Contents lists available at ScienceDirect

Science of the Total Environment

ELSEVIER

journal homepage: www.elsevier.com/locate/scitotenv

Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis

Check for updates

Lin Zhao ^{a,1}, Jinghui Deng ^{a,1}, Peizhe Sun ^a, Jiashu Liu ^a, Yi Ji ^a, Norihide Nakada ^b, Zhi Qiao ^a, Hiroaki Tanaka ^b, Yongkui Yang ^{a,*}

^a School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

^b Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan

HIGHLIGHTS

GRAPHICAL ABSTRACT

- A review of nanomaterials for emerging pollutant removal from water.
- Literature related to adsorption and photo-catalysis is reviewed.
- Large-scale bibliometric analysis of papers published in 1998–2017.
- General research trends and future directions are discussed.

ARTICLE INFO

Article history: Received 8 January 2018 Received in revised form 1 February 2018 Accepted 1 February 2018 Available online 7 February 2018

Editor: D. Barcelo

Keywords: Emerging contaminants Nano Adsorption Photocatalysis Bibliometrics

ABSTRACT

Emerging contaminants in the aquatic environment have become a worldwide problem. Conventional wastewater treatment processes are ineffective for eliminating the emerging contaminants at trace concentrations. Nanomaterials possessing novel size-dependent properties, however, have shown great potential for removing these contaminants. Herein we reviewed nanomaterials reported for removing emerging contaminants by adsorption and/or photocatalysis, and their removal capacity, mechanism, and influencing factors are discussed. Meanwhile, a large-scale bibliometric analysis is conducted on the trends of the emerging contaminants, nanoadsorbents, nanophotocatalysts, and related research topics from the literature during 1998–2017.

© 2018 Elsevier B.V. All rights reserved.

Abbreviations: 3D GT, three-dimensional macrostructure; ATN, atenolol; ACT, acetaminophen; AML, amiloride; CA, clofibric acid; CMC, carboxy methyl cellulose; CMC-FMBO, carboxymethyl cellulose binary oxide Fe-Mn nanoparticle; CNT, carbon nanotube; DCF, diclofenac; E2, 17β-estradiol; EE2, 17α-ethinylestradiol; EDC, endocrine disrupting chemical; GAC, granular activated carbon; GO, graphene oxide; IBP, ibuprofen; LEV, levofloxacir; MIL, chromium (III) terephthalate; MIL-101(Cr)/SA, MIL-101/sodium alginate; MIL-101/CS, MIL-101/chiosan; MWCNT, multiwall carbon nanotube; NPX, naproxen; NM, anti-inflammatory nimesulide; NP, nanoparticle; OCBA, other carbon-based adsorbent; OMOF, other metal-organic framework; PFC, perfluorinated compound; PFOA, perfluorooctanei caid; PFOS, perfluorooctane sulfonate; PPCP, pharmaceuticals and personal care product; PVP, polyvinJpyrrolidone; SCI, science citation index; SWCNT, single-wall carbon nanotube; TMP, trimethoprim; ZIF, zeolitic imidazole framework; ZIF–GO, zeolitic imidazole framework; SIF–GO, zeolitic im

* Corresponding author.

E-mail address: ykyang@tju.edu.cn (Y. Yang).

¹ These authors contributed equally to this work.

https://doi.org/10.1016/j.scitotenv.2018.02.006 0048-9697/© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last few decades, the existence of emerging contaminants in the aquatic environment has become a worldwide issue. These emerging contaminants include pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs), perfluorinated compounds (PFCs), etc. They are commonly present at concentrations of mg/L to ng/L in wastewater (Alder et al., 2010; Behera et al., 2011), surface water (Kleywegt et al., 2011; Peng et al., 2008), ground water (Loos et al., 2010; Maeng et al., 2010), and drinking water (Benotti et al., 2009; Stackelberg et al., 2004), posing great risks to human health and natural ecosystems due to their short- and long-term toxicities (Ratola et al., 2012; Richardson and Ternes, 2011).

Current treatment technologies for emerging contaminants include the conventional activated sludge-based biological system, adsorption by activated carbon, membrane filtration, and chemical treatments (chlorination, ozonation, UV irradiation, and permanganate oxidation). However, occasionally these conventional processes fail to sufficiently remove the emerging contaminants to the levels required by discharge standard or essential for the wastewater reuse (Castiglioni et al., 2006; Heberer, 2002; Rivera-Utrilla et al., 2013). Therefore, new treatment technologies and infrastructures are needed to provide high-quality water for human and environmental needs. Recent advances in nanotechnology have offered ample opportunities to develop next-generation water treatment processes. Compared with traditional materials in the forms of bulk or large particles, some nanomaterials have shown better potential in removing emerging contaminants in lab-scale studies, owing to their unique size-dependent properties. These materials often display high specific surface area, high surface free energy, sufficient reactive sites, fast dissolution, and various discontinuous properties (e.g. superparamagnetism, localized surface plasmon resonance, and quantum confinement effect) (Qu et al., 2013). Many nanotechnology studies are centered on the adsorption, photocatalysis, membrane filtration, monitoring, disinfection and microbial control in treating water and wastewater. Especially, adsorption and photocatalysis by nanomaterials have been extensively studied for potential applications. The adsorption process has the advantage of efficient pollutant removal from aqueous phase. On the other hand, photocatalysis can not only remove the chemically stable and nonbiodegradable organic pollutants, but also efficiently degrade trace organic pollutants under mild conditions, yielding minimal byproducts. Therefore, adsorption and photocatalysis are considered very promising technologies in water treatment.

However, despite many studies in the past few years on nanoadsorption and nanophotocatalysis for the removal of emerging contaminants, their practical applications remain limited. To further focus the directions of related research and help solve key scientific problems towards practical applications, here we present a systematic review and bibliometric analysis on the application of nanotechnology to adsorption and photocatalysis for treating emerging contaminants in water. This study comprehensively examines the current status and the future of this research field through detailed review and largescale bibliometric analysis.

2. Adsorption process

In general, the adsorption of emerging contaminants on the surface of carbon-based (Kumar and Mohan, 2012; Zhao et al., 2016) and metal-organic framework (MOF)-based nanomaterials (Song and Jhung, 2017; Shan and Tong, 2013; Yean et al., 2005) is mainly determined by the physical structure and chemical properties of the materials, as the specific surface area, pore structure, and surface functional groups may directly affect the adsorption capacity.

2.1. Carbon-based nanoadsorbents

2.1.1. Adsorption capacity

Carbon-based nanoadsorbents are the most widely used type of adsorbents for water treatment. The reported adsorption capacity data are summarized in Table 1. The adsorption strongly depends on the type of emerging pollutant as well as the nanoadsorbents. The removal of sulfapyridine, ciprofloxacin, and tetracycline by carbon nanotubes (CNTs) has been studied in water environments (Apul and Karanfil, 2015). About 90% of lincomycin and sulfamethoxazole (both 12,000 mg/L) were removed via adsorption on single-wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs) (Kim et al., 2014). The maximum adsorption capacity of CNTs for sulfapyridine in water at pH 7 was 86.1 mg/g, while that for sulfamethoxazole was 45.8 mg/g (Tian et al., 2013). About 50 mg of CNTs could remove 67.5% of ciprofloxacin at 30 mg/L in water at pH 5 (Carabineiro et al., 2012). Graphite and CNTs could achieve 92% tetracycline removal from water, and the adsorption coefficient (Kd) values of SWCNTs, MWCNTs, and graphite measured from single-point adsorption are almost 1500, 1100, and 120 L/kg, respectively (Ji et al., 2010a). The sorption data of tetracycline on MWCNTs could be well interpreted by the Langmuir model, with the maximum adsorption capacity being 269.5 mg/g and the removal rate being 99.8% (Zhang et al., 2011). Graphene oxide (GO) showed maximum adsorption capacities of 256.6 mg/g for levofloxacin (LEV) and 89.1 mg/g for metformin (Dong et al., 2016; S. Zhu et al., 2017). The Langmuir isotherm model also produced better fits to the equilibrium acetaminophen (ACT) adsorption, with the maximum adsorption capacity of 704 mg/g by doubleoxidized GO (Moussavi et al., 2016). Three-dimensional macrostructures (3D GTs) by two-dimensional GO nanosheets and onedimensional CNTs showed superior adsorption capabilities towards oxytetracycline (1729 mg/g) and diethyl phthalate (680 mg/g) (Shen et al., 2017). The reduced GO showed a maximum adsorption capacity of anti-inflammatory nimesulide (NM) of 82.4 mg/g at 25 °C (Jauris et al., 2017).

2.1.2. Adsorption mechanism

Carbon-based nanoadsorbents have strong affinity for polar organic compounds, mainly due to the diverse interactions of these adsorbates with the adsorbent, including hydrophobic effect, π - π interactions, hydrogen bonding, covalent bonding, and electrostatic interactions (Ersan et al., 2017).

2.1.2.1. π - π interaction. The π - π interaction between compounds that accept π electrons and the π electron-rich regions of the grapheme surface of CNTs and graphite was observed during triclosan adsorption (Ji et al., 2010b; Liu et al., 2012). A similar mechanism was reported for KOHactivated CNTs for the adsorption of sulfamethoxazole, tetracycline, and tyrosine (Chen et al., 2008; Ji et al., 2009). The π - π interaction was dominant for the adsorption of chemicals containing benzene rings (e.g. 17-ethinylestradiol and bisphenol A) on carbon nanomaterials (Chen et al., 2007). Triclosan contains two aromatic rings that are favored for π - π interaction with the graphene structure on the CNT surface. In comparison, ibuprofen (IBP) contains only one aromatic ring in its molecular structure, resulting in weaker π - π interaction with the CNTs (Wang et al., 2015). Using computer simulations, the adsorption of NM onto GO was found to be maintained primarily by $\pi\text{-}\pi$ type interactions (Jauris et al., 2017). For LEV, both π - π and electrostatic interactions govern the sorption onto GO-based adsorbents (Dong et al., 2016).

2.1.2.2. Electrostatic interactions. When the solution pH is different from the isoelectric point (pH_{pzc}) of carbon-based nanoadsorbents, the surface of the nanoadsorbent will carry either positive or negative charge. At the same time, ionizable emerging contaminants can also be protonated or deprotonated and become charged at different pH. For example,

Table 1

Adsorption of the emerging contaminants on various nanomaterials in water.

