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a b s t r a c t

In the present paper we give an overview over the opportunities of probabilistic mod-
els in scientometrics. Four examples from different topics are used to shed light on some
important aspects of reliability and robustness of indicators based on stochastic models.
Limitations and future tasks are discussed as well.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The terms scientometrics, bibliometrics and informetrics are usually explained as the application of mathematical and
statistical methods to information and communication processes in different contexts (cf., Gorkova, 1988; Nacke, 1979; Nalimov
& Mulchenko, 1969; Pritchard, 1969; Tague-Sutcliffe, 1992). The creation and application of mathematical, notably stochastic
models to scientometrics and related fields seems therefore quite obvious. In particular, the links created by co-authorship
relations, by received and given citations form complex networks of scientific communication which can best be described
and analysed with the help of mathematical tools.

The application of stochastic models and probability distributions has the following important advantages (Glänzel,
2008).

1. It provides mathematical interpretations beside the scientometric ones. This means a more general notion of phenomena
with the opportunity of extensions and generalisations through the choice of appropriate models, even beyond our field.
Mathematical meaning and interpretation of scientometric measures can be given by parameters and statistical functions.

2. It helps understand complex structures such as communication networks. Although deterministic network models also
allow randomness, the use of probabilistic network models such as Bayesian networks opens new perspectives, above
all, concerning inference and learning.

� This paper is based on invited lectures delivered at the Workshop “Modelling science—Understanding, forecasting, and communicating the science sys-
tem” held in Amsterdam, the Netherlands, on 6–9 October, 2009 and the “Fifth International Conference on Webometrics, Informetrics, and Scientometrics
& Tenth COLLNET Meeting” held in Dalian, China, on 13–16 September, 2009.
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3. It provides information about statistical reliability, random errors and confidence intervals for indicators.
4. It allows predictions concerning the expectation and probability of future events.

Scientometric phenomena to be quantified and measured can often be expressed by non-negative integer- or real-valued
random variables. Most scientometric indicators can thus be defined as statistical functions such as mean values, quantiles,
relative frequencies, rank statistics, Hirsch-type statistics. Therefore, we will focus on the last two issues in the above list
since the other two questions are too general to be discussed here.

2. Reliability and robustness of scientometric indicators based on stochastic models

Deterministic as well as probabilistic models are used to describe patterns and processes of scholarly communication.
First, in its pioneering days, scientometrics has adopted laws and models from other, often not even related fields (e.g.,
the model of radioactive decay for obsolescence of literature by Gosnell, 1944, models from quantitative linguistics for
bibliometric rank frequencies by Zipf, 1949, or the theory of intellectual epidemics as a model of scientific communication by
Goffman & Newill, 1964). Most of them were deterministic ones. However, scientometricians have soon recognised that own,
specific models are needed to describe the observed phenomena in an adequate manner. The presence of latent variables
and dependency relations among variables go far beyond the possibilities of the initially used deterministic models. The
various factors influencing publication activity, citation impact or collaboration affinity might just serve as an example. The
interdependency among the variables such as the relation between collaboration and citation impact or between the choice
of communication channels and visibility have become common places in our field. Nevertheless, it is not at all obvious if
these dependencies also imply causality relations. In the first subsection we will, therefore, have a closer look at correlation
and (in-)dependence issues in scientometrics.

2.1. Correlation between variables

One of the crucial issues in the analysis of empirical data and in modelling scientometric processes is the question of
independence or (partial) interdependence of the underlying variables. This question is important for the possible separation
of variables in practice or for finding appropriate interrelations between in building the model. Of course, the definition itself
of variables can already imply certain interdependence, which can result in build-in biases. There are several methods to
analyse (partial) interdependence in a set of variables. Regression analysis based on statistical correlation is beyond doubt
one of the most popular methods. However, this method is often source of misinterpretations.

The following misinterpretation is perhaps the most fatal one. Correlation, which is from the mathematical viewpoint a
symmetric relation, is sometimes confused with causality.

The second misunderstanding concerns the fact that independent variables are uncorrelated but the reverse statement
does not hold. Uncorrelatedness does not imply independence. In practice, it is often difficult to capture regularities behind
weak correlation. The following example illustrates how relatively weak correlation can be mathematically expressed by a
“weak” law.

