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Abstract

In the era of 21st century, development of emerging information technology is the essence of the

advancement. This kind of new technology, however, often requires a great deal of amount of initial

investment for both procedures of R&D and commercialization. As cost invested in developing the

specified technology is increasing, investors are paying more attention to cost to benefit analysis

(CBA). One of the basic elements of CBA for new technological development is the diffusion pattern

of demand of such technology. Typically, it would be hard to presume the diffusion pattern of demand

when the new product or the technology is under development. In this case, a simulation study is

necessary. Many studies of technology evaluation have adopted a single generation model to simulate

the diffusion pattern of demand. This approach, however, considers the diffusion of the new

technology itself, not taking into account newer generation, which can replace the one just invented. In

the real market situation, one must consider the competition and substitution phenomena between old

and new technologies. In this paper, we show how multigeneration technology diffusion model can be

applied for more accurate CBA for information technology. Additionally, Monte Carlo simulation is

performed to find influential factors on the CBA of a cybernetic building system (CBS).
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1. Introduction

In the era of 21st century, development of emerging information technology is the essence

of the advancement. However, this kind of new technology open requires a great deal of

amount of initial investment for both R&D and commercialization. As cost invested in

developing the specified technology is increasing, investors are paying more attention to the

cost benefit analysis (CBA).

Many researchers have studied the attributes for CBA. In order to evaluate the Energy-

Related Inventions Program (ERIP), one of the longest-running commercialization assistance

programs in the USA, Brown [1,2] and Brown and Rizy [3] used four performance metrics:

(1) the market entry of new products, (2) commercial sales, (3) energy savings, and (4)

greenhouse gas emissions reductions. The methodology used to estimate each metric is

described, and the strengths and weaknesses of the metrics are discussed.

Kayal [4] evaluated the Technology Cycle Time indicator (TCT), a newly developed

objective measure of the pace of technological progress. The TCT indicator was used (1) to

assess the pace of progress of superconductor and semiconductor technologies and (2) to

assess the position of various countries patenting in the semiconductor technology field. The

findings revealed that the TCT provided a valid assessment in each situation. The TCT has

important implications for technology management and technology forecasting research.

Watts and Porter [5] studied technological forecasting using bibliometric method. They

glean a number of concepts from various innovation models, and then presented an array of

bibliometric measures that offer the promise of operationalizing these concepts. Judicious

combination of such bibliometric with other forms of evidence offers an enriched form of

technological forecasting. This provides a good means to combine technological trends,

mapping of technological interdependencies, and competitive intelligence to produce a viable

forecast [6–10]. Like this, much research of technological forecasting presented the

importance of finding the pattern of demand diffusion over time [11–28].

One of the basic elements of CBA for new technological development would be

forecasting the diffusion pattern of such technology. Typically, it would be hard to presume

the diffusion pattern of demand when the new product or the technology is under

development. For some cases, a technology would penetrate the market quickly, whereas

the demand of other kinds of technology would increase slowly in the beginning. Addition-

ally, there are lots of uncertainties involved in external elements such as the characteristics of

the market and the customer traits. Due to such difficulty of forecasting, typically, a diffusion

model is simulated based on several scenarios. Many studies of technology evaluation have

adopted the Mansfield [11,12] model to simulate the diffusion. Recently, Chapman [13]

forecasted the sales of cybernetic building system (CBS) technology using the Mansfield

model to estimate its economic benefit. The Mansfield model, however, considers the

diffusion of the new technology itself, not taking into account the newer one that can replace

the one just invented. In the real market situation, one must consider both competition and

substitution phenomena between the old and new technologies. In assessing the benefit of

new technology, it is necessary to take into account the fact that the technology will be

substituted by newer technology sometime soon.
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The main objective of this paper is to complement a shortcoming of the single generation

diffusion model in assessing the value of technology. We apply a multigeneration diffusion

model to CBS data used in Chapman’s study [13]. Monte Carlo simulation is performed

based on Taguchi design in order to evaluate the impact of uncertain factors on the value of

specific technology invested. Organization of this paper is follows. Section 2, Chapman’s

study and related diffusion model for the economic assessment of new technology are

summarized. Section 3 introduced extended model of our study. Section 4 describes Taguchi

design for Monte Carlo simulation. Section 5 summarizes the results of our study. Finally, we

describe the summary and further study.

2. CBA and diffusion model

Chapman [13] was concerned with the uncertainty involved in assessing the benefit of

CBS technology, which is a multisystem configuration enable to communicate information

and control functions simultaneously and seamlessly at multiple levels.

