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Abstract

In this paper we address the issue of modeling and forecasting electricity loads. We apply a two-step procedure to a series
of system-wide loads from the California power market. First, we remove the weekly and annual seasonalities. Then, after
analyzing properties of the deseasonalized data we fit an autoregressive moving average model. The obtained residuals seem
to be independent but with tails heavier than Gaussian. It turns out that the hyperbolic distribution provides an excellent
fit. As a justification for our approach we supply out-of-sample forecasts. As it turns out, our method performs significantly

better than the one used by the California System Operator.

© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The forecasting of energy demand has become one
of the major fields of research in electrical engineer-
ing. The power industry requires forecasts with lead
times that range from the short term (a few minutes,
hours or days ahead) to the long term (up to 20 years
ahead). Short-term forecasts, in particular, have be-
come increasingly important since the rise of the com-
petitive energy markets. During the last decade many
countries have privatized and deregulated their power
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markets and electricity has become a commodity that
can be sold and bought at market prices.

However, when dealing with the power market we
have to bear in mind that electricity cannot simply be
manufactured, transported and delivered at the press
of a button. Electricity is non-storable (at least not
economically), which causes demand and supply to
be balanced on a knife edge. Relatively small changes
in load or generation can cause large changes in price
and all in a matter of hours, if not minutes. In this
respect, there is no other market like it.

Load forecasting is vital to the whole power in-
dustry, however, it is a difficult task. Firstly, because
the load time series exhibit seasonality—at the daily,
weekly and annual timescales. Secondly, because
there are many exogenous variables that should be
considered, with weather conditions being the most
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influential. It is relatively easy to get forecasts with
about 10% mean absolute percentage error (MAPE),
however, the financial costs of the error are so high
that research is aimed at reducing it even by a few
percentage points.

Most forecasting models and methods have already
been tried out on load forecasting, with varying de-
grees of success. They may be classified into two broad
categories: classical (or statistical) approaches and ar-
tificial intelligence-based techniques.

The statistical methods forecast the current value of
a variable by using a mathematical combination of the
previous values of that variable and previous or current
values of exogenous factors, specially weather and so-
cial variables. Some models of the first class suggested
in recent papers are autoregressive (AR) models [39],
dynamic linear [17] or non-linear [48] models, thresh-
old AR models [30] and methods based on Kalman
filtering [31,49]. Some of the second class are Box
and Jenkins transfer function [24], ARMAX models
[57], optimization techniques [58], non-parametric re-
gression [15] and curve-fitting procedures [26]. De-
spite this large number of alternatives, however, the
most popular models are still the linear regression ones
[12,20,47,51,52]. These models are attractive because
some physical interpretation may be attached to their

components, allowing engineers and system operators
to understand their behavior.

In recent times, much research has been carried out
on the application of artificial intelligence techniques
to the load forecasting problem. Expert systems have
been used [46] and compared with the traditional
methods [40]. Fuzzy inference [41] and fuzzy neural
models [42,44] have also been applied. However, the
models that have received the largest attention are the
artificial neural networks (ANNs) [14,29,36,45,50].
Nevertheless, the reports on the performance of
ANN:Ss in forecasting have not entirely convinced the
researchers and the practitioners alike and the skepti-
cism may be partly justified [28]. Recent reviews and
textbooks on forecasting argue that there is little ev-
idence as yet that ANNs might outperform standard
forecasting methods [16,38]. Reviews of ANN-based
forecasting systems have concluded that much work
still needs to be done before they are accepted as
established forecasting techniques [23,59] and that
they are promising but that “a significant portion
of the ANN research in forecasting and prediction
lacks validity” [1]. Two major shortcomings were
found to detract from the credibility of the results
[28]: the proposed ANN architectures were too large
for the data at hand (the ANNs apparently overfitted
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Fig. 1. California Power Exchange daily average market clearing prices (top panel) and California power market daily system-wide
load (bottom panel) since January 1, 1999 until December 31, 2000. For clarity, the inset of the top panel displays the prices on a
semi-logarithmic scale. The annual and weekly seasonalities of the system-wide load are clearly visible on the bottom panel.
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the data) and the models were not systematically
tested.