Cardbox based MVCNT Trideacn 0, 1577 T 35 C µT 25 C µT 27 C µT	Nanomaterials		Pollutants	Maxmium adsorption (q_m , mg/g);	Treatment	References
Carbon based MUNOT Theorem Galaxy J Status Control Control Tay SC (pH 2) Zonard 4, 2013 MUNOT Suffmentboxazole & 201 Tay SC (pH 2) Xonard 4, 2014 MUNOT Suffmentboxazole & 201 Tay SC (pH 2) Xonard 4, 2014 MUNOT Suffmentboxazole & 201 Tay SC (pH 2) Xonard 4, 2014 MUNOT Suffmentboxazole & 201 Tay SC (pH 2) Xonard 4, 2014 MUNOT Suffmentboxazole & 2010 PH 2 Tay (pH 2) Tay (pH 2) MUNOT Cambon based & 2010 PH 2 Tay (pH 2) Tay (pH 2) Tay (pH 2) MUNOT Cambon based & 2010 PH 2 Tay (pH 2) Tay (pH 2) Tay (pH 2) MUNOT Tetracycline & 2010 PH 2 Tay (pH 2) Tay (pH 2) Tay (pH 2) MUNOT Tetracycline & 2010 PH 2 Tay (pH 2) Tay (pH 2) MUNOT Tetracycline & 2010 PH 2 Tay (pH 2) Tay (pH 2)				adsorption coeffcient (k_r mmol ¹⁻ⁿ I ⁿ kg ⁻¹)	conditions	
Laison adata Nichtir N	Carbon based	MAICNIT	Trialagan		T 25 %C = 11 7	Zhave at al. 2012
MVCVir Summethocance 6, 201 12 OC Kin et al., 2014 MVCVIT Suffamethocance 6, 45.8 PI Tate et al., 2013 MVCVIT Suffamethocance 6, 45.8 PI Tate et al., 2013 MVCVIT Suffaperitoria 8, 230 PI 52.2 Ji et al., 2003 MVCVIT Construction 6, 230 PI 52.2 Ji et al., 2003 MVCVIT Tetracycline 6, 240.3 PI 52.2 Ji et al., 2003 MVCVIT Tetracycline 6, 240.3 PI 52.2 Ji et al., 2003, 2016 MVCVIT Tetracycline 6, 240.3 PI 52.2 Zi al., 2003, 2016 MVCVIT Tetracycline 6, 240.3 PI 52.2 Zi al., 2003, 2016 MVCVIT Tetracycline 6, 230.0 PI 6 Ji al., 2003, 2016 MVCVIT Piteracycline 6, 100.2 PI 6 Ji al., 2003, 2016 MVCVIT Piteracycline 6, 100.0 Piteral, 2013, 2016 Nover et al., 2014, 2013, 2016 MVCVIT Nover et al., 2014, 2016, 2016 Nover et al., 2014, 2016, 2016 </td <td>Caliboli Dased</td> <td>MWCNT</td> <td>Norfloxacin</td> <td>q_m 157.7</td> <td>T 30 °C · pH 7</td> <td>Yang et al. 2013</td>	Caliboli Dased	MWCNT	Norfloxacin	q _m 157.7	T 30 °C · pH 7	Yang et al. 2013
MVCNT Lincorrycia 6, 257 720 Kin et al. 2013 MVCNT Sulfagendiace 6, 253 pH7 Tian et al. 2013 MVCNT Sulfagendiace 6, 250 pH7 Tian et al. 2013 MVCNT Sulfagendiace 6, 250 pH7 Tian et al. 2013 MVCNT Conductoria 9, 135 pH7 Tian et al. 2013 MVCNT Conductoria 9, 135 pH7 Tian et al. 2013 MVCNT Tetracycline 6, 240 pH7 Tian et al. 2013 MVCNT Tetracycline 6, 257 710 CE Zhange et al. 2016 MVCNT Tetracycline 6, 257 710 CE Zhange et al. 2016 MVCNT Conductoria 6, 577 710 CE Zindower et al. 2016 MVCNT Conductoria 6, 457 710 CE Zindower et al. 2016 MVCNT Suffamethoxance 6, 230 pH6 Jiet al. 2016 2016 MVCNT Suffamethoxance 6, 457 Zindower et al. 2016		MWCNT	Sulfamethoxazole	k _r 201	T 20 °C	Kim et al., 2014
MMCNT MAXINT Suffayridine Suffayridine MAXINT Suffayridine Suffayridine MAXINT Suffayridine MAXINT Suffay		MWCNT	Lincomycin	k _F 287	T 20 °C	Kim et al., 2014
MMCNT Sulfagoridine q_s .85.1 p16.2 p16.2 <td></td> <td>MWCNT</td> <td>Sulfamethoxazole</td> <td>q_m 45.8</td> <td>pH 7</td> <td>Tian et al., 2013</td>		MWCNT	Sulfamethoxazole	q _m 45.8	pH 7	Tian et al., 2013
MMCNT Salizenticazzale k 530 p16.2 jet al. 2009 MMCNT Galamenticazzale k 510 p16.2 jet al. 2012 MMCNT Galamenticazzale k 2003.5 p15.7 cp1.2 cp1		MWCNT	Sulfapyridine	<i>q</i> _m 86.1	pH 7	Tian et al., 2013
MMUCNT Sulfamethoxazole <i>k</i> 510 p162 jet al. 2009 MMUCNT Terracyclinic <i>k</i> 240 p15 jet al. 2010. 2010 MMUCNT Terracyclinic <i>k</i> 240 p15 jet al. 2010. 2010 MMUCNT Sulfamethoxazole <i>k</i> 251-251 T25 °C Zhao et al. 2016 MMUCNT Non-arnabionic <i>k</i> 351-2514 T25 °C Zhao et al. 2016 MMUCNT Non-arnabionic <i>k</i> 457 p16 jet al. 2010. 2010h MUCNT Non-arnabionic <i>k</i> 457 p16 jet al. 2010. 2010h KOH-arcivated MWCNT Sulfamethoxazole <i>k</i> 630 p16 jet al. 2010. 2010h KOH-arcivated MWCNT Sulfamethoxazole <i>k</i> 630 p16 jet al. 2010. 2010h KOH-arcivated MWCNT Sulfamethoxazole <i>k</i> 630 p16 jet al. 2010. 2010h KOH-arcivated MWCNT Sulfamethoxazole <i>k</i> 630 p16 jet al. 2010. 2010h KOH-arcivated MWCNT Sulfamethoxazole <i>k</i> 630 p16 jet al. 2010. 2010h KOH-arcivated MWCNT Sulfamethoxaz		MWCNT	Sulfapyridine	k _F 350	pH 6.2	Ji et al., 2009
MMCMT Cipoloscan 0,135 T5 C;PIF5 Circlation et al.,2010. MMCNT Teracyclice k,240 - 3 PI 5 C;PIF5 Circlat.,2010.,2010 MMCNT Sulforamides k,253 - 281 4 T2 5 C; Zhao et al.,2016 MMCNT Non-antibiotic k,353 - 281 4 T2 5 C; Zhao et al.,2016 MMCNT Non-antibiotic k,371 - 161 8 T2 5 C; Zhao et al.,2016 MMCNT Phenol k,471 PI 6 []] et al.,2010.,2010 PI 6 []] et al.,2010.,2010 MMCNT Phenol k,480 PI 6 []] et al.,2010.,2010 PI 6 []] et al.,2010.,2010 MMCNT Teracycline k,1100 PI 6 []] et al.,2010.,2010 PI 6 []] et al.,2010.,2010 MMCNT Teracycline k,150 PI 5 []] et al.,2010.,2010 PI 6 []] et al.,2010.,2010 SWCNT Teracycline k,150 PI 5 []] et al.,2010.,2010 PI 6 []] et al.,2010.,2010 SWCNT Teracycline k,160 PI 6 []] et al.,2010.,2010 PI 6 []] et al.,2010.,2010. SWCNT Teracycline k,160 PI 6 []] et al.,2010.,2010. PI 6		MWCNT	Sulfamethoxazole	k _F 510	pH 6.2	Ji et al., 2009
MOV.NI Tetracycline <i>i</i> , 240 p1 s.		MWCNT	Ciprofloxacin	<i>q</i> _m 135	T 25 °C; pH 5	Carabineiro et al., 2012
Novering Print of the second sec		MWCNI	Tetracycline	_{KF} 240	pH 5	Ji et al., 2010a, 2010b
NVCNT Cibor amplemized 6, 571-511 T 25 °C Zamer at. 2016 MWCNT Non-antinetic 6, 371-1522 T 25 °C Zamer at. 2016 MWCNT Phenol 6, 457 PH 6 jet at. 2010, 2010h KOH-activated MWCNT Nutrobenzene 6, 1100 PH 6 jet at. 2010, 2010h KOH-activated MWCNT SuffameThoszabe 6, 650 PH 6 jet at. 2010, 2010h KOH-activated MWCNT Tetracycline 6, 650 PH 6 jet at. 2010, 2010h SWCNT SuffameThoszabe 6, 650 PH 6 jet at. 2010, 2010h SWCNT Tetracycline 6, 1500 PH 5 jet at. 2010, 2010h SWCNT Tetracycline 6, 1500 PH 6 jet at. 2010, 2010h SWCNT Tetracycline 6, 1500 PH 6 jet at. 2010, 2010h SWCNT Tetracycline 6, 1500 PH 6 jet at. 2010, 2010h SWCNT Tylesin 6, 2500 PH 6 jet at. 2010, 2010h SWCH Tetracycline 6, 120 PH 6 jet at. 2010		MW/CNT	Sulfonamidos	$q_{\rm m}$ 209.5 k 252 2814	1 20 C	Zhang et al., 2011 Zhao et al. 2016
MWENT Non-ambietic planmacuiculas Value of the second plant of the se		MWCNT	Chloramphenicols	$k_{\rm F}$ 571–618	T 25 °C	Zhao et al. 2016
parmaceuticals Rest Res Rest Rest		MWCNT	Non-antibiotic	$k_{\rm F} 317 - 1522$	T 25 °C	Zhao et al., 2016
K6H-activated MWCNT Phenol k_{2} 457 pH 6 ji et al. 2010a, 2010b K6H-activated MWCNT Nullamethoxazole k_{2} 2000 pH 6 ji et al. 2010a, 2010b K6H-activated MWCNT Tetracycline k_{2} 800 pH 6 ji et al. 2010a, 2010b K6H-activated MWCNT Torreycline k_{2} 630 pH 6 ji et al. 2010a, 2010b SWCNT Suffamethoxazole k_{2} 1000 pH 6 ji et al. 2010a, 2010b SWCNT Tetracycline k_{1} 1150 pH 6 ji et al. 2010a, 2010b K0H-activated SWCNT PH 6 ji et al. 2010a, 2010b ji et al. 2010a, 2010b K0H-activated SWCNT Torreycline k_{1} 100 pH 6 ji et al. 2010a, 2010b K0H-activated SWCNT Tetracycline k_{1} 100 pH 6 ji et al. 2010a, 2010b K0H-activated SWCNT Tetracycline k_{1} 100 pH 6 ji et al. 2010a, 2010b K0H-activated SWCNT Tetracycline k_{1} 110 pH 6 ji et al. 2010a, 2010b Graphene oxide Correstracycline k_{1} 211 T25 °C Boare			pharmaceuticals	· · ·		
K0H-activated MWCNT Nitroberzene k 2100 pH 6 jiet al. 2010, 2010b K0H-activated MWCNT Terracycline k 800 pH 6 jiet al. 2010, 2010b K0H-activated MWCNT Tyrosin k 650 pH 6 jiet al. 2010, 2010b SWCNT Sulfamethoazole k 650 pH 6 jiet al. 2010, 2010b SWCNT Terracycline k 100 pH 5 jiet al. 2010, 2010b SWCNT Terracycline k 100 pH 6 jiet al. 2010, 2010b SWCNT Innormycin k 100 pH 6 jiet al. 2010, 2010b SWCNT Innormycin k 100 pH 6 jiet al. 2010, 2010b SWCNT Suffamethoazole k 1400 pH 6 jiet al. 2010, 2010b SWCH-activated SWCNT Terracycline k 1400 pH 6 jiet al. 2010, 2010b SWCH-activated SWCNT Tysian k 120 pH 6 jiet al. 2010, 2010b SWCH-activated SWCNT Tysian k 120 pH 6 jiet al. 2010, 2010b SWCH-activated SWCNT Tysian k 120 pH		KOH-activated MWCNT	Phenol	k _F 457	pH 6	Ji et al., 2010a, 2010b
K0H-Activated WUCN1 Sutfamethoazole \$2400 PH 6 jet al. 2010a, 2010b K0H-Activated WUCNT Tracycline \$650 PH 6 jet al. 2010a, 2010b K0H-Activated WUCNT Suffamethoazole \$6530 T20 °C Finer al. 2014 SWCNT Financomycin \$6,1380 T20 °C Finer al. 2014 SWCNT Financomycin \$6,1030 PH 6 jet al. 2010a, 2010b K0H-Activated SWCNT Nitrobenzene \$6,1400 PH 6 jet al. 2010a, 2010b K0H-Activated SWCNT Tetracycline \$6,1400 PH 6 jet al. 2010a, 2010b K0H-Activated SWCNT Tetracycline \$6,1400 PH 6 jet al. 2010a, 2010b K0H-Activated SWCNT Tetracycline \$6,122 PH 5 jet al. 2010a, 2010b Graphene oxide Levoloxacin \$926 T25 °C Jong et al. 2010a, 2010b Graphene oxide Metal-organic \$927 T25 °C Jong et al. 2010a, 2010b Graphene oxide Not-strasted WCNT Toosinan(H) \$926 T25 °C Jong et al. 2017		KOH-activated MWCNT	Nitrobenzene	k _F 1100	pH 6	Ji et al., 2010a, 2010b
KNHddvaded MVCK1 Jetta (2010) Pit 6 Jet al. 2010, 2010b SWCNT Suffamethoazale & 6530 Pit 6 Jet al. 2010, 2010b SWCNT Suffamethoazale & 6530 Pit 6 Jet al. 2010, 2010b SWCNT Transcrime & 1130 Pit 7 Jet al. 2010, 2010b SWCNT Hencogin & 4, 1400 Pit 6 Jet al. 2010, 2010b SWCNT Nicometal & 4, 1400 Pit 6 Jet al. 2010, 2010b KH-activated SWCNT Suffamethoazale & 4, 1200 Pit 6 Jet al. 2010, 2010b KH-activated SWCNT Tylosin & 4, 100 Pit 6 Jet al. 2010, 2010b KH-activated SWCNT Tylosin & 4, 101 Pit 6 Jet al. 2010, 2010b Graphene coide Activated SWCNT Tylosin & 4, 101 Pit 6 Jet al. 2010, 2010b Graphene coide Activated SWCNT Tylosin & 4, 101 Pit 6 Jet al. 2010, 2010b Graphene coide Activated Activa		KOH-activated MWCNT	Sulfamethoxazole	k _F 2300	pH 6	Ji et al., 2010a, 2010b
Montactivated WYCh1 1908/II rep30 p1 8 j1 6 j1 0 j1		KOH-activated MWCNI	Tetracycline	K _F 800	pH 6	Ji et al., 2010a, 2010b
And Section Terrangebinations Product Section Product Section Product Section SWCNT Licosampcin Product Section Product Section Product Section Product Section SWCNT None Product Section Product Section Product Section Product Section SWCNT None Product Section Product Section Product Section Product Section SWCNT Section Section Product Section Product Section Product Section Product Section SWCNT Section Section Product Section		KOH-activated www.ni	I ylosiii Sulfamothoxazolo	κ _F 6390	рн о тро °с	JI et al., 2010d, 2010D Kim at al. 2014
Metal-organic Zorgitic and Source and		SWCNT	Tetracycline	$k_{\rm F}$ 1150	nH 5	li et al. 2010a 2010b
K0H-activated SWCNT Phenal 6, 800 pH 6 jit ed. 2010, 2010b K0H-activated SWCNT Sulfamethoxazole k, 9200 pH 6 jit ed. 2010, 2010b K0H-activated SWCNT Sulfamethoxazole k, 9200 pH 6 jit ed. 2010, 2010b K0H-activated SWCNT Tetracycline k, 910 pH 6 jit ed. 2010, 2010b Graphene oxide Levofloxacin k, 910 pH 6 jit ed. 2010, 2010b Graphene oxide Levofloxacin k, 910 pH 6 jit ed. 2010, 2010b Graphene oxide Levofloxacin k, 947.1 T30 °C; PH 6 S. 2bu et al. 2017 Graphene oxide metformin k, 947.1 T30 °C; PH 6 S. 2bu et al. 2017 Graphene oxide 17.4-estinglestradiol q., 485 T25 °C Sun et al. 2017 graphene oxide 17.4-estinglestradiol q., 485 T25 °C Sun et al. 2017 Metal-organic Graphene oxide 17.4-estinglestradiol q., 1444 T25 °C Sun et al. 2017 framework Graphene oxide merotidazole q., 185 T25 °C; PH		SWCNT	Lincomvcin	k _F 1030	T 20 °C	Kim et al., 2014
KoH-activated SWCNT Nitrobenzene k 1840 p16 jf et al. 2010, 2010b KOH-activated SWCNT Tetracycline k, 1400 p16 jj et al. 2010, 2010b KOH-activated SWCNT Tetracycline k, 1400 p16 jj et al. 2010, 2010b Graphene oxide Tetracycline k, 122 p15 jj et al. 2010, 2010b Graphene oxide Acetanniophen q, 724 T55 °C Dong et al. 2016 Graphene oxide Acetanniophen q, 724 T55 °C Jaurie et al. 2017 Graphene oxide Acti-inflammatory q, 8241 T25 °C Jaurie et al. 2017 Graphene oxide T7-c-ethinylestradiol q, m45 T25 °C Jaurie et al. 2017 CNTs-Graphene oxide T7-c-ethinylestradiol q, m173 T25 °C Jaurie et al. 2017 Verta-Scriptene oxide T7-c-ethinylestradiol q, m173 T25 °C Jaurie et al. 2017 CNTs-Graphene oxide Graphene oxide Graphene oxide T2-c-ethinylestradiol q, m173 T25 °C Jaurie et al. 2017 CNTs-Graphene oxide Graphene oxide		KOH-activated SWCNT	Phenol	k _F 800	pH 6	li et al., 2010a, 2010b
K0H-activated SWCNT SuffameInoxacole kp 5200 pH 6 jet al. 2010, 2010b K0H-activated SWCNT TetracyCline kp 100 pH 6 jet al. 2010, 2010b Graphene oxide TetracyCline kp 12.2 pH 5 jet al. 2010, 2010b Graphene oxide Levoffoxacin qn 256.5 jet al. 2017 just al. 2017 Graphene oxide Acetaminophen qn 704 T25 °C Just el. 2017 Graphene oxide Anti-inflammatory qm 82.41 T25 °C Just el. 2017 Graphene oxide 17-4cethinylestradiol qn 45 T25 °C Sun et al. 2017 graphene oxide 17-4cethinylestradiol qn 48 T25 °C Sun et al. 2017 graphene oxide 17-4cethinylestradiol qn 48 T25 °C Sun et al. 2017 graphene oxide 17-4cethinylestradiol qn 183 T25 °C Sun et al. 2017 framework graphene oxide mestorizable qn 300 T25 °C Sun et al. 2017 framework graphene oxide mestorizable qn 300 T25 °C Sun		KOH-activated SWCNT	Nitrobenzene	k _F 1840	pH 6	Ji et al., 2010a, 2010b
