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While China has emerged as one of theworld's leading technological innovators, past studies have
uncovered that technology centers have been overwhelmingly concentrated in Beijing and
Shanghai. We take a step further to investigate whether this geographic concentration has
persisted over timewith nanotechnology-relatedpatents.We apply the spatial analysis techniques
and employ Gini's coefficient and global Moran's I. We additionally test the spatial patterns at four
scales: the municipality, the county, the intra-metropolitan, and the distance-based.
We find that while Beijing and Shanghai have remained the two dominant nanotechnology
clusters, the Shanghai region, together with Jiangsu and Zhejiang, surpassed the traditionally
productive Beijing–Tianjin region by 2007. We did not identify spatial autocorrelation at the
province level, but at the county level, and at the scale between 20 km and 75 km. The intra-
metropolitan analysis in Beijing and Shanghai further confirmed that the geographic concentration
of nanotechnology is small, around 20 km. These results support the regional divergence theory
and a small scale of technology diffusion, as well as the possibility of continually increasing
inequality in China and its technology development.
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1. Introduction

In recent years, the People's Republic of China has emerged
not only as a mass manufacturer, but also as one of the world's
leading technology nations. Many semiconductor products
come from China, approximately one in ten professionals in
SiliconValley's high-techworkforce is frommainland China [1],
and China successfully became only the second country to
launch the radar-evading stealth fighter jet [2]. In addition to
anecdotal evidence, various bibliometric studies have sug-
gested that China has made a major advancement in the fields
of science and technology. China has surpassed Japan and now
is ranked second in the production of academic journal articles
in science and engineering fields [3]. In the nanotechnology
field, often considered one of the cutting-edge areas in science
and engineering, China has surfaced as one of the top players
[4–6]. Indeed, while the journal Nature Nanotechnology [7], and
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Lenoir and Herron [8] predicted that China would surpass the
United States by 2012, according to Kostoff et al. [9], China not
only achieved this in 2009, but also produced 20% more
academic journal articles in science and engineering fields than
the United States by 2012. Additionally, China dominates in the
nanotechnology area of most-cited academic articles: the top
eighteen out of the twenty scholars are of Chinese origin [10].

However, such success may come at a cost. While China
boasts world-class research institutes in nanotechnology such
as the Chinese Academy of Sciences, Tsinghua University, and
Peking University, to name a few [11], they are overwhelmingly
concentrated in two regions: Beijing and Shanghai. This con-
centration of technology centers could become an important
issue because it can bias the geographic locations of technology,
knowledge, scientific workforce, and wealth, and eventually
could enlarge inequality in China [12]. Rising inequality will
explicitly contradict the goal of harmonious regional growth set
by the Chinese government [13] and could obstruct long-term
sustainable growth, especially in this enormous and demo-
graphically diverse country.

http://dx.doi.org/10.1016/j.techfore.2013.02.013
mailto:ymotoy@cns.ucsb.edu
http://dx.doi.org/10.1016/j.techfore.2013.02.013
http://www.sciencedirect.com/science/journal/00401625
http://crossmark.crossref.org/dialog?doi=10.1016/j.techfore.2013.02.013&domain=pdf


12 Y. Motoyama et al. / Technological Forecasting & Social Change 81 (2014) 11–21
Examining the Chinese case could reveal significant impli-
cations for technology development and geography. In contrast
with the United States, the Chinese government has most
aggressively invested in and prioritized nanotechnology de-
velopment using the top-down approach [14]. Such an ap-
proachmay be effective to create a selected number of research
institutes, but technological diffusion and long-term sustain-
ability of the technological, as well as economic development,
may be questionable. Moreover, the Chinese case exhibits a
different pattern from even other East Asian nations. For
example, Japan, Taiwan, and South Korea managed equitable
high growth through interregional distribution of resources
[15] and regionally oriented technology programs [16]. The
strong central government and vast scale of the country may
create an entirely different development pattern for China.

This article applies bibliometric analysis to examine the
geography of nanotechnology research centers in China. While
several past studies analyzed the location and heavy geographic
concentration of nanotechnology centers, we consider it more
important to take a step further to investigate whether such
concentration has persisted over time. Based on Chinese
nanotechnology patents, our analysis identifies the leading
regions and shifts among them, and employs Gini coefficients
and local and Global Moran's I to test spatial concentration.
Moreover, we critically examine the concentration by not relying
on the conventional administrative unit, such as provinces and
counties, but by employing distance-based measure and
intra-metropolitan analysis. Although we do not detect a spatial
clustering of nanotechnology centers at the large province level,
there is a significant clustering at the small county level that has
been persistent over time. Furthermore, our spatial analysis
indicates that such clustering is most observable at the scale of
20 km. Thus, based on the technological clustering at this small
scale, we support the regional divergence hypothesis and related
concerns about the potential rise in inequality in China.

