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Abstract
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collaboration may be achieved.
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. Introduction

What factors influence the rates at which new knowl-
dge is produced in technological fields? The particular
tudy reported in this paper is part of a more general
esearch program driven by this question, whereby we
eek to understand the processes that determine the pro-
uctivity of authors and inventors in new technology,
s measured by counts of articles and patents (see, e.g.,
ucker et al., 1998a,b; Zucker et al., 2002). In the study

eported here, our counts of documents are obtained
y statistical analysis of the contents of NanoBank, an
pen-access digital library of articles and patents in the
eld of nanotechnology (Zucker and Darby, 2006). Our
pproach is guided by a theoretical conception of the
roduction of scientific knowledge as an activity that is
eeply embedded in a complex network of social struc-
ures and practices, and that the forms taken by these
tructures and practices are crucial determinants of the
orms taken by knowledge production in later periods
n the same place. While it is conventional to refer to
cience as cumulative, we argue and demonstrate that
here is a significant cumulative effect even when the
nowledge produced is discontinuous and revolutionary
n some respects.

We present the results of tests of two related hypothe-
es. The first of these is that the frequency of publication,
uring a given period and in a given geographical region,
f articles and patents relating to nanotechnology is cor-
elated with the size of the existing “knowledge stock”
f all other (non-nanotechnology) articles and patents in
ll fields of science previously published in that region.
he second hypothesis is that the frequency of publica-

ion, during a given period and in a given geographical
egion, of articles and patents relating to nanotechnol-
gy is correlated with the extent to which articles and
atents in the existing knowledge stock of the region
re co-authored by affiliates of institutions of different
rganizational types.

The results of our tests allow us to draw two sets
f conclusions. In the first place, we are able to dif-
erentiate the respective merits of two competing kinds
f claims about the ways in which existing knowledge
tocks affect the evolution of new fields of knowledge
uch as nanotechnology. In the second place, we are
ble both to evaluate, on the basis of their impact on
roductivity, ongoing efforts to institutionalize chan-
els through which cross-institutional collaboration (or

knowledge flow”) may be achieved, and to demonstrate
he utility of a method by which the impact of stocks of
acit knowledge (as opposed to that of stocks of recorded
nowledge) may be estimated.
licy 36 (2007) 850–863 851

In the course of our investigations of the links between
knowledge stocks, knowledge flows, and knowledge
production, we are also able to assess the impact (on
productivity of knowledge in nanotechnology) of the
cumulative stock of funding dollars awarded by the
National Science Foundation (NSF) to nanotechnology
projects initiated by institutions in a given region.

The paper is structured as follows. Firstly, we con-
textualize our hypotheses by considering the impact, on
the production of new knowledge, of general knowledge
stocks (Section 2), and of barriers to the flow of knowl-
edge across institutional boundaries (Section 3). We then
provide a justification of our focus on geographically
localized knowledge flow (Section 4), before describ-
ing our methods of measuring knowledge (Section 5),
of identifying “nano-relevant” documents (Section 6),
and of categorizing those documents by organizational
type and geographical region (Section 7). In Section 8,
we describe our methods of data analysis; in Section 9,
we present the results of the tests of our first hypothesis,
about the impact of knowledge stocks; and in Section 10,
we present the results of the tests of our second hypoth-
esis, about the impact of knowledge flows. Finally, we
draw our conclusions (Section 11).

2. General knowledge stocks: their impact on the
production of new knowledge

Researchers in the economics of scientific knowledge
have long been concerned to assess the impact of knowl-
edge production on economic growth (see, e.g., Stephan,
1996; Foray, 2004). How closely do measurements of the
rates at which new knowledge is produced correlate with
measurements of the rates at which the economy grows
as a whole? A number of production functions have been
proposed that model the relationship between output
quantities of goods and services and input quantities of
knowledge. Considerable attention has also been paid to
the task of identifying the conditions under which rates of
knowledge production (and thus economic productivity
in general) can increase most rapidly. Correspondingly,
production functions have been developed that may be
used to predict the rate at which new knowledge will be
produced in the future (see, e.g., Adams, 1990).

Comprehensive functions of this latter kind typically
quantify inputs of three principal types: time, physical
resources, and human (i.e., intellectual) resources. In
practice, the intellectual capital accessible to an insti-

tution includes both (i) knowledge that is recorded or
codified in documents, and (ii) the tacit knowledge or
know-how that is stored only in the minds of the institu-
tion’s scientists and researchers. Research in economics
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(see, e.g., Griliches, 1990) suggests that the impact of
cumulated general knowledge stocks (i.e., knowledge
capital) on the production of new knowledge is positive.
In other words, the larger the existing cumulated stock
of general knowledge, the faster new knowledge is pro-
duced: rates of production of new knowledge increase
in direct proportion to sizes of stocks of existing knowl-
edge. Such a finding supports the general claim, widely
accepted by economists, that scientific knowledge is
strongly cumulative (see, e.g., Stigler, 1983; Machlup,
1984). According to the cumulative advantage model
of the knowledge production process, having one idea
increases the likelihood of having another: knowledge
begets knowledge.

The validity of the cumulative advantage model has
been questioned from various perspectives. On one hand,
it is criticized for its reliance on the assumption that the
existing knowledge base consists of propositions about
the world that are themselves true. Work in the his-
tory and philosophy of science (HPS) and science and
technology studies (STS) tends to emphasize the sharp
continuity breaks in the evolution of fields of knowledge
that are observed to follow breakthrough discoveries
(see, e.g., Kuhn, 1962), and thus to suggest that the
size of existing knowledge stocks is either irrelevant for
predictions of future knowledge productivity, or even
negatively correlated in the sense that the existence of
large stocks of prior general knowledge actively retards
the making and acceptance of discoveries in new fields.