Cost invested on CBS is displayed in Table 1.

To evaluate the benefit to investment of CBS technology, the first thing needed was the

forecasting of CBS demand. The Mansfield model was used for that purpose. The

mathematical representation of the model is Eq. (1):

ShðtÞ ¼ h½1þ ea�bt��1 ð1Þ

where Sh(t): the proportion of potential users who have adopted the new technology by time t;

h: the market saturation level (same as m subscribed in Bass model); a: location parameter;

b: shape parameter.

Table 1

Investment cost of CBS technology (1991–2004)

Year Investment cost by year

(in millions of 1997 dollars)

1991 0.351

1992 0.307

1993 0.219

1994 0.206

1995 0.229

1996 0.307

1997 0.573

1998 1.445

1999 1.708

2000 2.125

2001 2.500

2002 2.125

2003 0.875

2004 0.375
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The author considered uncertainties involved in introduction time, diffusion speed,

saturation level, costs and savings of the technology and assumed baseline and extreme

values of those parameters as described in Table 2.

One of the measures used for CBA by Chapman [13] was saving-to-investment ratio (SIR).

That is Eq. (2):

SIR ¼

PTb
t¼tb

At=ð1þ dÞt

PTa
t¼�ta

It=ð1þ dÞt
ð2Þ

where At: saving by time t: At=(Ct� It)� Sh(t), Ct: noninvestment cost by time t; It: investment

cost by time t; [ta,Ta]: investment period, to > ta base year of the study; [tb,Tb]: introduction

time in market, evaluation time (end of the study period); d: discount rate.

In addition to the Mansfield model, there have been many variations of diffusion models

for assessing technology.

Bass [14] is one of the well-known and widely used technological forecasting model for

the first-purchase demand. It is a model of the timing of adoption of an innovation and

became the central to subsequent developments.

Norton and Bass [15] dealt with the dynamic sales behavior of successive generations of

high-technology products. New technologies diffuse through a population of potential buyers

over time. Therefore, diffusion theory models are related to this demand growth. Furthermore,

successive generations of a technology compete with earlier ones, and that behavior is the

subject of models of technological substitution. Building upon the Bass model, they

developed a model, which encompassed both diffusion and substitution.

Mahajan et al. [16] suggested a diffusion modeling approach for assessing the impact of a

new durable brand entry on market size and the sales of incumbent brands. The model is

illustrated by applying it to the case involving Polaroid and Kodak in instant photography

during the period 1976–1985.

Table 2

Parameter assumptions used Chapman [13]

Probability

distribution

Baseline Minimum Maximum

a Uniform 6 5 7

b Triangular 0.6 0.5 0.7

h Triangular 0.175 0.0553 0.3082

Introduced time of CBS Discrete 2003 2002 2005

Energy cost saving Triangular $1.71 $0.86 $2.58

Maintenance cost saving Triangular $1.60 $0.81 $3.23

Productivity cost saving Triangular $4.20 $0.00 $8.39

Discount rate Triangular 0.07 0.04 0.10
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Speece and Maclachlan [17] used milk container data to show that Norton and Bass [24]

may have applications in industries not usually associated with advanced technology, and in

fitting individual submarkets and they added pricing and market growth factors to the

diffusion model.

Kumar et al. [18] presented the results of a study that replicates and extends the findings of

three previously published studies of cross-national diffusion. The purpose of their extension

study was to evaluate the performance of a cross-sectional time-series model for the diffusion

of innovations in several countries.

To test the hypothesis of dynamic price elasticity, Tam and Hui [19] extended existing

growth models (e.g., Gompertz, Logistic and Exponential models) to include a price factor

with different elasticity specifications. Nested specifications of three growth models were

tested using spending data from 1955 to 1984 adjusted by a quality price index for computers.

3. Extended model

We extend Speece and Maclachlan [17] and Tam and Hui [19] models to incorporate a

multigeneration substitution effect, as well as performance per price impact on the economic

benefit of new technology.

Two-generation model can be written as Eq. (3):

S1ðtÞ ¼ F1ðtÞm1 for t 	 �2

S2ðtÞ ¼ 0 for t 	 �2

S1ðtÞ ¼ F1ðtÞm1 � F2ðt � �2ÞF1ðtÞm1 ¼ F1ðtÞm1½1� F2ðt � �2Þ� for t > �2

S2ðtÞ ¼ F2ðt � �2Þ½m2 þ F1ðtÞm1� for �2

ð3Þ
where Si(t): systems in use of ith generation at time t; mi: ultimate numbers of adopters

of ith generation; t2: introduction time of the second generation.