2. Literature review

There has been a long debate about regional convergence
and divergence in technology, even before the emergence of
information technology [17]. Studies about the convergence
theory often were based on the neoclassical growth theory in
which capital and labor were mobile and could relocate over
space without friction [18]. Furthermore, imitation was con-
ventionally less expensive than discovery [19], and thus poor
regions could catch up with technologically advanced nations.
This catch-up convergence could occur if government provided
the infrastructure and legal framework to foster labor and
capital productivity growth. It further assumed that technology
was a public good and was available to every economic player.

Several empirical studies involving patent analysis support-
ed this convergence thesis. Co [20] found that states whose
patents per capitawere higher than theU.S. average in 1963–69
experienced either slower or negative growth in the later years
compared to lagging states. Johnson and Brown [21] echoed
these findings by adding that formerly wealthy states were the
slowest to convert from stagnating sectors because they tended
to remainwith traditional and even stagnating industries. Thus,
the initial state of a region was important, but its overall
innovativeness could change over time. Ó hUallicháin and Leslie
[22] gave a nuanced conclusion, but still supported the
convergence theory. Their study found spatial convergence
amongU.S. states between 1963 and1993,while amodest level
of divergence took place between 1993 and 2003.

Another set of studies indicated a regional and structural
shift of innovation in the past few decades in the United States.
The Sunbelt states, such as Florida, Texas, and California, were
growing faster technologically than the traditional manufac-
turing region of the Northwest and Midwest [23–27]. However,
these studies about the emergence of the “newcomers” did not
necessarily support the convergence theory because the studies
did not provide an analytical criterion about the most lagged
regions,whichoften continued to bemost lagging. Furthermore,
it will be more important to consider the continuous trajectory
between the new risers, the Sunbelt states, and the traditional
Northeast and Midwest. If the Sunbelt states continue to grow
faster than the traditional centers, that would bring divergence.

In contrast, we would expect the divergence of regions by
incorporating theories of evolutionary economics, such as the
increasing returns to scale and endogeneity of growth and
technological development [28,29]. In otherwords, regionswith
certain economic and geographic endowments would bring
positive feedbacks of agglomeration and concentration, while
the initial location of firms and industries might happen by
historical accident [30]. A handful of empirical regional studies
supported such theory. Ó hUallicháin [31] discovered that the
largest U.S. metropolitan areas predominated the patent
activities, and such advantages arose from the concentrations
of technologically intensive manufacturing and well-educated
workforce. Bettencourt and others [32] found a super-linear
effect with U.S. metropolitan areas between 1980 and 2001,
indicating that larger metropolitan areas were becoming even
more productive. Sonn and Park [17] dissected the analysis
between cities with similar size (horizontal convergence) and
between larger and smaller cities (vertical divergence). They
concluded that horizontal convergence dominated over vertical
divergence, leading to a net effect of overall convergence.

We identify four major limitations of the past studies. First,
these apparently mixed results indicate that variations may
come from differences over time, by geographic regions, by
industry or technology types. Thus, it will be critical to test the
phenomenon of convergence and divergence in a specific con-
text. As mentioned before, Ó hUallicháin and Leslie found
convergence before 1993 but divergence after 1993. Moreover,
the difference potentially coming from industry or technology
can be critical, and we have to consider two related empirical
studies. Varga [25,27] disaggregated patent technology types
by IT, drugs, chemicals, high-tech machinery, defense and
aerospace, and professional and scientific instruments, and
found substantially different patterns of specialization and
emergence/decline of U.S. metropolitan regions between 1970
and 1992. Johnson et al. [33] found that different technology
types showed significant differences in the distance of patent
citation, though the pattern of patent citation was different
from the geographic clustering of patents. More specifically, in
computers and biotech, particularly affecting California and
Texas, the citation distance has shortened, while in other
industries citation distance has increased over time.

