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a b s t r a c t 

Since their beginnings, social networks have affected the way people communicate and interact with each 

other. The continuous growing and pervasive use of social media offers interesting research opportuni- 

ties for analysing the behaviour and interactions of users. Nowadays, interactions are not only limited to 

social relations, but also to reading and writing activities. Thus, multiple and complementary informa- 

tion sources are available for characterising users and their activities. One task that could benefit from 

the integration of those multiple sources is community detection. However, most techniques disregard 

the effect of information aggregation and continue to focus only on one aspect: the topological structure 

of networks. This paper focuses on how to integrate social and content-based information originated in 

social networks for improving the quality of the detected communities. A technique for integrating both 

the multiple information sources and the semantics conveyed by asymmetric relations is proposed and 

extensively evaluated on two real-world datasets. Experimental evaluation confirmed the differentiated 

impact that each information source has on the quality of the detected communities, and shed some 

light on how to improve such quality by combining both social and content-based information. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Social networking sites such as MySpace, Facebook , or Twitter at-

ract millions of users, who everyday publish an enormous amount

f content in the form of pictures, tweets, comments and posts.

ocial networks can be defined as a set of socially-relevant nodes

onnected by one or more relations. Nodes in such networks are

ot limited to people, but also represent other entities such as Web

ages, journal articles or geographical places, amongst other pos-

ibilities. Users of networking sites are required to create profiles

here users can describe themselves by sharing their age, loca-

ions, interests and picture, amongst other things. Generally, so-

ial networks allow users to create and read content, and establish

ocial connections with other users whose nature and semantics

ight differ from site to site. For example, followee relations in

witter , or friendship relations in Facebook . Although the techno-

ogical features of the different social networking sites are similar,

he cultures that emerge around them are diverse [3] . Most sites

ncourage the maintenance of pre-existing social networks, whilst

thers help strangers to create new connections based on shared

nterests. In this context, understanding users’ needs arises as a
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ritical issue [9] . Users’ needs could be regarded as users’ desire to

btain information, which could be further specified as long-term

interests) or instant (intends) user needs. Nonetheless, needs are

ften latent, so inferring them from the observed data might be

hallenging. 

Social networks affect the way people communicate and inter-

ct. The pervasive use of social media offers research opportunities

or analysing the behaviour of users when interacting with their

riends [32] , and how such interactions evolve over time [43] , in

erms of patterns of appearing and disappearing relationships.

nlike social connections formed by people in the physical world,

ocial media users have greater freedom to connect with a wider

pectrum of people for distinct reasons. The low cost of link

ormation might lead to networks with relationships of heteroge-

eous nature, origin and strength. For example, in Twitter , a user

ight follow others because they publish interesting information,

hey have the same interests, they are celebrities or popular in-

ividuals in the micro-blogging community, or only because they

hare some common friends, amongst other possible explanations.

s a result, topological relations could lead to the existence of

asual links, which could hinder the utilisation of algorithms solely

ased on topology. Hence, the nature of structural information

ust be carefully analysed in conjunction with other sources of

nformation or data views to effectively assess the significance

nd importance of relations. In addition to social information
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indicating friendship or simpler user interaction, there are other

information sources that might implicitly define connections be-

tween users in social media. For example, whether two users use

the same terms, hashtags, or post on the same topics. It is worth

noting that the content users consume or post might depend, for

example, on their mood and environment [9] . In light of the fact

that users’ needs are implicit, comprehensive research is needed

for discovering the mapping between the heterogeneous, and

possible multimedia, information in social networks and users’

needs, and how such mapping can be enriched with contextual

information. 

One fundamental problem in social networks is the identifica-

tion of groups of users when group membership is not explicitly

available. A group, or community, can be defined as a set of el-

ements (users, posts or other elements) that interact more fre-

quently or are more similar to other community members than

to outsiders. Community detection has proven to be valuable in

diverse domains such as biology, social sciences and bibliomet-

rics. For example, community detection techniques can be used for

identifying groups of users with similar purchase history enabling

the creation of more efficient recommendation systems that could

better guide customers and enhance business opportunities as in

Amazon [16] , for detecting topics in collaborative systems [25] ,

for identifying real-world landmarks in Flickr by clustering pho-

tos [26] , for detecting events on Twitter streams [1] , for match-

ing high-quality answers to questions in the context of a question

answering system [11] , or for solving the influence maximisation

problem in Foursquare [19] . 

Several techniques for community detection can be found in

the literature. However, most of them only focus on one data

view, even though neither social relations nor content by them-

selves can accurately indicate community membership. For ex-

ample, in Twitter social relations might be extremely sparse and

two users might belong to the same community even if they

are not explicitly socially related. Conversely, social media con-

tent might be topically diverse and noisy for extracting valuable

topical-based relationships. Combining multiple data views as re-

quired by social media data poses new challenges. For instance,

how to integrate the different views by adequately assessing their

importance in the social network, or how to determine whether

such integration could actually improve the quality of detected

communities. 

Considering the increasing amount of information available in

social networks and the necessity of integrating heterogeneous

data, this paper focuses on the needs and challenges of combining

multiple information sources for performing community detection.

This work studies how to integrate multiple social and content-

based views or information sources aiming at improving the qual-

ity of the detected communities. The final goal of the paper is to

provide some insights on how to select the relevant views to con-

sider for the task to develop according to the characteristics of the

network under analysis. It is worth noting that the selection of the

views to integrate depends on the elements available on the social

network under analysis, such as the characteristics and semantics

of social relations, the semantics of the messages users’ exchange,

or the content of such messages, amongst others. Moreover, several

alternatives are proposed for integrating the semantics conveyed

by the edge directionality embedded on the selected views. Fi-

nally, an extensive experimental evaluation of the benefits of com-

bining the different views on diverse social networking sites is

performed. 

The rest of this paper is organised as follows. Section 2 dis-

cusses related research. Section 3 defines the nature of the diverse

views to consider in the analysis, and a technique for combining

them, as well as exploiting the semantics of edge directionality.

Section 4 describes the experimental evaluation performed over
eal-world datasets. Finally, Section 5 summarises the conclusions

rawn from this study and presents future lines of work. 

. Related work 

Generally, social networks are analysed by means of graphs,

epresenting a group of nodes or vertices, which are connected

y links or edges. Edges can be directed (as the Followee/Follower

elation on Twitter ) or undirected (as the friendship relation on

acebook ). Communities refer to potentially overlapping groups of

odes that have dense connections within the community, but

parse connections with nodes of other communities. Communities

an be defined globally or locally, depending on whether a reduced

ubset of nodes or the whole network is considered. According to

raph theory [20] , communities have also been defined as cliques

every node is adjacent to each other) or connected components

every pair of nodes is connected by at least a path). In this con-

ext, the goal of community detection techniques (also known as

raph clustering techniques) is to divide the nodes into commu-

ities (or clusters), such that the nodes of a particular community

re similar or connected in some pre-defined sense [30] . For exam-

le, in some cases it might be desirable to obtain communities of

imilar order and/or density. Interestingly, not all graphs present a

tructure with natural communities. In the case of a uniform graph

tructure in which the edges are evenly distributed over the set of

ertices, the discovered communities will be rather arbitrary. 

Community detection has proven to be valuable in a diverse

et of domains. Thus, several techniques for community detec-

ion can be found in the literature. The effort has been recently

oncentrated on addressing the challenges posed by the hetero-

eneous nature of social media data by combining diverse so-

ial networks [7,24] or sources of information, such as social and

ontent information [28,33,38,42] , similarity and interaction pat-

ers [13,40] , and social, content and user similarity [27,32] . The ex-

sting techniques do not only differ on the considered information

ources, but also on how such sources are combined. Particularly,

his Section reviews techniques based on conditional or probabilis-

ic models [35,38,39,42] , matrix factorisations [7,24,27,28,32,35] ,

nd matrix integration [33,40] . 

Many tasks, in addition to community detection, can benefit

rom the integration of multiple and heterogeneous sources. For

xample, Xu et al. [36] chose to combine topological information

erived from users’ interactions in a university through a virtual

obile network with content-based information extracted from

ser profiles. Call records were used to establish the topological re-

ationships, which varied according to when the calls were made,

ow many calls were made and their durations. Additional infor-

ation regarding the faculty to which the users belonged, the dor-

itory and roommates was also considered. On the other hand,

11,44] combined social and content-based information in the con-

ext of question answering systems. Zhao et al. [44] tackled the

roblem of expert finding. To that end, the authors combined both

nformation sources by means of a graph regularised matrix com-

letion method for estimating the missing values in rating matri-

es (based on content-based information) with the social relations

mongst users. 

Discriminative conditional models for combining social and

ontent information were proposed in [38,42] . Yang et al. [38] ap-

lied a conditional model for social analysis including hidden

ariables to model the probability of a node to be linked with

nother, and a discriminative content model for diminishing the

mpact of irrelevant content features. Experimental evaluation was

ased on two citation networks, in which nodes corresponded to

cientific articles, edges represented citations, and content was

escribed by keywords. Similarly, Zhang et al. [42] proposed a

robabilistic model combining node attributes and topological
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nformation. Experimental evaluation was based on Twitter and

acebook datasets from SNAP. 1 Content features varied according to

he analysed dataset. For the Twitter dataset, they were hashtags

nd mentions, whereas for the Facebook dataset, they were the

nformation in users’ profiles, such as home town, birthday and

olitical associations. In both cases, optimisation was performed

y means of Expectation Maximisation, resulting in models that

utperformed state-of-the art techniques based on social links,

ontent or combining both sources of information. 

Similarly to the previously described works Wang et al. [35] and

ang et al. [39] proposed conditional models combining network

opology and node semantic attributes for detecting overlapping

ommunities. Both works did not only identify communities, but

lso semantically annotated them. Yang et al. [39] probabilistically

odelled the interaction between network structure and node at-

ributes, which allegedly helped to improve the robustness of the

echnique in the presence of noise in the network structure. The

resented approach has a linear runtime regarding the size of the

etwork. The network modelling aimed at capturing three intu-

tions. First, community affiliations influence the likelihood that

odes are connected. Second, the degree of such influence is differ-

nt across communities. Third, each community independently in-

uences the node connection probability. Such intuitions were re-

arded as a logistic model, deriving in a convex optimisation prob-

em. Evaluation was based on five social networking sites ( Face-

ook, Google +, Twitter, Wikipedia and Flickr ). The defined node at-

ributes depended on the network under evaluation. For example,

or the Wikipedia network, attributes were defined in terms of the

inks to other articles, in Flickr they were defined based on the

sed photos’ tags. In Facebook and Google +, attributes were de-

ned in terms of users’ gender, job titles and institutions, amongst

thers. Finally, in Twitter , hashtags were selected. Results showed

hat the approach outperformed topology-based, node attribute-

ased and hybrid methods in terms of accuracy, even in noisy net-

orks. The highest performance differences were obtained for the

ikipedia and Flickr datasets. Finally, the semantic of communi-

ies was analysed for the Facebook and Wikipedia datasets. As re-

ards Facebook , education-based attributes (such as “school name”

r “major”) were highly correlated with communities’ semantics,

hereas work-based attributes were not. On the Wikipedia net-

ork, the approach was able to detect thematically close commu-

ities. 