The soaring prices, see the top panel of Fig. 1, and
San Francisco blackouts clearly showed that despite
the rich literature and the huge number of proposed
routines there still is a need for better methods of mod-
eling electricity load dynamics [9,53]. In this paper,
we propose a new technique and to justify it we test
its out-of-sample forecasting capabilities. As it turns
out, our method performs significantly better than the
market benchmark—the official forecast of the Cali-
fornia System Operator (CAISO).

In contrast to the previous statistical approaches,
where the errors are assumed to be Gaussian (either
iid N(0,0%) or stationary autoregressive with Gaus-
sian noise), we go one step further and, after remov-
ing the weekly and annual seasonalities, analyze the
errors themselves. It turns out that the errors possess
short-range correlations, squared errors are uncorre-
lated for lags greater than one and the distribution of
errors exhibits heavy tails. As a consequence we model
them using autoregressive moving average (ARMA)
time series with hyperbolic noise. Note, that we can-
not use ARCH/GARCH type models (which also are
heavy-tailed), because we could do it only if the errors
were uncorrelated and squared errors would exhibit
long-range correlations.

2. Preparation of the data

The analyzed database was provided by the
University of California Energy Institute (UCEI,
www.ucei.org). Among other data it contains
system-wide loads supplied by California’s Inde-
pendent (Transmission) System Operator. This is a
time series containing the load for every hour of the
period April 1, 1998-December 31, 2000. Due to a
very strong daily cycle we have created a 1006 days
long sequence of daily loads. Apart from the daily
cycle, the time series displays weekly and annual
seasonality, see the bottom panel of Fig. 1.

A well-known modeling technique that can be
applied to data exhibiting either regular or dynamic
periodicity with time increasing amplitudes consists
of fitting—via a non-linear least-squares routine—a
sum of sine (or cosine) waves having different ampli-
tudes (increasing exponentially [43] or in a power-law

fashion [2]), frequencies and/or phase angles. How-
ever, in our case the daily data span less than 3 years
(in contrast to a 12-year monthly time series studied
in [2]) and no significant change of amplitude can be
observed.

Because common trend and seasonality removal
techniques do not work well when the time series is
only a few (and not complete, in our case ca. 2.8 an-
nual cycles) cycles long, we restricted the analysis
only to two full years of data, i.e. to the period Jan-
uary 1, 1999-December 31, 2000, and applied a new
seasonality reduction technique [56].

The seasonality can be easily observed in the fre-
quency domain by plotting a sample analog of the
spectral density, i.e. the periodogram

n 2
L(wp) = % th exp{ —27i(t — Dy }| , (1)
=1

where {x,...,x,} is the vector of observations,
o =k/n, k=1,...,[n/2] and [x] denotes the largest
integer less then or equal to x. In the top panel of
Fig. 2 we plotted the periodogram for the system-wide
load. It shows well-defined peaks at frequencies
w; = 0.1428 and 2.7397 x 1073 corresponding to
cycles with periods of 7 and 365 days, respectively.
The smaller peaks at w; =0.2857 and 0.4292 indicate
periods of 3.5 and 2.33 days, respectively. Both peaks
are the so-called harmonics (multiples of the 7-day
period frequency) and indicate that the data exhibits
a 7-day period but is not sinusoidal. The weekly
period was also observed in lagged autocorrelation
plots [55].

To remove the weekly cycle we used the moving
average technique (see [11, p. 30]). For the vector of
daily loads {xi,...,x731} the trend was first estimated
by applying a moving average filter specially chosen
to eliminate the weekly component and to dampen the
noise

iy = %(xt73 + o X43), (2)

where t =4,...,728. Next, we estimated the seasonal
component. For each £k = 1,...,7, the average w; of
the deviations {(xx+7; — riky7,), 4 <k + 77 <728}
was computed. Since these average deviations do not
necessarily sum to zero, we estimated the seasonal
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Fig. 2. Periodogram of the California power market daily system-wide load since January 1, 1999 until December 31, 2000 (top panel).
The annual (w; = 2.7397 x 10~3) and weekly (w; = 0.1428) frequencies are clearly visible. The inset displays the periodogram on a
semi-logarithmic scale. Periodogram of the load returns after removal of the weekly and annual cycles (bottom panel). No dominating

frequency can be observed.

component s; as
1 7
Sk=Wk—7z;wi, 3)
i

where k=1,...,7 and §;, =S, _7 for k > 7. The desea-
sonalized (with respect to the 7-day cycle) data was
then defined as

d,zxt—ft fort:1,...,731. (4)

Finally, we removed the trend from the deseason-
alized data {d,} by taking logarithmic returns r, =
log(d+1/ds), t=1,...,730.

