 50.78 50.78 53.26 58.69
� � 1;2 1;2 1;2;3;4 1;2;3;4;5

4. 87.12 87.12 93.05 93.05 95.31 93.95
� � 1;2 1;2 1;2;3;4;6 1;2

5. 72.38 73.04 73.38 72.89 78.64 77.36
� � 1 � 1;2;3;4 1;2;3;4

6. 72.87 72.87 71.95 71.95 74.11 75.19
� � � � 1;2;3;4 1;2;3;4;5

7. 60.41 60.41 67.36 67.36 70.24 62.88
� � 1;2;6 1;2;6 1;2;3;4;6 1;2

8. 70.20 67.84 73.92 74.51 71.06 73.05
2 � 1;2;5;6 1;2;5;6 1;2 1;2;5

9. 66.89 67.32 75.69 74.96 75.69 81.57
� � 1;2 1;2 1;2 1;2;3;4;5

10. 87.23 88.82 84.67 85.13 88.82 91.43
3;4 1;3;4 � � 3;4 1;2;3;4;5

11. 87.92 87.92 91.30 91.30 95.78 94.29
� � 1;2 1;2 1;2;3;4 1;2;3;4

12. 94.62 93.38 94.62 94.04 87.38 95.54
5 5 5 5 � 1;2;3;4;5

13. 73.04 74.19 79.03 79.46 81.39 83.98
� 1 1;2 1;2 1;2;3;4 1;2;3;4;5

14. 90.32 88.40 90.02 90.02 96.77 92.35
2 � 2 2 1;2;3;4;6 1;2;3;4

15. 95.18 95.18 93.47 93.47 99.64 96.23
3;4 3;4 � � 1;2;3;4;6 3;4

16. 62.42 63.08 68.00 67.18 70.15 71.83
� � 1;2 1;2 1;2;3;4 1;2;3;4;5

17. 67.23 67.23 65.89 65.89 77.05 68.47
4 � � � 1;4;6 4

18. 53.28 51.67 53.99 55.45 57.46 60.33
2 � 1;2 1;2 1;2;3;4 1;2;3;4;5

19. 80.41 80.41 84.16 84.89 92.32 94.79
� � 1;2 1;2 1;2;3;4 1;2;3;4;5

20. 77.06 76.72 80.48 80.96 62.96 72.89
5;6 5;6 1;2;5;6 1;2;5;6 � 5

Avg. rank 4.25 4.92 3.53 3.21 2.87 2.19

Table 6
Results (accuracy [%]) for one-class and binary classifiers combined using Error-
Correcting Output Codes (ECOC). Small numbers under accuracies stand for indexes
of methods, from which the considered one is statistically superior.