FiðtÞ ¼
1� e�bit

1þ aie�bit

where ai = qi/pi and bi = pi + qi; Fi(t): fraction of the ultimate potential, which has adopted of

ith generation by time t; pi: innovation coefficient of ith generation; qi: imitation coefficient of

ith generation.

We suggest the performance per cost (P/C) function of each generation to be formed as

Eq. (4):

GiðtÞ ¼
PiðtÞ=CiðtÞ
PðtÞ=CðtÞ

" #�
ð4Þ
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where r: sensitivity coefficient of P/C; P/C: performance/cost( = cost saving/installation cost);

Pi(t)/Ci(t): P/C of ith generation at time t; PðtÞ=CðtÞ: average P/C of all generations at time t.

We then multiply Gi(t) by Fi(t) and the resulting is Eq. (5):

F 0
i ðtÞ ¼ GiðtÞ � FiðtÞ ð5Þ

and substituting Eq. (5) with Fi(t) in Eq. (3), Si(t) can be obtained as Eq. (6):

S1ðtÞ ¼ F1ðtÞm1 for t 	 �2

S2ðtÞ ¼ 0 for t 	 �2

S1ðtÞ ¼ F 0
1ðtÞm1 � F 0

2ðt � �2ÞF 0
1ðtÞm1 ¼ F 0

1ðtÞm1½1� F 0
2ðt � �2Þ� for t > �2

S2ðtÞ ¼ F 0
2ðt � �2Þ½m2 þ F 0

1ðtÞm1� for t > �2

ð6Þ
To find which conditions of the second generation affect economic value of the first

generation CBS technology, we assume that investment cost and savings of the first

generation is known while the diffusion process of both first and second generation is

uncertain. So, we simulate uncertain situation in order to find influential factors on CBA.

4. Simulation

In simulating Eq. (6), we consider p1, q1, p2, q2,M2, P/C, r, discount rate and t2 as random
while parameters such asM1 and t1 including some known factors as constant as displayed in

Table 3. Investment cost, cost saving and installation cost are based on Chapman [13].

For random parameters, we assume distributions as given in Table 4.

In applying the Mansfield model, Chapman [13] also employed simulation in order to take

into account uncertainty involved in the diffusion parameters of the first generation CBS

Table 3

Assumptions on fixed parameters

Baseline

M1 167.356

t1 2003

(1) Energy cost savings $1.71

(2) Maintenance cost savings $1.60

(3) Productivity cost savings $4.20

Total savings (per unit)=(1)+(2)+(3) $7.51

Installation cost (first generation) $11

P1/C1 (first generation) 0.6827

*P/C: performance/price( = cost saving/installation cost).
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technology using triangular distributions. For instance, center values used for some

parameters are h( = 0.172), a( = 6) and b( = 0.6). In applying Eq. (6), we utilize these values

to find corresponding parameters for the first generation model in Eq. (6). In Mansfield

model, a is related to the initial share of the new technology, b is the growth rate of the share

and h is the maximum market potential. So, they can be related to p0, q0 and M0 in Bass

model, But, unlike p0, a itself is not the initial share. So, we equate p0 with h[1 + ea]� 1 for

given a and h. That is p0( = 0.003), q0( = 0.6) and M0( = 0.172). We utilize these values as the

mean values of p1 and q1, which are assumed to follow b distribution. For the second

generation, p2 and q2 are also assumed to follow independent b distribution but their mean

values vary from p0 and q0. Hyper parameters for the distributions of other random factors are

also set based on the first generation information.

Maximum market potential M1 is obtained as proportion, which is estimated by total

available installation area size (973 million square meters) according to the report of

Chapman [13]: M1 =M0� 973, while the basis of the marginal increase due to the appearance

of the second generation, M2, may be 8% of the available installation area size (973 million

square meters). That is the mean of M2 = 0.08� 973.

In order to define the performance per cost in Eq. (4), we consider the cost saving due to

CBS technology as performance while the installation cost as cost. We fix the performance

per cost for the first generation (P1/C1) as constant, while assume it random for the second

generation (P2/C2 =P/C). In addition, we consider two levels of hyper-parameters for random

sensitivity coefficient, discount rate and market entry time for the second generation.