After removing the weekly seasonality we were left
with the annual cycle. Unfortunately, because of the
short length of the time series (only 2 years), the
method applied to the 7-day cycle could not be used
to remove the annual seasonality. To overcome this
we applied a new method which consists of the
following [56]:

(1) calculate a 25-day rolling volatility [33]

1 24
Uy = ﬁ ZO (Riyi — Rt)z,

24

where R, = % ;R,H, %)
for t =1,...,730 and a vector of returns {R,}
such that R] :Rz = :R12 =ri, R12+t =7 for
t=1,...,730, and R743 =R7s4 =" - - =R754 =7730;

(ii) calculate the average volatility for 1 year, i.e. in
our case

Ut] 999 + 012000 '

Uy = f’ (6)

(ii1) smooth the volatility by taking a 25-day moving
average of 0y;

(iv) finally, rescale the returns by dividing them by
the smoothed annual volatility.

The obtained time series (see the top panel of Fig. 3)
showed no apparent trend and seasonality (see the bot-
tom panel of Fig. 2). Therefore, we treated it as a
realization of a stationary process. Moreover, the de-
pendence structure exhibited only short-range corre-
lations. Both, the autocorrelation function (ACF) and
the partial autocorrelation function (PACF) rapidly
tended to zero (see the bottom panels of Fig. 3), which
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Fig. 3. Load returns after removal of the weekly and annual cycles (top panel). The ACF (bottom left panel) and PACF (bottom right
panel) for the mean-corrected deseasonalized load returns. Dashed lines represent the bounds 4-1.96/4/730, i.e. the 95% confidence intervals

of Gaussian white noise.

suggested that the deseasonalized load returns could
be modeled by an ARMA-type process. As a further
justification we tested the dependence of squared val-
ues of the time series. It turned out that they were
uncorrelated for lags greater than one. These prop-
erties ruled out ARCH/GARCH-type models, which
also are heavy-tailed, but exhibit long-range correla-
tions for squared values and no correlations for the
time series itself.

3. Modeling with ARMA processes

The mean-corrected (i.e. after removing the sample
mean = 0.0010658) deseasonalized load returns were
modeled by ARMA processes

Xi— g1 Xy — - — Xy
=7+ 012,,1 +-+ Gqufq,
t=1,...,n, (7)

where ( p,q) denote the order of the model and {Z;}
is a sequence of independent, identically distributed

variables with mean 0 and variance ¢® (denoted by
iid(0, %) in the text).

The maximum likelihood estimators q; = ((,131, ey
<13p), 0 = (él,...,éq) and 6> of the parameters
d=(¢1,....¢,), 0=(01,...,0,) and 67, respectively,
were obtained after a preliminary estimation via the
Hannan—Rissanen method (see [11, p. 154]) using all
730 deseasonalized returns. The ML estimators used
here are based on the Gaussian assumption. However,
this does not exclude models with non-Gaussian noise
since the large sample distribution of the estimators is
the same for {Z,} ~ iid(0, 6?), regardless of whether
or not {Z;} is Gaussian (see [10, Section 10.8]).