Zhang et al. [41] proposed a unified framework combining user

riendship network analysis with author-topic modelling. First, the

nalysis of the friendship networks generates a community distri-

ution of users, which is then used as prior knowledge by the con-

ent analysis. In turn, this analysis produces a set of community

opics and user authorities on those topics, by assuming that topics

an be modelled as a multinomial distribution over words. Finally,

he community and topic distributions are combined to compute

he final community memberships of individual users. The combi-

ation was performed by a non-linear strategy in which the com-

unity membership of users is linearly proportional to the mem-

ership derived from their social network, and exponentially pro-

ortional to their topical interests. Experimental evaluation carried

ut on small-scale Delicious and Twitter datasets showed that the

lgorithm was able to discover meaningful communities and their

opics in a unified way. Moreover, the discovered communities ex-

ibited denser friendship connections and higher content similar-

ty than communities obtained with state-of-the-art techniques. 

On the other hand, Pei et al. [27] , Qi et al. [28] , Tang et al.

32] and Wang et al. [35] proposed combining multiple infor-

ation sources based on optimisation functions to be solved by
1 http://snap.stanford.edu/data/ . 

c

i  

c  
on-negative matrix factorisations. In this regard, Wang et al.

35] based their approach on defining the propensities of nodes to 

elong to communities. Evaluation was based on three real-world

etworks ( Citeseer, Coral and WebKB ) comprising scientific publica-

ions. In all cases, node attributes were defined as the terms in-

luded in each scientific publication or web page. The approach

as compared to topology-based, node attribute-based and hybrid

ethods (including [39] ). All baselines were outperformed by the

pproach, showing its adequacy for accurately identifying commu-

ity structures. Nonetheless, the approach was not evaluated in

he context of dynamic short-text social media data; hence, results

ight not be generalisable to such domain. The semantic analy-

is of the detected communities was performed based on a Last.fm

ataset in which node attributes included the list of most listened

usic artists and tag assignments. According to the authors, when

electing the top 10 node attributes, communities were deemed as

ohesive. However, the rationale for choosing only 10 terms was

ot clarified, and the analysis was manually performed, thus no

emantic similarity metric was computed. Moreover, it was not ex-

lored the cohesiveness of communities when selecting more at-

ributes. 

Both Pei et al. [27] and Tang et al. [32] use on matrix factori-

ation to discover communities of users. Tang et al. [32] chose to

oncatenate all content-based information sources, and combine

hem with the social information. The joint optimisation problem

equires computing several arithmetic operations between matri-

es, which could negatively affect the computational complexity

nd thus, its applicability on high-dimensional datasets and real-

ime applications. Experimental evaluation was based on both syn-

hetic and social media datasets from BlogCatalog and Flickr , in-

luding tags and comments. Particularly, nodes represented users,

onnected by friendship links, whereas the content-based infor-

ation comprised the tagging, commenting and reading activity.

esults showed that the quality of the detected communities de-

ended on the quality of the selected information sources, as in-

egrating more data sources introduced noise and redundant infor-

ation, reducing the quality of communities, while increasing the

roblem’s dimensionality. The authors suggested to consider short

exts as additional information, as proposed in this paper. 

Pei et al. [27] combined not only topological and content-

ased information, but also message similarity and user interac-

ions. Experimental evaluation was based on two small-scale Twit-

er datasets comprising politicians, and a dataset of scientific pa-

ers. In contrast to the previously presented works, results showed

hat techniques solely based on social information performed bet-

er than those based on content. The authors stated that social

elations better captured user interests, whereas content infor-

ation introduced noise. However, as the evaluation was based

n datasets with strong social and politics relations, there is no

uarantee that the assumptions would held on general-purpose

atasets where social relations might respond to diverse reasons. 

In contrast to the described works that exploited node content,

i et al. [28] assessed edge content, which models specific infor-

ation regarding the nature of relationships and interactions be-

ween users. The authors proposed an edge-induced matrix fac-

orisation for embedding edges into a latent vector space based

n social information. Experimental evaluation was based on the

nron e-mail dataset, and a dataset collected from Flickr . In both

ases, nodes corresponded to users. In the former case, edges cor-

esponded to the e-mails both users had exchanged including their

ontent, and in the latter case, edges were created if both users

ad marked the same picture as favourite, including the tags of

ll images marked as favourite by both users. Results showed that

ontent-based algorithms outperformed social-based algorithms, 

mplying that content provides useful information. The algorithms

ombining social information and edge content performed better

http://snap.stanford.edu/data/
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than those considering node content. However, combining edge

content to represent the node content did not always improve re-

sults as it mixed the content information from diverse edges. 

The described approaches refer to heterogeneous information

extracted from a unique social networking site. Nonetheless, users

can participate in multiple networks simultaneously, then, each so-

cial networking site could provide additional information to help

unveiling information about the users, existing in the other net-

works. Thus, community detection techniques could leverage not

only on heterogeneous information belonging to a single network,

but also on information belonging to multiple networks. In this

context, Nguyen et al. [24] and Comar et al. [7] leveraged on the

fact that users have profiles and connections in different social net-

working sites for detecting communities. Nguyen et al. [24] col-

lapsed the information of multiple social networks into a unique

representation, proposing two alternatives to join the information

belonging to multiple instances of the same node. The first alter-

native collapses multiple instances of a node into a unique one,

whereas the second one connects matching pairs of instances by

edges adopting different coupling schemas (diagonal, categorical,

star and full). Both alternatives were based on non-negative matrix

factorisation algorithms. Although the representation techniques

allowed to improve the results of baseline algorithms, building the

graph representations (even when considering small datasets) in-

curred in a much higher computational complexity than the base-

lines, which might hinder their application on real social network-

ing data. 

On the other hand, Comar et al. [7] proposed to compute the

adjacency matrix of each involved social network, in combina-

tion with a matrix linking them. The analysis could also include

prior information regarding the potential relationships between

the communities in the different networks. Then, communities are

found by minimising the distance between the linking matrix and

the product of latent factors of the adjacency matrices of each net-

work. Experimental evaluation was based on Wikipedia and Digg

users, and showed that Wikipedia was potentially useful as an in-

formation source for improving the quality of detected commu-

nities in social networking sites. The authors highlighted the fact

that their technique could be applied in networks generated from

multiple social networking sites as well as networks derived from

heterogeneous nodes of the same networking site, as long as links

between nodes in the different networks can be established, and

acknowledged the scalability issues that might hinder the applica-

bility of the technique on networks with millions of nodes. 

Finally, related to this work are the studies carried out by Tang

et al. [33] , Zalmout and Ghanem [40] . Tang et al. [33] defined a

processing pipeline involving four components and three interme-

diate steps. First, given a network, a utility matrix is built. Then,

the utility matrix is processed to obtain a set of structural fea-

tures by selecting the top eigenvectors. Such eigenvectors are sup-

posed to represent the interaction patterns that could indicate the

community partitions. Finally, a clustering algorithm is applied to

the selected structural features to finally detect communities. Four

alternatives are analysed for building the utility matrices: latent

space models, block model approximation, spectral clustering and

modularity maximisation. Each of the steps could imply consider-

ing information belonging to a unique network dimension or in-

formation derived from the integration of diverse dimensions. Par-

ticularly, four integrations are analysed. First, network integration

(the closest strategy to this work), i.e. treating all dimensions as

one by computing the average interaction network. Second, aver-

aging the utility matrices. Third, integrating the structural features

by applying Principal Component Analysis (PCA) to the concate-

nated structural features. Fourth, combining the obtained commu-

nity partitions by reapplying the clustering algorithm to the ob-

tained individual partitions. Experimental evaluation was based on
ouTube data, comprising five data dimensions: contact, co-contact,

o-subscription, co-subscribed and favourite videos networks. Re-

ults showed that the best results were obtained when considering

tructural integration, followed by utility integration. Conversely,

he worst results were obtained when considering network inte-

ration. 

Similar to the network integration strategy proposed by Tang

t al. [33] , Zalmout and Ghanem [40] presented a generic method-

logy for aggregating multiple data dimensions to discover com-

unities of users. The methodology combines similarity and in-

eraction patterns between users, such as the usage of hash-

ags, mentions, URLs or conversation engagement. Relations are

epresented as individual similarity matrices that are normalised

nd added to build the final graph. Then, a traditional commu-

ity detection algorithm is applied. Experimental evaluation was

ased on a Twitter political dataset. Results showed that hash-

ags and URLs performed better when aggregated, whereas con-

ersation engagement resulted in poor community quality. More-

ver, removing frequent hashtags or mentions improved commu-

ity quality. Unlike [32] , the authors stated that aggregating all re-

ations performed better than considering them separately. Addi-

ionally, as in [27] , the small-scale dataset only comprised specific-

urpose content, thus hindering the generalisation of conclusions

o general-purpose datasets. Finally, the authors did not provide

ny means to differentiate the importance of the different rela-

ions. Contrasting with our study, their approach involved manu-

lly choosing the number of communities. 

Unlike the presented approaches, this paper focuses on social

etworks comprising social media posts and the users who have

ritten them, i.e. the goal is to discover groups of related posts

ased on their content and the social relations between their au-

hors. Interestingly, none of the presented approaches explicitly

reated edge directionality, thus ignoring the semantics of such re-

ations. This paper proposes to analyse the effectiveness of several

trategies for conveying the semantics of directed social relations. 