Dataset Parzen1 MoG2 OCSVM3 SVDD4 C4.55 SVM6

1. 67.54 66.82 73.55 74.38 76.34 74.23
� � 1;2 1;2 1;2;3;4;6 1;2

2. 85.89 83.72 83.96 84.21 93.23 93.46
3;4 � � � 1;2;3;4 1;2;3;4

3. 44.56 44.56 57.28 57.28 54.23 58.04
� � 1;2;5 1;2;5 1;2 1;2;5

4. 87.65 87.65 92.30 92.30 93.65 91.28
� � 1;2 1;2 1;2 1;2

5. 70.58 71.18 72.28 71.93 77.43 75.12
� � 1;2 1 1;2;3;4;6 1;2;3;4

6. 75.56 75.56 73.42 73.42 73.85 74.05
3;4;5;6 3;4;5;6 � � � �

7. 58.72 58.72 64.51 64.51 66.36 62.05
� � 1;2;6 1;2;6 1;2;6 1;2

8. 72.76 70.18 74.53 75.03 70.84 71.27
2;5;6 � 1;2;5;6 1;2;5;6 � 1

9. 68.72 66.31 75.98 76.36 73.48 78.25
2 � 1;2;5 1;2;5 1;2 1;2;5

10. 89.90 90.21 87.68 88.04 86.73 87.98
3;4;5;6 3;4;5;6 5 5 � 5

11. 88.19 88.19 91.36 91.36 92.27 93.99
� � 1;2 1;2 1;2 1;2;3;4;5

12. 95.02 94.26 96.11 96.11 91.89 94.80
5 5 1;2;5;6 1;2;5;6 � 5

13. 72.68 74.56 77.78 78.03 79.20 81.25
� 1 1;2 1;2 1;2 1;2;3;4;5

14. 92.38 90.47 91.74 91.74 95.00 91.82
2 � 2 2 1;2;3;4;6 2

15. 96.46 96.46 95.18 95.18 97.23 94.29
6 6 6 6 3;4;6 �

16. 65.70 66.28 70.06 68.94 72.22 74.01
� � 1;2 1;2 1;2;3;4 1;2;3;4;5

17. 75.68 75.68 78.92 78.92 77.31 70.76
6 6 1;2;5;6 1;2;5;6 1;2;6 �

18. 57.10 55.23 57.98 58.69 55.32 57.04
5 5 1;2;5;6 1;2;5;6 � 5

19. 80.63 80.63 86.69 87.02 90.74 93.60
� � 1;2 1;2 1;2;3;4 1;2;3;4;5

20. 83.86 82.86 88.00 88.29 68.82 82.03
5;6 5;6 1;2;5;6 1;2;5;6 � 5

Avg. rank 3.99 4.95 3.25 2.58 3.63 2.60
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decision plane, without carrying any useful information about the
class distribution. In case of using boundary methods (SVDD and
OCSVM), such examples can be easily filtered out and removed
from the process of calculating the spherical decision boundary.
Additionally, it is possible that OCSVM/SVDD, due to applied
kernel mapping, was able to found a compact representation of
data that was enclosed in a atomic hypersphere. This is allowed for
a good separation of overlapping classes that could not be handled
by a linear decision boundary in classical SVM or by too complex
rules generated by the decision trees.

This shows us that applying the OCC for decomposition is a
promising research track. However, it is not always straightfor-
ward to identify why exactly OCC displays such a good perfor-
mance. By this analysis, we see a need for new measures that
could give insight into the level of data complexity and its relation
with OCC decomposition.

6.2. What type of one-class classifier is preferable for decomposition?

In previous section, we have showed that applying OCC for
multi-class problems can lead to an increase in accuracy for
specific cases. The next question that must be answered is which

type of one-class classifier should be used for such a task? We
have examined the representatives of two major families of OCC
methods – density and boundary-based.

For density-based methods, we have tested Mixture of Gaus-
sians Data Description or Parzen Density Data Description. By
examining the results in the tables together with outputs of
statistical tests, one can see that there does not exist a significant
difference between them. For many cases both methods return
identical performance, being able to similarly capture the density
description of the classes. Although for few individual datasets one
method outperforms the other, one cannot find a general trend
among a number of comparisons that will point out the super-
iority of one method over the other.

The same observations hold for boundary-based methods.
Here, we have tested One-Class Support Vector Machine and
Support Vector Data Description. They both originate from binary
SVM and work by mapping the target class data onto an enclosing
hyperplane. However, the differences lie in the way the training
procedure is conducted. However, for the considered multi-class
decomposition purposes these two methods return very similar
performance. For several datasets SVDD return slightly better
accuracy, however statistical tests show that these differences
are below the significance level.

Having a look at Table 8, which selected the best types of binary
and one-class classifiers for each fusion method, gives a good
outlook on the problem. For each case the boundary-based
method (SVDD) was selected. It has many desirable properties
that can be of great use in decomposing multi-class datasets:

� With the usage of kernel function, support-vector one-class
classifiers are able to find a more compact representation of the
data. This leads to a smaller volume of the enclosing hyper-
sphere, which reduces the chance of overlap between classi-
fiers assigned to different classes. Additionally, with well-
selected kernel they are quite robust to the problem of so-
called empty sphere [33] – region covered by the decision
boundary, with no training objects within it. A classifier cannot
be deemed as competent in such an empty sphere – thus in
multi-class decomposition may have a high support value for
an object in empty sphere, that in fact belong to a different
class. Minimizing empty sphere size is one of the main
challenges of OCC and SVDD/OCSVM optimization process
handles it in a satisfactory way.

� SVDD/OCSVM can discard objects lying further from the center
of target class distribution. Such objects can be treated as in-
class outliers and lead to an over-expanded decision boundary.
Density-based methods are very sensitive to such objects and
may create a high overlap between ensemble members.