Table 4

Assumptions on random parameters

Variable Probability distribution Mean Variance

q1 b(150, 100) 0.6 0.0009562

q2(�) b(130, 130) 0.5 0.0009579

q2(+) b(154, 66) 0.7 0.0009502

p1 b(30, 10000) 0.003 0.0000003

p2(�) b(14, 7000) 0.002 0.0000003

p2(+) b(56.225, 14000) 0.004 0.0000003

Mean(min, max)

M2(�) Triangular 66(46, 86)

M2(+) Triangular 90(70, 110)

P/C(+) Triangular 0.9(0.6, 1.2)

P/C(�) Triangular 0.5(0.2, 0.8)

r(+) Triangular 1.2(0.9, 1.5)

r(�) Triangular 0.8(0.5, 1.1)

d(+) Triangular 0.1(0.08, 0.12)

d(�) Triangular 0.04(0.02, 0.06)

t2(+) Discrete 2010

t2(�) Discrete 2006

d: discount rate.
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In sum, we have a total of seven factors to be considered in our experimentation. Among

them, discount rate is uncontrollable and we use Taguchi design setting remaining six factors

in inner array and discount rate in outer array. Orthogonal array used for the inner array is

Table 5

Taguchi design matrix

P2 Q2 M2 t2 P/C r

LEVEL(+) 0.004 0.7 65 2010 0.9 1.2

LEVEL(�) 0.002 0.5 90 2006 0.5 0.8

X1 X2 X3 X4 X5 X6

1 – �1 �1 �1 �1 �1

2 �1 �1 �1 1 �1

3 – 1 �1 �1 1 1

4 1 �1 �1 �1 1

5 – �1 1 �1 1 1

6 �1 1 �1 �1 1

7 – 1 1 �1 �1 �1

8 1 1 �1 1 �1

9 – �1 �1 1 �1 1

10 �1 �1 1 1 1

11 – 1 �1 1 1 �1

12 1 �1 1 �1 �1

13 – �1 1 1 1 �1

14 �1 1 1 �1 �1

15 – 1 1 1 �1 1

16 1 1 1 1 1

Note that we used two different values of time horizon for T (5 and 10 years) in order to see the effect of different

time horizon on CBA of CBS.

Table 6

ANOVA for SN(SIR5)

DF SS MS P value

P2 1 5.5872 5.5872 0.5783

Q2 1 0.1570 0.1570 0.9257

M2 1 68.9333 68.9333 0.0510

t2 1 125.7216 125.7216 0.0084

P/C 1 46.8236 46.8236 0.1077

r 1 0.0898 0.0898 0.9438

P2�Q2 1 0.0232 0.0232 0.9714

P2�M2 1 0.0006 0.0006 0.9952

P2� t2 1 5.5872 5.5872 0.5783

P2�P/C 1 0.0898 0.0898 0.9438

P2� r 1 46.8236 46.8236 0.1077

Q2� t2 1 0.1570 0.1570 0.9257

Q2� r 1 68.9333 68.9333 0.0510

P2�Q2� t2 1 0.0232 0.0232 0.9714

P2�Q2� r 1 0.0006 0.0006 0.9952
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given in Table 5 by employing 26 � 2 fraction. For experimentation, each treatment is

replicated 100 times based on Monte Carlo simulation. We measure SIR defined in Eq. (2)

for each replication and calculate the signal to noise ratio (SN) for larger the better case at

Eq. (7):

SN ¼ �10log
1

100

X100
j¼1

1

2

X2
i¼1

1

y2ij

 !" #
ð7Þ

where y1j = SIR of jth simulation at + level of discount rate; y2j = SIR of jth simulation at �
level of discount rate.

SIRT ¼

PT
t¼t0

fðsaving per unitÞ � SðtÞ � ðinstallation cost per unitÞ � DSðtÞg=ð1þ dÞ0

Pt0
t¼ta

It=ð1þ dÞ0

Table 7

Duncan test for SN(SIR5)

Duncan grouping Mean t2
A 68.3896 2006

B 67.8289 2010

Table 8

ANOVA for SN(SIR10)

DF SS MS P value

P2 1 3.9803 3.9803 0.6725

Q2 1 1731.8852 1731.8852 0.0001

M2 1 147.1887 147.1887 0.0102

t2 1 122.5361 122.5361 0.0191

P/C 1 7645.2278 7645.2278 0.0001

r 1 6031.9383 6031.9383 0.0001

P2�Q2 1 0.5468 0.5468 0.8755

P2�M2 1 30.1177 30.1177 0.2450

P2� t2 1 0.7843 0.7843 0.8511

P2�P/C 1 0.0797 0.0797 0.9523

P2� r 1 869.5466 869.5466 0.0001

Q2� t2 1 1787.6346 1787.6346 0.0001

Q2� r 1 149.9342 149.9342 0.0095

P2�Q2� t2 1 1.2729 1.2729 0.8110

P2�Q2� r 1 30.6005 30.6005 0.2412
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5. Results

Summarizing the simulation results, we conduct ANOVA for SN for T= 5 and 10,

separately: SN(SIR5) and SN(SIR10). In terms of SN(SIR5), one main effect turns out to

be significant as displayed in Table 6.