From another perspective, the cumulative advantage
model has been attacked for failing to take into account
the gradual obsolescence (and depreciation in economic
value) of knowledge, and the variation in obsolescence
rates among fields. Nevertheless, the correlation between
size of existing knowledge stock and rate of production
of new knowledge has been observed even when the
value of previously-produced knowledge is discounted
(conventionally by 20% per year) to reflect the way in
which older knowledge becomes obsolete over time (see,
e.g., Griliches, 1990).

Thirdly, it has been argued that the positive external-
ities of knowledge in a given field are most frequently
restricted or localized to third parties working in that
field—i.e., that the stock of knowledge produced in one
field has little impact on the rate of production of new
knowledge in other fields (see, e.g., Antonelli, 2001).

The study described in this paper supplies data that
can be interpreted as further evidence of the validity of

the cumulative advantage model, addressing in particular
the third criticism mentioned above. We report measure-
ments of (i) the size of prior stocks of knowledge in all
fields, and (ii) the rate of production of new knowledge in
licy 36 (2007) 850–863

the field of nanotechnology, and find that the correlation
between sets of measurements of the two kinds is typ-
ically positive. We believe that this finding reflects the
capability of disruptive, breakthrough discoveries in sci-
ence still to draw upon, or at least not contradict, some of
the concepts, formulae, and machines developed in pre-
existing science. While some elements in pre-existing
science may be radically changed or eliminated, other
old elements are imported largely unchanged, while still
others are transformed by their use for new purposes,
yielding hybrid elements that mix old and new.

3. Barriers to the flow of knowledge across
institutional boundaries: their impact on the
production of new knowledge

A much remarked property of knowledge as an eco-
nomic good is that it is capable of “spillover”: it may be
acquired and used freely by people working in institu-
tions other than those in which the knowledge originates,
while the originating institution retains access to that
knowledge but receives no further compensation for
its diffusion (see, e.g., Arrow, 1962). Knowledge pro-
duction is thus said to generate “positive externalities”
or benefits for third parties. Codified knowledge flows
through text books, scientific equipment, and lecture hall
presentations. Tacit knowledge is embodied in the per-
son and is communicated with great difficulty, often by
doing research together with the person learning. The
freedom for tacit knowledge to flow across institutional
boundaries is frequently identified as one of the essential
conditions under which rates of knowledge production
can increase most rapidly.

Ideally, the intellectual capital input to a knowl-
edge production function should account not only for
stocks of recorded knowledge but also for stocks of
tacit knowledge. Recorded knowledge may be quanti-
fied using counts of publications (and perhaps qualified,
more controversially, by weighting publication counts
by counts of the citations made to those publications by
other authors). It has proven more difficult, on the other
hand, to measure stocks of tacit knowledge. Neverthe-
less, since there is evidence to suggest that researchers’
engagement in collaborative activity is the principal way
in which tacit knowledge is generated and shared, col-
laboration contains evidence of likely significant tacit
knowledge stocks, once value and skill differentiation
are controlled.
The simplest and most commonly occurring process
by which knowledge is transferred across institutional
boundaries involves people from different institutions
interacting with one another, and (more specifically)
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ollaborating on projects whose results include the pro-
uction of some new knowledge. Micro-institutional
pproaches look at the social construction process,
ncluding transmission of knowledge and informa-
ion (Zucker, 1977) and “institutionalization projects”
DiMaggio, 1982a,b).

Co-authoring across institutional boundaries serves
o connect the two organizations, while simultaneously
onverting each co-author into quasi-members of the
ther co-authors’ organizations, such that a subsequent
romotion of one of the authors may include a letter of
valuation from an external collaborator (Zucker, 1991;
artrell, 1987). This process of external evaluation of job
erformance also occurs in firms, e.g. investment banks
here externally collected survey data from clients is
sed to determine bonuses and promotions (Eccles and
rane, 1988). Action becomes embedded in the vir-

ual space created by the social network (Powell, 1990).
hus, the deepening of channels or conduits for the flow
f knowledge can serve as a catalyst for changes in the
egree and type of social embeddedness of knowledge-
roduction activity Gulati (1999).

As the frequency and number of different scientists
orking with each other across institutional boundaries

ncreases, the “gap” between institutions may begin to
e converted into a “glissando” (Tyree et al., 1979).
hen this kind of boundary change occurs repeatedly

cross institutions of two organizational types (e.g., uni-
ersity and firm), the social distance between the two
ypes is reduced and institutional differentiation may
ecrease, changing the context in which action is embed-
ed. For new knowledge to have an impact, and perhaps
ecome taken-for-granted, the knowledge not only needs
o be produced, but also transmitted to others. Pre-
xisting practices of co-authorship and collaboration
rovide existing channels along which the new infor-
ation is likely to flow. These collaborations can be

iewed as micro-joint ventures, where success encour-
ges more joint work, further embedding persons in
ross-organizational contexts. As the number of these
micro-JVs” adds up, the cumulative effects may oper-
te like an organization-level joint venture, and lead to a
ove to the other organization by one of the scientists.
The factors considered by researchers when choosing

hether or not to engage in collaborative knowledge-
roduction activity are various. Whatever the factors that
re perceived by individuals as incentives in particular
ontexts, the force of such incentives is typically dimin-

shed by the existence of barriers to collaboration, such as
he absence (or unreliability) of formalized structures of
he kinds that might support cross-institutional interac-
ion. It is clear, for instance, that the prior lack of channels
licy 36 (2007) 850–863 853

for cross-institutional communication is a strong dis-
incentive to collaborate on cross-institutional research,
with the result that institutional boundaries function as
knowledge envelopes, preventing knowledge from leav-
ing the institution in which it was produced (Zucker et
al., 1996).