Example. Several years ago, we analysed the possible interdependence between author self-citations (�) and foreign
citations (�), where the two citation rates are considered random variables (Glänzel, Thijs, & Schlemmer, 2004). A linear
regression analysis was used to test the hypothesis of independence, namely H0: P(�(t) = i, �(t) = k) = P(�(t) = i)·P(�(t) = k) for

all pairs i and k ≥ 0. We know that the random variable t = √
n − 2(r/

√
1 − r2) has a Student distribution with n − 2 degrees

of freedom, where n is the number of publications and r is the correlation coefficient. For different citation windows and
different regression models we have observed weak correlations with r2 ∼ 0.20. Nevertheless, we had to reject H0, that is,
self-citations and foreign citations cannot be considered independent. On the other hand, the weak correlation suggested
that neither the linear nor the power-function model can be accepted. In other words, individual self-citation rates cannot
explicitly be expressed with the help of foreign citations alone.

We could conclude that although both variables cannot be considered independent, there is no unique functional rela-
tionship of linear, power, logarithmic, exponential or polynomial or any other form between the two types of citations.
Therefore, we decided to analyse a weaker type of relationship, namely between the conditional expectation E(�(t)|�(t)) and
�(t). The condition E(�(t)|�(t)) ≡ E�(t) (i.e., r = 0) is necessary but not sufficient for independence. Thus we have supplemented
the first analysis by a second regression analysis where we expected to find a explicit relation between the two variables.
Because of the properties of conditional expectations there exists an appropriate function f, such that E(�(t)|�(t)) = f(�(t)). We
have assumed a power model and have chosen f(x) = C·(x + d)ˇ with C, d and ˇ being appropriate positive real parameters.
The correlation of r2 = 0.992 proved to be strong for the assumed model with parameters C = 1, d = 0.25 and ˇ = 0.547 (cf.
Fig. 1). In verbal terms, the first regression model based on the two variables self-citations and foreign citation suggested to
reject independence but did not support any explicit relationship, either. Under weaker assumptions we have found such a
unique relation based on conditional expectations, namely E(�(t)|�(t)) ∼ (�(t) + 1/4)1/2. This case is quite typical of sciento-
metric phenomena as it expresses weak but measurable interdependence without any causal statements. We will see in a later
subsection that this form of regression is of great importance in scientometrics.
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Fig. 1. The plot of foreign citations vs. mean self-citation rate (1992–2001).
Recreated from Figure 3 bottom (Glänzel et al., 2004) based on the original data with permission by Scientometrics.

2.2. Statistical reliability of comparisons

2.2.1. Asymptotic normality of scientometric indicators
Authorship, publication activities, references, citations and other links as well as the co-occurrences of these links can be

expressed by random variables and/or corresponding dependence relations. Most scientometric phenomena can be modelled
using non-negative integer-valued random variables but derivatives can take real values as well. The application of most
statistical methods are approximate solutions. One reason is ambiguity and uncertainty (cf. Bookstein, 1997). For instance,
the independence of the random variables under study is often not guaranteed. Scientific collaboration, author co-affiliation,
co-citations or subject co-assignment may in fact distort independence. The other reason is that most statistical techniques
require underlying normal distributions to obtain ‘exact’ solutions.

Indeed, the Gaussian normal distribution arises in many areas of statistics. ‘Normality’ is the basis and the condition of
many statistical tests. If a statistical sample follows a normal distribution, then the observations should be symmetrically
distributed around the sample mean and the standard deviation can be used to determine a tolerance threshold for obser-
vations. However, this is often not the case in scientometrics. Most distributions here are discrete and extremely skewed so
that the majority of the observations are found below the sample mean and the rest of the sample elements are located in
the long tail of the distributions.

Nevertheless, the central limit theory guarantees the asymptotic normality of sample means even if the underlying
distribution is discrete and skewed, provided the distribution belongs to the domain of attraction of the Gaussian distribution.

Definition. Let X1, X2, . . ., Xn be a sequence of n independent and identically distributed random variables and an and bn > 0
suitable sequences of constants such that the distribution of the normalised sequence of partial sums Zn =

(∑n
i=1Xi − an

)
/bn

converges weakly, as n tends to infinity, to a non-degenerate distribution function F(x). We say that the common distribution
of the random variables Xi belongs to the domain of attraction of the (stable) distribution F.

Theorem (Central limit theorem). Let X1, X2, . . ., Xn be a sequence of n independent and identically distributed random
variables with finite expectation � and variance �2 > 0. Then the distribution of the random variable Zn =

(∑n
i=1Xi − n�

)
/�

√
n

converges weakly to the standard normal distribution N(0,1) as n tends to infinity.
Under certain conditions (e.g., Lindeberg condition), a weaker form of the central limit theorem, where identical distribution is

not required, holds. However, the following approximation holds as well.

