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a b s t r a c t

We model the motion of a substance in a channel of a network that consists of chain
of (i) nodes of the network and (ii) edges that connect the nodes and form the way for
motion of the substance. The nodes of the channel can have different ‘‘leakage’’, i.e., some
amount of the substance can leave the channel at a node and the rate of leaving can be
different for the different nodes of the channel. The nodes close to the end of the channel
for some (design or other) reasonmay bemore ‘‘attractive’’ for the substance in comparison
to the nodes around the incoming node of the channel. We discuss channels containing
infinite or finite number of nodes. The main outcome of the model is the distribution of
the substance along the nodes. Two regimes of functioning of the channels are studied:
stationary regime and non-stationary regime. The distribution of the substance along the
nodes of the channel for the case of stationary regime is a distribution with a very long tail
that contains as particular case the Waring distribution (for channel with infinite number
of nodes) or the truncated Waring distribution (for channel with finite number of nodes).
In the non-stationary regime of functioning of the channel one observes an exponential
increase or exponential decrease of the amount of substance in the nodes. However the
asymptotic distribution of the substance among the nodes of the channel in this regime
remains stationary.

The studied model is applied to the case of migration of humans through a migration
channel consisting of chain of countries. In this case the model accounts for the number
of migrants entering the channel through the first country of the channel; permeability of
the borders between the countries; possible large attractiveness of some countries of the
channel; possibility for migrants to obtain permission to reside in a country of the channel.
The main outcome of the model is the distribution of migrants along the countries of the
channel. We discuss the conditions for concentration of migrants in selected country of the
channel. Finally two scenarios of changes of conditions of the functioning of the channel are
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discussed. It is shown that from the point of view of decreasing of the number of migrants
in the countries of the channel it is more effective to concentrate efforts on preventing the
entrance of migrants in the first country of the channel when compared to concentration
of efforts on decrease of permeability of the borders between the countries of the channel.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Research on network flows has some of its roots in the studies on transportation problems, e.g., in the developing of
minimal cost transportation models. This research topic was established in 1960’s especially after the publishing the book
of Ford and Fulkerson [1]. At the beginning of the research the problems of interest have been, e.g., how byminimal number
of individuals to meet a fixed schedule of tasks; minimal cost flow problems; or possible maximal flows in a network. In
course of the years the area of problems connected to network flows has increased very much. Nowadays one uses the
methodology from the theory of network flows [2,3] to solve problems connected to: (i) shortest path finding, (ii) just in time
scheduling, (iii) facility layout and location, (iv) project management (determining minimum project duration), (v) optimal
electronic route guidance in urban traffic networks [4], (vi) self-organizing network flows, (vii) modeling and optimization
of scalar flows in networks [5], (viii) memory effects [6], (ix) isoform identification of RNA [7], etc. (just some other examples
are [8–14]).

Below we shall consider a specific network flow problem: motion of a substance through a network channel in presence
of possibility for ‘‘leakage’’ in the nodes of the channel (loss of substance or usage of a part of substance in some process). In
additionwe shall assume that the substancemay have preference for some of the nodes of the channel (e.g., the channelmay
be designed in such a way that the substance tends to concentrate in some of the nodes). This feature will allow us to use the
model for study of motions of animals or humans. We note that the discussed model contains also the particular case when
there is no preference of the substance with respect to the nodes of the channel. The obvious application of the model is for
the flow of some non-living substance through a channel with use of part of substance for some industrial process in the
nodes of the channel. We shall show that the model has more applications by another illustration: modeling large human
migration flows. The large flows allow continuous modeling as in this case the discrete quantities can be approximated by
continuous ones. Imagine a chain of countries that form a migration channel. The first country of this channel may have
a sea border and the migrants may come to this country (called below incoming country or entry country of the channel)
through this sea border. In addition one or several countries of the channel may be preferred by migrants. Such choice
of an illustration of the model is motivated also by actuality of the problem of human migration [15]. Indeed the study
of international migration becomes very actual after the large migration flows directed to Europe in 2015. Much efforts are
invested also in the study of internalmigration in order to understand thismigration and tomake projection of themigration
flows that may be very important for taking decisions about economic development of regions of a country [16–24]. Human
migration models are of interest also for applied mathematics as they can be classified as probability models (exponential
model, Poissonmodel, multinomial model, Markov chainmodels of migration [25–36]) or deterministic models (e.g., gravity
model of migration [37]). Human migration is closely connected to migration networks [38,39], to ideological struggles
[40,41] and to waves and statistical distributions in population systems [42–45].

The paper is organized as follows. In Section 2 we discuss a model for motion of substance in a channel containing
infinite number of nodes. Two regimes of functioning of the channel are studied: stationary regime and non-stationary
regime. Statistical distributions of the amount of substance in the nodes of the channel are obtained. A particular case of the
distribution for the stationary regime of functioning of the channel is theWaring distribution. Section 3 is devoted to the case
of channel containing finite number of nodes. This case is of interest for the problem of human migration. The distribution
of substance for stationary regime of functioning of such a channel is given by a distribution that is a generalization of
the truncated Waring distribution. In Section 4 we discuss several outcomes of the model for the case of human migration
channel of finite length, e.g., the possibility of concentration of migrants in the last node of the channel (the final destination
country). Several concluding remarks are summarized in Section 5.

2. Channel containing infinite number of nodes

We consider a channel consisting of a chain of nodes of a network. The nodes are connected by edges and each node is
connected only to the two neighboring nodes of the channel with the exception of the first and the last node of the channel
that are connected only to the neighboring node.We study amodel of themotion of substance through such a channel which
is an extension of the model discussed in [46] and [47]. We consider each node as a cell (box), i.e., we consider an array of
infinite number of cells indexed in succession by non-negative integers. The first cell has index 0 and the last cell has index
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N (in the case discussed here N = ∞). We assume that an amount x of some substance is distributed among the cells and
this substance can move from one cell to another cell. Let xi be the amount of the substance in the ith cell. Then

x =

∞∑
i=0

xi (2.1)

The fractions yi = xi/x can be considered as probability values of distribution of a discrete random variable ζ

yi = p(ζ = i), i = 0, 1, . . . (2.2)

The content xi of any cell may change due to the following 3 processes:

1. Some amount s of the substance x enters the system of cells from the external environment through the 0th cell;
2. Amount fi from xi is transferred from the ith cell into the i + 1th cell;
3. Amount gi from xi leaks out the ith cell into the external environment.