. Community detection based on heterogeneous social 

nformation 

The first step to apply a community detection algorithm is to

efine the information that is going to be available to the algo-

ithm, i.e. the information on which the underlying graph struc-

ure will be built upon. When analysing social media, multiple and

iverse graphs can be defined. Nodes can represent not only real

eople, but also diverse entities such as Web pages, journal arti-

les, countries, neighbourhoods, or positions, amongst others [21] .

or example, if the goal of the community detection process is to

redict new social relations between users or the influence a user

as on his/her neighbourhood, nodes in the graph would repre-

ent the network users [36] . On the other hand, if the task aims at

iscovering relations amongst tags in folksonomies, nodes would

epresent tags [25] . In addition, nodes could represent photos if

he goal is to detect geographical landmarks [26] . As in [1,38] , this

ork aims at detecting communities of related posts in social me-

ia, hence each node in the built graph represents a social post.

he discovered communities can be sub-sequentially integrated in

iverse learning tasks such as clustering, topic detection, classifica-

ion, or even in a feature selection technique. 

Fig. 1 presents the overview of the process for detecting com-

unities by combining heterogeneous information, starting from

he original data feed extracted from a social networking site, up

o the community discovery. Social media networks allow users

o create content and establish social relations with others. As

 result, social media data can be defined as a heterogeneous

etwork that comprises not only information in the form of social

r friendship relations, but also other sources of information
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Fig. 1. Overview of the community detection process for heterogeneous information. 
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epresenting indirect connections between users or posts. For

xample, interactions between users or posts can originate in ac-

ivities such as the interest of a user for a post expressed through

he bookmarking of such post, or the frequency of comment

nd tagging actions, amongst other activities. These information

ources provide different points of view of the same network,

hus they can be useful for finding community structures. For

xample, in Steps 1 and 2 in the figure, three relationships are

hosen to be analysed (namely, SharedClass, SharedTag and Social ).

he different types of relations need to be adequately leveraged

hen creating the graph representation of the network under

nalysis, as the result of Step 3 in the figure shows. In this

egard, Section 3.1 presents different relations between nodes

o be considered when creating the graph representation of the

etwork. 

The diverse relations established between nodes might embed

lso directionality information. For instance, when considering the

ollowee/Follower relationship in Twitter , the fact that user A fol-

ows user B does not imply the reciprocate (for example, in the

esulting graph from Step 3, the relationship between Post1 and

ost3 is not reciprocal). Even though relations might not be sym-

etric, most community detection techniques are based on the

nalysis of undirected graphs. In this context, Section 3.2 discusses

everal alternatives for convening directionality information in an

ndirected graph. Finally, once the heterogeneous relationships are

nalysed, the graph is created and symmetrised, and communities

an be discovered (Step 5 in the figure). 

.1. Graph extraction 

Most community detection techniques are purely based on the

opology of the underlying social media network. However, in

any applications, additional information that could help improve

he quality of communities of social posts is either available or can

e inferred. A distinct feature of social media posts is that they are

otentially networked through user connections. For example, by

onsidering the follower/followee or friendship links (i.e. social re-

ations), several relations can be derived amongst the posts a pair

f users have written [31] : 

• Posts written by the same user are assumed to be related since

they are more likely to belong to similar topics than randomly

selected posts. 
• If two users follow or are followed by a third user, their posts

are more likely to have related topics than randomly selected

posts. 
• Posts are linked considering the friendship relations between

their authors, i.e. a relation between two posts exists if the au-

thors of such posts are connected in the social network. If there

is a social link between users, they are likely to share interests,

and thus, their posts are likely to be topically related. 

In the context of social media data, both the graph topologi-

al structure (i.e. social relations between users) and node prop-

rties (i.e. posts characteristics) are important for improving the

uality of the discovered communities. As a result, besides the so-

ial relations amongst posts derived from the actual social rela-

ions between their authors (i.e. post P i is socially related to post

 j if its author is socially connected to the author of P j ), content-

ased relations could be defined amongst posts. The content re-

emblance or post categories (in case they are available) could also

elp to establish relations amongst them. Moreover, each micro-

logging site has specific characteristics and metadata that could

e exploited for discovering meaningful relations between posts.

or example, Twitter, Instagram and Facebook promote the usage of

ashtags, which represent a type of label or metadata that aids in

he search of messages of a specific theme or content. Additionally,

acebook allows searching for posts sharing specific activities, for

xample “listening Aerosmith” or “reading Oscar Wilde”. Posts con-

aining the same hashtag or associated to the same activity can be

ssumed to be topically related. Fig. 2 exemplifies different types

f complementary relations that could be observed between two

odes in a graph of posts. 

For the purpose of this work, besides the traditional topological

elation in which a link between two nodes representing posts ex-

sts if there are social relationships between users that published

hem, several content-based relationships between nodes were de-

ned. Particularly, node content information is transferred to edges

o characterise the specific relation between the linked nodes. By

efinition, all content-based relations are symmetric, i.e. they do

ot have directionality. Moreover, each relation could be assigned

n individual scale-factor representing the importance of such re-

ation in the final graph. Considering social networking sites that

llow users to post content and tag it, relevant relations can be

efined as follows: 

• Shared T ags. An edge between two nodes exists if they share

any tag (or hashtag). The weight of the edge is measured as the
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Post1
@blueman look at this!! 
http://url.com

Post2
RT @purpleman
Reading rocks! ^^

Post3
@purpleman and 
@blueman host a reading!

Post4
#reading #HarryPotter

Post5
#HarryPotter is 
awesome for reading!

Writes Similar ContentMentions Co-occurFollows Share Tags Share TermsRetweets

Fig. 2. Examples of possible links between posts. 
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percentage of shared tags amongst the total number of different

tags comprised by the two posts. 
• Shared C lass. An edge between two nodes exists if they belong

to the same class. All edges have a weight of 1. In those cases

in which categories are organised in hierarchies or taxonomies

(as in the Open Directory Project 2 ), the edge weight could be

computed as the distance between both categories. 
• Similar C ontent. Measures the content resemblance of two

nodes. A minimum similarity threshold could be imposed to

avoid creating a complete dense graph. Thus, only edges with

similarity above a certain threshold would be added to the

graph. Diverse text similarity metrics could be adopted to de-

fine the nature and strength of similarities. For example, simi-

larity could be expressed by simply computing the percentage

of shared terms amongst the two nodes or by computing their

Cosine Similarity. 
• Similar Comments. As Similar Content , it measures the content

resemblance of two nodes according to the Cosine Similarity

between the comments each post has received. 

Additionally, when considering social networking sites that al-

low users to tag or comment other user’s posts, additional social

relations could be defined to consider such interactions or social

actions: 

• Tagged By Same Users . Users can show interest in posts by tag-

ging them. Then, posts that are tagged by the same users can

be assumed to be topically related and to share a stronger con-

nection that those that are tagged by disjunct groups of users.

As a result, the degree to which two posts are tagged by the

same users could denote an important relationship between

them. The extent to which two posts are tagged by the same

set of users is computed as the Jaccard Index. 
• Commented By Same Users . Similarly, the activity of commenting

posts also allow users to show their interest. Hence, posts that

have comments written by the same users can be assumed to

share a stronger connection than those with no commenters in

common. Consequently, the extent to which two posts are com-

mented by the same set of users could be used as a source of a

new relationship between such posts, which can be measured

by the Jaccard Index. 

It is worth noting that social information and content-based re-

lations offer com plementary views of data, in this case, posts. Thus,
2 http://www.dmoz.org/ . 

 

e  

h  
o individual relation alone might be sufficient for accurately de-

ermining community memberships [32] . For example, social infor-

ation might be sparse and noisy, while content-based informa-

ion could be irrelevant or redundant, hindering the community

etection process. Hence, it is important to combine the different

ypes of relations for performing community detection in social

etworks. 

Content-based relations could be used either to establish new

elations between posts that are not socially related (named In-

ependent graph derivation) or to reinforce the social relations al-

eady found amongst posts (named Weighted graph derivation).

n the former case, social and content relations are assumed to

e independent from each other, i.e. edges in the graph repre-

ent not only social links but also separated content ones. Hence,

hen considering both types of relations independently, two nodes

ight be connected even when there is no explicit social con-

ection between them. In this graph derivation the different re-

ationships are integrated by adding their corresponding matrices,

s Eq. (1) shows, where A Rels represents the aggregated adjacency

atrix, Rels is the set of selected relationships and A i are the ad-

acency matrices. Note that no differentiation is made between the

ocial and content-based relationships. 

 Rels = 

∑ 

i ∈ Rels 

A i (1)

On the Weighted derivation, the graph only includes edges rep-

esenting the social relation between nodes, whose strength or rel-

vance is given by the content features. Thus, in this case, the

uality of the social ties between nodes depends on an adequate

efinition of the content-based features, which should allow to

ully exploit the social media data information. Eq. (2) shows how

o compute the final adjacency matrix for this derivation, where

 Social represents the adjacency matrix for the Social relation and

els W 

the set of relationships chosen for weighting the Social re-

ationship. Note that this graph derivation also allows the integra-

ion of independent relationships, as showed by the second term

n the equation. As it can be inferred from the equations, the com-

utational complexity of the technique is of the order of �( n 2 ∗v ),

here n represents the number of nodes in the graph (i.e. the

umber of posts) and v . 

 Rels = A Social ◦
∑ 

i ∈ Rels W 

A i + 

∑ 

i ∈ { Rel s −Social −Rel s W } 
A i (2)

Fig. 3 presents an example of posts, the relations that could be

stablished amongst them ( Social, SharedTag and SharedClass ), and

ow the final representation of the graph is derived from the inte-

http://www.dmoz.org/
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Post1 - Our prayers are with the missing 
Nigerian girls and their families. It's time to 
#BringBackOurGirls. 

Post2 - US military aircraft conduct strike 
on ISIL artillery. Artillery was used against 
Kurdish forces defending Erbil, near US 
personnel. #stopTheWar #siria
#BringBackOurGirls

Post3 - They stole the show at the 
#Wimbledon & now they've taken the cake 
at the #USOpen! 2 grand slam titles on the 
trot! 