� SVDD/OCSVM works very well with a small number of objects,
being able to derive a satisfactory decision boundary. Density
methods fail in case of smaller datasets and this is one of their
major disadvantages.

Although all this speaks in advantage of boundary-based meth-
ods, one cannot omit the density-based classifiers. The fact that SVDD
completely dominated Table 8 is caused by the fact that algorithms
were selected based on their average performance. Density-based
methods, such as examined Mixture of Gaussians Data Description or
Parzen Density Data Description, require a significant number of
objects to work properly. In cases, where the number of objects per
class is high and the ratio of in-class outliers is very low or equal to
zero, density methods can outperform boundary-based classifiers.
This happens for four datasets (flare, nursery, segment and shuttle).
So in case of well-sampled datasets, it is worthwhile to check the
performance of the density methods for decomposition purposes. For

Table 7
Results (accuracy [%]) for one-class and binary classifiers combined using Decision
Templates (DT). Small numbers under accuracies stand for indexes of methods,
from which the considered one is statistically superior.

Dataset Parzen1 MoG2 OCSVM3 SVDD4 C4.55 SVM6

1. 66.76 65.49 73.26 73.89 75.89 74.71
� � 1;2 1;2 1;2 1;2

2. 84.72 82.68 83.04 83.88 92.21 92.30
2 � � 2 1;2;3;4 1;2;3;4

3. 43.25 43.25 57.18 57.18 52.31 55.90
� � 1;2;5;6 1;2;5;6 1;2 1;2;5

4. 87.51 87.51 92.48 92.48 91.26 90.75
� � 1;2;5;6 1;2;5;6 1;2;6 1;2

5. 72.63 73.11 75.20 74.59 74.26 73.84
� � 1;2;6 1;2;6 1;2;6 1;2

6. 74.97 74.97 73.80 73.80 75.49 76.60
3;4 3;4 � � 3;4 1;2;3;4;5

7. 59.21 59.21 64.77 64.77 65.38 63.01
� � 1;2;6 1;2;6 1;2;6 1;2

8. 75.39 73.20 76.64 77.02 72.76 74.11
5;6 5;6 1;2;5;6 1;2;5;6 � 5

9. 67.73 68.36 75.60 75.60 70.24 75.60
� � 1;2;5 1;2;5 1;2 1;2;5

10. 87.69 88.21 86.62 87.06 84.56 85.90
5;6 5;6 5;6 5;6 � 5

11. 88.39 88.39 92.28 92.28 91.16 93.78
� � 1;2;5 1;2;5 1;2 1;2;3;4;5

12. 96.11 95.76 98.02 97.67 93.41 95.23
5;6 5;6 1;2;5;6 1;2;5;6 � 5

13. 74.16 75.52 82.44 82.93 79.95 81.03
� 1 1;2;5;6 1;2;5;6 1;2 1;2;5

14. 95.00 94.18 92.94 92.94 96.03 91.75
3;4;6 3;4;6 6 6 1;2;3;4;6 �

15. 97.89 97.89 96.32 96.32 96.99 95.38
6 6 6 6 6 �

16. 65.26 65.79 70.93 69.04 70.07 71.87
� � 1;2 1;2 1;2 1;2;3;4;5

17. 78.43 78.43 80.29 80.29 78.92 75.66
6 6 1;2;5;6 1;2;5;6 6 �

18. 60.06 57.98 61.17 61.64 57.38 58.85
1;5;6 � 1;2;5;6 1;2;5;6 � 5

19. 82.19 82.19 90.38 90.65 91.09 94.26
� � 1;2 1;2 1;2 1;2;3;4;5

20. 85.39 84.72 88.68 89.37 69.18 83.18
5;6 5;6 1;2;5;6 1;2;5;6 � 5

Avg. rank 3.79 4.87 2.58 2.19 4.45 2.72
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datasets with smaller number of objects however, this family of
classifiers should be omitted.

One should note that OCSVM/SVDD could be optimized for each
dataset separately, which could lead to a further improvement in

quality. However, even with standard setting the performance of
this classifier is very good – therefore it proves its robustness to
different kinds of data.

6.3. Which type of fusion method should we chose?

Results of the Shaffer post hoc test between the different
aggregation methods are depicted in Tables 9–12.