In our prior work, we have examined the effects of
direct ties, measured as numbers of articles co-authored
by scientists in universities and scientists in firms, on
commercialization of basic science discoveries made
in universities (Zucker et al., 1998a,b, 2002; Zucker
and Darby, 2001). It is not yet equally clear, how-
ever, what impact the prior existence of channels for
cross-institutional communication has on the rate at
which knowledge is produced in new fields. It might
be hypothesized that the depth of such channels is posi-
tively correlated with knowledge productivity—in other
words, that the more frequently cross-institutional col-
laboration has occurred (and knowledge has flowed)
in the past, the greater quantity of knowledge will be
produced in the immediate future. In this paper, we
investigate this hypothesis in relation to the field of nan-
otechnology, reporting our findings that the absence of
barriers to the flow of general (i.e., “non-nano”) knowl-
edge in the past has a positive impact on the rate at which
new knowledge is produced in nanotechnology.

4. Geographically localized knowledge flow: a
theory of localization

A stream of recent research on innovation in the
U.S. has found evidence of “geographically localized
knowledge spillovers” occurring in areas around major
universities (Jaffe, 1986,1989a,b; Jaffe et al., 1993;
Audretsch and Feldman, 1996; Henderson et al., 1998).
The underlying assumption is that proximity to a major
university itself provides technological opportunity; the
localization is assumed to be due to the social ties
between university and firm employees or to firm
employees’ access to seminars at the university. The
importance of distance is strengthened by Adams and
Jaffe (1996) finding that geographic distance is an impor-
tant impediment to flow of technology even within the
firm.

Zucker et al. (1998a,b) and Darby and Zucker (2001)
find that firms are more likely to begin using biotech-
nology in U.S. and Japanese regions where and when
“star” bioscientists are actively publishing, respectively.

Although these findings have been cited as evidence of
geographically localized knowledge spillovers, we read
our results – and those of the other authors cited above
– as only demonstrating geographical localization of
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knowledge. Zucker et al. (1998a,b, 2002) and Zucker
and Darby (2001) show for California, the U.S., and
Japan, respectively, that university effects on nearby firm
R&D productivity are highly concentrated in the particu-
lar firms with bench-science working relationships with
top academic scientists and practically absent otherwise.
We identify these academic–firm links by the academic
scientist publishing a journal article that also has one
or more firm-affiliated authors. Fieldwork – supported
by analysis of the timing of the academic scientists’ first
articles with a firm and its founding – indicates that these
academic – firm co-publishing relationships most often
connote that the academic scientist was a firm founder
or at least presently has a significant financial interest
in the firm. In our view, knowledge localization occurs
because high levels of tacit knowledge characteristic of
high-science discoveries require inventor involvement
for successful transfer to firms. The implied tempo-
rary natural excludability produces high potential returns
which help motivate the involvement of top scientists in
the commercial application of their discoveries.

This paper builds on this literature in two ways:
First, we hypothesize that both recently published and
patented knowledge creation will have localized effects
on the current production of knowledge. Second, we
hypothesize that it will be more difficult to engage in
collaborations across organizational type in a new area
like nanotechnology in those local regions where there is
little prior precedent for such collaborations than in those
regions with a more extensive history of such collabora-
tions. That is, the inherited institutional setting of a local
region may limit or enhance the ability of scientists and
engineers to engage in productive collaborations across
organizational type.

5. Overcoming difficulties in the measurement of
knowledge

The characteristics of knowledge that make it impos-
sible for researchers to measure its quantity (let alone its
quality) directly are well documented (see, e.g., Foray,
2004). In this paper, we adopt a strategy for measurement
that will be familiar to sciento- and bibliometricians (see,
e.g., Hullmann and Meyer, 2003; Moed et al., 2004):
we use counts of articles (i.e., articles published in the
scientific literature) and counts of patents as separate
indicators of the quantities of knowledge produced in
given fields, in given sectors, in given regions, in given

periods.

The limitations of such an approach are also well doc-
umented; suffice to say that we are only too aware (i) that
such counts obscure large variations in the quality of
licy 36 (2007) 850–863

the knowledge recorded in articles and patents, and (ii)
that a large but unknown proportion of the knowledge
produced and used by researchers and by developers
remains unrecorded in articles and patents. One com-
mon response to the former observation is to weight
publication counts in accordance with counts of the cita-
tions received by publications. We have not made use
of citation statistics in this study since the nature of
the relationship between citedness and quality is itself
unclear.

We have been developing an open-access digital
library of articles and patents in the field of nanotechnol-
ogy, covering all aspects of the science and technology
of nanometer-scale structures and systems (Zucker and
Darby, 2006). Nanotechnology is an emergent, highly
interdisciplinary field. The criteria that we use when
deciding whether or not to add a new article or patent
to NanoBank are described in Section 6.

Each of the records in NanoBank includes metadata
that specify, inter alia, the date of the article’s publication
or the patent’s grant, the institutional affiliation of each
of the article’s authors or the patent’s assignees (and the
addresses of named institutions), and any discipline(s)
or subject area(s) to which the article or patent has
been assigned in previous acts of classification. These
metadata can then be processed by computer (using pro-
cedures described in Section 7) in order to generate
counts of articles and patents tabulated by year, by geo-
graphical area, by organizational type, by subject area,
and by type of cross-institutional collaboration.