Second, the past patent studies overwhelmingly were con-
centrated on the U.S. case. There have been few studies exam-
ining the non-U.S. context. So far, only one European case has
been identified: Carrincazeaux and others [34] demonstrated a
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significantly high concentration in France where almost half
of the entire country's R&D activities are carried out in the
Paris region. We can expect substantially different outcomes for
East Asia given the differences in land use, government policy
regarding regional development, transportation and other
infrastructure, and stages of overall economic development.

With regard to China, we have identified only two studies
about patents and geographic analysis1 despite the attention
the country has received in recent years. Yifei Sun [36]
concluded that between 1985 and 1995, traditional innova-
tive centers, such as Beijing, Shanghai, Tianjin, and Jiangsu,
have declined,while new areas, such as Guangdong, Shandong,
Zhejiang, and Fujian emerged. In contrast, Liu and Yuntao Sun
[13] observed a shift of innovation activities from the inland to
the eastern coastal areas. Beijing remained a strong region, but
Shanghai and Guangdong have emerged as new innovative
centers. In short, these two past studies also have provided
mixed results and limited understanding about patents and
their geographic distributions in China. This prompts three
rationales for our research approach: First, we examine the
case of China, one of the major nanotechnology players in
the world. Second, our case, specifically focusing on China
and nanotechnology, can control for the technology-specific
condition mentioned above. Third, nanotechnology is newly
emerging technology, so we can test the geographic distribu-
tion of this technology in the early stage of its development.
The previous studies with sectoral analysis have examined
relatively new industrial sectors, such as IT and biotech,
but have not paid any attention to the stage of development
at which new types of technologies or industries are
emerging.

We further point out two other limitations of the past
research. Third, the past studies relied on a single indicator
to test the divergence. In contrast, this article investigates
the state of divergence by employing three different indicators:
(1) identifying the leading regions and shifts among them,
(2) calculating the regional inequality measure using the Gini
coefficient, and (3) analyzing the spatial cluster with different
geographic weights. This method of using multiple indicators is
critically important because we do not consider relying on one
indicator to be sufficient. DeMichelis andMonfort [37] provided
a notable caution about this approach. They investigated the
income inequality in the EuropeanUnion and obtained different
results with different indicators. “Indeed, a closer examination
of the distribution dynamics reveals that convergence may take
place, even within groups of regions for which such movement
would remain undetected by an aggregate inequality measure”
(p.19). Although their mixed result came from different
threshold levels within the same indicator, we will take a
cautious approach and employ several indicators to analyze.

It is one thing to analyze the general patterns of highly
innovative places, such as the U.S. northeastern vs. southern
states. Such analysis can reveal a structural shift among the
leading regions; the top one becameone of the top five and vice
1 Yifei Sun [35] found overconcentration of foreign R&D investment in
Beijing and Shanghai, but we excluded it in this debate because it did not
investigate patents. Tang and Shapira [37] conducted an analysis similar to
this article, but their analysis was based on academic journal publications
and their unit of analysis was only at the provincial level, the limitations of
which we discuss later in Section 2.
versa. However, we should continue testing the overall state of
divergence through other indicators that cover places besides
the leading ones. The standard measure of divergence is to
calculate the share by an identified number of top regions, the
score in Theil's index, or the Gini coefficient. These share-based
indicators are useful if the unit of analysis is relatively
homogeneous, such as individuals or households. A geograph-
ical unit, most commonly an aggregate measure of individual
actors such as individuals or firms, may experience a shift
within its basic constitution over time. Therefore, we will
employ this second indicator, aware of its limitations.

These concerns overmeasuring indicators lead to the fourth
and perhapsmost critical limitation of the past studies: a lack of
debate over the unit of analysis, the distance, and geographic
weights to measure the divergence. In other words, past
studies discussed regions and states, but failed to account for
the scale of spillover and possible neighboring spatial effects, or
the methods and rationale used to define neighbors. The
common unit of analysis was either the states [20,38] or
metropolitan areas [17,31,32]. A few other studies have
examined both the state and metropolitan levels [24,27,39].
However, debate over the utility of using distance as the unit of
analysis is surprisingly scarce, often indicated by a sentence or
two, such as “states are the most relevant policy making units”
for economic development and science and technology
(Audretsch and Feldman 1996, 631)2 or “cities or counties
rather than statesmay be themore appropriate unit of analysis
for asking whether diversity or specialization promotes
innovation” [20, p. 418]. The rationale for the selected unit
was barely explained. In fact, most studies seemed to select a
spatial unit based on methodological convenience rather than
on a specific theoretical framework.