Post4 - Congratulations Novak Djokovic, 
your #USOpen champion Class Sports

Class Politics

Class Politics

Class Sports

Post1
Post2

Post3

Post4

0 0.33

0.33 0

0 0

0 0

0 0

0 0

0 0.5

0.5 0

1 2 3 4

1

2

3

4

0 1

1 0

0 1

0 1

1 1

0 0

0 0

1 0

1 2 3 4

1

2

3

4

Post1
Post2

Post3

Post4

0 1

1 0

0 0

0 0

0 0

0 0

0 1

1 0

1 2 3 4

1

2

3

4

Social
SharedTag SharedClass

Post1
Post2

Post3

Post4

0 2.33

2.33 0

0 0

0 0

1 1

0 0

0 1.5

2.5 0

1 2 3 4

1

2

3

4

0 1

1 0

0 1

0 1

1 1

0 0

0 0

1 0

1 2 3 4

1

2

3

4

Social

Fig. 3. Multiple relations graph representation. 

g  

s  

s  

t  

l  

t  

P  

p  

a  

r  

h  

l  

s  

t  

0  

i  

S  

t  

P  

G  
ration of such relationships ( Fig. 3 c). As it can be observed, Fig. 3 b

hows three graphs (which are accompanied by their matrix repre-

entation), each corresponding to one of the chosen relationships

o analyse. The weight of the shown relations was defined as fol-

ows. In the case of the Social relations, a weight of 1 was assigned

o the edge between two nodes (for example between Post1 and

ost4 ), when the author of a post followed the author of the other

ost (in this case, the author of Post1 follows the author of Post4 ,

s shown in Fig. 3 a). In case the authors of two posts were not

elated (as the author of Post3 with the other authors), the edge
ad a weight a 0, hence it was disregarded. For the SharedClass re-

ation, a 1 was assigned to the edge if the two posts shared the

ame class (for example between Post1 and Post2 that, according

o Fig. 3 a belonged to class “Politics”), otherwise the weight was

 (as in the case of Post1 and Post4 , which belonged to the “Pol-

tics” and “Sports” classes respectively). Finally, the score of the

haredTag corresponded to the percentage of shared tags between

wo posts. Considering the SharedTag relation between Post1 and

ost2 , note that the two posts have three tags (“#BringBackOur-

irls”, “#stopTheWar”, “#siria”) out of which only one is shared by
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the two posts (“#BringBackOurGirls”). Hence, the weight is com-

puted as 1 / 3 = 0 . 33 . Similarly, Post 4 and Post 3 comprise two tags

(“#USOpen”, “#Wimbledon”), out of which only one is shared by

the two posts (“#USOpen”), leading to the weight of 0.5. Then,

Fig. 3 c shows the final graph representation once all relations were

aggregated into a unique graph by considering the Independent

graph derivation. Note that the resulting graph is not symmetric,

as for example, the relation between Post1 and Post4 is not recip-

rocal. 

As it can be observed, the graph collapses multiple (and pos-

sibly heterogeneous) relations between two nodes into a unique

edge, i.e. if multiple relations exist between two nodes, such re-

lations are collapsed into a single edge. The weight of such edge

would be equal to the sum of the weights of all the edges between

nodes. 

3.2. Graph symmetrisation 

Once the relations between nodes are found, and the graph is

built, the symmetric nature of relationships can be analysed. Gen-

erally, social relationships in social media data, as well as in other

domains, are not symmetric, i.e. the fact that a user follows other

user, does not imply that the second user reciprocates the relation.

For example, the Followee/Follower relationships on Twitter or In-

stagram are not reciprocal. 

While social networks exhibit diverse levels of reciprocity, most

community detection techniques are based on the analysis of undi-

rected (and perhaps weighted) graphs. Such techniques disregard

the directionality of links, causing the loss of directionality infor-

mation, thereby failing to accurately capture the semantics of the

asymmetric relationships conveyed by the edges of a directed net-

work [20] . Hence, the semantics captured by the relationships of

undirected approaches substantially differs from the semantics of

the directed relationships. Several works [12,29] have shown that

the quality of the found communities could be improved by effec-

tively taking into account edge directionality. 

Two approaches can be applied for effectively including edge

directionality in the community detection process. First, redefining

the methods used for detecting the communities or assessing the

quality of the detected communities. Second, applying transforma-

tions to directed graphs in order to attempt to retain the original

graph semantics in an undirected graph. However, developing com-

munity detection techniques for directed graphs might be a dif-

ficult task [12] . For instance, a directed graph is characterised by

asymmetrical matrices, so spectral analysis would be more com-

plex. Moreover, whilst several graph concepts are theoretically well

defined for undirected graphs (for example, density), they have not

been extended to directed graphs [20] . Hence, only a few tech-

niques can be easily extended from considering undirected graphs

to consider directed ones. On the other hand, transforming the di-

rected graph into an undirected one, i.e. symmetrising the directed

graph, allows employing any of the algorithms or methods already

defined for undirected graphs. This work explores several of the

most common symmetrisation strategies available in the literature,

which are described as follows. 

3.2.1. Naïve graph transformation 

This transformation ignores edge directionality and treats

graphs as undirected ones. Although this is a common approach

for handling directed graphs, it has several drawbacks that arise

from the fact that the information represented by the direction-

ality is ignored. First, the existence of data ambiguity. Naïve graph

transformations introduce ambiguities and incorrect information in

the graph, which do not represent the underlying semantic of the

directed network. For example, assume that user A follows user B ,
ut B does not reciprocate the relation. Using the naïve transforma-

ion each directed graph is replaced by an undirected one, thus a

eciprocal relationship is introduced between users A and B , which

dds an edge that did not exist on the original graph. Even when

t can be argued that the new undirected edge could represent the

imilarity between users A and B , this does not always hold for

oth directions. For instance, user B could be a celebrity, whilst A

ould be just a devotee of B , thus mutual relationship and similar-

ty might not actually exist. Second, deviations in the quality of the

ound communities. Even when the ambiguities could be ignore,

hey might still affect the final outcome of the community detec-

ion algorithm. In this case, communities that exist in the initial

irected graph might not be identified in the transformed graph,

eading to different results. This could be due to the fact that di-

ected edges form interesting structural flow patterns and clusters.

.2.2. Arithmetic-based transformation 

In this case, the directed graph is transformed into an undi-

ected one, whilst meaningfully capturing information and seman-

ics about edge direction in the resulting graph. Then, community

etection techniques designed for undirected graphs can be ap-

lied. Satuluri and Parthasarathy [29] analysed and proposed sev-

ral techniques for transforming graphs based on arithmetic oper-

tions involving the adjacency matrix A of the graph. Particularly,

wo symmetrisation techniques are considered in this work. First, a

imple symmetrisation in which the new adjacency matrix U , can

e defined as U = A + A 

T . This strategy is similar to ignoring edge

irectionality, except that in the case a pair of nodes is connected

ith edges in both directions, the weight of the edge in the sym-

etrised graph will correspond to the sum of the weight of the

irected edges. 

The symmetrised graph should be expected to include edges

etween nodes that share similar edges, but not including edges

etween nodes that do not share their connections. Although the

imple symmetrisation is commonly used due to its simplicity,

t might not be able to create edges between nodes that share

onnections but are not directly connected, as it only retains the

ame exact set of edges found in the original graph. In this regard,

he second symmetrisation technique, the Bibliometric Symmetri-

ation, helps to cope with that situation. In this case, the new adja-

ency matrix is defined as U = AA 

T + A 

T A, where AA 

T measures the

umber of common outgoing edges between each pair of nodes,

nd A 

T A the number of incoming edges. The authors suggest to set

 = A + I before symmetrisating the graph to ensure that edges in

he original graph are not removed. 

Other more complex symmetrisation alternatives based on per-

orming several arithmetic operations between matrices and di-

erse parameter tuning have been proposed by Satuluri and

arthasarathy [29] . As the complexity of arithmetic operations be-

ween matrices (particularly that of the matrix multiplication) is

igh, the techniques might not be useful in the context of high-

imensional social media data. In addition, parameters might be

ifficult to adequately tune in a high-dimensional and changing

omain. Considering the high-dimensional domain in which the

ommunity detection technique will be implemented, this alterna-

ive was discarded for the purpose of this work. 

.2.3. Bipartite transformation 

Directed graphs can be transformed into a bipartite undirected

raph [15] . In the general case, nodes are placed on each partition

ccording to whether they have outgoing or incoming edges. Par-

icularly, the first partition of nodes contains every node that has

utgoing edges, whereas the second partition contains every node

hat has incoming edges. According to graph theory [4] , a natu-

al correspondence exists between bipartite graphs and directed
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Table 1 

Twitter data collection main characteristics. 

Number of instances 1036 

Number of features 226,043 

Number of classes 4 

Number of following relations 251,522,840 

Average number of followees 816 

Average number of features per instance 1084 

Average number of instances per class 259 
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Table 2 

Flickr data collection main characteristics. 

Number of instances 190,339 

Number of textual features 947,829 

Number of classes 81 

Number of taggers 58,144 

Number of commenters 569,765 

Pairs of photos posted by the same user 77,909 

Pairs of photos posted by users who are friends 8,825,738 

Average number of features per instance 5 

Average number of instances per class 1007 
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raphs, which can be easily modelled through the usage of the ad-

acency matrix. Let consider the adjacency matrix of the directed

raph A ∈ R 

n ×n , where n represents the number of nodes in the

raph. The adjacency matrix of the bipartite graph can be defined

s: B = 

[
0 A 

A 

T 0 

]

As it can be inferred from the matrix definition, B ∈ R 

2 n ×2 n , i.e.

he nodes in the original directed graph are duplicated to avoid

dges between nodes in the same partition. Note that in this case,

he nodes in the different partitions represent the same type of

lements. 

. Experimental evaluation 

This section presents the experimental evaluation performed to

ssess the effectiveness of the proposed alternatives for leverag-

ng on heterogeneous information provided by social media data,

nd is organised as follows. Section 4.1 presents the data col-

ections used for evaluating the effectiveness of the presented

echnique. Section 4.2 presents implementation details and the

etrics used for evaluating the different alternatives. Finally,

ection 4.4 presents the results derived from the performed ex-

erimental evaluation. 

.1. Data collection 

The performance of the technique was evaluated considering

wo real-world datasets. The first dataset was collected from Twit-

er 3 [45] . It included the content of more than 50 0,0 0 0 tweets

elonging to 1036 trending topics, which were manually assigned

o one of four categories: news, ongoing events, memes (trending

opics that were triggered by viral ideas) and commemoratives (the

ommemoration of a certain person or event that is being remem-

ered in a given day, for example birthdays or memorials). Table 1

ummarises the main characteristics of the dataset. For the pur-

ose of the experimental evaluation, each trending topic was con-

idered as a node in the graph, i.e. each node grouped the tweet

et associated to the corresponding trending topic. 