Table 9

Duncan test for SN(SIR10)

Duncan Grouping Mean Q2

A 126.9043 0.5

B 124.8235 0.7

Duncan grouping Mean M2

A 126.1672 90

B 125.5606 65

Duncan grouping Mean t2
A 126.1407 2010

B 125.5872 2006

Duncan grouping Mean P/C

A 128.0499 0.5

B 123.6780 0.9

Duncan grouping Mean r

A 127.8056 1.2

B 123.6780 0.8

Duncan grouping Mean P2� r

A 128.5926 0.0048 (+ +)

B 127.0185 0.0024 (� +)

C 124.6096 0.0016 (� �)

D 123.2350 0.0032 (+ �)

Duncan grouping Mean Q2� t2
A 127.6846 1003 (� � )

B 126.1573 1407 (+ +)

B 126.1241 1005 (� +)

C 123.4898 1404.2 (+ � )

Duncan grouping Mean Q2� r

A 128.5398 0.6 (� +)

B 127.0713 0.84 (+ +)

C 125.2688 0.4 (� �)

D 122.5758 0.56 (+ �)
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Duncan test result for t2 at significance level of 5% implies the following.
. Although the second generation appears in the market relatively early, it is even

beneficial to the first generation by stimulating the already existing potential market of

CBS (Table 7).

Significant factor interaction pattern changes when we do ANOVA for SN (SIR10). Five

main and three interaction effects turn out to be significant as displayed in Table 8.

Duncan test results for the main effects observed at significance level of 5% are shown in

Table 9 and imply the following.

1. As the imitation coefficient of the second generation increases, the benefit of the first

generation significantly decreases.

2. As the additional market potential due to the second generation increases, the benefit of the

first generation technology significantly increases.

3. As the second generation appears in the market relatively late, the benefit of the first

generation technology significantly increases.

4. As the relative performance of the second generation decreases, the benefit of the first

generation technology significantly increases.

5. As the sensitivity coefficient of the performance per cost function increases, the benefit of

the first generation technology significantly increases.

Fig. 1. Plot of P2� r.

Fig. 2. Plot of Q2� t2.
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In terms of the market entry time of the second generation, the results of both SN(SIR5)

and SN(SIR10) are different. This phenomenon may represent temporal growth of the first

generation at the early stage of the appearance of the second generation, which will

eventually diminish as time goes on.

Interesting interaction effects are displayed in Figs. 1–3.

Duncan test result of two-way interaction effects at significance level of 5% implies

the following:

P2 � r

1. When the second generation innovates fast, effect of cost elasticity on the first generation

SIR is a lot larger than the case of slow innovation.

2. When the technology is relatively cost sensitive, SIR of the first generation is significantly

larger when the second generation innovates fast.

3. In the relatively cost insensitive case, as the innovation coefficient of the second generation

decreases, SIR of the first generation technology significantly increases.

Q2 � t2

(1) When the second generation enters the market in a relatively short time after the

first generation and its speed to imitation is slow, SIR of the first generation would sig-

nificantly increase.

Q2 � r

(1) When the technology is relatively cost sensitive and the imitation speed of the second

generation is low, SIR of the first generation is the highest.

6. Conclusion

In this paper, we proposed to use a multigeneration diffusion model for economic

assessment of the new technology. Technology value evaluation has never been more

Fig. 3. Plot of Q2� r.
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important in the era of information age. Our approach enables decision-makers to implement

several scenarios to perform CBA. As a result of employing the multigeneration model

instead of the single generation diffusion, more conservative decision can be made in terms of

the benefit of the new technology. This may prohibit potential overestimation in the early

stage of planning of the new technology, which often occurs and gives heavy burden later.

Using our approach, not only the overall benefit estimation but also influential factors on the

economic value of technology can be identified for investment in the early age. To find which

conditions of the second generation affect the economic value of the first generation

technology, we used Monte Carlo simulation based on Taguchi design. With computational

ability, careful consideration of additional external factors may be needed depending upon

situations. Simulation model tuning is left as further study areas.
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