K0H-activated SVCNT Tetracycline kp1400 pH 6 jet al. 2010a. 2010b K0H-activated SVCNT Tylosin kp10 pH 5 jet al. 2010a. 2010b Graphite Tetracycline kp12.2 pH 5 jet al. 2010a. 2010b Graphene oxide Levofloxacin mg. 256.6 T25 °C Dong et al. 2016 Graphene oxide Actarininophen mg. 74.4 T30 °C pH 6 S.Zhu et al. 2017 Graphene oxide 17-4-cettanilout mmesuide mmesuide mmesuide Graphene oxide 17-4-cettanilout mg. 48.4 T25 °C Ston et al. 2017 gr.Syn_oGraphene oxide 17-4-cettanycline mg. 144.4 T25 °C Kumar et al. 2017 gr.Syn_oGraphene oxide 17-4-cettanycline mg. 144.4 T25 °C Kumar et al. 2017 gr.Syn_oGraphene oxide Ceprofloxacin m. 1368 T25 °C Kumar et al. 2017 framework graphene oxide Biometridazole framework-magnetic Bertoritazole m. 1368 T25 °C; P16.5 Soci et al. 2017 framework graphene oxide Graphene oxide <td></td> <td>KOH-activated SWCNT</td> <td>Sulfamethoxazole</td> <td>k_F 5200</td> <td>pH 6</td> <td>Ji et al., 2010a, 2010b</td>		KOH-activated SWCNT	Sulfamethoxazole	k _F 5200	pH 6	Ji et al., 2010a, 2010b
KOH-activated SWCNT Tylosin kp 910 pH 6 jf et al., 2010a, 2010b Graphene exide Levoffoxacin qn, 256.6 T25 °C Dong et al., 2016 Graphene exide Acetaminophen qn, 704 T25 °C Jong et al., 2016 Graphene exide metformin k, 47.1 T30 °C; pH 8 Moussavi et al., 2017 Graphene exide metformin k, 47.1 T35 °C Janis et al., 2017 Graphene exide 17-4-estradiol qn, 45 T25 °C Sun et al., 2017 Tyl-estradiol qn, 44.4 T25 °C Sun et al., 2017 Citylescontence Level al., 2017 Metal-organic Zeolitic inidiazole framework-magnetic Benzorinazole qn, 300 T40 °C Andrew Lin and Der Chromium(III) terephthalat-MIL 101 Dimetridazole qn, 188 T25 °C; PI F3 Soe et al., 2017 Chromium(III) terephthalat-MIL 101 Metroidazole qn, 122 T25 °C; PI F3 Soe et al., 2017 Chromium(III) terephthalat-MIL 101 Metroidazole qn, 186 T25 °C; PI F3 Soe et al., 2017 Chromium(IIII) terephthala		KOH-activated SWCNT	Tetracycline	k _F 1400	pH 6	Ji et al., 2010a, 2010b
Graphite Tetacycline k, 12.2 pH 5 ji et al., 2016, 2010b Graphene exide Acetaminophen q., 704 T25 °C, PH 8 Moussavi et al., 2016 Graphene exide Acetaminophen q., 704 T25 °C, PH 8 Schu et al., 2017 Graphene exide netformin k, 47.1 T30 °C, PH 6 Schu et al., 2017 Graphene exide 17-4: extiniol q., 48 T25 °C Jauris et al., 2017 Metal-organic g-c_N-Graphene oxide 17-4: extiniol q., 48 T25 °C Sen et al., 2017 Metal-organic g-c_SN-Graphene oxide 17-4: extindiol q., 48 T25 °C Sen et al., 2017 Graphene oxide 17-4: extindiol q., 173 T25 °C Nen et al., 2017 Metal-organic graphene oxide 17-4: extindiol q., 186 T25 °C; PH 6.3 See et al., 2017 Chromium(III) terepthtalatMIL 101 Dimetridazole q., 188 T25 °C; PH 6.3 See et al., 2017 Chromium(III) terepthtalatMIL 101 Metroidazole q., 188 T25 °C; PH 7 Song and Jhung, 2017 Chromium(I		KOH-activated SWCNT	Tylosin	k _F 910	pH 6	Ji et al., 2010a, 2010b
Instrument Graphene oxideInstrument Caphene oxideInstrument Actaminophen and Teinfamatory nimesuildeInstrument and SectionInstrument and Section </td <td></td> <td>Graphite</td> <td>Tetracycline</td> <td>k_F 12.2</td> <td>pH 5</td> <td>Ji et al., 2010a, 2010b</td>		Graphite	Tetracycline	k _F 12.2	pH 5	Ji et al., 2010a, 2010b
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Graphene oxide	Levofloxacin	q _m 256.6	T 25 °C == U 8	Dong et al., 2016
Intervention $r_1 + r_1$ $r_1 + r_1$ $r_1 + r_2$ $r_1 + r_1$ $r_1 + r$		Graphene oxide	Acetaminophen	q _m 704	T 25 C; pH 8	Moussavi et al., 2016
India manuancyquestrixT25 °CJunited manuancynimesuide17-a-ethinylestratiolqm 45T25 °CSun et al., 2017Chronium (II)17-a-ethinylestratiolqm 45T25 °CSun et al., 2017Vestor (Chronium (III)crysteracyclineqm 173T25 °CSun et al., 2017Metal-organiczc-SN_eCraphene oxideoxytetracyclineqm 1368T25 °CKumar et al., 2017Metal-organicZcolitic imidazole framework-magneticBenzotriazoleqm 1368T25 °CHand and DerGrhomium (III)terephthalat- MIL 101Dimetridazoleqm 188T25 °C; pH 63Sco et al., 2017Chromium (III)terephthalat- MIL 101Metronidazoleqm 188T25 °C; pH 63Sco et al., 2017Chromium (III)terephthalat- MIL 101Metronidazoleqm 97T25 °C; pH 63Sco et al., 2017Chromium (III)terephthalat- MIL 101Naproxenqm 396T25 °C; pH 7Song and Jhung, 2017Chromium (III)terephthalat- MIL 101Naproxenqm 380T25 °C; pH 7Song and Jhung, 2017Zcolitic imidazolate framework-81H-benzotriazoleqm 385.T30 °CJiang et al., 2013Zeolitic imidazolate framework-95-tolytiriazoleqm 320T25 °C; pHSong and Jhung, 2017Zeolitic imidazolate framework-9Diclofenac adjumqm 400T25 °C; pHBhadra et al., 2017Metal organic framework-9Diclofenac adjumqm 400T25 °C; pHBhadra et al., 2017Metal organic framework-9Diclo		Graphene oxide	Anti-inflammatory	$R_{\rm F}$ 47.1	T 25 °C	Jauris et al., 2017
Graphene oxide17- α -ethinylestradiol $q_m 4s$ T.25 °CSun et al., 201717- β -estradiol $q_m 4s$ T.25 °CShen et al., 2017g-G_NA_Graphene oxide17- β -estradiol $q_m 144.4$ T.25 °CShen et al., 2017 $T_{7}\beta$ -estradiol $q_m 144.4$ T.25 °CKumar et al., 2017 $T_{7}\beta$ -estradiol $q_m 144.4$ T.25 °CAndrew Lin and Der $T_{7}\beta$ -estradiol $q_m 1368$ T.25 °CAndrew Lin and Der T_{7} aphene oxide $T_{7}\beta$ -estradiol $q_m 185$ T.25 °C, PH 6.3Chromium(III) terephthalat- MIL 101Dimetridazole $q_m 185$ T.25 °C, PH 6.3Chromium(III) terephthalat- MIL 101Triclosan $q_m 112$ T.25 °C, PH 7Chromium(III) terephthalat- MIL 101Naproxen $q_m 97$ T.25 °C, PH 7Chromium(III) terephthalat- MIL 101Naproxen $q_m 380$ T.25 °C, PH 7Chromium(III) terephthalat- MIL 101Naproxen $q_m 396.8$ T.30 °CZeolitic imidazolate framework-81H-benzotriazole $q_m 396.8$ T.30 °CZeolitic imidazolate framework-85-tolyltriazole $q_m 396.8$ T.30 °CMetal organic framework-porous carbonDiclofenac sodium $q_m 0.16$ T.25 °C; PH 3Metal organic framework-porous carbonDiclofenac sodium $q_m 0.34$ T.25 °C; PH 3Metal organic framework-900000 SBA-15Carbonzepine $q_m 0.34$ T.25 °C; PH 3Metal organic framework-900000 SBA-15Carbonzepine $q_m 0.34$ T.25 °C; PH 3Metal organic framework-900000 SB		Graphene oxide	nimesulide	4m 02.41	125 C	Jauris et al., 2017
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Graphene oxide	17-α-ethinylestradiol	q _m 45	T 25 °C T 25 °C	Sun et al., 2017
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CNTs-Granhene oxide	oxytetracycline	<i>q</i> _m 48	T 25 °C	Shen et al. 2017
Metal-organic frameworkZeolitic imidazole framework-magnetic graphene oxideciprofloxacin qm 306mass qm 300T 40 °C T 40 °CAndrew Lin and Der Lee, 2016Ghromium (III) terephthalat- MIL 101 Chromium (III) terephthalat- MIL 101 Chromium (III) terephthalat- MIL 101 Chromium (III) terephthalat- MIL 101 Chromium (III) terephthalat- MIL 101 TriclosanDimetridazole qm 185mass m 12 m 11 m 11m 12 m 12		$g-C_2N_4$ -Graphene oxide	17-B-estradiol	a _m 144.4	T 25 °C	Kumar et al., 2017
Metal-organic frameworkZeolitic imidazole framework-magnetic graphene oxideBenzotriazole graphene oxidem 300T 40 °C Le. 2016Andrew Lin and Der Le. 2016Chromium(III) terephthalat- MIL 101Dimetridazoleqm 185T 25 °C; PH 6.3Seo et al., 2017Chromium(III) terephthalat- MIL 101Metronidazoleqm 188T 25 °C; PH 6.3Seo et al., 2017Chromium(III) terephthalat- MIL 101Triclosanqm 172T 25 °C; PH 7.5Song and Jhung, 2017Chromium(III) terephthalat- MIL 101Naproxenqm 156T 25 °C; PH 7.5Song and Jhung, 2017Chromium(III) terephthalat- MIL 101Naproxenqm 56.8T 30 °CJiang et al., 2013Zeolitic imidazolate framework-81H-benzotriazoleqm 396.8T 30 °CJiang et al., 2013Zeolitic imidazolate framework-81H-benzotriazoleqm 400T 25 °C; PH 7Song and Jhung, 2017Metal organic framework-porous carbonDiclofenac sodiumqm 400T 25 °C; PH 7Song and Jhung, 2017Metal organic framework-porous carbonDiclofenac sodiumqm 400T 25 °C; PH 7Song and Jhung, 2017Silver nanoparticle-modified MWCNTSulfamethoxazoleqm 118.58PH 4Song et al., 2016Mesoporous SBA-15Diclofenacqm 0.07T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Iburyofenqm 0.24T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Ketoprofenqm 0.24T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofbricqm 0.28 </td <td></td> <td>0 0 4 1</td> <td>ciprofloxacin</td> <td>q_m 1368</td> <td>T 25 °C</td> <td></td>		0 0 4 1	ciprofloxacin	q _m 1368	T 25 °C	
frameworkgraphene oxideLee, 2016Chromium(III) terephthalat- MIL 101Metronidazole q_m 185T25 °C; pH 6.3Seo et al., 2017Chromium(III) terephthalat- MIL 101Metronidazole q_m 188T25 °C; pH 7.5Sog and Jhung, 2017Chromium(III) terephthalat- MIL 101Bisphenol A q_m 97T25 °C; pH 7Song and Jhung, 2017Chromium(III) terephthalat- MIL 101Naproxen q_m 166T25 °C; pH 7Song and Jhung, 2017Chromium(III) terephthalat- MIL 101Naproxen q_m 80T25 °C; pH 7Song and Jhung, 2017Zeolitic inidazolate framework-81H-benzotriazole q_m 298.5T30 °CJjang et al., 2013Zeolitic inidazolate framework-85-tolyltriazole q_m 320T25 °C; pHBhadra et al., 2017Metal organic framework-porous carbonDiclofenac sodium q_m 400T25 °C; pHBhadra et al., 2017Soporous SBA-15Carbamazepine q_m 0.16T25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac sodium q_m 0.34T25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac q_m 0.7T25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac q_m 0.28T25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Ketoprofen q_m 0.28T25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofbric q_m 0.28T25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Ketoprofen q_m 90.91PH 7Alizadeh Fard et al., 2017 <td>Metal-organic</td> <td>Zeolitic imidazole framework-magnetic</td> <td>Benzotriazole</td> <td>q_m 300</td> <td>T 40 °C</td> <td>Andrew Lin and Der</td>	Metal-organic	Zeolitic imidazole framework-magnetic	Benzotriazole	q _m 300	T 40 °C	Andrew Lin and Der
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	framework	graphene oxide				Lee, 2016
$ \begin{array}{c c} Chromium(III) terephthalat- MIL 101 & Metronidazole & q_m 188 & T25 "C; PH 6.3 & Seo et al., 2017 \\ Chromium(III) terephthalat- MIL 101 & Triclosan & q_m 112 & T25 "C; PH 7 & Song and Jhung, 2017 \\ Chromium(III) terephthalat- MIL 101 & Naproxen & q_m 156 & T25 "C; PH 7 & Song and Jhung, 2017 \\ Chromium(III) terephthalat- MIL 101 & Ketoprofen & q_m 80 & T25 "C; PH 7 & Song and Jhung, 2017 \\ Zeolitic imidazolate framework-8 & IH-benzotriazole & q_m 396.8 & T30 "C & Jiang et al., 2013 \\ Zeolitic imidazolate framework-8 & 5-tolyltriazole & q_m 396.8 & T30 "C & Jiang et al., 2013 \\ Metal organic framework-porous carbon & Diclofenac sodium & q_m 400 & T25 "C; PH & Bhadra et al., 2017 \\ Sulfamethoxazole & q_m 0.16 & T25 "C; PH & Bhadra et al., 2017 \\ Sulfamethoxazole & q_m 0.16 & T25 "C; PH & Bhadra et al., 2017 \\ Sulfamethoxazole & q_m 0.16 & T25 "C; PH & Bui and Choi, 2009 \\ Mesoporous SBA-15 & Diclofenac & q_m 0.07 & T25 "C; PH & Bui and Choi, 2009 \\ Mesoporous SBA-15 & Diclofenac & q_m 0.41 & T25 "C; PH & Bui and Choi, 2009 \\ Mesoporous SBA-15 & Iclofena & q_m 0.41 & T25 "C; PH & Bui and Choi, 2009 \\ Mesoporous SBA-15 & Clofibric & q_m 0.28 & T25 "C; PH & Bui and Choi, 2009 \\ Mesoporous SBA-15 & Clofibric & q_m 0.28 & PH & Song et al., 2017 \\ Polyvinyl pyrrolidone -Fe_3O_4 & Ketoprofen & q_m 52.63 & PH 7 & Alizadeh Fard et al., 2017 \\ Polyvinyl pyrrolidone -Fe_3O_4 & Estriol & q_m 56.17 & PH 7 & Alizadeh Fard et al., 2017 \\ Carboxymethyl cellulose-Fe/Mn & Ciprofloxacin & q_m 172.25 & PH 5 & Yan et al., 2017 \\ \end{array}$		Chromium(III) terephthalat- MIL 101	Dimetridazole	<i>q</i> _m 185	T 25 °C; pH 6.3	Seo et al., 2017
Chromium(III) tereptithalat-MIL 101Inclosan q_m 1121.25 °C; pH / 25 °C; pH 7Song and Jhung, 2017Chromium(III) tereptithalat-MIL 101Naproxen q_m 156T.25 °C; pH 7Song and Jhung, 2017Chromium(III) tereptithalat-MIL 101Ketoprofen q_m 298.5T.30 °CJiang et al., 2013Zeolitic imidazolate framework-85-tolyltriazole q_m 396.8T.30 °CJiang et al., 2013Zeolitic imidazolate framework-85-tolyltriazole q_m 396.8T.30 °CJiang et al., 2013Metal organic framework-porous carbonDiclofenac sodium q_m 400T.25 °C; pHBhadra et al., 2017Sulfamethoxazole q_m 118.58PH 4Song et al., 2016Song et al., 2016Metal organic framework-9prous carbonDiclofenac sodium q_m 0.16T.25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Carbamazepine q_m 0.07T.25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac q_m 0.41T.25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Ketoprofen q_m 0.28T.25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T.25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T.25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 90.91PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Ketoprofen q_m 56.17PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄		Chromium(III) terephthalat– MIL 101	Metronidazole	<i>q</i> _m 188	T 25 °C; pH 6.3	Seo et al., 2017