The parameter estimates and the model size
(p, q) were selected to be those that minimize the
bias-corrected version of the Akaike criterion, i.e. the
AICC statistics (see [11, Section 5.5])

2(p+q+1)n

AICC=-2InL + ,
n—p—q—2

(8)

where L denotes the maximum likelihood function and
n = 730. The optimization procedure led us to the
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Table 1
AICC values for the best AR, MA and ARMA models

Model class Best model AICC value Model class Best model AICC value
AR(+) AR(11) 1965.226 MA(+) MA(4) 1959.299
ARMA(1, ) ARMA(1,6) 1956.294 ARMA(2,) ARMA(2,3) 1960.312
ARMA(3, ) ARMA(3,3) 1962.037 ARMA(4, ) ARMA(4,4) 1963.028
ARMA(S, -) ARMAC(S,3) 1962.045 ARMA(6, -) ARMA(6,2) 1966.060
ARMA(7,-) ARMA(7,3) 1967.511 ARMA(S, ) ARMA(S, 1) 1967.844
ARMA(9, -) ARMA(9,1) 1965.556 ARMA(10,-) ARMA(10,1) 1967.628
ARMA(11,-) ARMA(11,1) 1968.005

“.” denotes an integer from the interval [1,11].
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Fig. 4. The residuals obtained from the ARMA(1, 6) model (top panel).

of the residuals. Dashed lines represent the bounds 41.96//730.

following ARMA(1, 6) model (with 04 = 05 = 0):

X, =0.332776X,_, + Z, — 0.383245Z,_,
—0.12908Z,_5 — 0.149307Z,_5
—0.0531862Z;_s, )

where t=1,...,730 and {Z,} ~ iid(0,0.838716). The
value of the AICC criterion obtained for this model
was AICC=1956.294. For comparison, in Table 1 we
present the AICC values for the best models in each
class.
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The ACF (bottom left panel) and the PACF (bottom right panel)

In order to check the goodness of fit of the model to
the set of data we compared the observed values with
the corresponding predicted values obtained from the
fitted model. If the fitted model was appropriate, then
the residuals

2 _Ath —Xt((]’é,é)

W= —F——,
\ Ct—l(qaa(j)

where X ,(qg, é) denotes the predicted value of X; based
onXi,...,Xi— and ¢, = E(X, — X,)*/o? should be-
have in a manner that is consistent with the model. In

t=1,...,730, (10)
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Table 2
Test statistics and p-values for the residuals

Test Test statistics value p-value
Portmanteau 15.03 (0.7747)
Turning point 464 (0.0609)
Difference-sign 361 (0.6536)
Rank 131090 (0.5529)

our case this means that the properties of the residuals
should reflect those of an iid noise sequence with mean
0 and variance ¢?.

The residuals obtained from the ARMA(1, 6) model
fitted to the mean-corrected deseasonalized load re-
turns are displayed in the top panel of Fig. 4. The graph
gives no indication of a non-zero mean or non-constant
variance. The sample ACF and PACF of the resid-
uals fall between the bounds 4-1.96//730 indicating
that there is no correlation in the series, see the bot-
tom panels of Fig. 4. Recall that for large sample
size n the sample autocorrelations of an iid sequence
with finite variance are approximately iid with dis-
tribution N(0, 1/n). Therefore, there is no reason to
reject the fitted model on the basis of the ACF or
PACF. However, we should not rely only on simple
visual inspection techniques. For our results to be more
statistically sound we performed several standard tests
for randomness. The results of the portmanteau, turn-
ing point, difference-sign and rank tests are presented
in Table 2. Short descriptions of all applied tests can
be found in the appendix.

As we can see from Table 2, if we carry out the
tests at commonly used 5% level, the tests do not
detect any deviation from the iid behavior. Thus there
is not sufficient evidence to reject the iid hypothesis.
Moreover, the order p = 0 of the minimum AICC
autoregressive model for the residuals also suggests
the compatibility of the residuals with white noise,
see the last paragraph of the appendix. Therefore, we
may conclude that the ARMA(1, 6) model (defined by
Eq. (9)) fits the mean-corrected deseasonalized load
returns very well.