These counts – indicating the rate of production of
new knowledge in nanotechnology – are then com-
pared with counts of “non-nano” articles and patents that
indicate the size of existing general knowledge stocks.
These latter counts are generated in a similar manner
from existing databases of general coverage produced
by Thomson Scientific (formerly the Institute for Scien-
tific Information, Inc., ISI), and the United States Patent
and Trademark Office (USPTO).

6. Identifying nano-relevant documents

In order to populate NanoBank with articles and
patents that treat topics related to nanotechnology (i.e.,
that are “nano-relevant” or, simply, “nano”), we need to
filter such documents from initial universal sets of doc-
uments covering all subject areas. Nanotechnology is an
interdisciplinary endeavor, and nano-relevant documents

may be found inhabiting many disciplinary spaces, both
expected and unexpected. The two universal document
sets with which we began are (for articles) the union
of Science Citation Index ExpandedTM, Social Sciences
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itation Index®, and Arts & Humanities Citation Index®

roduced by Thomson Scientific, and (for patents) the
atabase of US patents produced by the Zucker–Darby
nowledge, Innovation, and Growth Project. Thomson
cientific’s data cover more than 24 million articles from
ore than 8700 peer-reviewed journals; our patent data

over the 3,891,720 patents granted by the USPTO from
976 to 2005.

The fraction of the content of these document sets
hat is nano-relevant is substantial, so the task of filter-
ng nano-relevant documents is one that can be carried
ut only with automated assistance. We use two sep-
rate methods of distinguishing documents that are
nano”: (a) Search for the occurrence of terms in a
redefined list of 379 terms identified by subject spe-
ialists as nano-specific to indicate “nano.” We found
his method to be less reliable in identifying the latest
nd the earliest nano-relevant documents: the latest are
ore likely to include terms that are too new to have
ade it on to our list, while the earliest were written

efore the terms on our list were in common usage.
b) Discriminate between nano-relevant documents and
thers using a probabilistic procedure for the automatic
dentification of those terms (Sebastiani, 2002). This
rocedure is adaptive in the sense that it requires the
omputer to continuously learn from the training data
rovided by prior sets of judgments of the relevance or
on-relevance of documents, and integrates techniques
eveloped in the fields of information retrieval (IR),
achine learning (ML), and natural language processing

NLP).
We begin by assuming the nano-relevance of the arti-

les that make up the Virtual Journal of Nanoscale Sci-
nce & Technology (a.k.a. VJNano; http://www.vjnano.
rg/), a weekly compilation of the latest research on
anoscale systems whose contents is selected manually,
rom a variety of source publications, by the members of
n international editorial board. In the technical vocabu-
ary of IR, VJNano’s selection policy is analogous to the
utput of a search with very high precision but potentially
ow recall: few, if any, non-nano-articles are selected,
ut it is not known how many nano-relevant articles are
ot selected.1 Our task is then to identify those docu-
ents that have not been selected by VJNano but that
re nevertheless nano-relevant; in other words, we want
o classify the non-VJNano literature into nano (relevant)
nd non-nano (non-relevant). The terms that occur most

1 VJNano also covers a limited range of journals, those published by
he American Institute of Physics or by the American Physical Society,
lus a core group of interdisciplinary journals.
licy 36 (2007) 850–863 855

frequently in VJNano (and that do not appear on a stop-
word list of terms that occur frequently in English text
in general) are weighted according to their frequencies
and used in a query against a universal document set
(Van Rijsbergen, 1979). The system’s response to such a
query is a list of documents ranked in order of their prob-
ability of relevance. In a “blind” feedback process, we
then assume the nano-relevance of the top-ranked docu-
ments, use data on the frequencies of occurrence of terms
in those newly-identified documents to modify the pre-
vious query, and submit the modified query against the
universal document set (Efthimiadis, 1996). We repeat
the process until we converge on a relatively consistent
set of terms that changes little between iterations.

A refinement of this procedure involves the gener-
ation of separate ranked lists of highly discriminating
terms for different subject areas. Every journal indexed
by Thomson Scientific, for instance, is assigned to one
or more subject categories, and every article appearing
in a given journal inherits the category or categories to
which that journal has been assigned. We were able to
match with their counterparts in the Thomson Scien-
tific databases 17,693 of the 22,732 articles appearing by
December 2005 in VJNano, and then to generate a sepa-
rate sub-classifier (i.e., a relatively stable query that may
be used to retrieve nano-relevant documents) for each
of the 235 subject categories to which Thomson Scien-
tific’s articles are assigned. Sub-classifiers can similarly
be generated for each of the five categories of patent in
the broad science and technology classification scheme
based on the World Intellectual Property Organization
(WIPO) International Patent Classification (IPC) that is
used in the USPTO database. Even more specific sub-
classifiers can be generated for every publication year.