Chromium (III) terephthalat - MIL 101Displicition A $q_m 37$ 123° C; pH 7Song and Jhung, 2017Chromium (III) terephthalat - MIL 101Ketoprofen $q_m 380$ $T25^{\circ}$ C; pH 7Song and Jhung, 2017Zeolitic imidazolate framework-81H-benzotriazole $q_m 298.5$ $T30^{\circ}$ CJiang et al., 2013Zeolitic imidazolate framework-81H-benzotriazole $q_m 396.8$ $T30^{\circ}$ CJiang et al., 2013Metal organic framework-porous carbonIbuprofen $q_m 320$ $T25^{\circ}$ C; pHBhadra et al., 2017Sole and Jhung, 2017Song and Jhung, 2017Sole and Jhung, 2017Sole and Jhung, 2017Metal organic framework-porous carbonIbuprofen $q_m 320$ $T25^{\circ}$ C; pHBhadra et al., 2017Sole and Jhung, 2017Carbamazepine $q_m 320$ $T25^{\circ}$ C; pHBhadra et al., 2017Sole and Jhung, 2017Metal organic framework-porous carbonDiclofenac sodium $q_m 118.58$ pH 4Song et al., 2016Mesoporous SBA-15Ibuprofen $q_m 0.34$ T25 $^{\circ}$ C; pH 3Bui and Choi, 2009Mesoporous SBA-1		Chromium(III) terephthalat – MIL 101 Chromium(III) terephthalat – MIL 101	I FICIOSAN Biophopol A	$q_{\rm m} = 112$	T 25 °C; pH 7	Song and Jhung, 2017
Chromium (III) terephthalat - MIL 101Kaptoxin q_m 150 125 °C, pH 7Song and Jhung, 2017Zeolitic imidazolate framework-81H-benzotriazole q_m 396.8T30 °CJiang et al., 2013Zeolitic imidazolate framework-85-tolyltriazole q_m 396.8T30 °CJiang et al., 2013Metal organic framework-porous carbonIbuprofen q_m 320T25 °C, pHBhadra et al., 2017Sole tail organic framework-porous carbonDiclofenac sodium q_m 400T25 °C, pHBhadra et al., 2017Sole tail organic framework-porous carbonDiclofenac sodium q_m 118.58pH 4Song et al., 2016Metal organic framework-porous sarbonDiclofenac q_m 0.16T25 °C, pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac q_m 0.07T25 °C, pH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen q_m 0.34T25 °C, pH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen q_m 0.28T25 °C, pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T25 °C, pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T25 °C, pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T25 °C, pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T25 °C, pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T25 °C, PH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T25 °C, PH 3Bui and C		Chromium(III) terephthalat – MIL 101 Chromium(III) terephthalat – MIL 101	Naproven	q _m 97	Т 25°С; рн 7 Т 25°С; рН 7	Song and Ibung 2017
Zeolitic imidazolate framework-81H-benzotriazole $q_m 298.5$ T30 °CJiang et al., 2013Zeolitic imidazolate framework-85-tolyltriazole $q_m 396.8$ T30 °CJiang et al., 2013Metal organic framework-porous carbonIbuprofen $q_m 320$ T25 °C; PHBhadra et al., 2017Metal organic framework-porous carbonDiclofenac sodium $q_m 400$ T25 °C; PHBhadra et al., 2017Solver nanoparticle-modified MWCNTSulfamethoxazole $q_m 118.58$ PH 4Song et al., 2016Mesoporous SBA-15Carbamazepine $q_m 0.16$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac $q_m 0.07$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac $q_m 0.34$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen $q_m 0.34$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofhric $q_m 0.28$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofhric $q_m 0.28$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofhric $q_m 0.28$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofhric $q_m 0.34$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofhric $q_m 0.28$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofhric $q_m 0.28$ T25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofhric $q_m 52.63$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrro		Chromium(III) terephthalat- MIL 101	Ketoprofen	<i>a</i> 80	T 25 °C • pH 7	Song and Ihung 2017
Zeolitic imidazolate framework-8 Metal organic framework-porous carbon5-tolyltriazole uprofenqm 396.8 qm 320T 30 °C F Jiang et al., 2013Metal organic framework-porous carbonDiclofenac sodiumqm 400T 25 °C; pH S.0-5.5Bhadra et al., 2017 S.0-5.5Silver nanoparticle-modified MWCNTSulfamethoxazoleqm 118.58pH 4Song et al., 2016Mesoporous SBA-15Carbamazepineqm 0.16T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenacqm 0.34T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofenqm 0.41T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibricqm 0.28T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibricqm 0.28T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibricqm 0.28T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibricqm 0.28T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Ketoprofenqm 0.28T 25 °C; pH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Ketoprofenqm 83.33pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriolqm 90.91pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriolqm 56.17pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriolqm 56.17pH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin <td></td> <td>Zeolitic imidazolate framework–8</td> <td>1H-benzotriazole</td> <td>am 298.5</td> <td>T 30 °C</td> <td>liang et al., 2013</td>		Zeolitic imidazolate framework–8	1H-benzotriazole	am 298.5	T 30 °C	liang et al., 2013
Metal organic framework-porous carbonIbuprofen q_m 320T 25 °C; pHBhadra et al., 2017Metal organic framework-porous carbonDiclofenac sodium q_m 400T 25 °C; pHBhadra et al., 2017Silver nanoparticle-modified MWCNTSulfamethoxazole q_m 118.58pH 4Song et al., 2016Mesoporous SBA-15Carbamazepine q_m 0.16T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac q_m 0.34T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac q_m 0.41T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T 25 °C; pH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Triclosan q_m 83.33pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Bisphenol-A q_m 56.17PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol q_m 56.17PH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin q_m 1172.25PH 5Yan et al., 2017		Zeolitic imidazolate framework-8	5-tolyltriazole	q _m 396.8	T 30 °C	Jiang et al., 2013
Metal organic framework-porous carbonDiclofenac sodium $q_m 400$ T 25 °C; PHBhadra et al., 2017 5.0-5.5Silver nanoparticle-modified MWCNTSulfamethoxazole $q_m 118.58$ PH 4Song et al., 2016Mesoporous SBA-15Carbamazepine $q_m 0.16$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac $q_m 0.07$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen $q_m 0.34$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen $q_m 0.41$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric $q_m 0.41$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric $q_m 0.28$ T 25 °C; PH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Triclosan $q_m 52.63$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Bisphenol-A $q_m 90.91$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol $q_m 56.17$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol $q_m 56.17$ PH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin $q_m 1172.25$ PH 5Yan et al., 2017		Metal organic framework-porous carbon	Ibuprofen	q _m 320	T 25 °C; pH	Bhadra et al., 2017
Silver nanoparticle-modified MWCNTSulfamethoxazole q_m 118.58DH 4Song et al., 2016Mesoporous SBA-15Carbamazepine q_m 0.16T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac q_m 0.07T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen q_m 0.34T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofbric q_m 0.41T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofbric q_m 0.41T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofbric q_m 0.28T 25 °C; PH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Triclosan q_m 83.33PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Bisphenol-A q_m 90.91PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol q_m 56.17PH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin q_m 1172.25PH 5Yan et al., 2017		Metal organic framework-porous carbon	Diclofenac sodium	<i>q</i> _m 400	5.0-5.5 T 25 °C; pH 5.0-5.5	Bhadra et al., 2017
Mesoporous SBA-15Carbamazepine q_m 0.16T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Diclofenac q_m 0.07T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen q_m 0.34T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen q_m 0.41T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.41T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T 25 °C; pH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric q_m 0.28T 25 °C; pH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Triclosan q_m 52.63pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Ketoprofen q_m 83.33pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol q_m 56.17pH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin q_m 1172.25pH 5Yan et al., 2017		Silver nanoparticle-modified MWCNT	Sulfamethoxazole	<i>q</i> _m 118.58	pH 4	Song et al., 2016
Mesoporous SBA-15Diclofenac $q_m 0.07$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Ibuprofen $q_m 0.34$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Ketoprofen $q_m 0.41$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric $q_m 0.28$ T 25 °C; PH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Triclosan $q_m 52.63$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Ketoprofen $q_m 83.33$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Bisphenol-A $q_m 56.17$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol $q_m 1172.25$ PH 5Yan et al., 2017		Mesoporous SBA-15	Carbamazepine	q _m 0.16	T 25 °C; pH 3	Bui and Choi, 2009
Mesoporous SBA-15Ibuprofen $q_m 0.34$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Ketoprofen $q_m 0.41$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric $q_m 0.28$ T 25 °C; PH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Triclosan $q_m 52.63$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Ketoprofen $q_m 83.33$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Bisphenol-A $q_m 90.91$ PH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol $q_m 56.17$ PH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin $q_m 1172.25$ PH 5Yan et al., 2017		Mesoporous SBA-15	Diclofenac	<i>q</i> _m 0.07	T 25 °C; pH 3	Bui and Choi, 2009
Mesoporous SBA-15Ketoprofen $q_m 0.41$ T 25 °C; PH 3Bui and Choi, 2009Mesoporous SBA-15Clofibric $q_m 0.28$ T 25 °C; PH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Triclosan $q_m 52.63$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Ketoprofen $q_m 83.33$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Bisphenol-A $q_m 90.91$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol $q_m 56.17$ pH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin $q_m 1172.25$ pH 5Yan et al., 2017		Mesoporous SBA-15	Ibuprofen	<i>q</i> _m 0.34	T 25 °C; pH: 3	Bui and Choi, 2009
Mesoporous SBA-15Clohbric $q_m 0.28$ T 25 °C; pH 3Bui and Choi, 2009Polyvinyl pyrrolidone -Fe ₃ O ₄ Triclosan $q_m 52.63$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Ketoprofen $q_m 83.33$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Bisphenol-A $q_m 90.91$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol $q_m 56.17$ pH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin $q_m 1172.25$ pH 5Yan et al., 2017		Mesoporous SBA-15	Ketoprofen	<i>q</i> _m 0.41	T 25 °C; pH 3	Bui and Choi, 2009
Polyvinyl pyrrolidone -Fe $_{3}O_{4}$ Inclosan $q_{m} 52.63$ pH /Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe $_{3}O_{4}$ Ketoprofen $q_{m} 83.33$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe $_{3}O_{4}$ Bisphenol-A $q_{m} 90.91$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe $_{3}O_{4}$ Estriol $q_{m} 56.17$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe $_{3}O_{4}$ Estriol $q_{m} 56.17$ pH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin $q_{m} 1172.25$ pH 5Yan et al., 2017		Mesoporous SBA-15	CIOTIDITIC	q _m 0.28	1 25 °C; pH 3	Bui and Choi, 2009
Polyvinyl pyrrolidone -Fe ₃ O ₄ Ketoprofen q_m 83.33 pH 7 Alizadeh Fard et al., 2017 Polyvinyl pyrrolidone -Fe ₃ O ₄ Bisphenol-A q_m 90.91 pH 7 Alizadeh Fard et al., 2017 Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol q_m 56.17 pH 7 Alizadeh Fard et al., 2017 Polyvinyl pyrrolidone -Fe ₃ O ₄ Estriol q_m 56.17 pH 7 Alizadeh Fard et al., 2017 Carboxymethyl cellulose-Fe/Mn Ciprofloxacin q_m 1172.25 pH 5 Yan et al., 2017		Polyvinyl pyrrolidone -Fe ₃ O ₄	Triclosan	<i>q</i> _m 52.63	рн /	Alizadeh Fard et al.,
Polyvinyl pyrrolidone -Fe $_3O_4$ Bisphenol-A $q_m 90.91$ pH 7Alizadeh Fard et al., 2017Polyvinyl pyrrolidone -Fe $_3O_4$ Estriol $q_m 56.17$ pH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin $q_m 1172.25$ pH 5Yan et al., 2017		Polyvinyl pyrrolidone -Fe ₃ O ₄	Ketoprofen	<i>q</i> _m 83.33	рН 7	Alizadeh Fard et al., 2017
Polyvinyl pyrrolidone -Fe3O4Estriol q_m 56.17pH 7Alizadeh Fard et al., 2017Carboxymethyl cellulose-Fe/MnCiprofloxacin q_m 1172.25pH 5Yan et al., 2017		Polyvinyl pyrrolidone -Fe ₃ O ₄	Bisphenol-A	<i>q</i> _m 90.91	pH 7	Alizadeh Fard et al., 2017
Carboxymethyl cellulose-Fe/Mn Ciprofloxacin $q_{\rm m}$ 1172.25 pH 5 Yan et al., 2017		Polyvinyl pyrrolidone -Fe ₃ O ₄	Estriol	<i>q</i> _m 56.17	рН 7	Alizadeh Fard et al., 2017
		Carboxymethyl cellulose-Fe/Mn	Ciprofloxacin	<i>q</i> _m 1172.25	рН 5	Yan et al., 2017