We modify this approach by employing different spatial
units andweights. Althoughwe initially conduct our analysis at
the Chinese province level, somewhat an equivalent of the U.S.
state level, we do not consider testing only at the state level to
be optimal for the following two reasons. First, distance be-
tween states varies substantially. The closest centroid-based
distance in Chinese province and special city units is 79 km, the
median is 380 km, and the maximum is 1110 km.3 We should
not expect comparable spillover or clustering effects between
provinces due to this variance. Secondly, we hypothesize
that knowledge spillover takes place in regions smaller than
province/state, such as the local or metropolitan levels, as
indicated by a handful of literature. Anselin et al. [40] found a
50-mile (80-km) radius spillover effect, and their subsequent
study [41] found a 75-mile (120-km) radius. At the same time,
they acknowledged that only weak evidence had connected
knowledge spillovers and defined distance (p.417). Cohen et al.
[42] demonstrated that firms could manage a 200 km distance
if the transaction was clearly defined between different
divisions of development centers, but that closer proximity
was necessary for tight and uncertain coordination. Lastly,
Zucker, Darby, and their colleagues demonstrated that scholars
2 However, this only tells that policy intervention takes place at the state
level, and does not necessarily determine the process or geographic
dimension of technology development taking place at the state level.

3 As a reference, the mean distance in the lower forty-eight U.S. states and
Washington, DC is 33.2 km (approximately 20 miles), the distance between
Maryland andWashington, DC. The median is 394.0 km and the maximum is
541.4 km. The variation is substantially large.
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cited more often if they were located within a specific metro-
politan level rather than at the larger state level [43,44]. Thus,
while there is some evidence to suggest that the smaller scale
closer to themetropolitan areasmay bemore appropriate than
U.S. states or Chinese provinces in knowledge spillover, we do
not believe that there is sufficient evidence yet to conclude this
definitively. We will follow the caution from Anselin et al. [40]
and test at both province and county levels in China. In addition
to these polygons, or contiguity-based geographic weights, we
further will employ distance-based weights to test the spatial
clustering of nanotechnology patents. Moreover, we will
visually analyze the diffusion patterns at two highly con-
centrated regions: Beijing and Shanghai. Section 3 will discuss
our method in more detail.

3. Method and analysis

We used Chinese patents to analyze the state of divergence
in patent production. Although patents have been probably the
mostwidely used indicators of innovation [20,45,46], we should
address their limitations before using them. First, there are
many commercial innovations that are not patented. Second,
many patents have never been developed into commercially
valuable forms [27,47]. However, there have been plenty of
studies that demonstrated high correlations between patents
and various indicators of innovation, such as the Small Business
Administration Innovation Database and corporate R&D activ-
ities [48–50]. Statistical correlations were significantly high in
those studies, which concluded that counts of innovations and
patents practically provided identical regression results in
knowledge production [27,51]. We should note two other
advantages of using patent data. Griliches [52] pointed out that
a granted patent clears a minimum scrutiny of the patent office
as to its novelty, and its value is tested as the inventor files with
fees: if the patent has absolutely no commercial value, the
inventor would not even file it. Additionally, patent data has the
widest spatial and temporal coverage [20].

We obtained data of nanotechnology-related patents from
the Chinese State Intellectual Property Office (SIPO) by using
sixteen nanotechnology-related keywords in Chinese to extract
the data, listed in the Appendix A. The coverage of the period
was from 1986 to May 2008. The initial search yielded 20,273
patents, of which we focused on 18,225 invention patents
(89.9%), an equivalent of the U.S. utility patents, and excluded
2048 Chinese utility and design patents (10.1%). We further
excluded patents filed by 3218 foreign entities (including
Taiwan, Hong Kong, and Macao), 941 patents filed by one
individual, YangMengjun,4 and 347 patents without geospatial
information. Our final database contained 13,719 patents.

We geocoded the data based on its postal code. Like the
five-digit zip code in the United States, Mainland China has six-
digit codes that are attached to specific areas. We used Google
API to identify longitude and latitude of a centroid location of
each postal area.5 For the analysis at the province and county
4 Patents filed by this individual were all based on traditional Chinese
medicine and had no relevance to nanotechnology. None of his patents was
granted.

5 About 1% of the data showed postal codes that differed from the province
name provided by the patent filers. Manywere jointly filed by inventors based
at differing locations. In these instances, we used the locations as identified by
the postal codes.
levels, we joined polygons and the centroid location of postal
areas.