The second dataset comprised data from the Flickr collection 

4 

s presented in [22] , with the original images and metadata col-

ected from the NUS-WIDE dataset 5 [5] . For each photo, the dataset

ncluded information regarding its owner, description, title, com-

ents, tags, the groups in which the photo was posted and its

anually annotated labels. Labels were considered as the cate-

ory of photos, and hence the ground truth of the communities.

n total, photos could be assigned 81 concepts. Concepts were ex-

racted from frequently used tags in Flickr , representing either gen-

ral concepts (e.g. “animal”) or specific concepts (e.g. “dog”), and

hey belonged to different general categories including scene, ob-

ect, event, program, people and graphics. Only those photos con-

aining at least one tag or description were kept. Additionally,
3 http://www.twitter.com/ . 
4 http://snap.stanford.edu/data/web-flickr.html . 
5 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm . 

p  

b  
he dataset provided information regarding edges between pho-

os in Flickr , which allowed to infer the topological relations be-

ween the users and their photos. Such information included: the

umber of common tags, groups, and collections, an indicator for

hether both photos were taken in the same location, an indica-

or for whether both photos were taken by the same user, and an

ndicator for whether the user that had taken the photo source of

he edge was socially related to the user who had taken the other

hoto in the edge. The last two indicators were used to define the

opological information of the network. For the purpose of the ex-

erimental evaluation, each photo was considered as a node in the

raph. Table 2 summarises the main characteristics of the dataset. 

.2. Experimental settings 

The Java programming language was chosen for implementing

he technique. The graph implementation was based on that of the

ephi Toolkit 6 . The performance of all node relationships and sym-

etrisation strategies was evaluated considering the Gephi imple-

entation of the Louvain algorithm [2] . Nonetheless, they could

e used in combination with any other community detection algo-

ithm or technique. 

The quality of communities was evaluated by three types of

coring functions. First, functions that characterise the connectivity

tructure of a given community, built on the assumption that

ommunities comprise sets of nodes with many inner connections

nd few outer connections. Considering the metrics presented

n [18,37] , a correlation analysis between the metrics’ results was

erformed according to the definitions and methods proposed

n [8] . As data failed the normality tests, correlation was eval-

ated by the non-parametric Spearman Rank Order correlation.

esults showed that metrics could be grouped in four groups,

hich were represented by CutRatio, Density, FlakeODF (Out Degree

raction) and Clustering Coefficient . However, the results for three

f the four groups did not showed significant differences amongst

he different combinations of relations tested for the proposed

atasets. Hence, only results of FlakeODF are reported. Second, a

unction characterising communities’ content cohesiveness: the 

verage Cosine Similarity amongst all node pairs in the community

named ContentCohesiveness ). Third, assuming the existence of class

ssignments in both datasets (the class of trending topics for the

witter dataset, and the photo labels for the Flickr dataset), the

ntropy of the classes given the community assignments was also

nalysed. 

To determine whether the graph size has an impact on the

uality of the communities discovered by the proposed alterna-

ives, different graphs sizes (ranging between 50 and 10 0 0 posts)

ere considered in the experimental evaluation. For each graph

ize, five random partitions were generated. Then, for clarity of

resentation, results across the different sizes were summarised

y their mean value. For the Twitter dataset, the highest standard
6 http://gephi.github.io/ . 

http://www.twitter.com/
http://snap.stanford.edu/data/web-flickr.html
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://gephi.github.io/


204 A. Tommasel, D. Godoy / Neurocomputing 289 (2018) 195–219 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

o

 

a  

m  

r  

i  

i  

o  

o  

A  

m  

r

4

 

a  

e  

[  

u  

i  

l  

i  

t  

o  

[  

w  

t  

t  

p  

r  

t  

a  

c  

w  

s  

n

 

a  

o  

c  

c  

a  

t  

t  

s  

t  

b  

t  

s  

t  

f

4

 

d  

t  

S  

b  

m

7 http://igraph.org/python/ . 
8 https://github.com/haifengl/smile . 
deviation on the scores was 0.03 for the FlakeODF metric. On the

other hand, for the Flickr dataset, the highest standard deviation

was 0.1 for the Entropy metric. In both cases, the deviation in the

ContentCohesivess was similar (0.01 approximately). 

Evaluation was performed considering both the social and

content-based relations presented in Section 3 . A social relation

(named Social ) between two nodes was established if the authors

in a node followed authors of the other node. Each possible re-

lation was evaluated individually and in combination with the

others. Two variations of the SimilarContent relation were consid-

ered: a variation that created edges between every pair of nodes

with a similarity greater than 0 (named SimilarContent ), and one

that imposed a minimum similarity of 0.6 for connecting two

nodes (named SimilarContent-0.6 ). In the case of the Flickr dataset,

an additional content-based relation and two social based rela-

tions were also considered: SimilarComments, TaggedBySameUser

and CommentedBySameUsers . 

Generally, the selection of a similarity threshold to deem two

posts as similar depends on either specialists who fix a value, or

trial/error processes, in which multiple values are tested until the

result is satisfactory [10] . When thresholds are high, there is a risk

of not finding interesting items, which in this particular case is

represented by the significant content-based relations. On the con-

trary, low thresholds could find multiple irrelevant items. In this

regard, threshold selection should be guided by the characteristics

of the network under analysis, which would condition the distri-

bution of posts’ similarities, thus indicating the range over which

posts similarities spanned. As a result, similarity thresholds could

be defined based on the statistical distribution of similarities in the

dataset. The selection of the statistical metric to guide the thresh-

old definition is important, as it depends on the distribution type.

Assuming the existence of outliers in the dataset, average mea-

sures of data cannot be used, as they do not give any indication of

data dispersion. Instead, statistics that are not based on the sup-

position of a symmetric distribution of data, such as the interquar-

tile range and outlier distribution, are needed. Outliers were de-

tected using Tukey’s method [34] , setting k = 1 . 5 as suggested by

the author. One of the advantages of the selected method is that

it is applicable to both normal and skewed data since it does not

make any distributional assumptions, and does not depend on the

mean or standard deviation. Instead, it depends on the quartile

definition. 

When analysing the content similarity distributions for the dif-

ferent partitions of both datasets, it was found that most posts’

similarities were concentrated on the lower scores, i.e. the similar-

ity distribution was skew towards the left tail, indicating that most

pairs of posts were not content related. Considering the skewed

characteristics of these distributions, it could be assumed that as

the values detected as outliers represent those values that are

dissimilar to the majority of the values in the distribution, they

would also represent the scores of those pairs of posts that could

actually be deemed as similar. Hence, the similarity distribution

was restricted to those scores that were marked as outliers. The

restricted set of similarities was revealed to be more uniformly

distributed than the original one. In this regard, the difference

between the mean and the median scores was lower than the

standard deviation, and no outliers were found for these distri-

butions. Finally, the similarity threshold was defined as the av-

erage of the mean values found for each of the dataset parti-

tions, i.e. 0.6. Interestingly, the same threshold was found for both

datasets. 

As exposed, the selection of the thresholds responded to the

characteristics of the similarity distribution in the datasets, hence

they cannot be directly generalised to different datasets. In case of

analysing another dataset, the particular thresholds can be com-

puted by the proposed methods. Note that the statistical proper-
ies of the defined threshold could be further explored aiming at

ptimising its selection. 

As scores are computed for each individual community, they

re averaged to obtain the score corresponding to a given com-

unity partition. Interestingly, several combinations of the defined

elationships resulted either in only a single community contain-

ng all nodes in the graph, or in as many communities as nodes,

.e. each node had its own community. In this context, results are

nly reported for those alternatives finding a meaningful number

f communities, i.e. a number between 1 and the number of nodes.

dditionally, to ensure metrics’ comparability, all results were nor-

alised to the range [0; 1], and adjusted so that the highest scores

epresent the best ones. 

.3. Baselines for comparison 

The presented approach was compared to several state-of-the-

rt techniques. Particularly, the experimental evaluation consid-

red the alternatives in [40] (named Zalmout and Ghanem ) and

33] (named Tang et al.). The same Twitter and Flickr datasets were

sed for this evaluation. A few considerations were made. Regard-

ng Zalmout and Ghanem ., the relationships to consider were se-

ected according the two dimensions chosen by the authors (i.e.

nteraction and similarity dimensions). Nonetheless, considering

hat the approach cannot be directly mapped to the setting where

ur proposed technique is designed for (i.e. Zalmout and Ghanem

40] focused on networks of users, whilst this work focuses on net-

orks of posts), and that the authors did not explicitly defined

he considered data dimensions, the chosen set of relationships

o analyse differs from the original paper. Second, the same im-

lementation of the Fast Greedy [6] community detection algo-

ithm was used, which was based on python’s Igraph 

7 . Third, as

he selected algorithm generates a full dendrogram, the original

pproach required the definition of the number of communities to

hoose. For this particular evaluation, the number of communities

as set to 6, 8 (the number of communities achieving the best re-

ults on the original paper) and the optimal community partition

umber based on optimising modularity. 

As regards Tang et al., the performance of the four integration

lternatives was compared to the presented approach. In the case

f the structural feature integration, the smile 8 library was used for

omputing the Eigenvectors and PCA. Utility matrices were built

onsidering the optimisation of modularity. Similarly to Zalmout

nd Ghanem, Tang et al. cannot be directly mapped to the detec-

ion of communities of posts as our technique proposes. Hence,

he network dimensions used for analysing results correspond to

ets of relationships similar to the ones originally used by the au-

hors, and the independent combinations of relations obtaining the

est results for our technique. In relation to the selection of struc-

ural features, as the authors only provided absolute numbers of

elected features, for this evaluation, the number of selected fea-

ures was set to the 10%, 50% and 100% of the total number of

eatures. 

.4. Experimental results 

This section presents the results obtained for the evaluated

atasets. For each dataset, three evaluations were performed. First,

he importance of each independent node relationship was studied.

econd, the effect of weighting the social view with the content-

ased relations was explored. Finally, the importance of the sym-

etrisation alternatives was analysed. 

http://igraph.org/python/
https://github.com/haifengl/smile
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Fig. 4. Twitter dataset results – independent social and content views. 
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.4.1. Results for the Twitter dataset 

For this dataset, each node in the graph represented one of the

anually classified trending topics. In this context, nodes could

elong to one of the following categories: news, ongoing events,

emes and commemoratives. 

ndependent social and content views 

Fig. 4 shows the obtained results for the different combina-

ions of node relationships using the Naïve symmetrisation. In

eneral, the combination of relationships did not achieve neither

igh FlakeODF nor Entropy results. When individually assessing the

efined relationships ( Fig. 4 a), the content-based views obtained

ommunities of higher quality than the Social view. Particularly, all

ontent-based relations allowed improving the FlakeODF results. As

egards Entropy , the content-based relationships also obtained bet-

er results than Social , meaning that only considering the friend-

hip relations between authors is not enough for identifying com-

unities containing posts belonging to the same category. This

ould imply that the interests of users are not limited to only one
 c  
ategory, and thus, they might publish posts belonging to diverse

ategories or connect with users posting on diverse categories. 