We assume that the process of the motion of the substance is continuous in the time. Then the process can be modeled
mathematically by the system of ordinary differential equations:

dx0
dt

= s − f0 − g0;

dxi
dt

= fi−1 − fi − gi, i = 1, 2, . . . . (2.3)

There are two regimes of functioning of the channel: stationary regime and non-stationary regime.

2.1. Stationary regime of functioning of the channel

In the stationary regimeof the functioning of the channel dxi
dt = 0, i = 0, 1, . . .. Let usmark the quantities for the stationary

case with ∗. Then from Eqs. (2.3) one obtains

f ∗

0 = s∗ − g∗

0 ; f ∗

i = f ∗

i−1 − gi. (2.4)

This result can be written also as

f ∗

i = s∗ −

i∑
j=0

g∗

j (2.5)

Hence for the stationary case the situation in the channel is determined by the quantities s∗ and g∗

j , j = 0, 1, . . .. In this paper
we shall assume the following forms of the amount of the moving substances in Eqs. (2.3) (α, β, γi, σ are constants)

s = σx0 = σ0; σ0 > 0
fi = (αi + βii)xi; αi > 0, βi ≥ 0

gi = γixi; γi ≥ 0 → non-uniform leakage in the nodes (2.6)

The rules (2.6) differ from the rules in [46] in 3 points:

1. s is proportional to the substance in the 0th node (the amount of this substance is x0). In [46] s is proportional to the
amount x of the substance in the entire channel x =

∑N
i=0xi;

2. Leakage rate γi is different for the different nodes. In [46] the leakage rate is constant and equal to γ for all nodes of
the channel (i.e., there is uniform leakage in the nodes).

3. Parameters αi and βi are different for the different cells. In [46] these parameters are the same for all cells of the
channel. This may lead to cumulative advantage of higher nodes which is not guaranteed in the model discussed in
this article.

Substitution of Eqs. (2.6) in Eqs. (2.3) leads to the relationships
dx0
dt

= σ0x0 − α0x0 − γ0x0;

dxi
dt

= [αi−1 + (i − 1)βi−1]xi−1 − (αi + iβi + γi)xi; i = 1, 2, . . . (2.7)

As we shall consider the stationary regime of functioning of the channel then from the first of the Eqs. (2.7) it follows that
σ0 = α0 + γ0. This means that x0 (the amount of the substance in the 0th cell of the channel) is free parameter. In this case
the solution of Eqs. (2.7) is

xi = x∗

i +

i∑
j=0

bij exp[−(αj + jβj + γj)t] (2.8)



1280 N.K. Vitanov, K.N. Vitanov / Physica A 490 (2018) 1277–1294

where x∗

i is the stationary part of the solution. For x∗

i one obtains the relationship

x∗

i =
αi−1 + (i − 1)βi−1

αi + iβi + γi
x∗

i−1, i = 1, 2, . . . (2.9)

The corresponding relationships for the coefficients bij are (i = 1, . . .):

bij =
αi−1 + (i − 1)βi−1

(αi − αj) + (iβi − jβj) + (γi − γj)
bi−1,j, j = 0, 1, . . . , i − 1 (2.10)

From Eq. (2.9) one obtains

x∗

i =

∏i−1
j=0[αi−j−1 + (i − j − 1)βi−j−1]∏i−1

j=0 αi−j + (i − j)βi−j + γi−j
x∗

0 (2.11)

The form of the corresponding stationary distribution y∗

i = x∗

i /x
∗ (where x∗ is the amount of the substance in all of the

cells of the channel) is

y∗

i =

∏i−1
j=0[αi−j−1 + (i − j − 1)βi−j−1]∏i−1

j=0 αi−j + (i − j)βi−j + γi−j
y∗

0 (2.12)

To the best of our knowledge the distribution presented by Eq. (2.12) was not discussed by other authors. Figs. 1–3 show the
shape of this long tail distribution aswell as the dependence of the shape of the distribution on the parameters of distribution.
Let us show that the distribution (2.12) contains as particular cases several famous distributions such asWaring distribution,
Zipf distribution, and Yule–Simon distribution. In order to do this we consider the particular case when βi ̸= 0 and write xi
from Eq. (2.11) as follows

x∗

i =

∏i−1
j=0 bi−j[ki−j−1 + (i − j − 1)]∏i−1

j=0[ki−j + ai−j + (i − j)]
x∗

0 (2.13)

where ki = αi/βi; ai = γi/βi; bi = βi−1/βi. The form of the corresponding stationary distribution y∗

i = x∗

i /x
∗ is

y∗

i =

∏i−1
j=0 bi−j[ki−j−1 + (i − j − 1)]∏i−1

j=0[ki−j + ai−j + (i − j)]
y∗

0 (2.14)

Let us now consider the particular case where αi = α and βi = β for i = 0, 1, 2, . . .. Then from Eq. (2.13) one obtains

x∗

i =
[k + (i − 1)]!

(k − 1)!
∏i

j=1(k + j + aj)
x∗

0 (2.15)

where k = α/β and aj = γj/β . The form of the corresponding stationary distribution y∗

i = x∗

i /x
∗ is

y∗

i =
[k + (i − 1)]!

(k − 1)!
∏i

j=1(k + j + aj)
y∗

0 (2.16)

Let us consider the particular case where a0 = · · · = aN = a. In this case the distribution from Eq. (2.16) is reduced to the
distribution:

P(ζ = i) = P(ζ = 0)
(k − 1)[i]

(a + k)[i]
; k[i]

=
(k + i)!

k!
; i = 1, 2, . . . (2.17)

P(ζ = 0) = y∗

0 = x∗

0/x
∗ is the percentage of substance that is located in the first cell of the channel. Let this percentage be

y∗

0 =
a

a + k
(2.18)

The case described by Eq. (2.17) corresponds to the situationwhere the amount of substance in the first cell is proportional of
the amount of substance in the entire channel (self-reproduction property of the substance). In this case Eq. (2.16) is reduced
to the distribution:

P(ζ = i) =
a

a + k
(k − 1)[i]

(a + k)[i]
; k[i]

=
(k + i)!

k!
; i = 1, 2, . . . (2.19)

Let us denote ρ = a and k = l. The distribution (2.19) is exactly the Waring distribution (probability distribution of non-
negative integers named after Edward Waring—the 6th Lucasian professor of Mathematics in Cambridge from the 18th
century) [48–50] —Figs. 4, 5.

pl = ρ
α(l)

(ρ + α)(l+1)
; α(l) = α(α + 1) . . . (α + l − 1) (2.20)
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Fig. 1. Distribution (2.12) for various values of the parameters αi , βi , and γi . Values of the parameters βi and γi are fixed: βi = 0.01, γi = 0.01. Figures show
the influence of different choices of the parameters αi on the shape of the distribution. (a) αi = 0.05+0.1i/(i+10). The long tail of the distribution is clearly
visible. (b) α = 0.01. This figure shows a shape of the distribution for fixed values of all three parameters of the distribution. (c) αi = 0.2 − 0.18i/(i + 1).
Decreasing values of αi with increasing i can lead to changes in the shape of the distribution. The long tail of the distribution continues to exist. (d)
αi = 0.2 + 0.1(−1)ii/(i + 10). The shape of distribution is sensitive to differences of the values of parameters α along the channel.