There are at least three ways to analyze geographic
patterns of knowledge spillovers with patents: 1) to analyze
the location of where patents are filed, 2) to analyze the
citation patterns of patents, and 3) to analyze co-inventors
and diffusion of them. In this article, and with patent
analysis in China, we unfortunately have to rely on the first
method, to analyze the location of filed patents. At this
moment, the Chinese patent system does not list any citation
information. Furthermore, we considered that identifying
unique individual inventors for co-inventor network is
nearly impossible given the limited number of common
last names among Chinese and that our scale of patents is as
large as five figures.

At the provincial level, we analyzed twenty-five provinces
(sheng), five autonomous regions (zizhiqu), and four special
cities (zhixiashi), totaling thirty-four units. Hereafter, we refer
this to level of analysis as provinces.While Beijing has been the
most prolific region for a long time, Shanghai took over the
position in 2004 and has continued to produce more patents
since then (Fig. 1). We observed a decline of patent applica-
tions between 2006 and 2007, which was more dramatic for
Beijing than Shanghai, and this partly could be a time lag
between the applications and data input into the database.
Thus, we consider 2007 as a reference point, but do not
conclude that patent production in China has declined since
2006.

We then analyzed the leading regions and found a rise in
neighboring regions, such as Shanghai, Jiangsu, and Zhejiang
for one group, and Beijing and Tianjin for another group
(Fig. 2). This indicates a potential spatial autocorrelation,
which we will revisit later in this section.

At the county level, there are 2975 counties, and we found
clusters of nanotechnology centers most visibly on the Eastern
coastline: Beijing, Shanghai, and areas in-between (Fig. 3).
However, we are aware of the limitations of the visual
interpretation of ratios through maps due to standard errors
and differences in area size [53], and we will leave this
evaluation of clustering by calculating Global Moran's I in the
next section.

Next, we employed Gini coefficients to test the state of
inequality among regions and analyzed both at the province/
city and county scales. Fig. 4 demonstrates that the inequality
level has not changed significantly over time at either the
province/city or county scales. The figure additionally shows
that the state of inequality is substantially higher (over 0.98)
at a smaller, county scale because many counties have not
filed nanotechnology patents.

To consider spatial effects, we employ Global Moran's I to
test the state of divergence. Moran's I measures the degree of
spatial autocorrelation, and a statistical significance ofMoran's I
over time could suggest that nanotechnology centers cluster
more geographically, thus leading to thedivergence.We started
with the queen contiguity, which ismost commonly used in the
polygon-based analysis. We first tested at the province level
andused the contiguity from the first to the third order, keeping
in mind that themean distance varies from 394 km for the first
order to 501 km for the third order. While there was no spatial
autocorrelation before 2006, there was a statistically significant
and increasing level of clustering for 2006–7 in the second and



Fig. 1.Nanotechnology patent applications at the province level (2000, 2004,
2007).

Fig. 3. Nanotechnology patent applications at the county level (2000, 2004,
2007).
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the third orders. However, since this applies only to the last two
years, including a reference year, 2007, we do not consider this
a conclusive evidence of the regional divergence yet. If we
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normalize patents by population,we see further weak evidence
of spatial clustering (Table 1).
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6 We obtained the centroid of postal code areas through Google API and
mapped on Google Map using RGoogleMap package in R.
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Fig. 4. Gini coefficient at county and province/city levels.

Table 1
Moran's I at the province level.

2000 2001 2002 2003 2004 2005 2006 2007

Without normalization by population
1st order 0.051 −0.025 −0.041 0.086 −0.058 0.075 0.075 0.1670
2nd Order 0.119 −0.013 −0.024 0.054 0.001 0.126 0.244⁎⁎ 0.3864⁎⁎⁎

3rd order 0.132⁎⁎ 0.038 0.001 0.047 −0.004 0.054 0.137* 0.2288⁎⁎⁎

With normalization by population
1st order −0.1035 −0.1057 −0.1099 −0.0629 −0.1173 −0.0661 −0.0876 −0.0275
2nd order 0.1002 0.0254 0.0253 0.0110 0.0262 0.0561 0.1527* 0.1085*
3rd order 0.0571 0.0118 0.0041 −0.0130 −0.0052 0.0056 0.0601 0.0358

Note: ⁎⁎⁎ Significant at 99% level, ⁎⁎ significant at 95% level, ⁎ significant at 90% level.
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order contiguity. Moran's I in the first order contiguity is
somewhat sporadically significant, and we cannot conclude
with this result yet (Table 2). In contrast, Moran's I from the
second and the third contiguities was significant in all years
between 2000 and 2007. The expected value is−1 / (n − 1) =
−1 / (2975 − 1) = −0.000336. Since allMoran's I resultswere
larger than this figure, we can conclude that spatial autocor-
relation exists [54]. Unfortunately, we could not test this figure
at the county level with normalization. The Chinese Census at
the county level has many missing data as they tend to
reclassify rural counties into arbitrarily aggregated units from
time to time.