7. Categorizing documents by organizational
type and geographical region

Each Thomson Scientific record of an article includes
fields that supply the name and address of each of
the institutions with which any of that article’s authors
is affiliated; each USPTO record of a patent includes
fields that similarly supply the name and usually the
address of the institutional assignee-at-issue, and the
home address of each inventor. We analyze the data
contained in these fields in order to categorize the
knowledge-producing institutions by organizational type
or sector [i.e., as a firm, university/hospital, gov-

ernment/national laboratory, research institute/national
professional organization, “unclassified” (type not yet
determined)] and by geographical region. Institutions
are classified by organizational type using a sequen-

http://www.vjnano.org/
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tial application of two methods: (i) the application of
look-up tables, developed over several years of auto-
matic and manual processing, that match variant names
to preferred names and thence to organizational type; and
(ii) keyword analysis for remaining unidentified organi-
zations that infers organizational type from certain of
the words, phrases, and abbreviations contained in an
institution’s name (so that, for example, a name that
includes “Inc.” is classed as a firm). Addresses are clas-
sified by county and then by geographical region using
the Federal Information Processing Standard database
(FIPS55; http://geonames.usgs.gov/fips55.html) main-
tained by the U.S. Geological Survey, and definitions of
the 179 functional economic areas in the U.S. supplied
by the U.S. Bureau of Economic Analysis (Johnson and
Kort, 2004).

Statistical analysis of the contents of NanoBank
yields data on the numbers of nano-relevant articles
published in each of 235 subject categories and patents
granted in each of 5 subject categories, in each of 5 sec-
tors, in each of 179 U.S. regions, in each of the 24 years
from 1981 through 2004. If an article or patent is associ-
ated with more than one subject category, organizational
type, or region, each count is credited a fraction equiva-
lent to the reciprocal of the number of associated types
or regions. If an article is co-authored by authors affil-
iated with institutions of different organizational types
within the same region, it is counted as an instance of
cross-institutional collaboration or “knowledge flow.”2

Corresponding data on numbers of non-nano-articles
and patents are derived by analyzing the residual con-
tents (i.e., the contents left after subtracting nano-articles
and patents) of the Thomson Scientific and USPTO
databases.

Table 1 provides a summary of these data. Table 2 pro-
vides further detail on the relative frequencies of articles
whose co-authors span institutional boundaries.

8. Data analysis methodology

Our data analysis is performed on panel data – a time
series of cross sections – comprised of observations for
each of the years 1981-2004 for each of the 179 U.S.
functional economic areas (i.e., central urban areas plus
their suburbs and exurbs or “regions”) as defined by

the U.S. Bureau of Economic Analysis. Most of these
regions have a relatively low rate of publication and
patenting while a smaller tail have much higher rates.

2 Our data on the extent of cross-institutional collaboration are cur-
rently limited to co-authorship of papers: we have not analyzed patents
for instances of knowledge flow.
licy 36 (2007) 850–863

We analyze this data using Poisson regressions with
random effects and robust standard errors estimated
using the xtPoisson procedure in the Stata 9.0 statistical
package. This procedure is both flexible and robust. For
example, since the negative binomial is a special case of
the random effects model (Kennedy, 1998, pp. 247–248),
it permits the data to choose that form rather than have
it imposed which potentially biases the coefficient esti-
mates if the true model is not negative binomial.3 Since
we use the local region as the group variable in these
estimations we are fitting separate constants for each
region and crediting the model with explanatory power
only to the extent that it explains variation over time rel-
ative to the mean rates of publication or patenting for
each region. This provides something of an acid test for
the significance of the coefficients individually and as a
group or groups.

To be very specific, the general form of the random
intercept Poisson model estimated by xtPoission can be
expressed by the following equations:

log(λij) = β0j +
K∑

k=1

βkXkij (1)

β0j = η00 + α0j (2)

Taking (1) and (2) together, we have

log(λij) = η00 +
K∑

k=1

βkXkij + α0j (3)

where λij is the expected number of events occurred for
the jth region at the ith year, β0j indicates an intercept
that is random for each region, and α0j is an error term
for the jth region that follows a log-gamma distribution
with mean zero.

Compared to a simple Poisson model estimated based
on the pooled data, our estimator allows for heterogene-
ity among regions by estimating the variance of α0j.
When the estimated variance is not significantly differ-
ent from zero (i.e., when there is no heterogeneity among
regions), the estimator will give identical results as a
simple Poisson regression. In our case, all the estimated
variances of α0j are significantly different from zero,
which suggests that we cannot treat observations from
different regions as if observations from the same region,

ignoring the hierarchical nature of the data. Although a
random intercept model does not explicitly explore the
source of heterogeneity (which is not the focus of the

3 The negative binomial is nested within the random effects model
which itself is a very simple form of the hierarchical linear model
(random coefficients) estimation.

http://geonames.usgs.gov/fips55.html
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Table 1
Variable names and summary statistics

Variables U.S. regions

N Mean S.D. Min Max

Variables measured without differentiating organization types
Nano-articles published in year 4296 25.690 82.330 0 1025.873
Nano-patents granted in year 4296 11.946 57.868 0 1329.448
Non-nano-articles knowledge stock 4296 5.598 13.707 0 124.281
Non-nano-patents knowledge stock 4296 0.992 2.565 0.001 35.842
NSF nano-funding stock for region (in US$ millions) 4296 0.092 0.301 0 5.842
Year 4296 1992.500 6.923 1981 2004
Region (BEA number) 4296 90.000 51.678 1 179

University and hospital variables
University nano-articles 4296 18.950 57.632 0 651.666
University nano-patents 4296 1.518 7.044 0 104.239
University non-nano-articles knowledge stock 4296 4.183 9.630 0 86.983
University non-nano-patent knowledge stock 4296 0.028 0.086 0 0.971

Firm variables
Firm nano-articles 4296 3.159 20.878 0 607.591
Firm nano-patents 4296 9.494 48.771 0 1157.022
Firm non-nano-articles knowledge stock 4296 0.550 1.890 0 21.713
Firm non-nano-patent knowledge stock 4296 0.901 2.357 0.001 33.294