Waring distribution may be written also as follows

p0 = ρ
α(0)

(ρ + α)(1)
=

ρ

α + ρ

pl =
α + (l − 1)
α + ρ + l

pl−1. (2.21)

The mean µ (the expected value) of the Waring distribution is

µ =
α

ρ − 1
if ρ > 1 (2.22)

The variance of the Waring distribution is

V =
αρ(α + ρ − 1)
(ρ − 1)2(ρ − 2)

if ρ > 2 (2.23)

ρ is called the tail parameter as it controls the tail of the Waring distribution. Waring distribution contains various
distributions as particular cases. For an example for large values of l the Waring distribution has the behavior

pl ≈
1

l(1+ρ) . (2.24)

which is the same as the frequency form of the Zipf distribution [51]. If α → 0 the Waring distribution is reduced to the
Yule–Simon distribution [52]

p(ζ = l | ζ > 0) = ρB(ρ + 1, l) (2.25)

where B is the beta-function.
Waring distribution has been considered by Irwin [53] to be a very suitable theoretical form for description of biological

distributions with very long tail. In the following years Waring distribution and truncated Waring distribution (that will
be mentioned below in the text) have found interesting applications, e.g. in quantitative linguistics [54], bibliometrics
[46,55–57], and models of migration dynamics [47].
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Fig. 2. Distribution (2.12) for various values of the parameters αi , βi , and γi . Values of the parameters αi and γi are fixed: αi = 0.1, γi = 0.01. Figures
show the influence of different choices of the parameters βi on the shape of the distribution. (a) βi = 0.1 + 0.1i/(i + 10). (b) β = 0.01. This is another
combination of constant values of parameters in comparison to Fig. 1(b). The long tail of the distribution is preserved. (c) βi = 0.05 − 0.04i/(i + 5). This
combination of parameters of the distribution does not lead to change of the shape of the distribution. The long tail of the distribution continues to exist.
(d) βi = 0.12+0.1(−1)ii/(i+10). The shape of distribution is sensitive to differences of the values of parameters β along the channel. The large probability
y∗

0 connected to the 0th node of the channel limits the changes of the values of distribution for large i.

Fig. 3. Distribution (2.12) for various values of the parameters αi , βi , and γi . Values of the parameters αi and γi are fixed: αi = 0.1, βi = 0.1. Figures show
the influence of different choices of the parameters γi on the shape of the distribution. (a) γi = 0.1 + 0.2i/(i + 10). The increase of the values of γ leads to
a fast decrease of the probability y∗

i . (b) γ = 0.01. The long tail of the distribution is clearly visible. (c) γi = 0.01 − 0.01i/(i + 5). The decrease of γi with
increasing i preserves the long tail of the distribution. (d) γi = 0.1 + 0.1(−1)ii/(i + 10). The shape of distribution has smaller sensitivity to differences of
the values of parameters γ along the channel as compared to analogous changes of the parameters αi and βi shown in Figs. 1(d) and 2(d).
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Fig. 4. Waring distribution. The Waring distribution (2.21) depends on two parameters ρ and α. The more general distribution (2.12) depends on 3
parameters. The figure shows the influence of the parameter α on the shape of the distribution when the value of the parameter ρ is fixed. (a) α = 10,
ρ = 1. The long tail of the Waring distribution is clearly visible. (b) α = 5, ρ = 1. The value of ρ is the same as in (a). Thus the influence of decrease
of parameter α on the Waring distribution is to increase the probability pl for small values of l and to decrease probabilities connected to the tail of the
distribution. (c) α = 1, ρ = 1. Further decrease of the value of α leads to continuation of the changes in the shape of theWaring distribution—probabilities
pl for small values of l increase at the expense of decreasing probabilities connected to the tail of the distribution. (d) α = 0.1, ρ = 1. Further decrease of
the value of ρ leads almost to vanishing of the long tail of the distribution. We note that the changes in the shape of the Waring distributions are smaller
in comparison to the possible changes of the more general distribution (2.12) shown in Figs. 1–3.

Fig. 5. Waring distribution. Figure shows the influence of the parameter ρ on the shape of the distribution when the value of the parameter α is fixed. (a)
α = 1, ρ = 10. The long tail of the Waring distribution is almost nonexistent. (b) α = 1, ρ = 5. The value of ρ is the same as in (a). Thus the influence
of decrease of the value of parameter ρ on the Waring distribution is to decrease the probability pl for smaller values of l and to increase probabilities
connected to the tail of the distribution. (c) α = 1, ρ = 1. Further decrease of the value of ρ leads to continuation of the changes in the shape of theWaring
distribution—probabilities pl for small values of l decrease at the expense of increasing probabilities connected to the tail of the distribution. We note that
the values of the parameters in Fig. 2(c) are the same as the values of the parameters in Fig. 1(c). This leads to additional information about the influence
of parameters α and ρ on the shape of the Waring distribution. (d) α = 1, ρ = 0.1. Further decrease of the value of ρ leads almost to clear visibility of the
long tail of the distribution.
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2.2. Non-stationary regime of functioning of the channel

In the nonstationary case dx0/dt ̸= 0. In this case the solution of the first equation of the system of Eqs. (2.7) is

x0 = b00 exp[(σ0 − α0 − γ0)t] (2.26)

where b00 is a constant of integration. xi must be obtained by solution of the corresponding Eqs. (2.7). The form of xi is

xi =

i∑
j=0

bij exp[−(αj + jβj + γj − σj)t] (2.27)