Theorem. Let X1, X2, . . ., Xn be a sequence of n independent random variables with finite expectations �i and vari-

ances �i
2 > 0. Then Zn =

(∑n
i=1Xi −

∑n
i=1�i

)
/

√∑n
i=1�2

i
has a limiting distribution function which approaches a normal

distribution.

Further information about attraction domains of distributions and weaker conditions of the central limit theorem can be
found, e.g., in Rényi (1962), Hazewinkel (2002) or, more recently, Gut (2009).

As a consequence of the central limit theorem, the sample mean of random variables x̄ =
(∑n

i=1Xi/n
)

with any distribution
belonging to the attraction domain of the normal distribution is approximately normally distributed. The standard deviation
of the sample mean equals the standard deviation of the common distribution of the sample elements divided by the square
root of the sample size. Furthermore, confidence intervals can be given for sample means and statistical tests originally
designed for statistics taken from normally distributed populations can thus be applied, provided that the sample size is
large enough. A t-test should not be applied to the comparison of two sample means since the standard deviation of the
random variables is not known and is not assumed to be identical in the case of different samples. However, a simple
Welch test can be applied instead, provided the sample size amounts to about 30 or more (see, e.g., Sawilowsky, 2002).
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In particular,

w = x̄1 − x̄2√
s2

1/n1 + s2
2/n2

has approximately a Student distribution, where x̄i are the sample means, ni the sample sizes, si are estimators of the standard
deviations that are independent of x̄i. For sample sizes above 50 or even 100, the Student distribution can in practice be
approximated by a normal distribution. This is very often the case in scientometric practice. If one of the two variables
is actually constant, that is, a given fixed value, the standard deviation of the remaining random variable appears in the
denominator.

This approach can be extended to other statistics as well. According to the Glivenko–Cantelli theorem, the empirical
distribution converges to the underlying theoretical one with probability 1. The relative frequency p̂ is an unbiased estimator
of the corresponding probability p. For instance, the standard error of the share (e.g., of cited or uncited papers) p̂ can
be calculated analogously to the sample mean. In particular, we have E(p̂) = p and D(p̂) = {p(1 − p)/n}−1/2. The standard
deviation of the relative frequency is a decreasing function of the sample size.

In this context we have to stress that mean values and relative frequencies are unbiased estimators for the expectation
and the corresponding probabilities. Their use in scientometrics is therefore correct and not just a ‘workaround’. Whenever
possible, their standard deviation should be given in order to be able to judge their tolerance and to allow approximate
significance tests as has done first by Schubert and Glänzel (1983) for ISI Impact Factors.

Another consequence of the above considerations is the effect that seemingly large deviations between indicators some-
times prove to be not significant. In terms of ranking according to scientometric indicators, ties might occur where indicators
otherwise take different values. Specific problems of ranking will be discussed in the following section.

2.3. Ranking

Before we tackle the question to which extent reliable and reproducible ranking lists are at all possible, we attempt to
clarify the notion of ranking by presenting the following comprehensible but nevertheless precise definition (see, Glänzel &
Debackere, 2009).

Definition. Ranking is positioning comparable objects on an ordinal scale based on a non-strict order relation among
(statistical) functions of measures or scores associated with those objects.

Thus ranking can, in particular, be considered a multivariate comparison of variables in a given set by defining a non-strict
order relation on this set.

These functions or variables, usually based on evaluation, are called indicators. Different indicators Xi representing
different aspects usually form components of a composite indicator Y which is used as the basis of the ranking, particularly,

Y =
n∑

i=1

�iXi with �i being weights and
n∑

i=1

�i = 1. (1)

Generalisation
If some k subsets consisting of nj indicators Xi each form a partition of the entire space, a set of (composite) indicators Yj

(j = 1, 2, . . . k) can be defined for a given k (with 1 ≤ k ≤ n) in a similar manner.

Y =
nj∑

i=nj−1+1

�iXi with n0 = 0, nk = n and

nj∑
i=nj−1+1

�i = 1 (2)

Remark. For k = 1, the previous case is obtained with Y1 = Y according to Eq. (1), while for k = n the partition is formed by
the original individual variables with j = i, where each subset contains exactly one element, i.e., we have Yi = Xi.

General problems in using composite indicators
Problems might occur if several variables are (at least partially) bundled into a single measure. These problems are related

to the following issues.

• “Random errors” of statistical functions;
• Possible interdependence of components;
• Altering weights can result in different ranking outcomes;
• Results might be obscure and irreproducible;
• Information loss by crashing the multi-dimensional space into linearity.