The variance of Moran's I's significance between the first,
second, and third order contiguities, along with the variance
of distance between these contiguities, cautions us that the
polygon-based units may not be the most appropriate ones to
capture spatial clustering. Thus, we analyzed Moran's I with
inversely weighted distance-based measures from 10 km to
75 km (Fig. 5). Moran's I was not statistically significant with
less than 20 km distance, but was significant between 20 km
and 75 km, except in 2007, in which it was significant
between 40 km and 75 km. In each year, Moran's I was
higher in 20–25 km, but declined with distances over 30 km.
This suggests that the spatial autocorrelation, and hence
knowledge spillover, may take place most effectively in the
20–25 km distance range.
While we have found consistent results from various
analyses based on Moran's I, such analysis comes with one
technical limitation: we are unable to normalize the patent
production, due to the limited data availability at the county
level in China. To compensate for this limitation, we con-
ducted our last test, a visual analysis of selected nanotech-
nology subfields in Beijing and Shanghai, the two largest
concentrations of nanotechnology patents.6 This visual anal-
ysis does not completely remove the normalization issue.
However, since we can identify the precise location of patent
applicants at the postal code level, this exercise helps us to
identify which institution at what location filed patent appli-
cations, including specific universities and companies. Thus,
we can semi-normalize patent applications by institutions.
Furthermore, we can test whether knowledge spillover takes
place between universities and corporations.

At the nationwide scale, universities and various branches
of the Chinese Academy of Sciences (CAS) have become the
dominant applicants of nanotechnology patents throughout
the 2000s. In 2000, universities and CAS filed 28.6% of patents,
while they expanded this share to almost half by 2007. In the

image of Fig.�4


Table 2
Moran's I at the county level.

2000 2001 2002 2003 2004 2005 2006 2007

1st order 0.0311⁎⁎ 0.0117 0.0523⁎⁎⁎ 0.0314⁎⁎ 0.0325⁎⁎ 0.0265⁎ 0.0430⁎⁎ 0.0192
2nd order 0.0425⁎⁎⁎ 0.0621⁎⁎⁎ 0.0708⁎⁎⁎ 0.0686⁎⁎⁎ 0.0799⁎⁎⁎ 0.0609⁎⁎⁎ 0.0612⁎⁎⁎ 0.0363⁎⁎⁎

3rd order 0.0367⁎⁎⁎ 0.0451⁎⁎⁎ 0.0634⁎⁎⁎ 0.0515⁎⁎⁎ 0.0584⁎⁎⁎ 0.0441⁎⁎⁎ 0.0477⁎⁎⁎ 0.0276⁎⁎⁎

Note: ⁎⁎⁎ Significant at 99% level, ⁎⁎ significant at 95% level, ⁎ significant at 90% level.

Statistically significant Moran's I
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Fig. 5. Moran's I based on distance (statistically significant at 99.9% level).
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meantime, the share filed by individuals has decreased steadily,
and the share filed by corporations has been stagnant over
the years. These figures suggest that universities are the
predominant players in the creation of nanotechnology in
China, and the commercialization of nanotechnology by industry
has been in the premature stage thus far (Table 3).

Nanotechnology is an umbrella term for small-scale
technologies. The method to control atoms or molecules can
range from physics and chemistry to engineering disciplines.
Thus, to focus on knowledge spillover of a specific type of
nanotechnology, we select three sub-fields based on the
International Patent Classification System: C08 — organic
macromolecular compounds, A61 — hygiene-based medical
and veterinary science, and H01 — basic electric elements.
These sub-fields are the three largest sub-fields of nanotech-
nology patent applications received by China's patent office,
and represent 13.1%, 12.4%, and 12.4% of the total patent
applications, respectively. They cover chemistry, medical, and
engineering disciplines, thus giving us some breadth of
understanding, if not complete. Given the large variation, we
Table 3
Types of nanotechnology applicants in China.