4. Distribution of the residuals

In the previous section we showed that the resid-
uals are a realization of an iid(0, 6?) sequence. But

what precisely is their distribution? The answer to this
question is important, because if the noise distribu-
tion is known then stronger conclusions can be drawn
when a model is fitted to the data. There are simple
visual inspection techniques that enable us to check
whether it is reasonable to assume that observations
from an iid sequence are also Gaussian. The most
widely used is the so-called normal probability plot,
see Fig. 5. If the residuals were Gaussian then they
would form a straight line (dotted line in the plot).
Obviously, they are not Gaussian—the deviation from
the line is apparent. This deviation suggests that the
residuals have heavier tails. However, the tails are not
Paretian as well. Observe that in the tails the distribu-
tion of the residuals does not comply with the solid
line, which presents an a-stable law with parameters
o=1.7063, 6 =0.5116, f = —0.0809, 1= 0.0083 es-
timated from the data via the regression method [34].
This may indicate a finite variance of the empirical
distribution, which is a desirable feature since in or-
der to comply with the ARMA model assumptions the
distribution of the residuals must have a finite second
moment.

Moreover, if we plot the empirical probability den-
sity function (PDF)—to be more precise: a kernel es-
timator of the density—we can clearly see that, on
the semi-logarithmic scale, the tails of the residuals’
density form straight lines, see Fig. 6. In the class of
heavy-tailed laws with finite variance and hyperbolic
decay in the tails the hyperbolic distribution seems to
be a natural candidate.

The hyperbolic law was introduced by Barndorff-
Nielsen [3] in 1977 for modeling the grain size dis-
tribution of windblown sand [5,6]. Almost 20 years
later it was found to provide an excellent fit to the
distributions of daily returns of stocks from a num-
ber of leading German enterprises [18,35], giving way
to its today’s widespread use in stock price model-
ing [7] and market risk measurement [19]. The hyper-
bolic distribution or hyperbolic decay has also been
fit to taxonomic systems [13], the size distribution of
plant seeds [27], bibliometric and scientometric data
[32], linguistics data [25] and impulse noises [54].
The name of the distribution is derived from the fact
that its log-density forms a hyperbola. Recall that the
log-density of the normal distribution is a parabola.
Hence, the hyperbolic distribution provides the possi-
bility of modeling heavy tails.



1910 J. Nowicka-Zagrajek, R. Weron/ Signal Processing 82 (2002) 19031915

T T T L T

0.999+ - Residuals
0.997+ | — Stable CDF
----- Gaussian CDF

0.99
0.98

0.95
0.90

0.75

0.50

Probability

-6 -4 -2 0 2 4 6

Fig. 5. The normal probability plot of the residuals obtained from the ARMA(1, 6) model. If the residuals were Gaussian then they would
form a straight (dotted in the plot) line. If they were a-stable then they would comply with the curved solid line, which presents a stable
law with parameters estimated from the data.

0

10 T T T T T T T r
o Residuals
o o —— Hyperbolic

107 1
W
[a)
a

107 1

1 0‘3 1 1 A 1 1 1 1 1

-5 —4 -3 -2 -1 0 1 2 3 4

Fig. 6. The empirical probability density function (a kernel estimator of the density) and the approximating hyperbolic PDF on the
semi-logarithmic scale.

The hyperbolic distribution is defined as a normal tionally Gaussian (for other conditionally Gaussian
variance—mean mixture where the mixing distribution models in the signal processing literature see e.g.
is the inverse Gaussian law [3,4], i.e. it is condi- [21,22]). More precisely, a random variable Z has the
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hyperbolic distribution if (Z]Y) ~ N(u + pY,Y),
where Y ~ IG(y,y), with the probability density
function

_ W' P }
fY(x)f ZKI(\/W) exp{ 2[Xx +l70x] s
x> 0. (11)

The normalizing constant K (z)=1/2 fooo exp{—(1/2)
t(x + %)} dx, t > 0, is the modified Bessel function
with index 1. This means that Z ~ Hyp(y, s f, 1t) can
be represented in the form Z = u + Y + VYN(0, 1)
with the characteristic function

¢z(u) = exp(iup) /ODO exp {iﬁzu - ;zuz} dFy(2).

(12)

In what follows we adopt a more natural parameteri-
zation of the hyperbolic distribution with é =,/ and

o = 1/ + 2. Then the probability density function
of the hyperbolic Hyp(a, 5, 3, 1) law can be written as

S, B,6, 1)

_ Vo — B2 ) Y
TN A

+ Bx — W}, (13)

where 0 > 0 is the scale parameter, u € R is the
location parameter and 0 < |ff| < a. The latter two
parameters—o and f—determine the shape, with o
being responsible for the steepness and f for the
skewness.