The solution of the system of Eqs. (2.7) is (2.27) where σi = 0, i = 1, . . . , (σ0 = σ ),

bij =
αi−1 + (i − 1)βi−1

(αi − αj) + (iβi − jβj) + (γi − γj)
bi−1,j; i = 1, . . . ; j = 1, . . . , i − 1, (2.28)

and bii are determined from the initial conditions in the cells of the channel. The asymptotic solution (t → ∞) is

xai = bi0 exp[(σ0 − α0 − γ0)t] (2.29)

This means that the asymptotic distribution yai = xai /x
a is stationary

yai =
bi0∑
∞

j=0 bj0
(2.30)

regardless of the fact that the amount of substance in the two cells may increase or decrease exponentially. The explicit form
of this distribution is

ya0 =
1

1 +
∑

∞

i=1
∏i

k=1
αk−1+(k−1)βk−1

(αk−α0)+kβk+(γk−γ0)

yai =

∏i
k=1

αk−1+(k−1)βk−1
(αk−α0)+kβk+(γk−γ0)∑

∞

i=0
∏i

k=1
αk−1+(k−1)βk−1

(αk−α0)+kβk+(γk−γ0)

, i = 1, . . . , (2.31)

3. Channel containing finite number of nodes

Finite size channels are very interesting from the point of view of the applications of the theory, e.g., to migrant flows.
Let us consider a channel consisting of N + 1 nodes (cells) and corresponding edges. The nodes are indexed in succession by
non-negative integers, i.e., the first cell has index 0 and the last cell has index N . In this case the total amount of substance
in the channel is

x =

N∑
i=0

xi (3.1)

The fractions yi = xi/x can be considered as probability values of distribution of a discrete random variable ζ

yi = p(ζ = i), i = 0, 1, . . . ,N (3.2)

The mathematical model of the finite channel is as follows:
dx0
dt

= s − f0 − g0;

dxi
dt

= fi−1 − fi − gi, i = 1, 2, . . . ,N − 1

dxN
dt

= fN−1 − gN . (3.3)

The relationships for the amount of the moving substances are the same as in the case of infinite channel:

s = σx0 = σ0x0; σ = σ0 > 0
fi = (αi + βii)xi; αi > 0, βi ≥ 0

gi = γixi; γi ≥ 0 → non-uniform leakage in the nodes (3.4)
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Substitution of Eqs. (3.4) in Eqs. (3.3) leads to the relationships
dx0
dt

= σ0x0 − α0x0 − γ0x0;

dxi
dt

= [αi−1 + (i − 1)βi−1]xi−1 − (αi + iβi + γi)xi, i = 1, 2, . . . ,N − 1

dxN
dt

= [αN−1 + (N − 1)βN−1]xN−1 − γNxN (3.5)

3.1. Stationary regime of functioning of the channel

In the stationary regime of functioning of the channel dx0
dt = 0, i.e. σ0 = α0 + γ0. In this case the system of Eqs. (3.5) has

a stationary solution with a free parameter x0. This solution is

x∗

i =
αi−1 + (i − 1)βi−1

αi + iβi + γi
x∗

i−1, i = 1, 2, . . . ,N − 1

x∗

N =
αN−1 + (N − 1)βN−1

γN
x∗

N−1. (3.6)

The solution of Eqs. (3.5) is

xi = x∗

i +

i∑
j=0

bij exp[−(αj + jβj + γj)t] (3.7)

The substitution of Eq. (3.7) in Eqs. (3.5) leads to the following relationships for the coefficients bij (αN = βN = 0 as there is
no N + 1st node(cell) where the substance can move from the Nth node (cell))

bij =
αi−1 + (i − 1)βi−1

(αi − αj) + (iβi − jβj) + (γi − γj)
bi−1,j;

i = 1, . . . ,N − 1; j = 0, . . . , i;

bNj =
αN−1 + (N − 1)βN−1

γN − γj − αj − jβj
bN−1,j, j = 0, . . . ,N − 1. (3.8)

bij that are not determined by Eqs. (3.8) may be determined by the initial conditions and in this process b00 may be fixed
too. In the exponential function in Eq. (3.7) there are no negative coefficients and because of this when t → ∞ the system
comes to the stationary solution from Eqs. (3.6). The form of this stationary solution is

x∗

i =

∏i
j=1[αi−j + (i − j)βi−j]∏i

j=1(αj + jβj + γj)
x∗

0, i = 1, . . . ,N − 1

x∗

N =

∏N
j=1[αN−j + (N − j)βN−j]

γN
∏N−1

j=1 (αj + jβj + γj)
x∗

0 (3.9)

Let x∗
=

∑N
i=0xi be the total amount of the substance for the case of stationary state of the channel. Thenwe can consider

the distribution y∗

i = x∗

i /x
∗. Its form is

y∗

i =

∏i
j=1[αi−j + (i − j)βi−j]∏i

j=1(αj + jβj + γj)
y∗

0, i = 1, . . . ,N − 1

y∗

N =

∏N
j=1[αN−j + (N − j)βN−j]

γN
∏N−1

j=1 (αj + jβj + γj)
y∗

0 (3.10)

To the best of our knowledge the distribution presented by Eq. (3.10) (Figs. 6–8) was not discussed by other authors. Let us
consider the particular case where αi = α, βi = β and γi = γ and k = α/β , a = γ /β . In this case the distribution from
Eq. (3.10) is reduced to the distribution:

P(ζ = i) = P(ζ = 0)
(k − 1)[i]

(a + k)[i]
; k[i]

=
(k + i)!

k!
; i = 0, . . . ,N − 1

P(ζ = N) =
P(ζ = 0)

a
(k − 1)[N]

(a + k)[N−1] , (3.11)

P(ζ = 0) = y∗

0 = x∗

0/x
∗ is the percentage of substance that is located in the first node of the channel. Let this percentage be

y∗

0 =
a

a + k
(3.12)
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Fig. 6. The distribution (3.10). The channel consists of 8 nodes. Fixed parameters of the distribution are βi = 0.01, γi = 0.01, i = 0, . . . , 7. The influence
of parameters αi on the shape of distribution is shown as follows. (a) αi = 0.05 + 0.1i/(i + 10). The effect of concentration of substance in the last node of
the finite channel is clearly visible. (b) αi = 0.1. All parameters of the distribution do not depend on i. This may lead to even larger probability connected
to the last node in comparison to some cases where αi increases with increase of i (compare (a) and (b)). (c) αi = 0.2 − 0.18i/(i + 1). The decrease of αi
with increasing i can lead to significant changes of the shape of distribution (3.10). (d) αi = 0.2 + 0.2(−1)ii/(i + 5). Large differences of αi for neighboring
values of i can influence the shape of the distribution. Note that the effect of large probability connected with the last node is presented in all the figures
(a)–(d).