From them, we can see that in general the performance of
fusion methods is independent from the type of base classifier
used. The only exception is the DDAG fuser, which works better (in
a statistically significant way) with boundary-based classifiers.

However, one should take a closer look on the obtained p-
values. Although general output of the test is independent from
the classifier, we can see that for OCSVM/SVDD one gets a more
significant tests, as p-values indicate a more stable performance
for SVDD. For an example let us take a test DDAG vs DT. For Parzen
classifier, we get an information that DT are better with p-value
equal to 0.0494 – very close to the significance level α¼ 0:05. For
OCSVM/SVDD, we get the same output but with p-value equal to
0.0208, which shows that in this case the differences are much
more significant.

Table 8
Comparison of best models (one-class and binary) for each of the five examined fusion methods. Small numbers under accuracies stand for indexes of methods, from which
the considered one is statistically superior.

Dataset MAX PC DDAG ECOC DT

SVDD1 SVM2 SVDD3 SVM4 SVDD5 SVM6 SVDD7 SVM8 SVDD9 SVM10

1. 71.95 67.42 70.45 74.12 71.05 74.73 74.38 74.23 73.89 74.71
2;3 � 2 1;2;3;5 2 1;2;3;5 1;2;3;5 1;2;3;5 1;2;3;5 1;2;3;5

2. 88.64 89.12 82.91 92.76 84.02 92.51 84.21 93.46 83.88 92.30
3;5;7;9 3;5;7;9 � 1;2;3;5;7;9 � 1;2;3;5;7;9 � 1;2;3;5;7;9;10 � 1;2;3;5;7;9

3. 55.87 57.53 48.29 58.62 50.78 58.69 57.28 58.04 57.18 55.90
3;5 1;3;5;10 � 1;3;5;10 3 1;2;3;5;7;9;10 1;3;5;10 1;3;5;10 1;3;5;10 3;5

4. 95.41 95.75 91.24 93.82 93.05 93.95 92.30 91.28 92.48 90.75
3;4;5;6;7;8;9;10 3;4;5;6;7;8;9;10 � 3;7;8;10 3;7;8;10 3;7;8;10 3;7;8;10 � 3;7;8;10 3;7;8;10

5. 72.74 77.43 72.30 77.26 72.89 77.36 71.93 75.12 74.59 73.84
� 1;3;5;7;8;9;10 � 1;3;5;7;8;9;10 � 1;3;5;7;8;9;10 � 1;3;5;7;9;10 1;2;3;5;7;10 1;2;3;5;7

6. 74.91 75.49 69.32 74.95 71.65 75.19 73.42 74.05 73.80 76.60
3;5;7 3;5;7;9 � 3;5;7 3 3;5;7;9 3;5 3;5 3;5 ALL

7. 62.89 60.84 65.11 63.22 67.36 62.88 64.51 62.05 64.77 63.01
2 � 1;2;3;6;8;9 2 ALL 2 1;2;3;6;8;9 2 1;2;3;6;8;9 2

8. 75.65 71.20 74.13 72.76 74.51 73.05 75.03 71.27 77.02 74.11
2;3;4;6;8;9 � 2;4;6;8 2;7 2;4;6;8 2;7 2;4;6;7 � ALL 2;4;6;8

9. 76.72 82.27 73.74 81.54 74.96 81.57 76.36 78.25 75.60 75.66
3;5 1;3;5;7;8;9;10 � 1;3;5;7;8;9;10 3 1;3;5;7;8;9;10 3;5 1;3;5;7;9;10 3 3

10. 86.62 91.05 84.59 91.82 85.13 91.43 88.04 87.98 87.06 85.90
3;5 1;3;5;7;8;9;10 � 1;3;5;7;8;9;10 � 1;3;5;7;8;9;10 1;3;5;9;10 1;3;5;10 3;5 3

11. 92.05 95.34 90.68 94.58 91.30 94.29 91.36 93.99 92.28 93.78
3 1;3;5;7;8;9;10 � 1;3;5;7;9;10 3 1;3;5;7;9;10 3 1;3;5;7;9 3 1;3;5;7;9