Given a sample of independent observations all four
parameters can be estimated by the maximum likeli-
hood method. In our studies we used the ‘hyp’ pro-
gram [8] to obtain the following estimates:

4 =1.671304, B =—0.098790,

5=0298285, [ =0.076975.

The empirical PDF together with the estimated hy-
perbolic PDF are presented in Fig. 6. The adjusted
Kolmogorov statistics K = /nsup, |F(x) — F,(x)|,
where F(x) is the theoretical and F,(x) is the em-
pirical cummulative distribution function, returns the
value K = 1.5652. This indicates that there is not

sufficient evidence to reject the hypothesis of the hy-
berbolic distribution of the residuals at the 1% level.
For comparison we fitted a Gaussian law to the resid-
uals as well. In this case the adjusted Kolmogorov
statistics returned K = 1.8019 causing us to reject the
Gaussian hypothesis of the residuals at the same level.

5. Forecasting

It is not so surprising that a model will perform well
when evaluated by its fit to the data set to which it was
adjusted. The real test is whether it will be capable of
also describing new data sets coming from the same
process. A suggestive and attractive way of compar-
ing different models is to evaluate their performance
when applied to a data set to which none of them was
adjusted. The standard measure of goodness of fit is
the difference between actual and forecasted outputs.
The disadvantage of this method is that we have to
save part of the data set for the comparisons and there-
fore cannot use all available information to build the
model.

In the previous sections we fit an ARMA(1,6)
model to the deseasonalized system-wide load returns
from the period January 1, 1999 to December 31,
2000. Now, we test the performance of the model
on data from the two following months, i.e. from the
period January 1 to February 28, 2001. For every
day in the test period we run a day-ahead prediction
by applying the model defined in Eq. (9) and using
previous observations. The results are then “inverted”
(the seasonality is added by following the steps of
Section 2 in reverse order) and compared with the
actual system-wide loads and the CAISO official
day-ahead forecasts (see www.caiso.com).

The performance of the model is summarized in
Table 3 (column 3). Looking at the mean square error
(MSE) values for the whole test period we can observe
that the CAISO forecast outperforms our model. How-
ever, this is only illusionary. Large value of the MSE
for our model is caused by two extreme observations
corresponding to January 1 and 2 (lags 1 and 2), see
Fig. 7 and especially Fig. 8. The mean absolute error
(MAE) places less weight to the extreme differences
and here our model outperforms the CAISO forecast.
The same result can be observed for the mean absolute
percentage error (MAPE =1 (6 —x:)/xi| < 100).

n
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Table 3
Comparison of forecasting capabilities

Forecasting approach

Error CAISO ARMAC(1,6) Adaptive
ARMA

January 1-February 28

MSE 208.34 304.14 318.50

MAE 10.52 9.86 9.87

MAPE (%) 1.7799 1.6642 1.6682

January 3—February 28

MSE 190.28 89.00 88.36

MAE 10.08 7.39 7.31

MAPE (%) 1.7087 1.2401 1.2282

Note the difference in performance for the period without
New Year’s Day.

Observe that the extreme differences in the
ARMA(1,6) model correspond to the US national
holidays—New Year’s (lags 1 and 2) and Presidents’
Day (lags 50 and 51). Obviously, our model cannot
capture the holiday structure. However, this can be
quite easily incorporated into it by simply subtracting
a certain amount of GW for these holidays. When we
compare the forecasting results for the period January

3—February 28, 2001 (i.e. without New Year’s) our
model is significantly better. The MSE is reduced by
53% and the MAE by 27%. The results would improve
even more if we eliminated the Presidents’ Day from
the test period.

The forecasts can be still fine tuned by applying an
adaptive scheme. In the fourth column of Table 3 we
present the results of such an approach (we did not
include these results in Figs. 7 and 8 because the dif-
ferences are quite small and would be almost invisi-
ble). Instead of using a single model (defined in Eq.
(9)), for every day in the test period we fitted the best
ARMA model (of order p,q < 6) to the last 730 de-
seasonalized load returns and run a day-ahead predic-
tion by applying the obtained models.