the resulting electrostatic interactions between them may influence the removal of triclosan and IBP by CNTs in water (Wang et al., 2015). Due to the presence of oxygenated functional groups on PPCPs and CNTs, the

solution pH affects the protonation/deprotonation of these functional groups and alters the electrostatic interactions (Cho et al., 2011). The electrostatic interaction might contribute greatly to the adsorption

affinity of norfloxacin on the surface of MWCNTs (Yang et al., 2012). The higher adsorption capacity of oxytetracycline and diethyl phthalate on 3D GTs than pure GO and CNT-based adsorbents can be attributed to the synergistic effects of GO and CNTs in the micro-environment, the surface nano-substrate, and multiple active sites with the cooperative electrostatic and π - π interactions (Shen et al., 2017).

2.1.2.3. Hydrophobic interaction. Hydrophobic interaction is another mechanism for carbon materials to adsorb hydrophobic organic compounds (Nam et al., 2014; Pyrzynska et al., 2007). When the net charge density on the carbon material is zero and the emerging contaminants are in their molecular state, the hydrophobic interaction between them is at the strongest, and the adsorption capacity the largest (Lu et al., 2006; Piao et al., 2008). Besides, the adsorption is also affected by oxygen-containing functional groups on the adsorbents (Cho et al., 2008; Liao et al., 2008). Hydrophobic interaction is the main mechanism responsible for the pH-dependent adsorption of sulfonamides (Yu et al., 2015). Non-electrostatic hydrophobic interaction was also found between tetracycline and MWCNTs (Zhang et al., 2011).

2.1.2.4. Hydrogen bonding. Hydrogen bonds can also be formed between the benzene ring on the surface of CNTs as the electron donor and organic compounds containing oxygen-containing functional groups (Pan and Xing, 2008). The hydrogen bonding contributed greatly to the adsorption of 17β -estradiol (E2) and 17α -ethinylestradiol (E22) on GO due to the high content of –OH groups on the GO surface (Sun et al., 2017).

2.1.3. Influencing factors

2.1.3.1. pH. The solution pH strongly controls the adsorption process of organic molecules, since it affects not only the surface charge of adsorbents, but also the protonation/deprotonation of pollutants according to their pKa. First, increasing pH might promote the dissociation of the hydrophobic adsorbate into hydrophilic and negatively charged species, thus affecting the hydrophobic and electrostatic interactions between the adsorbent and adsorbate. Second, a higher pH could increase the π donating ability of the adsorbate, thus enhancing the π - π electron donor-acceptor interaction (Liu et al., 2014). Depending on the pH, PPCPs will be protonated or deprotonated, resulting in their electrostatic interaction with the CNTs (Nam et al., 2014). The adsorption of sulfonamide to MWCNTs decreases as the pH increases, because the electron accepting abilities of the cationic amine group and the enolenone groups on sulfonamide are weakened when these moieties are protonated at high pH (Ji et al., 2009). For the adsorption of triclosan to SWCNTs, better removal was observed at pH 4 and 7 than at 10 (Castro et al., 2017; Wang et al., 2015). The pH value (within 1–11) also significantly affects the adsorption of sulfadimethoxine, sulfamethoxazole, and sulfathiazole by MWCNTs, due to the changed sulfonamide species (Yu et al., 2015). The adsorption of ACT onto GO is almost independent of solution pH between 2 and 8, because at these pH values ACT remains mostly neutral and nonionic, and thus is unfavorable for electrostatic and $\pi - \pi$ interactions with functional groups on the surface of GO (Moussavi et al., 2016). The adsorption of metformin on GO increased when the pH changed from 4.0 to 6.0, and then decreased from 6.0 to 11.0, which might be attributed to the changing surface charge on GO and the speciation of metformin (S. Zhu et al., 2017).

2.1.3.2. Ionic strength. An increase in ionic strength would be favorable to the adsorption processes, when there is electrostatic repulsion between the adsorbent and adsorbate. Also, a high ionic strength can have a strong "salting-out" effect on hydrophobic compounds, increasing the tendency of organic molecules to precipitate from the aqueous solution and adsorb to the nanoadsorbent (Grover and Ryall, 2005). When the ionic strength is increased from 10^{-3} to 10^{-2} M, for example, the adsorption of triclosan onto MWCNTs at pH 3 and 11 increased from

136.1 to 153.1 mg/g and from 80.8 to 105.8 mg/g, respectively (Zhou et al., 2013). The solubility of norfloxacin in water is decreased when NaCl or CaCl₂ is added, especially for CaCl₂ (Yang et al., 2012). The adsorption capacities of tetracycline on GO decreased upon increasing the Na⁺ concentration (Gao et al., 2012). Moreover, the adsorption of thiamphenicol and IBP was decreased at increased ionic strength, and the same trend was observed to a lesser extent for diclofenac (DCF) and carbamazepine (Zhao et al., 2016). The addition of 0.5 g/L NaCl considerably inhibited the adsorption of ACT (by about 30%), which might be due to the aggregation of GO at high ionic strengths (Moussavi et al., 2016). The adsorption capacity of metformin on GO was reduced by increasing the NaCl concentration from 0 to 0.1 M, and this could be explained by the lower active coefficients of metformin, the competitive adsorption of Na⁺, and the increasing aggregation of GO particles (S. Zhu et al., 2017).

2.1.3.3. Dissolved organic matters. The adsorption of sulfamethoxazole, thiamphenicol, and IBP was decreased with the increase of organic matter in the solution (Zhao et al., 2016). When the amount of dissolved humic acid was increased (up to 40 mg/L), the adsorption coefficients of the two sulfonamides decreased by 0.5–0.8 mg/kg, mainly due to direct competition for the adsorbent surface (Ji et al., 2009).

2.2. MOF nanomaterials

2.2.1. Adsorption capacity

The adsorption capacities of reported nanomaterials are summarized in Table 1. Zeolitic imidazole frameworks (ZIF)-magnetic GO shows a high adsorption capacity for benzotriazole (>300 mg/g) (Andrew Lin and Der Lee, 2016). The adsorption of the antibiotic nitroimidazole depended strongly on the type of functional groups on the MOFs (Seo et al., 2017). The adsorption of ZIF-8 for 1H– benzotriazole and 5-tolyltriazole follows pseudo-second-order kinetics, and fits the Langmuir adsorption model with the respective adsorption capacity of 298.5 and 396.8 mg/g (Jiang et al., 2013). Polyvinylpyrrolidone-coated iron oxide nanoparticles also showed efficient removal of bisphenol A and ketoprofen (98% and 95% removal, respectively, Alizadeh Fard et al., 2017). Carboxymethyl cellulose-Fe/Mn nanoadsorbent showed the maximum adsorption of 1172.25 mg/g for ciprofloxacin at pH 5 in water (Yan et al., 2017).

2.2.2. Adsorption mechanism

MOFs can adsorb pollutants in water via the following mechanisms: electrostatic interactions, Lewis acid–base interactions, H-bonding, and π – π interactions (Andrew Lin and Der Lee, 2016). The adsorption of nitroimidazole antibiotics on MOFs was attributed to H-bonding between the -NO₂ of nitroimidazole and -NH₂ of the modified MOFs (Seo et al., 2017). For the adsorption of IBP and DCF onto porous carbon derived from MOFs, the most probable reason for the relatively higher reduction in IBP is that there are many more H-bond acceptors in IBP than in DCF (Bhadra et al., 2017).

2.2.3. Influencing factors

2.2.3.1. pH. The pH could affect sulfamethoxazole sorption on MOFs: the Kd values slightly increased with pH from 2 to 4, then decreased at pH = 5–10 (Song et al., 2016). The adsorption capacities of ZIF-8 for 1H–benzotriazole and 5-tolyltriazole slightly decreased as the pH increased. ZIF-8 also exhibited appreciable amount of benzotriazole adsorption (~150 mg/g) at pH 8 and 9 (Jiang et al., 2013). The ZIFs-negatively-charged magnetic reduced GO exhibited relatively stable adsorption capacities for benzotriazole (BTA) at pH 4–9. Once the pH was raised to 10 (which is higher than the pKa value of 2), the decrease in adsorption became significant due to the inhibition of electrostatic adsorption by the negatively-charged species of BTA and GO (Andrew Lin and Der Lee, 2016). A urea- or melamine-modified MOF, MIL-101, displays stable

adsorption for saccharin (SAC) at pH 3–7, which could be attributed to the electrostatic attraction of negatively charged deprotonated form of SAC with positively charged MIL-101, and the stable H-bonding between the SAC anion and $-NH_2$ group on urea-MIL-101 (Seo et al., 2016). For the carboxymethyl cellulose binary oxide Fe-Mn nanoparticles (CMC-FMBO), at pH < 6.0, the sorption capacity of CIP increased with increasing pH due to the electrostatic attraction between the cationic form of CIP and increasingly negatively charged CMC-FMBO. At pH > 6.0, the sorption capacity declined, and this might be due to (1) the formation of anionic CIP that exhibited electrostatic repulsion with negatively charged CMC-FMBO, (2) increasing competitive adsorption of hydroxyl ions against anionic CIP, and (3) much less hydrophobic for the anionic form than the zwitterionic one (Yan et al., 2017). On a carbon-modified ZIF-8, the adsorption of IBP decreased with increasing pH, which showed that the electrostatic interaction was not the main process for IBP adsorption here (Bhadra et al., 2017). Two composites, MIL-101/sodium alginate (MIL-101/SA) and MIL-101/ chitosan (MIL-101/CS), exhibited similar patterns of pH-dependent adsorption of three PPCPs (benzoic acid (BEN), IBP, and ketoprofen (KET)) with a maximum adsorption at pH ~4.0, suggesting again the predominant influence of pKa-dependent electrostatic attraction in adsorption (Zhuo et al., 2017). The decrease of adsorption over urea-modified MIL-101 with increasing pH can be explained by the electrostatic interaction between the negatively charged O in the -NO₂ group of the nitroimidazole antibiotics and the positive surface charge on MIL-101 (Seo et al., 2017).

2.2.3.2. Ionic strength. No significant change of the adsorption capacity of benzotriazole on ZIF was found in the presence of NaCl, CaCl₂, and MgSO₄ (Jiang et al., 2013). The removal of CIP by CMC-FMBO was enhanced in the presence of NaCl, possibly due to the decreased CIP solubility (i.e. salting out), and the promoted formation of adsorbent aggregates (i.e. squeezing out) (Yan et al., 2017). The salts have insignificant effects on the BTA adsorption to ZIF–GO (Andrew Lin and Der Lee, 2016). The adsorption of three PPCPs onto MIL-101/SA and MIL-101/CS decreased with increasing ionic concentration due to competition from Cl⁻, while the adsorption was almost unchanged with the ionic concentration of >0.25 wt% (Zhuo et al., 2017).

2.2.3.3. Dissolved organic matter. The polyvinylpyrrolidone (PVP)-coated magnetite nanoparticles (NPs) showed good adsorption performance for bisphenol A and ketoprofen with 98 and 95% removal. PVP-coated NPs showed still good performance for the adsorption of these pollutants, while their removal by granular activated carbon (GAC) was significantly inhibited by the competitive inhibition of dissolved organic matter with micropollutants (Alizadeh Fard et al., 2017).

3. Photocatalysis

Photocatalytic oxidation is an advanced oxidation process for removing trace contaminants, which can be a polishing step to treat emerging and recalcitrant organic compounds. The main photocatalysts contain either single metal oxides (TiO₂, ZnO, and WO₃) or GO or CNT combined with catalytic components (e.g. TiO₂, ZnFe₂O₄, WO₃, C₃N₄, Nb₂O₅, Co₃O₄, and Cu₂O).

3.1. Photocatalytic property

Table 2 summarizes the photocatalysts and their degradation capacities. With TiO₂ catalyst, the removal efficiencies of DCF and naproxen (NPX) were 75% under Xe lamps after 2 h (Méndez-Arriaga et al., 2008). With TiO₂ concentrations of 10 and 20 mg/L, ~85% and 100% of IBP was degraded after 3 h, respectively (Choina et al., 2013). Using 5 mg/L TiO₂, hydroxybiphenyl, DCF, IBP, progesterone, triclosan, ofloxacin, acetaminophen, and caffeine were all completely degraded in <1 h (Miranda-García et al., 2011). A 72% degradation rate of atenolol can be achieved in 1 h with 1.5 g/L TiO₂ under solar irradiation (Bhatia et al., 2017). The degradation of triclosan by TiO₂ was very efficient and complete after about 1 h (Rafgah et al., 2006). Triclosan in water could also be degraded by 90% using ZnO under solar radiation in 90 min (Kosera et al., 2017). When using ZnO coated activated carbon fiber, 99% of tetracycline at 40 mg/L was degraded within 1 h under UV light (Tran and Lee, 2017). A 98% removal rate of sulfamethoxazole was achieved within 3 h under visible light irradiation using GO-WO₃ (W. Zhu et al., 2017). g-C₃N₄/Nb₂O₅ nano-heterostructures exhibited a high activity (81% removal) in the photooxidation of the drug amiloride (AML) (da Silva et al., 2017). The Gold@Silver@Silver chloride (Au@Ag@ AgCl) core-double shells NPs were produced using Momordica charantia leaf extract, and the prepared material showed a degradation rate of 97% for IBP and 98% for clofibric acid (CA) at 10 mg/L in aqueous solution under solar irradiation (Devi and Ahmaruzzaman, 2017). The addition of g-C₃N₄ in TiO₂ resulted in a 2.3-times faster photodegradation rate for CA than for pristine TiO₂ under simulated solar irradiation (Chen et al., 2017).

3.2. Photocatalytic mechanisms

Among the many photocatalysts, TiO₂ is mostly preferred due to its chemical stability, acceptable band gap, ability to adsorb electrons, low cost, etc. (Gao and Wen, 2016). When the photon energy is equal to or greater than the energy gap ($h\nu \ge E_g$), photon impingement on the surface of nanosized TiO₂ forms a n/p controlled photocatalytic oxidation switch (Henderson, 2011). After the TiO₂ is excited, electron-hole pairs (e^{-}/h^{+}) are formed on the surface of the nanomaterial. The holes interact with H₂O on the surface to form highly oxidizing hydroxyl radicals (•OH) (Grabowska et al., 2012). The electrons, on the other hand, interact with the oxygen adsorbed on the TiO₂ surface to generate strongly oxidizing negative oxygen ion radicals $(O_2 \cdot \overline{})$. These strongly oxidative free radicals then oxidize and eventually degrade the emerging contaminants (Schneider et al., 2014). Various semiconductors and carbon-based carriers could significantly improve the photocatalytic degradation, via the high surface area, increased visible light absorption, the formation of an effective p-n type semiconductor nano-junction, and the suppression of the interfacial charge $(e^{-} \text{ and } h^{+})$ recombination. For the composites of GO-TiO₂, GO-WO₃, and CO₃O₄-C₃N₄, the •OH attack on the benzene ring or isoxazole ring was the main route of photodegradation of the antibiotics. For decatungstate anion immobilized on modified silica particles, the high degradation rates of LEV, atenolol (ATN), and trimethoprim (TMP) were all mediated by ·OH radicals, as confirmed using electron paramagnetic resonance spin trapping technique (Molinari et al., 2017).