Government and federal or national laboratories variables
Government nano-articles 4296 1.763 9.459 0 158.970
Government nano-patents 4296 0.349 2.783 0 70.332
Government non-nano-articles knowledge stock 4296 0.233 1.344 0 20.469
Government non-nano-patent knowledge stock 4296 0.025 0.093 0 1.231

Research institutes and national professional organization variables
Research inst. nano-articles 4296 0.663 3.644 0 78.172
Research inst. nano-patents 4296 0.132 0.857 0 15.367
Research inst. non-nano-articles knowledge stock 4296 0.127 0.484 0 6.723
Research inst. non-nano-patent knowledge stock 4296 0.004 0.014 0 0.143

Unclassified (not yet classifiable as above) variables
Unclassified nano-articles 4296 1.156 7.716 0 173.494
Unclassified nano-patents 4296 0.453 2.166 0 63.295
Unclassified non-nano-articles knowledge stock 4296 0.504 1.676 0 22.003
Unclassified non-nano-patent knowledge stock 4296 0.035 0.102 0 1.389

Cross-organization-type knowledge flow variables
Non-nano-articles knowledge flow 4296 62.929 232.531 0 3289.931
Firm-university non-nano-articles knowledge flow 4296 13.522 50.725 0 541.824
Firm-research institute non-nano-articles knowledge flow 4296 0.421 2.387 0 57.440
Firm-government non-nano-articles knowledge flow 4296 1.453 10.685 0 218.875
Firm-unclassified non-nano-articles knowledge flow 4296 2.096 10.357 0 206.753
University-research institute non-nano-articles knowledge flow 4296 9.094 42.095 0 628.370
University-government non-nano-articles knowledge flow 4296 6.542 33.200 0 530.031
University-unclassified non-nano-articles knowledge flow 4296 26.450 85.920 0 1180.020
Government-research institute non-nano-articles knowledge flow 4296 0.428 4.918 0 124.131
Government-unclassified non-nano-articles knowledge flow 4296 2.147 25.912 0 497.000
Research institute-unclassified non-nano-articles knowledge flow 4296 0.691 4.394 0 99.631

Notes: (1) Knowledge stocks are computed as a perpetual inventory of the indicated series with 20% per year depreciation and measured in thousands
of cumulated articles or patents. (2) Each variable is measured each year 1981–2004 for each of the U.S. regions which are the 179 functional
economic areas defined by the U.S. Bureau of Economic Analysis (Johnson and Kort, 2004). N = 24 years × 179 regions = 4296. (3) We include in
our patent counts only those with an assignee at issue to an organization separate from the inventor(s). Patents are located by the address of the
inventors and classified as to organization type by assignee. (4) The NSF nano-funding stock is computed like the knowledge stocks, but measured
in millions of US dollars. (5) Knowledge flows are computed as the number of articles co-authored across organization types within one BEA.
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Table 2
Organization type boundaries: spanning the fences

Organization type Total number
of ISI journal
articles

All authors within the org. type Authors across 2+ org. types

Number articles Percent Number articles Percent

(A) Non-nano-articles
Universities and hospitals 4,380,043 4,141,152 95 238,891 5
Firms 563,504 488,356 87 75,148 13
Government, national and federal laboratories 238,056 192,654 81 45,402 19
Research institutes and natl. professional orgs. 137,807 91,755 67 46,052 33
Unclassified (not yet classifiable as above) 539,765 404,577 75 135,188 25

(B) Nano-articles
Universities and hospitals 81,409 75,729 93 5,680 7
Firms 13,570 10,691 79 2,879 21
Government, national and federal laboratories 7,572 5,422 72 2,150 28
Research institutes and natl. professional orgs. 2,846 2,198 77 648 23
Unclassified (not yet classifiable as above) 4,965 3,460 70 1,505 30

(C) All articles
Universities and hospitals 4,461,452 4,216,881 95 244,571 5
Firms 577,074 499,048 86 78,026 14
Government, national and federal laboratories 245,628 198,076 81 47,552 19
Research institutes and natl. professional orgs. 140,653 93,953 67 46,700 33

408,

ll nano-
rby kno

the coefficients but one in Table 3 are highly significant
and do make comparative evaluations of goodness of fit
using Wald (1943) log-likelihood tests.

5 Nano-relevant awards were identified by searching the NSF “Award
Unclassified (not yet classifiable as above) 544,730

Note: These counts are based, respectively, on all non-nano-articles, a
1981–2004, and the organization matching program of the Zucker–Da

current paper), it nevertheless takes it into account and
gives adjusted estimates for regressors that we report.

We elected to use robust standard errors in order to
provide t-statistics which are not biased by deviations
from the assumed parametric model. Nonetheless, in
response to a comment by an anonymous referee, we
produced alternative estimates based on the bootstrap-
ping procedure. Since these results are very similar to
those reported here, we believe that the basic methodol-
ogy is well suited to the data being analyzed. The full
bootstrapping results are reported in the Appendix to
Zucker et al. (2006), available at www.nber.org or from
the authors.