University/CAS Corporations Individ

2000 28.6% 23.9% 43.6%
2001 26.3% 21.4% 41.8%
2002 30.3% 20.0% 40.4%
2003 34.3% 20.5% 34.8%
2004 36.6% 20.9% 32.4%
2005 44.1% 22.1% 25.0%
2006 42.5% 21.7% 23.3%
2007 49.4% 18.3% 18.5%
analyzed by geography (two), by sub-fields (three), and by
years (2000–7 = eight), which totaled 48 (forty-eight) maps.
Due to the large number, we present limited maps in this
section.

Shanghai: In the cases of both A61 and C08, the largest
concentration is represented by two large circles at north of
Yangpu, a county level district, where Fudan University is
located. The circle northeast of Minhang, a district in Shanghai,
is East ChinaUniversity of Science and Technology, and another
circle between Minhang and Fengxian is Shanghai University.
Patent applications by corporations (triangle) and individuals
(cross) are almost negligible, except in the case of C08 where
two triangles are present between Minhang and Fengxian
exist. The overall concentration is in the central area of
Shanghai, and the geographic scale is 20–30 km (Fig. 6).

Beijing: There is a clear concentration in the northwest side,
more specifically north ofHaidian,where all themajor institutes
are located: Tsinghua University, Peking University, several
institutes of the Chinese Academy of Sciences, the National
Center of Nanoscience and Nanotechnology, and Beijing
uals Government/PLA Joint Other

0.0% 0.0% 3.9%
2.1% 0.4% 8.1%
2.2% 0.0% 7.1%
1.3% 0.0% 9.1%
0.6% 0.0% 9.5%
1.8% 0.1% 6.9%
2.1% 0.9% 9.6%
0.8% 0.6% 12.4%



Fig. 6. Map of Shanghai with IPC sub-field C08 by types of applicants (2006).
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University of Aeronautics and Astronautics. Non-university
applicants are smaller and more geographically sporadic and
scattered than around Shanghai. This scale of concentration is
around 20 km (Fig. 7).

These findings from the visual analysis suggest that the
geography of nanotechnology is substantially small, at the scale
of around 20 km, consistentwith the result fromdistance-based
Moran's I. Furthermore, the geographic spillover seems to be
concentrated among key research institutes within such a small
scale of geographic area, and there is little evidence to suggest
knowledge spillover between universities and corporations.

4. Discussion

It is important to summarize the major findings, consis-
tencies, and inconsistencies from our series of analyses: (1) a
visual analysis at the province and county levels, (2) shifts
between the leading regions, (3) Gini coefficient analysis, (4)
Global Moran's I at the province and county levels, (5) Global
Moran's I with the inverse distance weight, and (6) a visual
analysis in Beijing and Shanghai. First, the visual analysis
at the province and county levels demonstrated that the
geography of nanotechnology patent production was highly
uneven and concentrated on the East Coast. Second, even
among places on the East Coast, two leading regions domi-
nated nanotechnology patent production: Beijing andShanghai.
Additionally, the greater Shanghai region, including Jiangsu and
Zhejiang, experienced faster growth than the traditionally
productive Beijing region.

Third, the Gini coefficient indicated high geographic con-
centration, particularly at the county level. However, because
the coefficient was relatively stable over time, this analysis
could not answer the question ofwhether the spatial clustering
increased over time. An analysis solely using this indicator
would be inconclusive.

Fourth, we additionally employed Global Moran's I. While
the spatial autocorrelationwas notmost significantly present at
the province level, it was critical to extend the analysis to the
county level. We then observed statistically significant spatial
autocorrelation at the scale of the second and third order
contiguities.While the polygon-based contiguitymeasure could
have a large variance between units, the inversely weighted
distance-based measure confirmed the spatial autocorrelation
at the scale between 20 km and 75 km. Furthermore, the dis-
tance of 20–25 km seemed to capture the autocorrelation most
effectively.

Fifth, we came back to a visual analysis at the intra-
metropolitan level in Beijing and Shanghai. Regardless of three



Fig. 7. Map of Beijing with IPC sub-field H01 by types of applicants (2006).
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sub-fields, both the Beijing and Shanghai cases demonstrated
that institutions of learning, such as universities and CAS, are
the dominant nanotechnology patent applicants, and the scale
of spillover was highly concentrated and small, around 20 km.
This is a consistent finding with the distance-based measure of
Global Moran's I.