As regards the ContentCohesiveness of communities, only

imilarContent-0.6 found high quality communities, followed by

imilarContent , meaning that content-based relations could also

ntroduce noise if not carefully analysed, and thus highlighting

he importance of imposing a minimum threshold of similarity

or regarding two nodes as content-related. The Social view al-

owed finding communities with a higher ContentCohesiveness than

haredClass , meaning that the category of posts is less representa-

ive of posts’ content than users’ friendship relations. Nonetheless,

he SimilarContent-0.6 and SharedClass views achieved similar En-

ropy results, implying that whilst the content of a post is related

o its class, the class of a post is not sufficient to determine its

ontent. Particularly, posts are divided into four categories (news,

ommemorative, memes and ongoing events) that do not repre-

ent actual posts’ topics, i.e., two post could belong to the same

ategory but contain unrelated content. 

As it can be observed in Fig. 4 b, the combination of Social and

ontent-based relationships decreased, in most cases, the quality
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Table 3 

Twitter dataset results – ranking of best performing node rela- 

tionships (independent social and content views). 

1. SimilarContent-0.6 

2. SharedClass 

3. Social & SharedClass 

4. Social & SharedClass & SharedTag & SimilarContent-0.6 

5. Social & SharedClass & SharedTag & SimilarContent 
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of communities obtained with respect to the content-based rela-

tionships alone. Although combining Social with SharedClass or any

variations of SimilarContent improved the quality of communities

regarding the simple Social view, the quality of communities was

inferior to that of the individual content-based relations. Hence, it

could be inferred that communities in Twitter might be guided for

content-based relations, rather than for the social connections be-
Fig. 5. Twitter dataset results 
ween users. As previously mentioned, the heterogeneous nature of

ocial relations could introduce noise, hindering the identification

f high quality communities. Interestingly, combining four of the

efined relations (i.e. Social, SharedClass, SharedTag and any of the

imilarContent variations) obtained similar results to that of only

ombining the Social and SharedClass views. This might indicate

hat the information provided by SimilarContent is disregarded in

resence of the SharedClass view. The difference between the Simi-

arContent alternatives remains noticeable across the FlakeODF and

ntropy results. 

The effect of the edge weighting is shown when comparing

he ContentCohesiveness results of the SimilarContent view individ-

ally or in combination with the Social view. In the former case,

uch relation allowed to obtain content cohesive communities. In

he latter case, however, the content cohesiveness of communities

as diminished. This could be explained by analysing the abso-

ute weight of edges. By definition, each relation weight is con-
– weighted social view. 
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Table 4 

Twitter dataset results – ranking of best performing 

node relationships (weighted social view). 

1. Social-W-SimilarContent-0.6 

2. Social-W-SharedClass 

3 .Social-W-SharedClass & SimilarContent-0.6 

4. Social-W-SimilarContent-0.6 & SharedClass 

5. Social-W-SharedTag & SharedClass 
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trained to the same range. However, the Social edges are prone

o have higher weights than the content-based edges, thus being

ore important. For example, a Social relation between two posts

ould have a value of 1 in case the authors’ posts are socially re-

ated, and 0 otherwise. In the case of the content-based relations,

lthough their weights could be 1 (as when two posts belong to

he same category), for the SimilarContent that would indicate that

he posts have the exact same content, which is highly unlikely. As

 result, the community detection algorithm is mostly guided by

he Social view instead by the content-based ones. Hence, reinforc-

ng the importance of adequately weighting the combined relations

o optimise the quality of the discovered communities. 

Table 3 ranks the node relationships that obtained the highest

uality community partitions. The ranking was performed by aver-

ging the results of all evaluation metrics for the Naïve symmetri-

ation strategy. All the ranked alternatives improved results of sim-

ly using the social relation. Excepting for the SimilarContent-0.6

nd SharedClass relations that were shown to diminish the qual-
Fig. 6. Twitter dataset results – effect of the symmetr
ty of communities when combined with the Social view, the other

ontent-based relations improved their results. For example, the

haredTag view obtained the best quality communities when com-

ined with both Social and other content-based relations. Thus, the

laim that information pertaining to a unique source offers a lim-

ted view of data is reinforced. These results allowed to conclude

hat introducing and combining content-based information is cru-

ial for improving the quality of communities. 

eighted social view 

Fig. 5 shows the results for the Naïve symmetrisation strategy

nd combinations of node relationships. For clarity reasons, “Social-

- ” indicates that the social information was weighted with the

ontent-based relation immediately named. As it can be observed,

eighting the Social view with the content-based ones achieved

imilar results to the independent content-based views. For exam-

le, the results of Social-W-SimilarContent-0.6 and SimilarContent-

.6 are alike. However, weighting Social with SimilarContent-0.6 or

haredClass improved the results of their independent combination.

or instance, Social-W-SimilarContent-0.6 improved the results of

ocial & SimilarContent-0.6 . These results further emphasise the im-

ortance of adequately combining social information with other in-

ormation sources to improve the quality of the detected commu-

ities. Moreover, using SharedTag for weighting the social informa-

ion improved the results of considering it independently from the

nderlying social information. Additionally, an adequate weighting
isation strategies on the independent relations. 
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Fig. 7. Twitter dataset results – effect of the symmetrisation strategies on the weighted relations. 
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of the Social view with the SimilarContent-0 .6 information allowed

improving the ContentCohesiveness results of Social . 

Regarding the combination of a weighted relation and

other content-based views (for example Social-W-SharedClass

& SimilarContent-0.6 in Fig. 5 b), results were better than when in-

dependently combining them (as shown in Fig. 4 b). The FlakeODF

and Entropy of communities was improved, i.e. communities were

both more structurally and topically cohesive. Specifically, the En-

tropy of communities was high when including the SharedClass

view. However, even though the ContentCohesiveness of communi-

ties was improved, results were still lower than when solely using

the content-based views. 

Table 4 ranks the node relationships that obtained the highest

quality community partitions. In all cases, the weighted alterna-

tives outperformed the results of only the Social view. Moreover,

the best results were achieved when combining both the weighted

social information with another content-based relation. Interest-

ingly, all of the best ranked relations include either SimilarContent-

0.6 or SharedClass , further highlighting their relevance for find-

ing high quality communities. These results reinforce the impor-

tance of content-based information for community detection in so-

cial networks. As when assessing the relations independently, the

worst results were obtained when considering SharedTag . 

Effect of the symmetrisation strategies 

Figs. 6 and 7 analyse the effect of the presented symmetri-

sation alternatives on the best performing relationships listed in
ables 3 and 4 , respectively. The most interesting results were

hose of the Bipartite symmetrisation, which resulted in the

owest number of reported node relationship combinations. As

he Bipartite symmetrisation imposes a duplication of nodes,

he structural composition of the graph changes, even when

onsidering undirected relations such as the content-based ones.

onsequently, the communities obtained based only on content

elationships also changed. It is worth noting that, excepting

hen combining the Social and the SimilarContent-0.6 relations

which was not one of the best performing strategies for the Naïve

ymmetrisation strategy), all other combinations were unable to

nd communities. Interestingly, the SimilarContent-0.6 relation by

tself did not found a representative number of communities. A

imilar effect is observed for the Bibliometric symmetrisation,

hich reduced the FlakeODF of communities, thus reducing the

uality of the obtained communities in comparison with the other

trategies. 

The highest differences between the Simple and Naïve alterna-

ives were found for FlakeODF in favour of the Simple symmetrisa-

ion. These results allowed inferring that the semantics conveyed

y the directionality of social relations, when adequately assessed,

an help to improve the quality of communities. Thus, it is not only

mportant to select the node relationships to combine, but also the

ymmetrisation strategy to use. 

As Fig. 6 shows, results for each symmetrisation strategy are

imilar to that of considering the independent combination of node

elationships. As in the previous case, the Simple symmetrisation
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Fig. 8. Twitter dataset results – comparison to Zalmout and Ghanem [40] ’s approach. 
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echnique allowed finding the highest quality communities, im-

roving the FlakeODF of the communities found by using the Bib-

iometric symmetrisation. 

omparison to state-of-the-art techniques 

Fig. 8 compares the results obtained for the best combination

f relationships for the independent and the weighted graph deriva-

ion with those of Zalmout and Ghanem for the Twitter dataset. As

egards the number of communities, the best results were found

hen automatically selecting the number of communities that op-

imised modularity, instead of when fixing the number of com-

unities as in [40] . In addition to those combinations of relation-

hips only including a Jaccard Similarity assessment (e.g. SharedTag

nd SharedTerm ) as defined in [40] , the performance of Zalmout

nd Ghanem was also evaluated by the combinations of relations

chieving the best results for our technique. Note that, for both

raph derivations, our technique improves Zalmout and Ghanem ’s

esults. As it can be observed, the communities found by Zalmout

nd Ghanem exhibited low FlakeODF , whilst achieving competitive

ntropy (when analysing the independent graph derivation) . Inter-

stingly, only the best performing strategy of Zalmout and Ghanem

 Social & SimilarContent-0.6 & SharedClass ) was able to outperform

he ContentCohesiveness obtained by our technique. The worst re-

ults Zalmout and Ghanem results were obtained when combin-
ng Social & SharedTag , which were even worse than solely con-

idering Social . The alternatives considering Jaccard Similarity (as

n the original paper) performed worse than those considering Co-

ine Similarity, i.e. SharedTag and SharedTerm obtained communi-

ies of lower quality than SimilarContent . Regarding the weighted

raph derivation, none of the Zalmout and Ghanem evaluated al-

ernatives was able to outperform the results achieved with our

echnique. In average, the quality differences ranged between 90%

nd 1183% when considering the lowest and highest improvements

or both graph derivations. 

As regards Tang et al., the comparison of results is presented in

ig. 9 . Considering the diverse thresholds, the best results were ob-

ained when only selecting the 10% of the total number of struc-

ural features. Regarding the integration alternatives, similarly to

he results in the original paper, the best results were obtained

hen integrating the structural features derived from each utility

atrix. As it can be observed, Tang et al. ’s results are similar to

hose of Zalmout and Ghanem in terms of Entropy . Both FlakeODF

nd ContentCohesiveness were lower than for Zalmout and Ghanem .

he best results were obtained when combining Social & Shared-

ag & SharedClass & SimilarContent-0.6 , closely followed by Social

 SharedClass . Nonetheless, despite considering the same relations,

ur technique was capable of finding communities of higher qual-

ty. In average, the quality differences ranged between 186% and
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Fig. 9. Twitter dataset results – comparison to Tang et al. [33] ’s approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Flickr dataset results –ranking of best performing node re- 

lationships (independent social and content views). 