Besides the indirect oxidizing radicals, the direct hole oxidation and electron reduction were important photocatalysis mechanisms. For a $ZnFe_2O_4$ –Ag/rGO composite, direct oxidation by holes was important in the photodegradation besides the oxidation by the generated OH·, $O2^{--}$, and H_2O_2 under light condition (Khadgi et al., 2017). SiC/ graphene catalyst could degrade PFOA by the photoinduced hydrodefluorination process via the Si – H/C – F redistribution under UV light excitation (Huang et al., 2016). Besides the radicals, Cl⁰ also contributed the degradation of IBP and CA by the Gold@Silver@Silver chloride core–double shells NPs under solar irradiation (Devi and Ahmaruzzaman, 2017). The main degradation pathways of CA on g-C₃N₄/TiO₂ photocatalyst are e⁻ reduction, HO· oxidation, and ¹O₂ attack reactions, according to mass spectrometry analysis and theoretical calculations (Chen et al., 2017).

3.3. Influencing factors

Numerous studies focused on the degradation of emerging contaminants via photocatalysis, and identified operational parameters that can affect the efficiency of these processes, such as the light intensity and wavelength, solution pH, and the presence of oxygen.

Table 2

Photodegradation of the emerging comtaminants in water.

Nanomaterial	Pollutant	Removal (%)	Treatment condition	Reference
TiO ₂	Diclofenac	75	Xe lamp (1000 W, 290–400 nm); Time 2 h	Méndez-Arriaga et al., 2008
-	Naproxen	75	Xe lamp (1000 W, 290–400 nm);Time 2 h	Méndez-Arriaga et al., 2008
	Hydroxybiphenyl	100	Solar UV lamp (30 W, <400 nm); Time 0.5 h	Miranda-García et al., 2011
	Diclofenac	100	Solar UV lamp (30 W, <400 nm); Time 0.5 h	Miranda-García et al., 2011
	Ibuprofen	100	Solar UV lamp (30 W, <400 nm); Time 0.5 h	Miranda-García et al., 2011
	Progesterone	100	Solar UV lamp (30 W, <400 nm); Time 0.5 h	Miranda-García et al., 2011
	Caffeine	100	Solar UV lamp (30 W, <400 nm); Time 0.5 h	Miranda-García et al., 2011
	Acetaminophen	100	Solar UV lamp (30 W, <400 nm); Time 0.5 h	Miranda-García et al., 2011
	Triclosan	100	Solar UV lamp (30 W, <400 nm); Time 0.5 h	Miranda-García et al., 2011
	Ofloxacin	100	Solar UV lamp (30 W, <400 nm); Time 0.5 h	Miranda-García et al., 2011
	Triclosan	100	Fluorescent lamp (15 W, 300–450 nm); Time 1 h	Rafqah et al., 2006
	Tetracycline	50	UV lamp (125 W, >254 nm), Time 1/6 h	Reyes et al., 2006
	Tetracycline	50	Solarium lamp (6 W, 300–400 nm); Time 1/3 h	Reyes et al., 2006
	Tetracycline	50	Black light lamp (160 W, 365 nm); Time 2 h	Reyes et al., 2006
	Benzophenone-3	93.7	Xe lamp (350 W); Time 0.5 h	Zúñiga-Benítez et al., 2016
	Sulfamethoxazole	100	UV-A light (450 W, 324–400 nm); Time 1 h	Hu et al., 2007
	Sulfamethazine	35	Osram Dulux lamp (9 W, 350/400 nm); Time 1 h	Kaniou et al., 2005
	Caffeine	51	Four UV- lamps (15 W, $2/3$ nm); Time 4 h	Arfanis et al., 2017
	Salicylic acid	55	Four UV- lamps (15 W, 296 nm); 1ime 4 h	Arfanis et al., 2017
	Caffeine	92	Solar UV lamp (30 W, 273 nm); Time 2 h	Gli et al., 2017
	Diciorenac	47	Solar UV lamp (30 vV, 450 hm); Time 2 h	Gli et al., 2017 Gil et al. 2017
	Ibuproten Saligulia agid	47	Solar UV lamp(30 W, 222 mm); Time 2 m	Gil et al., 2017 Gil et al. 2017
NJ TJO	Salicylic acid Picphopol A	22	Solar UV $IdIIIp(30 W, 296 IIIII); IIIIIe 2 IIDbilling lamp(25 W, 400, 700 pm); Time 2 5 h$	Gli et di., 2017 Planco Voga et al. 2017
$MI-IIO_2$	Bispiteliol A Porfluorooctanoic acid	100	Phillips lating(25 W, 400–700 littl), fille 5.5 li Hg lamp (125 W, 265 pm); Time 5 h	Li et al. 2016
7p0	Amovicillin	100	IIV lamp (6W, 265 nm); Time 2 h	El et al., 2010
2110	Ampicillin	100	UV lamp (6W, 365 nm); Time 3 h	Elmolla and Chaudhuri, 2010
	Clovacillin	100	IW lamp (6W, 365 nm); Time 3 h	Elmolla and Chaudhuri, 2010
	Sulfamethazine	92	Osram Dulux lamp $(9 \text{ W}/350/400 \text{ nm})$. Time 1 h	Kaniou et al. 2005
	Ibuprofen	88	Hg lamp (125 W/ 254 nm). Time 1.3 h	Rastkari et al. 2005
	Triclosan	100	$H_{\alpha} = 125 W, 254 Hill), This 1.5 H$	Kosera et al. 2017
Ce-7nO	Acelsulfame K	65	Xe arc lamp (1500 W 290 nm). Time 1.5 h	Calza et al. 2017
WO ₂	Atenolol	70	Luxtel Xenon lamp (175 W $>$ 360 nm); Time 5 h	Longobucco et al 2017
	Carbamazepine	60	Luxtel Xenon lamp (175 W. >360 nm): Time 5 h	Longobucco et al., 2017
	Acetaminophen	100	Xe lamp (1500 W. 300 nm): Time 2 h	Rev et al., 2015
	Metoprolol	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
	Caffeine	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
	Hydrochlorothiazide	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
	Antipyrine	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
	Sulfamethoxazole	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
	Carbamazepine	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
	Ketorolac	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
	Diclofenac	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
	Ibuprofen	100	Xe lamp (1500 W, 300 nm); Time 2 h	Rey et al., 2015
$Na_4W_{10}O_{32}$	Atenolol	100	Hg lamp (125 W, λ > 300 nm); Time 3 h	Molinari et al., 2017
	Levofloxacin	100		
	Trimethoprim	100		
Graphene oxide-TiO ₂	Atenolol	72	Solar irradiation (1000 W); Time 1 h	Bhatia et al., 2017
	Caffeine	99	Solar UV lamp (30 W, <400 nm); Time 1 h	Linley et al., 2014
	Carbamzepine	99		
Graphene oxide-WO ₃	Sulfamethoxazole	100	Xe arc lamp (200 W, 420–630 nm); Time 3 h	S. Zhu et al., 2017
Graphene oxide-Ag-ZnFe ₂ O ₄	17α -ethinyl estradiol	100	Xe arc lamp (300 W, <400 nm); Time 1.5 h	Khadgi et al., 2017
Graphene oxide-Cu ₂ O	Sulfamethoxazole	100	Xe arc lamp (300 W, 420 nm); Time 2 h	Liu et al., 2016
Graphene oxide-Ag-ZnFe ₂ O ₄	$1/\alpha$ -ethinyl estradiol	80	Xe arc lamp (300 W, <400 nm); Time 4 h	Li et al., 2016
WU_3 -g- U_3N_4	Sulfamethoxazole	80	xe arc lamp ($300 \text{ W}, 420-630 \text{ nm}$); Time 4 h	Sun et al., 2017
$ND_2U_5-g-U_3N_4$	Amiloride Totro qualin a	80	Fluorescent lamps (15 W, 440 nm); Time 3 h	da Silva et al., 2017
U_3U_4 -g- U_3N_4	Ietracycline	90 AU	Solar UV lamp ($3U$ W, 357 nm); 11me 3.3 h	Suyana et al., 2017
AUWASWASCI	Bongotriagolo	90 90	Solarium lamp (6 W, 300–400 nm); 11me 2 n Solarium lamp (6 W, 200–400 nm); Time 1 h	Zhang et al. 2010
$\alpha \in \mathbb{N}$ Tio	Clofibric acid	09 95	Solariulli lallip (o vv, $300-400$ nm); filme i n	Chap at al. 2017
$g - C_3 N_4 - 11 O_2$	Totracyclino	00	Λc -ramp (550 w, 250 mm); Time 50 mm) IW lamps (20 W/ 265 nm); Time 1 h	Tran and Log 2017
	Totracycline	99 06	ovianips (20 w, 505 mil); fille fill Solarium Jamp (6 W, 200, 400 pm); Time 1 b	Pappori et al. 2017
$C_{31}V_4 - ZIF O$	Atrazine	50 100	Solarium lamp (σ vv, SOU-400 mm); Time 1 m Xe-lamp (1000 W >400 nm); Time 1 h	Taillell et al., 2017 Theng et al. 2016
5-03114	A LI DZIIIC	100	Ac-iamp (1000 w, ~400 mm), mme i m	Zhelig et al., 2010

3.3.1. Light source

The light source affects the reaction according to both the wavelength and light intensity. At low light intensity, the photocatalytic reaction rate is proportional to the intensity of light (Herrmann, 1995). High photocatalytic conversion efficiency of formaldehyde by TiO₂ was observed under UV (Yang et al., 2007). No sulfamethoxazole degradation was observed in TiO₂ suspensions irradiated with only visible light (>400 nm), and direct photolysis of sulfamethoxazole by UV is slow (Hu et al., 2007). To achieve 50% degradation of triclosan in water, approximately 10, 20, and 120 min of irradiation was necessary for UV, solarium, and black light lamps, respectively (Reyes et al., 2006).

3.3.2. pH

The pH value can strongly influence the degree of particle aggregation, the band edge position, and the surface charge of semiconductor catalyst particles in the reaction solution, as well as the adsorption of Fig. 1. Nanoadsorbents, emerging contaminants, and research focus on nanoadsorption during 1998–2017. CNT: carbon nanotube; GO: graphene oxide; CMC: caboxy methyl cellulose; MIL: chromium (III) terephthalat; PVP: polyvinylpyrrolidone; ZIF: zeolitic imidazole framework; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulphonate; PFC: perfluorinated compound; EDC: endocrine disrupting chemical; PPCP: pharmaceutical and personal care product.

organic pollutants on their surface. In photocatalytic reactions, the effect of pH is related to the surface charge of the catalyst and the ionic form of the substrate (Zúñiga-Benítez et al., 2016). When the pH is below the point of zero charge, the catalyst particles are protonated and positively charged, while at higher pH the surface is deprotonated and more negatively charged (Choina et al., 2013). After 6 h of reaction, the photocatalytic degradation of amoxicillin, ampicillin, and ciclopirox by TiO₂ in water all reached the highest rate at pH 11 and the lowest rate at pH 5, since the pH changes both the morphology of the antibiotic and the catalyst (Elmolla and Chaudhuri, 2010). A slight rate increase was observed under alkaline pH, possibly due to changes in the acid-base speciation of sulfamethoxazole or the extent of its adsorption on TiO₂ (Hu et al., 2007).

3.3.3. Presence of oxidants

After adding an oxidant to the reaction system, it is captured on the surface of the catalyst, reducing the hole-electron recombination rate and promoting the formation of \cdot OH. The rate of benzophenone-3 degradation increases upon increasing the H₂O₂ concentration, but a decrease is observed when the concentration exceeds 128 mg/L (Zúñiga-Benítez et al., 2016). No sulfamethoxazole degradation occurs under strict anoxic conditions unless an external electron acceptor is provided; and the degradation rate is greater in O₂-sparged than airsparged suspensions (Hu et al., 2007). In the photocatalytic oxidation of sulfamethoxazole, H₂O₂ can absorb light to promote the charge separation and therefore the oxidation reaction. The excessive H₂O₂ also acts as holes or hydroxyl trapping molecules, and reacts with TiO₂ to form a peroxide, which is detrimental to the photocatalytic degradation reaction (Kaniou et al., 2005).

3.4. Photocatalyst modification

In recent years, to improve the efficiency of photocatalysis, people have used a variety of means to modify the catalyst, mainly by metal or non-metallic element doping, precious metal deposition, and semiconductor recombination.

3.4.1. Doping

Non-metallic doping (N, C, S, Si, B, F) (Shi et al., 2011; Wang et al., 2009; Wang et al., 2012), metal doping (Fe, Nb, Sn, Co) (Le et al., 2012; Xu et al., 2012), and co-doping (S-N, N-F, Ni-Ni) (Breault and Bartlett, 2012; He et al., 2012) could all introduce impurity energy and enhance the visible light absorption of the catalyst.

Among non-metals, N-doping could reduce the band gap of TiO_2 and realize the photocatalytic response of visible light (Asahi, 2001). Si was implanted into the TiO_2 lattice to form Si—O—Ti bond, and the TiO_2 after doping can maintain the original morphology and have high thermal stability. As a result, a maximum UV light conversion of 31.8% was achieved, which is 1.9 times that of the undoped electrode, and the corresponding photoelectrocatalytic degradation efficiency for pentachlorophenol was 84.8% higher (Su et al., 2016). The carbon-doped g-C₃N₄ showed a reaction rate enhancement of 2.3–10.5 fold for the

Fig. 2. Trend of studies on nanoadsorbents for removing emerging contaminants during 2007–2017. CNT: carbon nanotube; GO: graphene oxide; OCBA; other carbon-based adsorbent; CMC: caboxy methyl cellulose; MIL: chromium (III) terephthalat; PVP: polyvinylpyrrolidone; ZIF: zeolitic imidazole framework; OMOF; other metal-organic framework; X for CNT + X, GO + X, PVP + X, and CMC + X represents: Fe, Zn, Al, Si, N and so on.

L. Zhao et al. / Science of the Total Environment 627 (2018) 1253-1263

Fig. 3. Trend of studies on emerging contaminant removal using nanoadsorption during 2007–2017. PFOA: perfluoroctanoic acid; PFOA: perfluoroctane sulphonate; PFOS: perfluorinated compounds; EDC: endocrine disrupting chemical; PPCP: pharmaceutical and personal care product.

degradation of organic micropollutants compared to that of conventional, melamine-based $g-C_3N_4$ under simulated visible sunlight (Zheng et al., 2016). Following metal doping, the resultant photocatalytic properties are related to the electronic configuration of the dopant ions, and the metal ions affect the carrier recombination and electron transport (Nicole et al., 2001). Cerium-doped ZnO composites exhibit higher degradation of acesulfame K (ACE) than TiO₂, especially under visible light and in the presence of organic matter (Calza et al., 2017). Ag-, Pd-, and Pt-TiO₂ exhibited higher PFOA degradation of 57.7%, 94.2%, and 100%, respectively, compared with pure TiO₂ (31.1%), which was attributed to the storage of excess electrons in the conduction band by noble metal nanoparticles, when the holes in the valence band were used in PFOA degradation (Li et al., 2016).