9. The impact of general knowledge stocks on
the production of knowledge in nanotechnology:
empirical results

Table 3 summarizes the results of a Poisson regres-
sion with random effects analysis that indicates the

strength of the relationship between three explanatory
variables—the cumulative stock4 of non-nano-articles
written by authors affiliated with institutions in a given

4 The sizes of all stocks reported in our data are computed by cumu-
lating counts for all previous years, and discounting by 20% annually
to reflect depreciation.
037 75 136,693 25

articles, and all articles listed in the science citation index expanded,
wledge, innovation, and growth project.

region, the cumulative stock of non-nano-patents granted
to inventors affiliated with institutions in a given region,
and (for purposes of comparison) the cumulative stock
of funding dollars awarded by the National Science
Foundation (NSF) to nanotechnology projects initiated
by institutions in a given region5 – and two dependent
variables – the number of nano-articles written in the
corresponding region in a given year, and the number
of nano-patents granted in the corresponding region in
a given year. There is no standard measure of goodness
of fit like the R2 for this procedure, perhaps because it
would be controversial to take credit for the explanatory
power of the differing regional means. We note that all
Search” website (http://nsf.gov/awardsearch/tab.do?dispatch=3) for
the following 17 terms identified by subject specialists as indicators of
nano-relevance: atomic force microscop*; buckminsterfullerene; c60;
fullerene; giant magnetoresistance; langmuir blodgett; mesoscopic;
nanocrystal*; nanoparticle; nanoscale; nanostructur*; quantum con-
fin*; quantum dot; quantum well; quantum wire; scanning tunneling
microscop*; self-assembled monolayer. The asterisk is a wild-card
symbol: documents that contain any term beginning with the string of
characters before the asterisk will be marked as “nano.”

http://www.nber.org/
http://nsf.gov/awardsearch/tab
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Table 3
Nano-publishing and patenting: knowledge stock effects Poisson regressions with random effectsa for U.S. regions, 1981–2004

Explanatory variables for region and year Nano-scale article and patent

Nano-article Nano-article Nano-patent Nano-patent

Non-nano-articles Knowledge stock 0.076*** (0.001) 0.074*** (0.001) 0.073*** (0.001) 0.074*** (0.001)
Non-nano-patents knowledge stock 0.001 (0.001) −0.013*** (0.001) 0.069*** (0.001) 0.058*** (0.001)
NSF nano-funding stock 0.439*** (0.008) 0.262*** (0.014)
Constant 1.974*** (0.118) 1.922*** (0.117) 0.974*** (0.091) 0.957*** (0.110)
Log likelihood −30567.4*** −29168.4*** −15648.6*** −15482.7***
Wald log-likelihood Test for NSF nano-funding stockb – 2798.0*** – 331.8***

Notes—Dependent variables: nano-articles published in year and nano-patents granted in year. Robust standard errors in parentheses below coefficient
estimates. N = 4296. Significance levels: ˆ0.10, *0.05, **0.01 and ***0.001. Knowledge stocks (KS) are computed as a perpetual inventory of the
indicated series with 20% per year depreciation and are measured in thousands of cumulated articles of patents.

a Group variable for random effects: region (BEA number), 179 groups.
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ticollinearity is always a matter of degree and difficult to
assess in nonlinear models like ours, we appear to have
This Wald (1943) log-likelihood test is for the null hypothesis that
he regression.

From these results in Table 3, we can determine that
he rates of production both of nano-articles and of nano-
atents are higher in regions with a larger cumulative
tock of non-nano-articles. However, a larger cumula-
ive stock of non-nano-patents has a positive impact
nly on the rate of production of nano-patents, and not
n the rate of production of nano-articles. This find-
ng is consistent with a linear model in which academic
iscoveries (which dominate the article counts) add to
he research productivity of nearby firms (which dom-
nate the patent counts), but not vice versa. Adding
he NSF nano-funding stock variable very significantly
ncreases the explanatory power of the regressions rel-
tive to the corresponding regressions without that
ariable. The same is true for all other regression
pecifications reported below. NSF nano-funding signif-
cantly increases regional research productivity whether

easured by articles or patents—implying that both uni-
ersities and firms are more productive in years and
egions with above average support by the NSF. We
annot distinguish from these non-experimental data
he extent to which NSF is independently creating dis-
overies by its funding or successfully identifying and
acilitating the research efforts of the best and bright-
st scientists. This result comes through loud and clear
egardless of which model specification we tried. In
able 3 it also makes the article impact of the cumu-

ative non-nano-patent stock significantly negative. We
re tempted to interpret this result as due to more com-
etition for top academic scientists’ time in areas with

ery successful firm research efforts, but note that the
egative coefficient is not statistically significant using
he alternative bootstrap standard errors discussed at the
nd of Section 8.
the NSF nano-funding stock does not significantly improve the fit of

In Table 4, we break down the cumulative stocks
by sector. For the dominant players in article produc-
tion (universities) and in patent production (firms),6 the
strengths of the relationships between cumulative stocks
and annual productivity are similar to those we see in
Table 3. However, the results of the regression for other
organizational types display considerable instability that
is difficult to interpret: in research institutes, for exam-
ple, cumulative non-nano-patent stocks have a strong
positive impact on patent production but a strong nega-
tive impact on article production, whereas, in the same
sector, cumulative non-nano-article stocks have a nega-
tive impact all round. Since the models in Table 3 can
be considered to be nested in the models of Table 4
when the coefficients for the articles knowledge stocks
are all constrained to equal the same number and the
coefficients for the patents knowledge stocks are all con-
strained to equal the same number (possibly different
from the one for articles), we can use another Wald test
(reported at the bottom of Table 4) to see if relaxing
the constraints significantly improves the explanatory
power of the regressions. The reported χ2 statistics are
all extremely large, demonstrating that the more com-
plicated models of Table 4 have much more explanatory
power than the simple models of Table 3.