1. SimilarContent-0.6 

2. Social & SimilarContent-0.6 

3. Social 

4. TaggedSameUser 

5. Social & TaggedSameUser 
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445% when considering the lowest and highest improvements for

both graph derivations. 

4.4.2. Results for the Flickr dataset 

For this dataset, each node in the graph represented one of the

manually classified photos, comprising at least one tag or descrip-

tion. Each photo could belong to 81 different concepts, which rep-

resented elements visible in the photos. Note that photos could be

assigned to more than one concept, which might not match the tag

nor description created by the users. 

Independent social and content views 

Fig. 10 shows the results for the Naïve symmetrisation strategy.

Unlike the results obtained for the Twitter dataset, most combina-

tions of information sources achieved high Entropy and FlakeODF ,

implying that the communities found for this dataset are more

strongly connected. Moreover, the quality of communities is higher

than that achieved for the Twitter dataset. 

As regards the individual relationships ( Fig. 10 ), only

SimilarContent-0.6 achieved relatively high ContentCohesiveness .

In spite of creating a dense graph, the SimilarContent relation did

not obtain neither high content nor class cohesiveness. Addition-

ally, the SimilarComments or SharedTag views did not report neither

highly content cohesive nor structurally connected communities.
s for the Twitter dataset, content and class cohesiveness results

ere not directly correlated, implying a dissociation between

he content in the description and tags, and the label that was

ssigned to the photos. However, SharedClass did not achieve the

est Entropy results, as it did for the Twitter dataset. These results

mply that for this dataset, the labels assigned to photos are not

ufficient for finding communities of photos belonging to the same

ategory, thus continuing to expose the limitations of only using a

ingle information source. 

Individually considering the Social relationship achieved high

lakeODF and the best Entropy results. Thereby, it could be inferred

hat communities in Flickr might be guided by social connections

etween users’ relations, rather than for content-based informa-

ion. This could be related to the high degree of reciprocity of
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Fig. 10. Flickr dataset results – independent social and content views. 

Fig. 11. Flickr dataset results – weighted social view – individual relationships. 
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Fig. 12. Flickr dataset results – weighted social view. 

Table 6 

Flickr dataset results – ranking of best performing node rela- 

tionships (weighted social view). 

1. Social-W-TaggedSameUser & SimilarContent-0.6 

2. Social-W-CommentedSameUser & SimilarContent-0.6 

3. Social-W-SharedClass & SimilarContent-0.6 

4. Social-W-SimilarContent & SimilarContent-0.6 

5. Social-W-SharedTag & SimilarContent-0.6 
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t

ocial relations, which responds to the same characteristics of

ffline social relations [14] , instead of showing content-based

otivations. Finally, considering other topologically-based social

elations ( CommentedSameUser and TaggedSameUser ) allowed to

mprove the content cohesiveness of communities whilst decreas-

ng Entropy results. These results confirm the importance of the

opological relations for this dataset. 
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When combining Social with the other content-based relations

 Fig. 10 b), as for the Twitter dataset, SimilarContent-0.6 decreased

ts ContentCohesiveness results, whilst improving the Entropy of

ommunities. Similarly, CommentedSameUser in combination with

he Social view decreased both the Entropy and ContentCohesive-

ess of communities. Results showed that combining two topolog-

cal relations was not as effective as individually considering them.

s for the Twitter dataset, these results could be explained by the

ffect of edge weighting. Moreover, results support the claim that

he diverse information sources might introduce noise, and thus,

ombining multiple relations might not always help to improve the

uality of communities, as shown by the results obtained when

ixing all information views, whose quality equalled to that of the

orst performing individual content-based view. 

Table 5 ranks the node relationships that found the high-

st quality community partitions. The ranking was performed by

veraging the results of all evaluation metrics obtained for the

aïve symmetrisation strategy. As it can be observed, some of the

est performing relations differ from those found for the Twitter

ataset. Regarding the content-based relations, only SimilarContent-

.6 appears amongst the best ranked strategies. The worst results

ere obtained by SimilarComments followed by the combination of

ll relationships. The results of SimilarComments could be explained

y considering that, generally, comments in social media might be

otivated by a desire of expressing opinions or sentiments, instead

f describing the content they are commenting on. As a result,

omments are not descriptive enough for the community detec-

ion task, as they would not help finding content nor class cohesive

ommunities. 

Note that the averaged results of SimilarContent-0.6 are better

han those of the Social view due to the improvements in con-

ent cohesiveness. Moreover, combining Social and SimilarContent-

.6 improved the results of the Social view. As already exposed,

ocial appears as one of the best ranked relations. Also Tagged-

i  

Fig. 13. Flickr dataset results – effect of the symmetr
ameUser is one of the best performing relationships. These re-

ults further highlight the importance of the topological relations

or this dataset. 

eighted social view 

Figs. 11 and 12 show the obtained results for the Naïve sym-

etrisation strategy and the combinations of node relationships.

s Fig. 11 depicts, weighting Social with the other defined rela-

ions caused all combinations to find community partitions of sim-

lar quality, which coincidently match the results of only using the

ocial view. The only exception was when using SharedClass as the

eighting strategy, which improved the Entropy of communities.

nterestingly, weighting Social with SimilarContent-0.6 or SharedTag

id not help to obtain a meaningful number of communities. As a

esult, none of the alternatives discovered communities with high

ontentCohesiveness . 

In the overall, weighting and combining the Social relation with

he content-based ones ( Figs. 12 a–c) allowed improving the con-

ent cohesiveness of communities without reducing their FlakeODF .

oreover, FlakeODF results were also improved in comparison to

he results of using the social and content-based views indepen-

ently. As regards ContentCohesiveness , the best results were ob-

ained when Social was weighted with the other topology-based

elations (as shown in Fig. 12 c) and combined with SimilarContent-

.6 . Interestingly, weighting Social with SharedClass ( Fig. 12 b) did

ot achieved the best Entropy results. Instead, they were lower

han when individually considering the SharedClass view. 

Table 6 ranks the node relationships that found the highest

uality community partitions. Unlike when assessing the diverse

elations individually, the ranked alternatives outperformed the re-

ults of only considering the Social view. Moreover, the individual

ocial view obtained, in average, worse results than when weight-

ng it with other relations. The two best performing combinations

ncluded weighting Social with the other topological-based rela-
isation strategies on the independent relations. 
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Fig. 14. Flickr dataset results – effect of the symmetrisation strategies on the weighted relations. 
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tionships, evidencing the importance of the topological relations

for this dataset. Note that none of the individual weighted relations

(shown in Fig. 11 ) ranked amongst the best performing ones. In-

stead, all the best ranked relationships include combinations with

SimilarContent-0.6 . Thus, it can be inferred that content-based in-

formation was also important for finding high-quality communi-

ties as a complement of other information sources. In addition,

TaggedSameUser, SimilarComments and SharedTag were shown to

achieve better results when used for weighting the Social view

than when individually used. These results remark the positive ef-

fect of weighting the Social view on community quality, in con-

trast to individually considering the relations, which confirms the

importance that the underlying social relations have on Flickr . 

Effect of the symmetrisation strategies 

As for the Twitter dataset, Figs. 13 and 14 analyse the effect of

the presented symmetrisation alternatives on the best performing

relationships listed in Tables 4 and 6 , respectively. The effect of

the chosen symmetrisation alternative over the views’ ability for

detecting a representative number of communities was lower than

in the Twitter dataset. In this case, only a few of the proposed

combinations of relations did not found a meaningful number

of communities for only one of the symmetrisation alternatives

(Bipartite symmetrisation). Remarkably, one of such views is the

Social one. These results confirm the differences between the

diverse symmetrisation alternatives, and how they can affect the
uality of the detected communities. Moreover, these results rein-

orce the importance of considering multiple information sources. 

Similarly as when analysing the Twitter dataset, the Simple and

aïve symmetrisations obtained communities of similar connectiv-

ty. These results could be explained by considering the reciprocity

egree of Flickr . Several studies [17,23] have shown that the reci-

rocity in Flickr is higher than the 70%. Consequently, the number

f asymmetric relations is small when compared to the number

f symmetric relations, which implied that the simple symmetri-

ation alternative did not contribute with new information, thus

nding communities of similar quality. Finally, the Bipartite sym-

etrisation notably reduced the FlakeODF and Entropy of commu-

ities. As explained before, even though relations are symmetric

he duplication of nodes imposed by the Bipartite symmetrisation,

auses changes to the structural composition of the graph, which

ccounts for the differences in the quality metrics. 

Despite lowering the structural cohesiveness of communities,

he Bipartite symmetrisation in combination with the Social and

imilarContent-0.6 views allowed to find the most content cohesive

ommunities. These results highlight the importance of adequately

ssessing the content-based relations and their relevance for find-

ng high-quality communities. 

omparison to state-of-the-art techniques 

Fig. 15 compares the results obtained for the best combi-

ation of relationships for the independent and the weighted

raph derivations with those of Zalmout and Ghanem for the Flickr
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Fig. 15. Flicker dataset results – comparison to Zalmout and Ghanem [40] ’s approach. 
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e  
ataset. The best results were found when automatically select-

ng the number of communities that optimised modularity. Note

hat both graph derivations are capable of improving Zalmout

nd Ghanem results. As it can be observed, Zalmout and Ghanem

chieved competitive results in terms of FlakeODF and Entropy .

mall differences were found in favour of our technique for those

wo metrics. On the other hand, our technique obtained signif-

cantly better community partitions in terms of ContentCohesive-

ess , even though Zalmout and Ghanem was evaluated consider-

ng the SimilarContent-0.6 relation. Nonetheless, in all cases, for all

valuation metrics, our technique outperformed every Zalmout and

hanem results. Interestingly, the best Zalmout and Ghanem results

ere obtained when combining Social & SimilarContent-0.6 , which

s also the relationship combination that obtained the best qual-

ty partitions for our technique. In average, the quality differences

anged between 30% and 130% when considering the lowest and

ighest improvements for both graph derivations. 