3.4.2. Semiconductor compounds

The combination of TiO_2 and narrow bandgap semiconductors can reduce the energy required for light activation, thereby not only extending the spectral response of TiO_2 but also facilitating the separation of electron-hole pairs. The activity of Fe_2O_3/TiO_2 composite was found to be higher than that of pure Fe_2O_3 or TiO_2 under visible light, due to the presence of heterogeneous junctions between Fe_2O_3 and TiO_2 for the separation of carriers and the suppressed recombination of photogenerated electron-hole pairs (Yan et al., 2012). Cuprous oxidereduced GO showed a 50% removal of sulfamethoxazole (SMX) within 120 min and 100% removal of methylene blue (MB) within 40 min under the visible light condition (Liu et al., 2016).

3.4.3. Precious metal deposition

The deposition of precious metals can improve the photocatalytic activity, because the metal and TiO_2 have different Fermi levels. When these two materials are in contact with each other, the electrons transfer from the Fermi level of TiO_2 to the Fermi level of the metal, and this effectively acts as an electron barrier to prevent the recombination of electrons and holes.

4. Bibliometrics on emerging contaminants, nanoadsorbents, and research focus

Recently, bibliometrics has been used as an important method for analyzing and predicting research trends. The keywords capture the main points in a study. Thus, keyword analysis is among the most effective methods in bibliometrics. Using the co-word analysis method, we can identify hot spots in the research field.

4.1. Trends for adsorption

"Emerging AND (Contaminant* OR Pollutant* OR micropollutant*) AND *sorption" were used to search titles, abstracts, and keywords of documents published between 1998 and 2017 in the Science Citation Index (SCI). We obtained 1010 related documents, and their keywords were analyzed using the open-source visualization and exploration software Gephi (Version 0.8.2). Trends in the adsorption studies could be visualized using the resulting co-word network.

Fig. 4. Nanocatalyst, emerging contaminants, and research focus on nanophotocatalysis during 1998–2017.

1260

The clustering of keywords was used to examine the main directions of related research on the global scale (Fig. 1). Over the past 20 years, the main adsorbents studied were carbon-based ones (CNTs, GO) and MOFs (CNTs + X, GO + X), polyvinylpyrrolidone (PVP) + X, carboxy methyl cellulose (CMC) + X, ZIF, and chromium (III) terephthalate (MIL). The main emerging contaminants studied were: antibiotics for PPCPs; bisphenol A, estrogen, and 17-beta-estradiol for EDCs; and perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) for PFCs. The major research fields include adsorption kinetics, adsorption mechanism, isotherms, removal efficiency, toxicity, as well as the main influencing factors (e.g., competing adsorbates, dissolved organic matter, pH, temperature, and adsorption forces).

From 2011 to 2017, the number of papers on nanoadsorbents increased by 9.3 times (Fig. 2). Among the carbon-based ones, CNTs and GO were the most studied. The number of publications about these nanoadsorbents greatly increased after 2014, from 8 to 26 for CNTs in 2017. After 2011, the studies of MOF nanoadsorbents were greatly accelerated, and the ratio of relevant papers among those about nanoadsorbents increased from 22.2% to 45.2% in 2017. The studied frameworks mainly used CNTs, GO, and PVP for the organic component, and Fe, Zn, and Al for the metals. Besides, the ZIF (transition metal ions (Fe, Co, Cu, Zn) connected by imidazolate linkers) and MIL (trimers of Cr octahedra with terminal ligands linked by carboxylate ligands) are the newest nanoadsorbents, whose studies were significantly accelerated after 2016.

The literature on emerging pollutant removal using nanoadsorption continued to grow, with the highest number of 107 papers in 2017 (Fig. 3). Before 2009, half of the papers were about EDCs including bisphenol and estrogen. After 2009, there was an obviously increased interest in PPCPs, with the number of papers in 2017 being 8.2 times the number in 2009, and the ratio of PPCP studies in 2017 was 76.6% (Fig. 3). The main PPCPs examined include DCF, IBP, carbamazepine, caffeine, and NPX. Another interesting group was PFCs (PFOA and PFOS), with the number of papers gradually increased after 2009.

4.2. Trends for photocatalysis

"Emerging AND (contaminant* OR Pollutant* OR Micropollutant*) AND (Photocataly* OR Photodegrad*)" were used to search titles, abstracts, and keywords of the documents published between 1998 and 2017 in the SCI. We finally obtained 613 related documents, and their keywords were also analyzed by Gephi to obtain the co-word network and understand the research trends.

Based on keyword clustering analysis, Fig. 4 shows that the main photocatalysts considered by researchers are TiO₂, ZnO, MgO, WO₃, and GO. The main emerging contaminants are DCF, IBP, NPX, triclosan, and carbamazepine for PPCPs; and bisphenol and estrogen for EDCs.

Fig. 5. Trend of studies on nanocatalyst for the photodegrading emerging contaminants during 2007–2017. X for $TiO_2 + X$ and GO + X represts Fe_3O_4 , WO_3 , ZnO, $BiVO_4$ and In_2O_5 .

The main research fields were kinetics, photocatalytic mechanism, photolysis, degradation pathways, transformation product toxicity, as well as the influencing factors (including the dissolved organic matter, oxidation, pH, and modification on the photocatalyst).

In 2017, the number of papers on nanomaterials for photocatalysis increased by 6.2 times compared to that in 2011 (Fig. 5), and the most studied nanomaterials were TiO_2 and ZnO, either used singly or in combination. After 2014, the studies of WO₃, Bi_xO_y, and GO + X greatly increased by 4.1 times for the 3 categories in 2017.

Similar to the case of adsorption, the number of published studies on removing emerging pollutants by nanophotocatalysis increases year by year especially after 2012, with 87 papers in 2017. Before 2009, the studies of EDCs constituted half for the emerging contaminants. After 2009, the research of PPCPs was obviously intensified, with the number of publications increased by 89.7% from 2009 to 2017 (Fig. 6).

5. Conclusions and recommendations

We provided a systematic review and bibliometric analysis on nanomaterials for removing emerging pollutants in water by adsorption and/or photocatalysis processes. While a majority of studies up to 2009 were devoted to EDCs, there was clearly increased interest in PPCPs afterwards. Both the adsorption and photocatalysis approaches showed great potential for removing emerging pollutants from water. For the adsorption approach, CNT- and GO-based adsorbents have attracted the most interest, with the main adsorption mechanisms being hydrophobic effect, π - π interactions, hydrogen bonding, covalent bonding, and electrostatic interactions. Recently, the MOF nanomaterials showed great capacities for removing these pollutants via adsorption. TiO₂ and ZnO were the main nanomaterials studied for photocatalysis, while after 2014 the TiO₂- and GO-based frameworks have been greatly developed. The significant factors affecting photocatalysis are the light conditions, presence of oxidants, pH, and surface modification.

The following points are worthy of special attention in future relevant studies. (1) Combined MOF nanomaterials should be developed to enhance the adsorption as well as the synergistic photocatalysis. (2) New modification methods for the photocatalysts can improve the degradation efficiencies and widen the usable light wavelength. (3) The relationship between molecular structure and adsorption- and photocatalysis-based technologies should be clarified. (4) The efficiencies of the new technologies should be tested for real wastewater at large scales, and in the presence of dissolved organic matter and other coexisting substances.

Fig. 6. Trend of studies on emerging contaminant removal using photocatalysis during 2007–2017.

Acknowledgement

This study was financially supported by National Natural Science Foundation of China (No. 314 21407112) and Natural Science Foundation of Tianjin (No. 17JCQNJC08800).

The authors declare no financial/commercial conflicts of interest.

References

- Alder, A.C., Schaffner, C., Majewsky, M., Klasmeier, J., Fenner, K., 2010. Fate of β-blocker human pharmaceuticals in surface water: comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Res. 44, 936–948.
- Alizadeh Fard, M., Vosoogh, A., Barkdoll, B., Aminzadeh, B., 2017. Using polymer coated nanoparticles for adsorption of micropollutants from water. Colloids Surf. A Physicochem. Eng. Asp. 531, 189–197.
- Andrew Lin, K.Y., Der Lee, W., 2016. Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng. J. 284, 1017–1027.
- Apul, O.G., Karanfil, T., 2015. Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res. 68, 34–55.
- Arfanis, M.K., Adamou, P., Moustakas, N.G., Triantis, T.M., Kontos, A.G., Falaras, P., 2017. Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chem. Eng. J. 310, 525–536.
- Asahi, R., 2001. Visible-light Photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271.
- Behera, S.K., Kim, H.W., Oh, J.E., Park, H.S., 2011. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 409, 4351–4360.
- Benotti, M.J., Trenholm, R.A., Vanderford, B.J., Holady, J.C., Stanford, B.D., Snyder, S.A., 2009. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol. 43, 597–603.
- Bhadra, B.N., Ahmed, I., Kim, S., Jhung, S.H., 2017. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem. Eng. J. 314, 50–58.
- Bhatia, V., Malekshoar, G., Dhir, A., Ray, A.K., 2017. Enhanced photocatalytic degradation of atenolol using graphene TiO₂ composite. J. Photochem. Photobiol. A Chem. 332, 182–187.
- Blanco-Vega, M.P., Guzmán-Mar, J.L., Villanueva-Rodríguez, M., Maya-Treviño, L., Garza-Tovar, LL, Hernández-Ramírez, A., Hinojosa-Reyes, L., 2017. Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO₂ synthesized by microwave assisted sol-gel method. Mater. Sci. Semicond. Process. 71, 275–282.
- Breault, T.M., Bartlett, B.M., 2012. Lowering the band gap of anatase-structured TiO₂ by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue dye. J. Phys. Chem. C 116, 5986–5994.
- Bui, T.X., Choi, H., 2009. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J. Hazard. Mater. 168, 602–608.
- Calza, P., Gionco, C., Giletta, M., Kalaboka, M., Sakkas, V.A., Albanis, T., Paganini, M.C., 2017. Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst. J. Hazard. Mater. 323, 471–477.
- Carabineiro, S.A.C., Thavorn-Amornsri, T., Pereira, M.F.R., Serp, P., Figueiredo, J.L., 2012. Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 186, 29–34.
- Castiglioni, S., Bagnati, R., Fanelli, R., Pomati, F., Calamari, D., Zuccato, E., 2006. Removal of pharmaceuticals in sewage treatment plants in Italy. Environ. Sci. Technol. 40, 357–363.
- Castro, S.M., Araújo, A.B., Nogueira, R.F.P., Guerini, S., 2017. Adsorption of triclosan on single wall carbon nanotubes: a first principle approach. Appl. Surf. Sci. 403, 519–524. Chen, W., Duan, L., Zhu, D., Chen, W.E.I., Duan, L.I.N., 2007. Adsorption of polar and non-
- polar organic chemicals to carbon nanotubes adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 41, 8295–8300.
- Chen, J., Chen, W., Zhu, D., 2008. Adsorption of nonionic aromatic compounds to singlewalled carbon nanotubes: effects of aqueous solution chemistry. Environ. Sci. Technol. 42, 7225–7230.
- Chen, P., Wang, F., Zhang, Q., Su, Y., Shen, L., Yao, K., Chen, Z.F., Liu, Y., Cai, Z., Lv, W., Liu, G., 2017. Photocatalytic degradation of clofibric acid by g-C₃N₄/P25 composites under simulated sunlight irradiation: the significant effects of reactive species. Chemosphere 172, 193–200.
- Cho, H.H., Smith, B.A., Wnuk, J.D., Fairbrother, D.H., Ball, W.P., 2008. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environ. Sci. Technol. 42, 2899–2905.
- Cho, H.H., Huang, H., Schwab, K., 2011. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27, 12960–12967.
- Choina, J., Kosslick, H., Fischer, C., Flechsig, G.U., Frunza, L., Schulz, A., 2013. Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst. Appl. Catal. B Environ. 129, 589–598.
- Devi, T.B., Ahmaruzzaman, M., 2017. Bio-inspired facile and green fabrication of Au@Ag@ AgCl core–double shells nanoparticles and their potential applications for elimination of toxic emerging pollutants: a green and efficient approach for wastewater treatment. Chem. Eng. J. 317, 726–741.
- Dong, S., Sun, Y., Wu, J., Wu, B., Creamer, A.E., Gao, B., 2016. Graphene oxide as filter media to remove levofloxacin and lead from aqueous solution. Chemosphere 150, 759–764.
- Elmolla, E.S., Chaudhuri, M., 2010. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252, 46–52.