Fig. 7. The distribution (3.10) for a channel that consists of 8 nodes. Fixed parameters of the distribution areαi = 0.01, γi = 0.01, i = 0, . . . , 7. The influence
of parameters βi on the shape of distribution is shown as follows. (a) βi = 0.05+0.04i/(i+10). The largest probabilities are connected to the entry node of
the channel and to the last node of the channel. The effect of concentration of substance in the last node of the channel is also presented. (b) βi = 0.05. All
parameters of the distribution do not depend on i. This may lead to larger probability connected to the first node of the channel in comparison to probability
connected to last node of the channel. (c) βi = 0.05−0.05i/(i+1). The decrease of βi with increasing i can lead to further increase of probability connected
to the entry node of the channel at the expense of the probability connected to the last node of the channel. (d) βi = 0.05 + 0.05(−1)ii/(i + 1). Large
differences of the values of βi for neighboring values of i can influence the shape of the distribution and can lead to increase of the value of probability
connected to the last node of the channel.
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Fig. 8. The distribution (3.10) for a channel that has 8 nodes. Fixed parameters of the distribution are αi = 0.01, βi = 0.01, i = 0, . . . , 7. The influence of
parameters γi on the shape of distribution is shown as follows. (a) βi = 0.05 + 0.04i/(i + 10). The largest probabilities are connected to the entry node of
the channel. Increasing value of γi with increasing i can lead to a fast decrease of values of probability for the last nodes of the channel. This can influence
in a significant way the concentration of substance in the last node of the channel. (b) γi = 0.05. All parameters of the distribution do not depend on i.
The probability connected to the entry node of the channel is still very large and the probabilities connected to the tail of the distribution are small. (c)
γi = 0.05 − 0.05i/(i + 1). The decrease of βi with increasing i can lead to decrease of the value of probability connected to the entry node of the channel
and to strengthening of the effect of concentration of substance in the last node of the channel. (d) γi = 0.05 + 0.05(−1)ii/(i + 1). Large differences of the
values of βi for neighboring values of i can influence the shape of the distribution and can lead to decrease of the value of probability connected to the last
node of the channel.

The case described by Eq. (3.12) corresponds to the situation where the amount of substance in the first node is proportional
of the amount of substance in the entire channel (self-reproduction property of the substance). In this case Eq. (3.11) is
reduced to the truncated Waring distribution (Fig. 9):

P(ζ = i) =
a

a + k
(k − 1)[i]

(a + k)[i]
; k[i]

=
(k + i)!

k!
; i = 0, . . . ,N − 1

P(ζ = N) =
1

a + k
(k − 1)[N]

(a + k)[N−1] , (3.13)

The truncated Waring distribution (3.13) is close to the Waring distribution that was discussed above in the text. A
characteristic feature of the truncated Waring distribution is the possibility for accumulation of substance in the last node
of the channel (and this concentration can be quite significant) [47].

Let us note that for the case of distribution (3.10) y∗

N > y∗

N−1 when k+(N−1) > aN , i.e., the concentration of the substrate
in the last node of the channel depends on the situation in the last two nodes (from the parameters aN−1, βN−1, γN ). For the
case of truncated Waring distribution (3.13) y∗

N > y∗

N−1 when k + (N − 1) > a where a = σ/β , i.e., the concentration of
substance in the last node of the channel depends on the situation in the first node of the channel. This may be important
for the case of channels for human migrants.

3.2. Non-stationary regime of functioning of the channel

In the nonstationary case dx0/dt ̸= 0. Below we shall consider the case dx0/dt > 0. In this case the solution of the first
equation of the system of Eqs. (3.5) is

x0 = b00 exp[(σ0 − α0 − γ0)t] (3.14)

where b00 is a constant of integration. xi must be obtained by solution of the corresponding Eqs. (3.5). The form of xi is

xi =

i∑
j=0

bij exp[−(αj + jβj + γj − σj)t] (3.15)
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Fig. 9. Truncated Waring distribution (3.13) for a channel consisting of 8 nodes. (a) k = 2, a = 0.5. The effect of a large probability connected to the last
node of the channel is clearly visible. (b) k = 0.4, a = 0.1. There is no change in the shape of distribution. The probability connected to the last node of the
channel increases at the expense of probabilities connected to the intermediate nodes of the channel. (c) k = 2, a = 5. The value of the parameter k is the
same as in (a). The comparison of distributions from (a) and (c) shows the effect of increasing values of parameter a: There is an increase of the probability
connected to the entry node of the channel at the expense of the probabilities of the nodes from the second half of the channel that are connected to the
tail of the distribution. (d): k = 5, a = 0.5. The value of the parameter a is the same as in (a). Thus by comparing figures (a) and (d) one can observe the
effect of increasing value of parameter k on the shape of the truncatedWaring distribution. There is an increase of the probability connected to the first two
nodes of the channel at the expense of the probability connected to the last node of the channel. We note that the truncated Waring distribution depends
on two parameters and the more general distribution (3.10) depends on 3 parameters.

In order to understand the processes in the channel let us consider first the case of channel consisting of two nodes (N = 1).
In this case we have to solve the additional equation

dx1
dt

= α0x0 − γ1x1 (3.16)

The solution is

x1 =
α0

γ1 − γ0 + σ0 − α0
b00 exp[(σ0 − α0 − γ0)t] + b11 exp(−γ1t) (3.17)

b11 can be determined from the initial conditions at t = 0. The asymptotic form of the obtained solution (t → ∞) is

xa0 = b00 exp[(σ0 − α0 − γ0)t]

xa1 =
α0

γ1 − γ0 + σ0 − α0
b00 exp[(σ0 − α0 − γ0)t] (3.18)

as γ1 > 0. Let us consider the asymptotic distribution yai = xai /x
a where xa =

∑N
i=0xi. x

a
0 and xa1 depend on t but nevertheless

the asymptotic distribution is stationary

ya0 =
1

1 +
α0

γ1−γ0+σ0−α0

; ya1 =
1

1 +
γ1−γ0+σ0−α0

α0

(3.19)