12. 95.76 90.45 93.87 95.15 94.04 95.54 96.11 94.80 97.67 95.23
2;3;5 � 2 2;3;5 2 2;3;5 2;3;4;5 2;3;5 ALL 2;3;5

13. 81.96 82.02 76.64 83.47 79.46 83.98 78.03 81.25 82.93 81.03
3;5;7 3;4;7;10 � 1;2;3;5;7;8;10 3;7 1;2;3;5;7;8;10 3 3;5;7 1;2;3;5;7;8;10 3;5;7

14. 90.47 91.21 88.02 92.81 90.02 96.77 91.74 91.82 92.94 91.75
3 3;5 � 1;2;3;5 3 ALL 1;2;3;5 1;2;3;5 1;2;3;5;7;8;10 3;5

15. 94.25 92.74 92.71 96.17 93.47 96.23 95.18 94.29 96.32 95.38
2;3 � � 1;2;3;5;8 � 1;2;3;5;8 1;2;3;5;8 2;3 1;2;3;5;7;8;10 1;2;3;5

16. 69.33 75.15 65.44 72.93 67.18 71.83 68.94 74.01 69.04 71.87
3;5 ALL � 1;3;5;7;9 3 1;3;5;7;9 3;5 1;3;4;5;6;7;8;9;10 3;5 1;3;5;7;9

17. 70.09 51.23 65.32 69.78 65.89 68.47 78.92 70.76 80.29 75.66
2;3;4;5;6 � 2 2;3;5 2 2;3;5 1;2;3;4;5;6;8;10 2;3;4;5;6 ALL 1;2;3;4;5;6;8

18. 57.98 56.20 55.21 58.39 55.45 60.33 58.69 57.04 61.64 58.85
2;3;5 3;5 � 2;3;5;8 � 1;2;3;4;5;6;8;10 1;2;3;5;8 2;3;5 ALL 1;2;3;5;8

19. 87.96 96.05 84.39 95.12 84.89 94.79 87.02 93.60 90.65 94.26
3;5 ALL � 1;3;5;7;8;9 � 1;3;5;7;9 3;5 1;3;5;7;9 1;3;5;7 1;3;5;7;9

20. 82.86 74.12 80.23 70.38 80.96 72.89 88.29 82.03 89.37 83.18
2;3;4;5;6;8;10 4;6 2;4;6 � 2;4;6 4 1;2;3;4;5;6;8;10 2;3;4;5;6 ALL 2;3;4;5;6;8

Avg. rank 5.64 4.42 10.00 3.33 8.89 3.68 4.25 5.72 3.86 5.21

Table 9
Shaffer test for examined combination methods with Par-
zen Density Data Description as base classifier. Symbol ‘¼ ’

stands for classifiers without significant differences, ‘þ ’ for
situation in which the method on the left is superior and
‘� ’ vice versa.

Hypothesis p-Value

MAX vs PC þ (0.0402)
MAX vs DDAG þ (0.0369)
MAX vs ECOC �(0.0287)
MAX vs DT �(0.0108)
PC vs DDAG ¼(0.3379)
PC vs ECOC �(0.0196)
PC vs DT �(0.0182)
DDAG vs ECOC �(0.0311)
DDAG vs DT �(0.0486)
ECOC vs DT ¼(0.3981)
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OVO schemes delivered the worst performance amongst all of the
fusionmethods. This is in opposite to findings presented in [21], which
stated that OVO is a preferable choice. This can be explained by the
nature of one-class learners – they are de facto a specific case of OVA
(target class vs all possible outliers). Hence, the OVA methods had
been slightly modified in order to work with OCC. As statistical test
prove, they are on average significantly inferior to OVA and trained
fusers.

Max scheme turns out a very suitable fusion method for one-class
ensembles, despite its simplicity. Although in some cases it is
outperformed by ECOC and DT, we should remember that it is much
less computationally expensive than trained fusers. Hence can be of
use in areas, where we need a fast training of recognition system, e.g.,
in data stream classification.

Trained fusers, represented by ECOC and DT, returned the best
results among the examined methods. Compared between each
other, we can see that they behaved mutually exclusive on some
datasets. From the analysis of results in Table 8, one may see that
their performance is strongly dependent on the number of classes.
ECOC outperforms DT in cases when the number of classes is r5.
This can be explained by high correction power in case of shorter
codewords. However, with the increase of the number of classes,
increases the advantage of DT over ECOC. For all cases with 10, 11
or 95 classes, DT were statistically superior. Generating codewords
for many classes leads to over-lengthy codewords with reduced
correction power. Templates do not suffer from this problem, as
they are based on averaged outputs of classifiers for a given class.