As regards Tang et al., the comparison of results is presented in

ig. 16 . It is worth noting that not every combination of node re-

ationships, integration strategies and threshold for selecting struc-

ural features could be evaluated due to the lack of convergence of

he Eigenvector decomposition. Considering the diverse thresholds,

he best results were obtained when only selecting the 10% of the
 t  
otal number of structural features. Regarding the integration alter-

atives, conversely to the results in the original paper and unlike

or the Twitter dataset, the best results were obtained when inte-

rating the utility matrices corresponding to each of the network

imensions. As it can be observed, Tang et al. ’s results were lower

han those of Zalmout and Ghanem , and hence lower that the re-

ults of our technique. Particularly, Tang et al. ’s approach did not

iscover high quality communities. Interestingly, only one alterna-

ive achieved high FlakeODF , whilst none of them found semanti-

ally cohesive communities. As for Zalmout and Ghanem , discovered

ommunities were not highly cohesive. As for our technique and

almout and Ghanem the best results were obtained when com-

ining Social & SimilarContent-0.6 . Nonetheless, despite considering

he same relations, our technique was capable of finding commu-

ities of higher quality. In average, the quality differences ranged

etween 233% and 272% when considering the lowest and highest

mprovements for both graph derivations. 

.4.3. Summary of results 

Fig. 17 compares the results obtained for the best performing

ode relationships combinations with the results of only consid-

ring the Social view. The depicted results are averaged across all

he considered symmetrisation strategies. In most cases, consider-
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Fig. 16. Flickr dataset results – comparison to Tang et al. [33] ’s approach. 
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ing content improved results of only considering social informa-

tion. Additionally, Table 7 summarises the improvements of the

best performing relationship combinations over the Social view, the

best Zalmout and Ghanem ( Social & SimilarContent-0.6 & Shared-

Class for the Twitter dataset and Social & SimilarContent-0.6 for the

Flickr one) and the best Tang et al. ( Social & SharedTag & Shared-

Class & SimilarContent-0.6 for the Twitter dataset, and Social &

SimilarContent-0.6 for the Flickr one) results. As it can be observed,

the improvements over Tang et al. are higher than those over Zal-

mout and Ghanem for both datasets . 

Regarding the Twitter dataset, the highest improvements with

respect to only using the Social view, were obtained for both Con-

tentCohesiveness and FlakeODF , which all combinations of relation-

ships were able to outperform. These results imply that integrating

content-based information to the community detection process al-

ways decreased the ratio of nodes that have more outer connec-

tions than inner ones. On the other hand, for the Flickr dataset,

all combinations of relationships improved in average the quality

of communities with respect to only using the Social view. As for

the other dataset, the highest improvements were observed for the

content cohesiveness of communities. 

Considering the number of detected communities, most of the

alternatives resulting in only one community were those com-
ining all node relationships. These results agree with those

n [32] that stated that considering multiple relations does not al-

ays improve quality results. This could be due to the fact that

dding multiple relations creates a tightly connected and dense

raph, which is difficult to partition. Conversely, in some cases

ndividual relations led to an equal number of communities and

odes. It could be inferred that individual relations might not

e sufficient to effectively partition graphs, as such relationships

ended to create sparse graphs. 

As regards the effect of the symmetrisation alternatives, results

howed that the diverse strategies had a differentiated impact on

he quality of the detected communities. Particularly, the Bipar-

ite symmetrisation was shown to decrease the quality of com-

unities regardless of the information sources under consideration

or both datasets. On the other hand, the Simple and Bibliometric

ymmetrisations were shown to obtain similar results for the best

erforming combinations of relationships, showing that increasing

he complexity of the symmetrisation alternative does not neces-

arily imply an improvement of the quality. 

In summary, weighting the social information with the content-

ased relations achieved better results than independently com-

ining them. Additionally, it is reinforced the necessity of ade-

uately choosing not only which information sources to combine,
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Fig. 17. Comparison of the best node relationship combinations. 

Table 7 

Summary of improvements (%). 

Flake-ODF Content Cohesiveness Entropy 

Social Zalmout and 

Ghanem 

Tang et al. Social Zalmout and 

Ghanem 

Tang et al. Social Zalmout and 

Ghanem 

Tang et al. 

(a) Twitter Dataset 

SimilarContent-0.6 311.89 79.03 69.61 1666.25 451.46 1299.80 125.77 19.41 157.89 

SharedClass 440.57 79.03 69.61 −52.04 −89.37 −73.03 224.82 19.85 158.84 

Social & SharedClass 71.13 −17.71 −22.04 −61.40 −76.76 −41.01 88.85 19.14 157.30 

Social & SharedClass & SharedTag & 

SimilarContent −0.6 

45.10 −20.75 −35.38 −52.55 −89.50 −73.34 87.58 19.07 156.86 

Social & SharedClass & SharedTag & 

SimilarContent 

47.48 −31.79 −24.92 5.88 −56.14 11.33 82.80 18.94 157.14 

Social-W-SimilarContent-0.6 311.89 79.03 69.61 1592.31 428.38 1241.19 125.51 19.41 157.89 

Social-W-SharedClass 442.58 79.03 69.61 −52.46 −56.25 11.06 224.82 19.85 158.84 

Social-W-SharedClass & SimilarContent-0.6 4 4 4.88 79.03 69.61 −52.26 −56.25 11.06 224.68 19.85 158.84 

Social-W-SimilarContent-0.6 & SharedClass 438.57 79.03 69.61 −52.32 −56.25 11.06 224.82 19.85 158.84 

Social-W-SharedTag & SharedClass 176.61 −11.35 −16.01 −52.06 −56.25 11.06 209.17 19.75 158.61 

(b) Flickr Dataset 

SimilarContent-0.6 9.49 0.60 7.07 1991.12 192.40 464.89 12.42 −0.35 120.30 

TaggedSameUser 2.86 −1.53 4.80 127.63 −60.63 −23.94 6.04 −2.14 116.36 

Social & SimilarContent-0.6 11.89 0.40 6.86 1176.77 53.52 196.58 22.22 10.54 144.39 

Social & TaggedSameUser 3.64 −4.20 1.97 129.24 −62.15 −26.88 7.50 −0.55 119.86 

Social-W-TaggedSameUser & SimilarContent-0.6 10.57 0.74 7.22 1831.25 165.30 412.55 14.20 1.79 125.03 

Social-W-CommentedSameUser & 

SimilarContent-0.6 

10.66 0.74 7.22 1707.55 138.07 359.94 14.81 2.82 127.33 

Social-W-SharedClass & SimilarContent-0.6 13.32 0.08 6.52 1579.03 110.08 305.85 17.50 7.36 137.35 

Social-W-SimilarContent & SimilarContent-0.6 11.27 0.31 6.76 1298.19 55.49 200.40 21.31 10.46 144.20 

Social-W-SharedTag & SimilarContent-0.6 11.82 0.88 7.37 1195.88 53.51 196.58 22.51 10.43 144.13 
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ut also how to combine them to effectively improve the quality

f the detected communities. 

The performed analysis over two real-world datasets allowed to

how the benefits of applying the presented technique in compar-

son to state-of-the-art techniques, and to infer guidances for in-

egrating multiple views for detecting communities in social net-

orks. As regards the content-based relationships, results showed

hat a minimum similarity threshold should be imposed on con-

ent similarity for obtaining meaningful communities, as creating a
ull dense graph did not result in high quality communities. Addi-

ionally, the content of posts was reported to be more useful than

he tags or hashtags assigned by users. Comments should be useful

n those cases in which the goal is to find sentiment guided or po-

arised communities, otherwise they were shown not to be useful.

lass or category information might be of interest, however, if no

nowledge regarding whether the classes are determinant of the

atural division of communities, they should not be used for link-

ng the nodes. With respect to the topology-based relations, if the
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degree of reciprocity of relations is unknown, applying a symmetri-

sation strategy is recommended. Adequately weighting the rela-

tions is important, as weighting them yielded better results than

indiscriminately adding new information sources. It is worth not-

ing that if the number of detected communities is close to the

number of nodes in the graph (for example, in a graph of 100

nodes, each community has in average 2 or 3 nodes) or it is close

to 1 (for example, finding 1 or 2 communities in a graph compris-

ing 100 nodes) it is recommended to either remove some of the

considered node relationships or modify their weights. 

Finally, the intrinsic characteristics of the social network under

analysis could also help to guide the selection of the relationships

to consider. For example, on Information Oriented Networks, such

as Twitter , content-based relations are more important than so-

cial relationships for finding high-quality communities. Nonethe-

less, social relations could also help to discover content-related

communities. On the other hand, for Social Oriented Networks, in

which the Social view is important, such as Flickr , only considering

social relations might be sufficient for finding highly structurally

connected communities. Furthermore, it is important to note that

the friendship relationships is not the only source of topological in-

formation, the diverse social relations available should be explored

in order to improve the quality of the found communities. 

5. Conclusions 

This work aimed at integrating multiple information sources for

performing community detection in social networks. The proposed

technique tackled the problem of how to combine several infor-

mation sources for effectively finding high-quality community par-

titions. Moreover, it proposed several alternatives for adequately

considering the semantics conveyed by directed relations. 

Experimental evaluation conducted on two real-world so-

cial media datasets demonstrated that the different information

sources offer complementary views of data. Each type of relation

was shown to have a distinguished effect on the quality of the

detected communities. Thus, results reinforced the fact that com-

munity detection techniques could benefit from the integration of

multiple and diverse information sources. Furthermore, the strate-

gies for conveying the semantics of directed relations also showed

differentiated effects on community quality. However, results also

showed that a naïve combination of information sources and sym-

metrisation strategies could result in low quality results, implying

that the relations have to be carefully leveraged to achieve a pos-

itive effect on the quality of communities. Nonetheless, the study

also showed that the diverse social networking sites have differ-

ent motivations for the interactions between users (both social and

content-based), which might affect the relevance of the informa-

tion obtained through the different information sources. For exam-

ple, Twitter was shown to be more content-driven, whereas Flickr

showed a bias towards the underlying social relations. This implies

that the intrinsic characteristics of social media data have to be

taken into account when selecting the information to consider in

the community selection process. 

As regards future work, additional alternatives for considering

the directionality of edges could be explored. For example, the

metrics used for assessing the quality of the detected communi-

ties could be extended to consider edge directionality. Moreover,

such metrics could be also extended to include a content cohesive-

ness assessment of communities. Regarding relation combination,

the chosen graph representation collapses possibly heterogeneous

information into a unique and homogeneous space, ignoring the

possible differences amongst such relations. Hence, a multi-graph

representation in which each relation is represented as a separated

dimension could be devised. This representation would also allow

optimising the community partition at each dimension individu-
lly. Additionally, it could be assessed whether it is beneficial to

cale the weights of relations according to certain factors. Finally,

he possibility of considering overlapping communities could be

lso studied. 
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