With these findings, we draw threemajor conclusions. First,
the geography of nanotechnology patent production is highly
uneven, and the degree of such unevenness was persistent
throughout the observed years. This supports the regional
divergence theory, and technologically productive regionsmay
prosper more, while technologically lagging regions may
stagnate. The geography of technology was considerably
small, around 20 km in the intra-metro visual analysis,
particularly for emerging technology, like nanotechnology.
Our concern becomes even more serious if we consider that
technology is not only an end to be used once it is created,
but also a means to create more advanced technology [55]. In
other words, a productive region can create more advanced
nano-based technologies, while lagging regions cannot. Fur-
thermore, we find little evidence that nanotechnology is
diffusing from university to industry because universities
have continuously expanded patent applications, while that
of applications by corporations seems to have stagnated. Thus,
this phenomenon increases the inequality in China,whichhas a
clear policy implication. While China seems successful in
advancing its technology levels by distributing large-scale
government research funds to key technology institutes, the
government should consider the next step of technology
advancement: how to geographically disperse such advanced
technology. The government must consider spillovers of
technology at two levels: from advanced to lagging regions
and from university to industry. In either case, the current
top-down approach by the Chinese central government does
not seem to solve this inequality and limited spillover issue.
Even in areas such as Zhongguancun in Beijing, and Yangpu
and Minhang in Shanghai where high-tech zones have been
established with universities and research institutes as the
centers of gravity, we have not found sufficient evidence that
nanotechnology-related patenting activities have flourished at
among corporations at arm's length. There also seems to be a
lack of industry spin-off from institutions of learning. Given that
nanotechnology's similarity to science-based technologies such
as IT and biotechnology, the lack of technology diffusion also
suggests an overall low level of nanotechnology-related entre-
preneurial activities.

Second, we would not support a super-linear effect of the
divergence theory, which argued that the initial innovation

image of Fig.�7
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capacity determined the later growth [31,32]. We observed a
dynamically evolving pattern in which the regional productiv-
ity level shifted within the most productive regions. It was a
semi-linear effect in which more productive regions got even
more productive, but this rule was not rigid. Within more
productive regions, there were some shifts. In this sense, this
Chinese nanotechnology case presented a pattern close to the
horizontal convergence (within a similar group) observed by
Sonn and Park [17]. Our finding contrasted with that of Tang
and Shapira [56], who found the super-linear dominance of
Beijing in all the years they tested, between 1991 and 2006, in
the case of nanotechnology publication. However, we would
not call it a convergence, but rather a dynamic shift that can
enlarge the divergence within the similar group, particularly if
the Shanghai region continues to grow faster in the future.
Furthermore, we did not find any evidence to suggest the net
effect of the horizontal convergence dominating the vertical
convergence.

Third, the use of various units of analysis and various
indicators for spatial analysis was critical. It was a lengthy
analysis. However, findings in this article suggest that analyzing
a spatial pattern by employing one indicator, one unit of
analysis, and one type of geographic weight seems to be
insufficient. A naïve selection of the unit of analysis, either by
states or metropolitan areas, could yield a biased result. A
methodological convenience should not drive this aspect of
research design, and a thorough analysis is required. This is a
crucial point for geographers and regional scientists, particu-
larly because there is only a limited body of literature discussing
the scale of knowledge spillovers. We found that the concen-
tration happens at the scale of around 20 km. This was smaller
than the scale Anselin and his colleagues found in the case of
the United States— 80 km or 120 km. Their analysis was based
on spatial regression and a statistically significant independent
variable at 50 km (or 75 km in their later study), but it was not
clear if they tested at different scales and if they had a
theoretical and empirical rationale for that unit. On the other
hand, we obtained our results based on testing at different
scales. Additionally, it is likely that the Chinese case, with larger
population and extremely high density, could bring an entirely
different scale of spillovers than that of the United States.
China's knowledge production centers may be more concen-
trated given their historical legacy in the development of
science and higher education [57]. This was the first study to
investigate the unit of analysis more systematically, and we
need further empirical testing and theoretical debates about
this issue.
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Appendix A. Sixteen keywords to extract nanotechnology

Nano, quantum dot, quantum well, self-assembly, fuller-
ene, PDMS, quasicrystal, molecular motor, soft lithographic,
mesoporous material, coulomb blockade, molecular wire, mo-
lecular device, molecular ruler, NEMS, or Langmuir–Blodgett.
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