6. Conclusions

Short-term load forecasting plays an important role
in power system operation and planning. Accurate
load prediction saves costs by improving economic
load dispatching, unit commitment, etc. At the same
time it enhances the function of security control.

In this paper, we have proposed an efficient method
for short-term load forecasting with heavy-tailed
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Fig. 7. California power market daily system-wide load, CAISO day-ahead forecast and ARMA(1,6)—see Eq. (9)—day-ahead forecast
for the period January 1-February 28, 2001.
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ARMA time series and a data-preprocessing tech-
nique. After applying a new seasonality removal tech-
nique we modeled the data with an ARMA process.
However, in contrast to the previous statistical ap-
proaches, we did not assume a Gaussian distribution
of the residuals. The performed analysis suggested the
use of the hyperbolic distribution. As a consequence
we modeled deseasonalized loads using ARMA time
series with hyperbolic noise.

The proposed method was successfully applied to
real data. A comparison was made between the pro-
posed technique and the official forecasts of the Cal-
ifornia System Operator (CAISO). The effectiveness
of the proposed method was demonstrated through
a comparison of the real load data with short-term
forecasted values. In terms of the mean absolute
percentage error our approach yielded only a 1.2—
1.25% difference, whereas the CAISO day-ahead
forecasts returned a 1.7% error.

We strongly believe that our approach is a universal
one and can be applied not only to the California power
market system-wide load but also to other data sets
displaying seasonalities and heavy tails. Moreover, the

computational times are negligible and the method can
be used in real time.
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Appendix A. Tests for randomness
(see [11, p. 164])

The portmanteau test. Instead of checking to see
if each sample autocorrelation p(j) falls inside the
bounds +1.96/+/n, where n is the sample size, it is
possible to consider a single statistic introduced by
Ljung and Box [37) @ =n(n+2) 37, p*(J)/(n =),
whose distribution can be approximated by the 32 dis-
tribution with % degrees of freedom. A large value of
O suggests that the sample autocorrelations of the ob-
servations are too large for the data to be a sample
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from an iid sequence. Therefore, we reject the iid hy-
pothesis at level o if Q > y3__(h), where 33_, is the
(1 — &) quantile of the %? distribution with / degrees
of freedom.

The turning point test. If yy,..., y, is a sequence
of observations, we say that there is a turning point
at time 7 (1 <i<n)if y;—1 <y;and y; > y;q; or
if y;—1 > y; and y; < y;;1. In order to carry out a
test of the iid hypothesis (for large n) we denote the
number of turning points by 7 (T is approximately
N(ur,a%), where puy = 2(n — 2)/3 and 2 = (16n —
29)/90) and we reject this hypothesis at level « if
|T — pr|/or > @i_yp, where @y _,; is the (1 — 0/2)
quantile of the standard normal distribution. The large
value of T — pr indicates that the series is fluctuating
more rapidly than expected for an iid sequence; a value
of T — pur much smaller than zero indicates a positive
correlation between neighboring observations.

The difference-sign test. For this test we count the
number S of values i such that y; > y;_,i=2,...,n.
For an iid sequence and for large n, S is approximately
N(ps,0%), where ug=(n—1)/2 and 62=(n+1)/12. A
large positive (or negative) value of S — g indicates
the presence of an increasing (or decreasing) trend
in the data. We therefore reject the assumption of no
trend in the data if |S — ug|/os > @1_yp0.

The rank test. The rank test is particularly useful
for detecting a linear trend in the data. We define P as
the number of pairs (7, j) such that y; > y; and j > i,
i=1,...,n—1.Foran iid sequence and for large n, P is
approximately N(up, 6%), where up =n(n — 1)/4 and
o3 =n(n—1)(2n+5)/72. A large positive (negative)
value of P — up indicates the presence of an increas-
ing (decreasing) trend in data. The iid hypothesis is
therefore rejected at level o if |P — up|/op > P1_yp.

The minimum AICC AR model test. A simple test
for whiteness of a time series is to fit autoregressive
models of orders p = 0,1,..., pmax, for some large
Pmax, and to record the value of p for which the AICC
value attains the minimum. Compatibility of these ob-
servations with white noise is indicated by selection
of the value p =0.
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