7. Conclusions and future works

In this paper, we have evaluated a hypothesis that one-class
classification can be effectively used for handling multi-class
datasets. Although OCC discards information about the counter-
examples, its major advantage lies in its training principle. It
captures the unique properties of the target class. Therefore, for
multi-class decomposition it does not try to find best separation
boundaries – it aims at creating individual descriptions of each of
considered classes. This leads to a completely different compe-
tence space of ensemble classifier, that seems an attractive solu-
tion for complex data in which the standard classifiers are biased
towards one of the classes.

We have presented a thorough study on the applicability of
one-class classifiers for the process of decomposing multi-class
datasets. We have compared one-class ensembles with popular
binarization algorithms. We have checked the performance of four
most popular classifiers from these groups and their correlation
with five examined fusion methods, dedicated to reconstructing
the original dataset from individual decisions.

Experiments, backed-up with a series of statistical tests, con-
firmed our hypothesis. For many cases one-class ensembles
achieve similar performance to binary committees, and for some
more complex cases significantly outperform traditional methods.
This is especially interesting, due to the fact that one-class
classifiers do not utilize the information about classes other than
the target concept.

After careful experiments, we can present the following set of
rules for the end-user for addressing decomposition problems
with one-class methods:

1. One-class classification is not a universal solution. For standard
data, with no difficulties embedded in them, binary decomposition
performed much better having access to all the data. However, if
you have a more complex problem, OCC is a worthwhile direction.

2. One-class decomposition works exceptionally well with data-
sets having a high number of classes. This is due to the lower
number of classifiers in a committee in comparison to OVO, and
avoiding class imbalance in comparison to OVA.

3. One-class classifiers can deal with problems embedded in the
nature of the data - imbalanced distribution, feature and label
noise or small number of objects. These problems are common
in multi-class classification.

4. The differences between one-class classifiers from the same
family of models are very small. It is more worthwhile to
consider different groups of OCC models than examine many
models from a single group.

Table 11
Shaffer test for examined combination methods
with OCSVM as base classifier. Symbol ‘¼ ’ stands
for classifiers without significant differences, ‘þ ’

for situation in which the method on the left is
superior and ‘� ’ vice versa.

Hypothesis p-Value

MAX vs PC þ (0.0306)
MAX vs DDAG þ (0.0414)
MAX vs ECOC �(0.0407)
MAX vs DT �(0.0146)
PC vs DDAG �(0.0489)
PC vs ECOC �(0.0220)
PC vs DT �(0.0141)
DDAG vs ECOC �(0.403)
DDAG vs DT �(0.0192)
ECOC vs DT ¼(0.4074)

Table 12
Shaffer test for examined combination methods with SVDD
as base classifier. Symbol ‘¼ ’ stands for classifiers without
significant differences, ‘þ ’ for situation in which the
method on the left is superior and ‘� ’ vice versa.

Hypothesis p-Value

MAX vs PC þ (0.0298)
MAX vs DDAG þ (0.0407)
MAX vs ECOC �(0.0382)
MAX vs DT �(0.0128)
PC vs DDAG �(0.0462)
PC vs ECOC �(0.0181)
PC vs DT �(0.0104)
DDAG vs ECOC �(0.377)
DDAG vs DT �(0.0200)
ECOC vs DT ¼(0.3829)

Table 10
Shaffer test for examined combination methods
with Mixture of Gaussians Data Description as base
classifier. Symbol ‘¼ ’ stands for classifiers without
significant differences, ‘þ ’ for situation in which
the method on the left is superior and ‘� ’

vice versa.

Hypothesis p-Value

MAX vs PC þ (0.0417)
MAX vs DDAG þ (0.0326)
MAX vs ECOC �(0.0274)
MAX vs DT �(0.0132)
PC vs DDAG ¼(0.3589)
PC vs ECOC �(0.0174)
PC vs DT �(0.0191)
DDAG vs ECOC �(0.0332)
DDAG vs DT �(0.0501)
ECOC vs DT ¼(0.4104)
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5. When having a dataset with moderate or low number of
examples and/or risk of being affected by noise/in-class out-
liers, it is preferable to apply boundary methods, like OCSVM or
SVDD. However, when the class objects are plentiful, density-
based methods can give a better description of the data.