Let us now consider the case of channel containing more than 2 nodes (N > 1). In this case the solution of the system of
Eqs. (3.5) is (3.15) where σi = 0, i = 1, . . . ,N − 1;

bij =
αi−1 + (i − 1)βi−1

(αi − αj) + (iβi − jβj) + (γi − γj)
bi−1,j; i = 1, . . . ,N − 1

bNj =
αN−1 + (N − 1)βN−1

γN − γj − αj − jβj
bN−1,j, j = 0, . . . ,N − 1

σN = αN + NβN , (3.20)
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and bii are determined from the initial conditions in the nodes of the channel. The asymptotic solution (t → ∞) is

xai = bi0 exp[(σ0 − α0 − γ0)t] (3.21)

This means that the asymptotic distribution yai = xai /x
a is stationary

yai =
bi0∑N
j=0 bj0

(3.22)

regardless of the fact that the amount of substance in the two cells many increase or decrease exponentially. The explicit
form of this distribution is

ya0 =
1
Ω

yai =

∏i
k=1

αi−k+(i−k)βi−k
(−α0+αi−k+1)+(i−k+1)βi−k+1+(−γ0+γi−k+1)

Ω
,

i = 1, . . . ,N − 1

yaN =

αN−1+(N−1)βN−1
(γN−γ0)−α0

∏N−1
k=1

αi−k+(i−k)βi−k
(−α0+αi−k+1)+(i−k+1)βi−k+1+(−γ0+γi−k+1)

Ω
(3.23)

where

Ω = 1 +

N−1∑
i=1

i∏
k=1

αi−k + (i − k)βi−k

(−α0 + αi−k+1) + (i − k + 1)βi−k+1 + (−γ0 + γi−k+1)
+

αN−1 + (N − 1)βN−1

(γN − γ0) − α0

N−1∏
k=1

αi−k + (i − k)βi−k

(−α0 + αi−k+1) + (i − k + 1)βi−k+1 + (−γ0 + γi−k+1)
(3.24)

4. Application of the model to channels of migration networks

4.1. Main outcome of the model for the case of human migration through a migration channel consisting of chain of countries.
Meaning of the model parameters

The model discussed above can be used for a study of motion of substance through cells of appropriate technological
systems. The model can be applied also for investigation of other systems. Below we shall discuss it in connection with
channels of human migration for the case when the migration flows are large and continuous approximation of these flows
can be used. The main outcome of the model for the case of human migration is the distribution (3.10) that describes the
distribution of migrants in the countries of the channel for the case of stationary regime of functioning of the migration
channel. Below we shall consider several additional outcomes of the model.

Let us consider a chain of N +1 countries or cities. This chainmay be considered as a channel in amigration network. The
nodes of this network (corresponding to the countries of the channel for an example) may be considered as boxes (cells). A
flow of migrants moves through this migration channel from the country of entrance to the final destination country. The
incoming country will be the node with label 0 and the final destination country will be the node with label N . Let us have
a number x of migrants that are distributed among the countries. Let xi be the number of migrants in the ith country. This
number can change on the basis of the following three processes: (i) A number s of migrants enter the channel from the
external environment through the 0th node (country of entrance); Amount fi from xi is transferred from the ith country to
the i+1th country; (iii) Amount gi from xi change their status (e.g. they are not anymore migrants andmay become citizens
of the corresponding country, may return home, etc.). The values of xi can be determined by Eqs. (3.3). The relationships
(2.6) mean that: (i) The number of migrants s that enter the channel is proportional of the current number of migrants in the
incoming country of the channel; (ii) There may be preference for some countries, e.g. migrants may prefer the countries
that are around the end of the migration channel (and the final destination country may be the most preferred one); (iii) It
is assumed that the conditions along the channel are different with respect to ’leakage’ of migrants, e.g. the different rates
γi of migrants leave the flow of migrants in different countries of the channel. In addition the transition from country to
country may have different grade of difficulty (different αi) and the attractiveness of the countries along the channel may be
different for migrants (different βi).

σ0 is the ‘‘gate’’ parameter as it regulates the number of migrants that enter the channel. The parameters γi regulate the
‘‘absorption’’ of the channel as they reflect the change of the status of somemigrants. The large values of γi may compensate
for the value of σ and evenmay lead to decrease of the number ofmigrants in the channel. The large values of γi mayhowever
lead to integration problems connected to migrants.

Small values of parameters αi mean that theway of themigrants through the channel is more difficult and because of this
the migrants tend to concentrate in the entry country (and eventually in the second country of the channel). The countries
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that are in the second half of the migration channel and especially the final destination country may try to decrease αi by
agreements that commit the entry country to keep the migrants on its territory. Any increase of αi may lead to increase of
the proportion of migrants that reach the second half of the migration channel and especially the final destination country.

The parameters βi regulate the attractiveness of the countries along the migration channel. Large values of βi mean that
the remaining countries in the channel and especially the final destination country are very attractive for some reason. If for
some reason βi are kept at high values a flood of migrants may reach the final destination country which may lead to large
logistic and other problems.

4.2. Concentration of migrants in a selected country of the migration channel

Let us now consider the case of channel consisting of finite number of countries and the stationary case of the functioning
of the channel. Then from Eq. (3.6) we obtain the relationship

y∗

N

y∗

N−1
=

αN−1 + (N − 1)βN−1

γN
(4.1)

If y∗N
y∗N−1

> 1 there is an effect of concentration of migrants in the final destination country. This happens when

αN−1 + (N − 1)βN−1 > γN (4.2)

i.e., if (i) the attractiveness of the final destination country is large (large value of βN−1); (ii) it is relatively easy to cross
the border to the final destination country (large αN−1) and (iii) the probability of change of the status of migrants in the
final destination country of the channel are not large enough to compensate for the popularity of the final destination
country (value of γN is relatively small). In order to avoid the arising of the effect of the concentration of migrants in the
final destination country one has to achieve

αN−1 + (N − 1)βN−1 < γN (4.3)

This means that one should try to decrease the number of migrants entering the final destination country (to lower the
value of αN−1); to decrease the attractiveness of the final destination country (to lower the value of βN−1) and to increase
the probabilities for change of the status of the migrants in the final destination country (to increase the value of γN ).

A new effect with respect to the theory developed in our previous study [47] is the possibility of accumulation ofmigrants
not only in the final destination country but also in any country of the channel. This can happen (see Eqs. (3.6)) when (for
some value of i)

αi−1 + (i − 1)βi−1

αi + iβi + γi
> 1 (4.4)

Eq. (4.4) shows that such a case of concentration of migrants may happen when the entry of migrants in the ith country is
easy and this country is popular among migrants (large values of αi−1 and βi−1 with respect to αi and βi) and in addition the
value of γi is small.