Assume that we have solved the latter four problems and have obtained valid and robust indicators for ranking, we are
still faced with the problem of ties which is clearly a disadvantage of linear scoring. Instead of scalar scoring (i.e., positioning
objects on an ordinal scale according to their indicator values Yj) objects with similar scores can be grouped into classes.
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Fig. 2. Pinprick and separation problem (sketch).

Classes might be pre-defined according to some criteria (e.g., poor, fair, good, very good, excellent, etc.), or be self-adjusting
according to some mathematical rules. The most obvious advantage of pre-defined classes is that the number of classes can be
chosen according to the needs and that the same categories can be used for all dimensions if a “multi-dimensional” approach
is applied to the ranking exercise. By contrast, the arbitrariness and difficulty in finding common criteria for classification.

Self-adjusting classes are less arbitrary since they adjust themselves whenever the underlying system changes. This
property is, for instance, important for longitudinal approaches. On the other hand, difficult algorithms form the disadvantage
of this approach. Transforming linear scoring into self-adjusting groups remains a challenge since the underlying relations
are reflexive, symmetric but not transitive (see ‘pinprick and separation problem’ presented in Fig. 2). The task in Fig. 2 is to
fix objects represented by dots on a line based on tolerance intervals (represented by ellipses) using the minimum number
of pins (represented by arrows). To fix the three objects in the centre, one needs two pins; however if the variance of object
Yl were somewhat greater the problem could be solved with one pin less.

2.3.1. The special case of the h-index
Ranking according to Hirsch-related indices is based on one single indicator and forms a special case of ranking exercises.

Therefore most of the problems occurring in the context of composite indicators do not apply here. On the other hand,
the mathematical–statistical properties of the h-index and its derivatives have been studied only recently. The most recent
results prove the robustness of this indicator but also its low discriminatory power (cf. Glänzel, 2009).

The asymptotic normality of the h-index has been shown by Beirlant and Einmahl (2007). This property has been proved
under very weak conditions. In the following I give the version for Paretian distributions, the class of distributions, which
are of the most practical importance in our field.

Proposition (Beirlant & Einmahl, 2007). Assume that if the elements of the original sample {Xi}i=1,. . .,n have a Paretian distri-
bution, i.e., G(x): = 1–F(x) = x−˛�(x), where F is the common probability distribution and � is a slowly varying function such as

lim
x→∞

�(ux)
�(x)

= 1 for all u > 0.

If F satisfies the von Mises condition, i.e., if lim
x→∞

− xG′(x)/G(x) = ˛ and ˆ̨ is a consistent estimator for ˛, then

1 + ˆ̨√
ĥ

(ĥ − h)
D−→N(0, 1),

where h and ĥ are the theoretical and empirical h-index, respectively.
Note that the distribution of the empirical h-index may belong to the domain of attraction of the normal distribution

even if the underlying Paretian distribution does not, i.e., if ˛ ≤ 2 (see Barcza & Telcs, 2009).
Critical values and confidence intervals can thus readily be given for any confidence level p and any parameter ˛. The

confidence interval for the empirical h-index is obtained from the previous proposition.(
h + c∗2

p

2
− c∗

p

√
h + c∗2

p

4
, h + c∗2

p

2
+ c∗

p

√
h + c∗2

p

4

)
, with c∗

p = cp

(1 + ˛)
,

where p = 2˚(cp) − 1 and ˚ is the cumulative distribution function of the standard normal distribution. Table 1 presents
the lower and upper bounds for selected h-indices and three different ˛ values. The first case (˛ = 1) refers to the original
Lotka-type distribution, the second one (˛ = 2) is frequent in scientometric practice (see Pao, 1986; Schubert & Glänzel, 2007)
and the third case (˛ = 10) can already be approximated by an exponential distribution. The low discriminative power of this
indicator for small ˛ values is blatantly obvious.
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Table 1
Some confidence intervals for empirical h-indices with different ˛ parameters (p = 0.95).

h-index Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

˛ = 1 ˛ = 2 ˛ = 10

20 17 24 18 23 20 20
25 21 30 22 28 25 25
30 26 35 27 33 30 30
35 30 41 32 39 34 36
40 35 46 37 44 39 41
50 44 57 46 54 49 51

100 91 110 94 106 99 101

2.4. Predictive aspects

Scholarly communication patterns are subject to changes in time. Changing scientific “productivity”, dissemination and
ageing of information, in general, and of scientific literature, in particular, are typical examples for these processes. Stochastic
processes are the preferred models for describing scientometric processes (e.g., Burrell, 2003, 2005; Glänzel & Schoepflin,
1994; Schubert & Glänzel, 1984). Birth-processes can be used for the analysis of the regression function of the increments
on the process. The empirical version of this function was also called mean value function of a process for simplicity. This
approach was used by Glänzel and Schubert (1995) to characterise future citation rates. In principle, this model is appropriate
to describe an author’s future publication activity as well. It was shown that the above-mentioned regression function M(s,t)
for a negative-binomial birth-processes is linear. In other words,

M(s, t) = E(X(t) − X(s)|X(s) = i) = u · i + v,

where X(t) denotes the citation process and i ≥ 0 the number of citations and u and v two positive real parameters. The
standard deviation of its empirical value, denoted by M*(s,t), can be approximated by the following expression (Glänzel,
1997).