- Ersan, G., Apul, O.G., Perreault, F., Karanfil, T., 2017. Adsorption of organic contaminants by graphene nanosheets: a review. Water Res. 126, 385–398.
- Gao, D.W., Wen, Z.D., 2016. Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 541, 986–1001.
- Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M., Su, X., 2012. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368, 540–546.
- Gil, A., García, A.M., Fernández, M., Vicente, M.A., González-Rodríguez, B., Rives, V., Korili, S.A., 2017. Effect of dopants on the structure of titanium oxide used as a photocatalyst for the removal of emergent contaminants. J. Ind. Eng. Chem. 53, 183–191.
- Grabowska, E., Reszczyńska, J., Zaleska, A., 2012. Mechanism of phenol photodegradation in the presence of pure and modified-TiO₂: a review. Water Res. 46, 5453–5471.
- Grover, P.K., Ryall, R.L., 2005. Critical appraisal of salting-out and its implications for chemical and biological sciences. Chem. Rev. 105, 1–10.
 He, Z., Que, W., Chen, J., Yin, X., He, Y., Ren, J., 2012. Photocatalytic degradation of methyl
- He, Z., Que, W., Chen, J., Yin, X., He, Y., Ren, J., 2012. Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped TiO₂ nanobelts prepared by solvothermal synthesis. ACS Appl. Mater. Interfaces 4, 6816–6826.
- Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 131, 5–17.
- Henderson, M.A., 2011. A surface science perspective on TiO₂ photocatalysis. Surf. Sci. Rep. 66, 185–297.
- Herrmann, J.M., 1995. Heterogeneous photocatalysis: an emerging discipline involving multiphase systems. Catal. Today 24, 157–164.
- Hu, L, Flanders, P.M., Miller, P.L., Strathmann, T.J., 2007. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO₂ photocatalysis. Water Res. 41, 2612–2626.
- Huang, D., Yin, L., Niu, J., 2016. Photoinduced hydrodefluorination mechanisms of perfluorooctanoic acid by the SiC/graphene catalyst. Environ. Sci. Technol. 50, 5857–5863.
- Jauris, I.M., Matos, C.F., Zarbin, A.J.G., Umpierres, C.S., Saucier, C., Lima, E.C., Fagan, S.B., Zanella, I., Machado, F.M., 2017. Adsorption of anti-inflammatory nimesulide by graphene materials: a combined theoretical and experimental study. Phys. Chem. Chem. Phys. 19, 22099–22110.
- Ji, L., Chen, W., Zheng, S., Xu, Z., Zhu, D., 2009. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25, 11608–11613.
- Ji, L., Chen, W., Bi, J., Zheng, S., Xu, Z., Zhu, D., Alvarez, P.J., 2010a. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 29, 2713–2719.
- Ji, L., Shao, Y., Xu, Z., Zheng, S., Zhu, D., 2010b. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ. Sci. Technol. 44, 6429–6436.
- Jiang, J.Q., Yang, C.X., Yan, X.P., 2013. Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl. Mater. Interfaces 5, 9837–9842.
- Kaniou, S., Pitarakis, K., Barlagianni, I., Poulios, I., 2005. Photocatalytic oxidation of sulfamethazine. Chemosphere 60, 372–380.
- Khadgi, N., Upreti, A.R., Li, Y., 2017. Simultaneous bacterial inactivation and degradation of an emerging pollutant under visible light by ZnFe₂O₄ co-modified with Ag and rGO. RSC Adv. 7, 27007–27016.
- Kim, H., Hwang, Y.S., Sharma, V.K., 2014. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem. Eng. J. 255, 23–27.
- Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Thach, S., Cheung, P., Whitehead, B., 2011. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada - occurrence and treatment efficiency. Sci. Total Environ. 409, 1481–1488.
- Kosera, V.S., Cruz, T.M., Chaves, E.S., Tiburtius, E.R.L., 2017. Triclosan degradation by heterogeneous photocatalysis using ZnO immobilized in biopolymer as catalyst. J. Photochem. Photobiol. A Chem. 344, 184–191.
- Kumar, A., Kumar, A., Sharma, G., Naushad, M., Veses, R.C., Ghfar, A.A., Stadler, F.J., Khan, M.R., 2017. Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO₂ conversion using sustainable coal-char/polymeric-g-C₃N₄/ RGO metal-free nano-hybrids. New J. Chem. 41, 10208–10224.
- Kumar, K.A., Mohan, V.S., 2012. Removal of natural and synthetic endocrine disrupting estrogens by multi-walled carbon nanotubes (MWCNT) as adsorbent: Kinetic and mechanistic evaluation. Sep. Purif. Technol. 87, 22–30.
- Le, T.T., Akhtar, M.S., Park, D.M., Lee, J.C., Yang, O.B., 2012. Water splitting on Rhodamine-B dye sensitized Co-doped TiO₂ catalyst under visible light. Appl. Catal. B Environ. 111–112, 397–401.
- Li, M., Yu, Z., Liu, Q., Sun, L., Huang, W., 2016. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO₂. Chem. Eng. J. 286, 232–238.
- Liao, Q., Sun, J., Gao, L., 2008. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 312, 160–165.
- Linley, S., Liu, Y., Ptacek, C.J., Blowes, D.W., Gu, F.X., 2014. Recyclable graphene oxidesupported titanium dioxide photocatalysts with tunable properties. ACS Appl. Mater. Interfaces 6, 4658–4668.
- Liu, H., Zhang, J., Bao, N., Cheng, C., Ren, L., Zhang, C., 2012. Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: adsorption of trimethoprim. J. Hazard. Mater. 235–236, 367–375.
- Liu, F.F., Zhao, J., Wang, S., Du, P., Xing, B., 2014. Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Technol. 48, 13197–13206.
- Liu, S.H., Wei, Y.S., Lu, J.S., 2016. Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu₂O/rGO photocatalysts. Chemosphere 154, 118–123.

- Longobucco, G., Pasti, L., Molinari, A., Marchetti, N., Caramori, S., Cristino, V., Boaretto, R., Bignozzi, C.A., 2017. Photoelectrochemical mineralization of emerging contaminants at porous WO₃ interfaces. Appl. Catal. B Environ. 204, 273–282.
- Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O., Weiss, S., Blaha, L., Bolchi, M., Gawlik, B.M., 2010. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 44, 4115–4126.
- Lu, C., Chung, Y., Chang, K., 2006. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. J. Hazard. Mater. 138, 304–310.
- Maeng, S.K., Ameda, E., Sharma, S.K., Grützmacher, G., Amy, G.L., 2010. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge. Water Res. 44, 4003–4014.
- Méndez-Arriaga, F., Esplugas, S., Giménez, J., 2008. Photocatalytic degradation of nonsteroidal anti-inflammatory drugs with TiO₂ and simulated solar irradiation. Water Res. 42, 585–594.
- Miranda-García, N., Suárez, S., Sánchez, B., Coronado, J.M., Malato, S., Maldonado, M.I., 2011. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO₂ in a solar pilot plant. Appl. Catal. B Environ. 103, 294–301.
- Molinari, A., Sarti, E., Marchetti, N., Pasti, L., 2017. Degradation of emerging concern contaminants in water by heterogeneous photocatalysis with Na₄W₁₀O₃₂. Appl. Catal. B Environ. 203, 9–17.
- Moussavi, G., Hossaini, Z., Pourakbar, M., 2016. High-rate adsorption of acetaminophen from the contaminated water onto double-oxidized graphene oxide. Chem. Eng. J. 287, 665–673.
- Nam, S.-W., Choi, D.-J., Kim, S.-K., Her, N., Zoh, K.-D., 2014. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J. Hazard. Mater. 270, 144–152.
- Nicole, J., Tsiplakides, D., Pliangos, C., Verykios, X., Comninellis, C., Vayenas, C., 2001. Electrochemical promotion and metal-support interactions. J. Catal. 204, 23–34.
- Pan, B., Xing, B., 2008. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42, 9005–9013.
- Panneri, S., Thomas, M., Ganguly, P., Nair, B.N., Mohamed, A.P., Warrier, K.G.K., Hareesh, U.S., 2017. C₃N₄ anchored ZIF 8 composites: photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water. Catal. Sci. Technol. 7, 2118–2128.
- Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., Wang, Z., 2008. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 397, 158–166.
- Piao, L., Liu, Q., Li, Y., Wang, C., 2008. Adsorption of L-phenylalanine on single-walled carbon nanotubes. J. Phys. Chem. C 112, 2857–2863.
- Pyrzynska, K., Stafiej, A., Biesaga, M., 2007. Sorption behavior of acidic herbicides on carbon nanotubes. Microchim. Acta 159, 293–298.
- Qu, X., Alvarez, P.J.J., Li, Q., 2013. Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946.
- Rafqah, S., Wong-Wah-Chung, P., Nelieu, S., Einhorn, J., Sarakha, M., 2006. Phototransformation of triclosan in the presence of TiO₂ in aqueous suspension: mechanistic approach. Appl. Catal. B Environ. 66, 119–125.
- Rastkari, N., Eslami, A., Nasseri, S., Piroti, E., Asadi, A., 2017. Optimizing parameters on nanophotocatalytic degradation of ibuprofen using UVC/ZnO processes by response surface methodology. Pol. J. Environ. Stud. 26, 785–794.
- Ratola, N., Cincinelli, A., Alves, A., Katsoyiannis, A., 2012. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. J. Hazard. Mater. 239–240, 1–18.
- Rey, A., Mena, E., Chávez, A.M., Beltrán, F.J., Medina, F., 2015. Influence of structural properties on the activity of WO₃ catalysts for visible light photocatalytic ozonation. Chem. Eng. Sci. 126, 80–90.
- Reyes, C., Fernández, J., Freer, J., Mondaca, M.A., Zaror, C., Malato, S., Mansilla, H.D., 2006. Degradation and inactivation of tetracycline by TiO₂ photocatalysis. J. Photochem. Photobiol. A Chem. 184, 141–146.
- Richardson, S.D., Ternes, T.A., 2011. Water analysis: emerging contaminants and current issues. Anal. Chem. 83, 4614–4648.
- Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93, 1268–1287.
- Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W., 2014. Understanding TiO₂ photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986.
- Seo, P.W., Khan, N.A., Hasan, Z., Jhung, S.H., 2016. Adsorptive removal of artificial sweeteners from water using metal-organic frameworks functionalized with urea or melamine. ACS Appl. Mater. Interfaces 8, 29799–29807.
- Seo, P.W., Khan, N.A., Jhung, S.H., 2017. Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine. Chem. Eng. J. 315, 92–100.
- Shan, C., Tong, M., 2013. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide. Water Res. 47, 3411–3421.
- Shen, Y., Zhu, X., Zhu, L., Chen, B., 2017. Synergistic effects of 2D graphene oxide nanosheets and 1D carbon nanotubes in the constructed 3D carbon aerogel for high performance pollutant removal. Chem. Eng. J. 314, 336–346.
- Shi, W., Chen, Q., Xu, Y., Wu, D., Huo, C.F., 2011. Investigation of the silicon concentration effect on Si-doped anatase TiO₂ by first-principles calculation. J. Solid State Chem. 184, 1983–1988.
- da Silva, G.T.S.T., Carvalho, K.T.G., Lopes, O.F., Ribeiro, C., 2017. g-C₃N₄/ Nb₂O₅heterostructures tailored by sonochemical synthesis: enhanced photocatalytic

performance in oxidation of emerging pollutants driven by visible radiation. Appl. Catal. B Environ. 216, 70–79.

- Song, J.Y., Jhung, S.H., 2017. Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption. Chem. Eng. J. 322, 366–374.
- Song, Q., Wang, H., Yang, B., Wang, F., Sun, X., 2016. A novel adsorbent of Ag-FMWCNTs for the removal of SMX from aqueous solution. RSC Adv. 6, 75855–75861.
- Stackelberg, P.E., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Henderson, A.K., Reissman, D.B., 2004. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ. 329, 99–113.
- Su, H., Lin, Y., Wang, Z., Wong, Y.L.E., Chen, X., Chan, T.W.D., 2016. Magnetic metal-organic framework-titanium dioxide nanocomposite as adsorbent in the magnetic solidphase extraction of fungicides from environmental water samples. J. Chromatogr. A 1466, 21–28.
- Sun, W., Li, M., Zhang, W., Wei, J., Chen, B., Wang, C., 2017. Sediments inhibit adsorption of 17β-estradiol and 17α-ethinylestradiol to carbon nanotubes and graphene oxide. Environ. Sci. Nano. 4, 1900–1910.
- Suyana, P., Ganguly, P., Nair, B.N., Mohamed, A.P., Warrier, K.G.K., Hareesh, U.S., 2017. Co₃O₄–C₃N₄ p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environ. Sci. Nano 4, 212–221.
- Tian, Y., Gao, B., Morales, V.L, Chen, H., Wang, Y., Li, H., 2013. Chemosphere removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere 90, 2597–2605.
- Tran Thi, V.H., Lee, B.K., 2017. Great improvement on tetracycline removal using ZnO rodactivated carbon fiber composite prepared with a facile microwave method. J. Hazard. Mater. 324, 329–339.
- Wang, J., Tafen, D.N., Lewis, J.P., Hong, Z., Manivannan, A., Zhi, M., Li, M., Wu, N., 2009. Origin of photocatalytic activity of nitrogen-doped TiO₂ Nanobelts. J. Am. Chem. Soc. 131, 12290–12297.
- Wang, X., Blackford, M., Prince, K., Caruso, R.A., 2012. Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 4, 476–482.
- Wang, Y., Zhu, J., Huang, H., Cho, H.-H., 2015. Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms. J. Membr. Sci. 479, 165–174.
- Xu, M., Da, P., Wu, H., Zhao, D., Zheng, G., 2012. Controlled Sn-doping in TiO₂ nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett. 12, 1503–1508.
- Yan, X., Zou, C., Gao, X., Gao, W., 2012. ZnO/TiO₂ core–brush nanostructure: processing, microstructure and enhanced photocatalytic activity. J. Mater. Chem. 22, 5629.
- Yan, Z. li, Liu, Y. guo, Tan, X. fei, Liu, S. bo, Zeng, G. ming, Jiang, L. hua, Li, M. fang, Zhou, Z., Liu, S., Cai, X. xi, 2017. Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: influencing factors and reaction mechanisms. Chem. Eng. J. 314, 612–621.
- Yang, L., Liu, Z., Shi, J., Zhang, Y., Hu, H., Shangguan, W., 2007. Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO₂/UV processes. Sep. Purif. Technol. 54, 204–211.
- Yang, W., Lu, Y., Zheng, F., Xue, X., Li, N., Liu, D., 2012. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem. Eng. J. 179, 112–118.
- Yean, S., Cong, L., Yavuz, C.T., Mayo, J.T., Yu, W.W., Kan, A.T., Colvin, V.L., Tomson, M.B., 2005. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20, 3255–3264.
- Yu, X., Zhang, L., Liang, M., Sun, W., 2015. pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chem. Eng. J. 279, 363–371.
- Zhang, L., Song, X., Liu, X., Yang, L., Pan, F., Lv, J., 2011. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem. Eng. J. 178, 26–33.
- Zhang, Y., Liu, C., Xu, B., Qi, F., Chu, W., 2016. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO₂: combination of adsorption and catalysis oxidation. Appl. Catal. B Environ. 199, 447–457.
- Zhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J., Xu, J., 2016. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 310, 235–245.
- Zheng, Q., Durkin, D.P., Elenewski, J.E., Sun, Y., Banek, N.A., Hua, L., Chen, H., Wagner, M.J., Zhang, W., Shuai, D., 2016. Visible-light-responsive graphitic carbon nitride: rational design and photocatalytic applications for water treatment. Environ. Sci. Technol. 50, 12938–12948.
- Zhou, S., Shao, Y., Gao, N., Deng, J., Tan, C., 2013. Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi-walled carbon nanotubes. Clean -Soil, Air, Water 41, 539–547.
- Zhu, S., Liu, Y. guo, Liu, S. bo, Zeng, G. ming, Jiang, L. hua, Tan, X. fei, Zhou, L., Zeng, W., Li, T. ting, Yang, C. ping, 2017. Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179, 20–28.
- Zhu, W., Sun, F., Goei, R., Zhou, Y., 2017. Facile fabrication of RGO-WO₃ composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl. Catal. B Environ. 207, 93–102.
- Zhuo, N., Lan, Y., Yang, W., Yang, Z., Li, X., Zhou, X., Liu, Y., Shen, J., Zhang, X., 2017. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Sep. Purif. Technol. 177, 272–280.
- Zúñiga-Benítez, H., Aristizábal-Ciro, C., Peñuela, G.A., 2016. Heterogeneous photocatalytic degradation of the endocrine-disrupting chemical Benzophenone-3: parameters optimization and by-products identification. J. Environ. Manag. 167, 246–258.