4.3. Total number of migrants in the countries of the migration channel

The change of the total number of migrants in the channel can be obtained by taking the sum of the Eqs. (3.5). The result
is

dx
dt

= σ0x0 −

N∑
l=0

γlxl (4.5)

Thus the total number of migrants in the channel may increase fast whenmanymigrants enter the channel (when the value
of σ0 is large) and decrease when the probability for change of the status of the migrants is large (when the values of some
of γl or the values of all γl are large).

In the stationary regime of functioning of a finite channel the total number of migrants in the countries of the channel is

x∗
= x∗

0

{
1 +

N−1∑
i=1

∏i
j=1[αi−j + (i − j)βj−1]∏i

j=1(αj + jβj + γj)
+

∏N
j=1[αi−j + (N − j)βj−1]

γN
∏N−1

j=1 (αj + jβj + γj)

}
(4.6)

Thus the number of migrants in the countries of the channel may be decreased if one manages to decrease the number of
migrants in the entry country of the channel (i.e. if one manages to decrease the value of x∗

0).
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4.4. Case of small permeability of the borders between the countries of the channel and large attractiveness of the final destination
country. Appearance of Zipf distribution

We consider the case of channel consisting of finite number of countries and in stationary regime of functioning. Let
in addition the motion of migrants be determined by the attractiveness of the final destination country at the expense of
the easiness of moving through the borders between the countries of the channel (i.e., βi ≫ αi and parameter αi may be
neglected in the relationships for all countries except in the numerator for the 0th country in Eq. (3.6)). Let in addition there
be no ‘‘leakage’’ (themigrants are verymuch fascinated by the final destination country and the change of the statuses along
the channel is small, i.e., one can neglect all γi except for γN which is assumed to be significant). Thus from Eq. (3.6) we obtain

x∗

1 =
α0

β1
x∗

0; x∗

i =
(i − 1)

i
βi−1

βi
x∗

i−1, i = 2, . . . ,N − 1; x∗

N =
(N − 1)βN−1

γN
x∗

N−1. (4.7)

From the second of Eqs. (4.7) one easily obtains x∗

i =
i−k
i

βi−k
βi

x∗

i−k. Then the approximate total number of the migrants in the
channel is

x∗
= x∗

0

{
1 + α0

N−1∑
l=1

1
lβl

+
α0

γN

}
(4.8)

and the distribution of the migrants among the countries of the channel is

y∗

0 =
1

1 + α0
∑N−1

l=1
1
lβl

+
α0
γN

y1 =
α0

β1

[
1 + α0

∑N−1
l=1

1
lβl

+
α0
γN

]
y∗

i =
α0

iβi

[
1 + α0

∑N−1
l=1

1
lβl

+
α0
γN

] , i = 2, . . . ,N − 1

y∗

N =
α0

γN

[
1 + α0

∑N−1
l=1

1
lβl

+
α0
γN

] (4.9)

Let us now denote α0 as α and assume that β1 = · · · = βN−1 = β . Then

x∗
= x∗

0

{
1 +

α

β

N−1∑
l=1

1
l

+
α

γN

}
= x∗

0

{
1 +

α

β
HN−1 +

α

γ

}
(4.10)

where HN−1 is the N − 1th harmonic number. Let us use the approximate relationship for harmonic numbers HN =

ln(N) + CE +
1
2N −

1
12N2 +

1
120N4 − · · · (CE is the constant of Euler). Then for a migration channel of finite and not very

large length we obtain the relationship

x∗
≈ x∗

0

{
1 +

α

β

[
ln(N − 1) + CE +

1
2(N − 1)

]
+

α

γ

}
(4.11)

and the approximate distribution of the migrants in the channel y∗

i =
x∗i
x∗ will be

y∗

0 =
1{

1 +
α
β

[
ln(N − 1) + CE +

1
2(N−1)

]
+

α
γ

}
y∗

1 =
α

β

{
1 +

α
β

[
ln(N − 1) + CE +

1
2(N−1)

]
+

α
γ

}
y∗

i =
α

iβ
{
1 +

α
β

[
ln(N − 1) + CE +

1
2(N−1)

]
+

α
γ

} , i = 2, . . . ,N − 1

y∗

N =
α

γN

{
1 +

α
β

[
ln(N − 1) + CE +

1
2(N−1)

]
+

α
γ

} (4.12)

which is a version of truncated Zipf distribution.
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4.5. Two scenarios for a migration channel consisting of 3 countries. what is more effective if the number of migrants has to be
decreased: (i) to decrease permeability of the borders between the countries of the channel or (ii) to decrease the influx of migrants
into the incoming country of the channel?

For an additional illustration of the above theory we shall discuss a stationary regime of functioning of a migration
channel, containing 3 countries. Let the migrants come overseas (e.g., by boats) to the incoming country of the channel.
The attractive country in the channel is the third country of the channel (the final destination country). The second country
of the channel is not attractive for themigrants but in order to reach the final destination country themigrants have tomove
through its territory. Let the flow of migrants be large. Then we can apply the part of the model described by Eqs. (3.9) and
(3.10). The numbers of the migrants in the three countries of the channel are

x∗

0; x∗

1 = x∗

0
α0

α1 + β1 + γ1
; x∗

2 = x∗

0
α1 + β1

γ2

α0

α1 + β1 + γ1
(4.13)

The total number of migrants in the countries of the channel will be

x∗
= x∗

0

(
1 +

α0

α1 + β1 + γ1
+

α1 + β1

γ2

α0

α1 + β1 + γ1

)
(4.14)

and the distribution of the migrants along the countries of the channel will be

y∗

0 =
1(

1 +
α0

α1+β1+γ1
+

α1+β1
γ2

α0
α1+β1+γ1

)
y∗

1 =

α0
α1+β1+γ1(

1 +
α0

α1+β1+γ1
+

α1+β1
γ2

α0
α1+β1+γ1

)
y∗

2 =

α1+β1
γ2

α0
α1+β1+γ1(

1 +
α0

α1+β1+γ1
+

α1+β1
γ2

α0
α1+β1+γ1

) (4.15)

Let us discuss two scenarios. In the first scenario there are no measures to decrease the number of migrants in the
incoming country of the channel and their number remains, e.g., x∗