D(M∗
i (s, t)) ≈

√
(v/u + 1){1 − (E(X(s)) + v/u)/(E(X(t)) + v/u)}√
n · P(X(s) = i) · (E(X(s)) + v/u))/(E(X(t)) + v/u)

According to this equation, reliable predictions of future citation rates are possible, if the initial reference period is close
to the prediction period. The “goodness-of-prediction” increases with the sample size and the length of the initial period and
decreases with the length of the interval to be predicted. Beyond providing “predictive indicators”, this model also sheds
light on important validity aspects of traditional citation indicators. Thus the choice of three- to five-year citation window
still allows the evaluation of recent research results, and is usually long enough to determine future citation impact.

Furthermore, several life-time related indicators can be derived from stochastic models as well. Citation half-life, Price-
type indices or obsolescence indicators are just some examples. More opportunities are offered by the application of Markov
stopping times (Burrell, 2001, 2002; Glänzel, 1992). This model is of special interest in the context of the analysis of first-
citation distributions (cf. Rousseau, 1994 and Egghe and Rao, 2001). Furthermore, stopping times can be used to construct
response indicators (Schubert & Glänzel, 1986) as well.

Let Ti (i = 1, 2, 3, . . .) denote the shortest time tn (n = 0, 1, 2, . . .) during which the papers have received exactly i citations
(i.e., Ti = min{tn: X(tn) ≥ i}). Random variables of this type are called “stopping times”. From the definition we obtain the
following property.

P(Ti = tn) = P(X(tn) ≥ i) − P(X(tn−1) ≥ i) and P(Ti = t0) = P(X(t0) ≥ i)

Ti can take the value +∞ with positive probability: P(Ti =+∞) = P(X(∞) < i). Hence E(Ti) = ∞ follows. This implies that the
mean value cannot be used as indicator. Moreover, citations are only known within a finite citation window. However,
there is an alternative solution, namely the application of an appropriate transformation as, for instance, was suggested by
Schubert and Glänzel (1986) for first-citations. This can be generalised as follows

Te
i = − ln E(e−Ti ).

This transformation has the advantage that citations beyond a citation window of about five years can be neglected since
e−x quickly converges to 0 with growing x.

Although Burrell (2002) has studied the case of an underlying Poisson process, the mathematical–statistical properties
of stopping-time indicators and their relationship with more general models for citation processes are not yet sufficiently
analysed. It is certainly one of the future tasks to validate and improve the reliability of reception indicators and to make
them fit for comparative studies and ranking.
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3. Conclusions

In its pioneering days, scientometrics has adopted laws and models from other, often not even related fields to describe
observed phenomena. The exponential and logistic growth model to describe the growth of literature, the model of radioac-
tive decay for the ageing of information or epidemic models for dissemination of information may just serve as an example.
These models have been supplemented by generic scientometric approaches but most of them remained deterministic ones
(e.g., Lotka’s and Bradford’s Law). Their disadvantages were that most of them were formulated as “natural laws” not allow-
ing for the influences of those factors which play an important part in scholarly communication. Probabilistic models have
the potential to solve this problem. They proved also to be useful to measure indirect or latent effects which can often be
expressed by conditional measures, that is, conditional probabilities or moments. Good examples are the interdependence
between author self-citations and foreign citations or the prediction of future citation rates.

When scientometrics shifted from a tool in scientific information towards a tool for research evaluation, a second issue
became crucial: the statistical reliability of indicators. Only the probabilistic approach could meet this requirement, however,
sometimes only approximately. In turn, new problems arose for the application of indicators for ranking entities according
to these measures.

We could also see that robustness does not necessarily go with discriminative power. The example of Hirsch-type indices
convincingly illustrates that although these indicators are relatively insensitive to changes in the underlying distributions,
their discriminative power is disappointingly low.

We should also keep in mind that scientometrics has its own peculiarities which have to be taken into account when
creating and applying appropriate models. We are still at the very beginning of the process of the creation of such models
and its translation into reality.
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