6. Fusion is as important in one-class decomposition as in
binarization. In contrary to binary classifiers, OVO aggregation
methods do not deliver satisfactory results. It is recommended
to use OVA fuser or trained combiners (if additional training
time is not a problem in the specific application).

In future, we would like to gain more insight into the areas of
applicability of one-class classifier decomposition. We plan to use
novel measures for grading the levels of complexity for multi-class
datasets and search for correlations between the complexity and
performance of one-class learners.
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Michał Woźniak is a Professor of Computer Science in the Department of Systems and Computer Networks, Wroclaw University of Technology, Poland. He received a M.S.
degree in biomedical engineering in 1992 from the Wroclaw University of Technology, and Ph.D. and D.Sc. (habilitation) degrees in computer science in 1996 and 2007
respectively from the same university. His research focuses on machine learning, distributed algorithms and teleinformatics. He has published over 200 papers, three books,
and has edited eight ones. He has been involved in several research projects related to the above-mentioned topics, moreover, he has been a consultant on several
commercial projects for well-known Polish companies and for public administration. He is a senior member of the IEEE and a member of International Biometric Society.

Francisco Herrera received his M.Sc. in mathematics in 1988 and Ph.D. in mathematics in 1991, both from the University of Granada, Spain. He is currently a Professor in the
Department of Computer Science and Artificial Intelligence at the University of Granada. He has been the supervisor of 28 Ph.D. students. He has published more than 240
papers in international journals. He is coauthor of the book “Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases” (World Scientific, 2001).

He currently acts as Editor in Chief of the international journal “Progress in Artificial Intelligence” (Springer). He acts as an area editor of the International Journal of
Computational Intelligence Systems and associated editor of the journals: IEEE Transactions on Fuzzy Systems, Information Sciences, Knowledge and Information Systems,
Advances in Fuzzy Systems, and International Journal of Applied Metaheuristics Computing; and he serves as a member of several journal editorial boards, among others:
Fuzzy Sets and Systems, Applied Intelligence, Information Fusion, Evolutionary Intelligence, International Journal of Hybrid Intelligent Systems, Memetic Computation, and
Swarm and Evolutionary Computation.

He received the following honors and awards: ECCAI Fellow 2009, IFSA 2013 Fellow, 2010 Spanish National Award on Computer Science ARITMEL to the “Spanish Engineer
on Computer Science”, International Cajastur “Mamdani” Prize for Soft Computing (Fourth Edition, 2010), IEEE Transactions on Fuzzy System Outstanding 2008 Paper Award
(bestowed in 2011), and 2011 Lotfi A. Zadeh prize best paper Award of the International Fuzzy Systems Association.

His current research interests include computing with words and decision making, bibliometrics, data mining, big data, data preparation, instance selection, fuzzy rule
based systems, genetic fuzzy systems, knowledge extraction based on evolutionary algorithms, memetic algorithms and genetic algorithms.

B. Krawczyk et al. / Pattern Recognition 48 (2015) 3969–39823982

http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref53
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref53
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref58
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref58
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref59
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref59
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref59
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref60
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref60
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref60
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref60
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref61
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref61
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref62
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref62
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref63
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref63
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref64
http://refhub.elsevier.com/S0031-3203(15)00221-6/sbref64

	On the usefulness of one-class classifier ensembles for decomposition of multi-class problems
	Introduction
	One-class classification
	Decomposition techniques for multi-class problems
	Binary classifiers for decomposing multi-class datasets
	One-class classifiers for decomposing multi-class datasets

	Ensemble fusion methods for aggregating local decisions
	OVO and OVA fusers
	Trained fusers

	Experimental setup
	Datasets
	Classification algorithms
	Statistical tests

	Experimental results
	Can one-class ensembles outperform binary approach?
	What type of one-class classifier is preferable for decomposition?
	Which type of fusion method should we chose?

	Conclusions and future works
	Conflict of interest
	Acknowledgments
	References