0 = 300,000. Let the stationary state of the channel
be characterized by values of parameters: α0 = α1 = β1 = γ1 = γ2 = 0.0001. Then in countries of the channel there are
600,000 migrants: 300,000 in the incoming country (50%), 100,000 in the second country of the channel (about 16, 7%) and
200,000 in the final destination country (about 33.3%). Now let the number of themigrants in the first country of the channel
be a large burden for this country, and it decides to increase α0 (e.g., to ease the border control and to increase the probability
that the migrants maymove successfully (andmostly illegally) to the second country of the channel). Let the result of such a
behavior be that α0 increases from 0.0001 to 0.0002. After some time the channel will have new stationary state of operation
where the number of migrants in the incoming country of the channel will be 300,000 (x∗

0 remains unchanged) but the
number of migrants in the second and third country of the channel will increase to 200,000 in the second country of the
channel and 400,000 in the final destination country. Then the second country of the channel may decide that the migration
burden is too high for it and this country may take measures that may lead to increase of α1. Let this increase be from
α1 = 0.0001 to α1 = 0.0002. We remember that α0 = 0.0002 and the other parameters of the channel have values of
0.0001. This will have the following effect of the stationary regime of the functioning of the channel: there will be 300,000
migrants in the incoming country of the channel (as no measures are taken to decrease x∗

0). Then there will be 150,000
migrants in the second country of the channel (increasing value of α1 decreased the number of migrants in this country) and
there will be 450,000 migrants in the final destination country (part of the migrants move from the second country of the
channel to the final destination country). Let now the final destination country decides that themigration burden is too large
for it and this country takes measures to decrease its popularity. Let these measures lead to a new value of β1: β1 = 0. Then
the stationary regime of the functioning of the migration channel will be characterized by the following number of migrants
in the three countries: 300,000 migrants in the incoming country, 200,000 migrants in the second country of the channel,
and 400,000 migrants in the final destination country of the channel. Thus the number of migrants in the final destination
country will decrease at the expense of the migrants in the second country of the channel.

The sole actions of the countries from the scenario 1 above can continue but aswehave seen thiswill not lead to significant
decrease of migration. Such significant decrease can be realized in the scenario 2: the countries concentrate their efforts in
order to decrease x∗

0 keeping the values of the other parameters unchanged. This will have large effect as follows. Let the
initial stationary state of the channel be characterized by x∗

0 = 300,000, and α0 = α1 = β1 = γ1 = γ2 = 0.0001. Then the
number of migrants in the second country of the channel will be 100,000 and the number of migrants in the final destination
country will be 200,000. Let now the measures be taken and the number of migrants in the incoming country of the channel
decreases to x∗

0 = 200,000. Then the stationary state of the channel will be characterized by about 67,000 migrants in the
second country of the channel and about 133,000 migrants in the final destination country. If the measures for decreasing
x∗

0 continue and the number of migrants reduces to 45,000 then the corresponding numbers of migrants will be 15,000 in
the second country of the channel and 30,000 in the final destination country. Thus scenario 2 is much more effective from
the point of view of decreasing migration in the countries of the channel.
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5. Concluding remarks

Above we have discussed a model for motion of a substance in a channel consisting of nodes of a network. Two regimes
of functioning of the channel are studied: stationary regime of motion of the substance and nonstationary regime of motion
of the substance. The main outcome of the study are the obtained distributions of substance along the cells for the case
of stationary regime of motion of the substance. The corresponding distribution for the case of channel containing infinite
number of modes is a distribution with a very long tail that is a generalization of the Waring distribution. And the Waring
distribution contains as particular cases the famous Zipf distribution as well as the Yule–Simon distribution. The distribution
obtained for the case of a channel containing finite number of nodes is a generalization of the truncatedWaring distribution
that was discussed in [47]. In addition to classical application of the model for calculation of motion and distribution of
substance in channels of technological systems we have discussed the model also in the context of motion of large numbers
of migrants through migration channels, e.g., connecting several countries. Specific characteristic of the discussed model is
the possibility for different ‘‘leakage’’ of the nodes, i.e., the different probabilities for a change of the status of a migrant in
the different nodes (countries) of the channel. Several outcomes of the model for the case of migration are as follows

1. For the case of non-stationary regimeof functioning of the channel thenumber ofmigrants in the channelmay increase
or decrease exponentially but the asymptotic distribution of the migrants in the countries of the channel is stationary
and depends strongly on the situation in the first node (incoming country) of the channel. The corresponding
distributions of the migrants in the countries of the channel are more complicated in comparison to the distributions
for the case of stationary regime of functioning of the channel.

2. In the stationary regime of functioning of a channel consisting of finite number of nodes an effect of concentration of
migrants in the final destination country (last node of the channel) may be observed if the final destination country
is popular enough.

3. The possibility of different ‘‘leakage’’ and different preferences may lead to another concentration effect: the
concentration of migrants may happen not only in the last country of the channel but also in the countries that are
between the incoming country of the channel and the final destination country.

4. If the popularity of the countries close to the final destination country is large and themotion from node to node (from
country to country) is not so easy and in addition the if migrants are not interested in change of their status in the
countries of the channel except for the final destination country, then the distribution of themigrants in the countries
of the channel is a version of the Zipf distribution.

5. Let the number of migrants in the countries of the channel has to be decreased and one has to choose between two
possibilities: (i) to reduce the number of migrants arriving in the incoming country of the channel or (ii) to reduce
permeability of the borders between the countries of the channel. The more effective way to deal with the problem is
to realize the possibility (i).

Appendix. Proof that Eq. (2.8) is solution of Eqs. (2.7)

Let us consider the first equation from Eqs. (2.7). In this case i = 0 and Eq. (2.8) becomes x0 = x∗

0 + b00 exp[−(α0 + γ0)t].
The substitution of the last relationship in the first of the Eqs. (2.7) and accounting for Eq. (2.9) leads to the relationship

0 = (σ0 − α0 − γ0)x∗
+ b00σ0 exp[−(α0 + γ0)t] (A.1)

Let us assume σ0 = α0 + γ0 and b00 = 0. Then Eq. (2.8) describes the solution of the first of Eqs. (2.7).
Let us now consider Eqs. (2.7) for i = 1, 2, . . .. Let us fix i and substitute Eq. (2.8) in the corresponding equation from

Eqs. (2.7). The result is
i−1∑
j=0

exp[−(αj + jbj + γj)t]{−bij(αj + jβj + γj) − bi−1,j[αi−1 +

(i − 1)βi−1] + bij(αi + iβi + γi)} = 0 (A.2)

As it can be seen from Eq. (2.10) Eq. (A.2) is satisfied. Thus we have shown that Eq. (2.8) is solution of Eqs. (2.7).
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