We believe that the significant anomalous signs for
smaller participants in publishing and patenting results
from multicollinearity among the regressors. While mul-
a moderate level of multicollinearity as measured by the

6 See Table 1.
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Table 4
Nano-publishing and patenting: knowledge stocks by organization type Poisson regressions with random effectsa for U.S. regions, 1981–2004

Explanatory variables for region and year Dependent variable

Nano-articles Nano-articles Nano-patents Nano-patents

University non-nano articles knowledge stock 0.134*** (0.002) 0.121*** (0.002) 0.087*** (0.003) 0.079*** (0.003)
University non-nano patents knowledge stock −1.974*** (0.108) −2.046*** (0.109) −3.029*** (0.151) −3.211*** (0.152)
Firm non-nano articles knowledge stock 0.158*** (0.006) 0.180*** (0.006) 0.214*** (0.007) 0.228*** (0.007)
Firm non-nano-patents knowledge stock 0.016*** (0.004) −0.018*** (0.004) 0.101*** (0.005) 0.080*** (0.005)
Government non-nano-articles knowledge stock 0.187*** (0.009) 0.139*** (0.009) −0.053*** (0.015) −0.094*** (0.015)
Government non-nano-patents knowledge stock −1.893*** (0.098) −2.251*** (0.099) −1.103*** (0.156) −1.382*** (0.158)
Research institute non-nano-articles knowledge stock −0.164*** (0.018) −0.112*** (0.019) −0.157*** (0.028) −0.094*** (0.028)
Research institute non-nano-patents knowledge stock −5.711*** (0.355) −5.451*** (0.351) 8.466*** (0.435) 9.101*** (0.436)
Unclassified non-nano-articles knowledge stock −0.034*** (0.009) −0.010 (0.009) 0.120*** (0.014) 0.139*** (0.014)
Unclassified non-nano-patents knowledge stock 0.935*** (0.073) 1.292*** (0.074) 0.900*** (0.103) 1.067*** (0.103)
NSF nano-funding stock 0.425*** (0.008) 0.317*** (0.014)
Constant 1.754*** (0.116) 1.760*** (0.116) 0.817*** (0.108) 0.826*** (0.108)
Log likelihood −28197.4*** −27040.5*** −14810.4*** −14583.4***
Wald log-likelihood test for NSF nano-funding stockb – 2313.8*** – 454.0***
Log-likelihood test vs. Table 3c 4740.0*** 4255.8*** 1676.4*** 1798.6***

Notes—Dependent variables: nano-articles published in year and nano-patents granted in year. Robust standard errors in parentheses below coefficient
estimates. N = 4296. Significance levels: ˆ0.10, *0.05, **0.01 and ***0.001. Knowledge stocks (KS) are computed as a perpetual inventory of the
indicated series with 20% per year depreciation and measured in thousands of cumulated articles of patents.

a Group variable for random effects: region (BEA number), 179 groups.
b This Wald (1943) log-likelihood test is for the null hypothesis that adding the NSF nano-funding stock does not significantly improve the fit of

the regression.
constra
cit in Ta
c This Wald (1943) log-likelihood test is for the null hypothesis that
all the patents-knowledge-stock coefficients to be the same (as is impli

variance inflation factor (VIF). When multicollinearity
is a serious problem, the estimated coefficients as well as
the standard errors are unstable and tend to vary widely
with a slight change of the observations. The bootstrap
procedure discussed at the end of Section 8 is a standard
response to concerns about multicollinearity. In general,
the bootstrapped standard errors reported in Zucker et
al. (2006) are somewhat larger than those reported in
Tables 3–6, and some of the coefficients become insignif-
icant, but the main, quantitative conclusions still hold.

10. The impact of general knowledge flow on the
production of knowledge in nanotechnology:
empirical results

Table 5 displays the results of more Poisson with
random effects regressions, this time run with cumu-
lative counts of cross-institutional-type co-authored

non-nano-articles in given regions substituted as an
explanatory variable instead of the total counts of
non-nano-articles.7 Until the Zucker–Darby articles-

7 These counts, unlike those for general knowledge stocks, are not
discounted as they represent institutions precedents, not depreciating
knowledge.
ining all the articles-knowledge-stock coefficients to be the same and
ble 3) does not significantly reduce the goodness of fit the regression.

patent person matching project is completed, we cannot
measure cross-institutional-type collaborations among
inventors since their affiliation is available only from
articles.

These results are similar to those displayed in Table 3,
with the exception that cumulative counts of non-nano-
patents also now have a significant positive impact on the
rate of production of nano-articles, even in the presence
of the NSF funding variable. When the knowledge flows
are broken down by sector pairings, as in Table 6, the
flows between firms and universities, firms and research
institutes, firms and government, and universities and
government all show robustly positive impacts on the
rate of production both of articles and of patents. Relax-
ing the equality constraint on the coefficients in moving
from Tables 5 and 6 again very significantly improves
the explanatory power of these regressions.

However, the explanatory power of these regressions
is in every case substantially lower than the correspond-
ing regressions in Tables 3 and 4. Nonetheless, we are
encouraged that even the crude flow variables we are

able to measure at this time do as well as they do and
are encouraged to pursue this concept in future research
when data is available to measure collaborations for
patents as well as articles.



L.G. Zucker et al. / Research Policy 36 (2007) 850–863 861

Table 5
Knowledge flows across organization type boundaries poisson regressions with random effectsa for U.S. regions, 1981–2004

Explanatory variables for region and year Nano-scale article and patent

Nano-article Nano-article Nano-patent Nano-patent

Non-nano-patents knowledge stock 0.046*** (0.001) 0.021*** (0.001) 0.077*** (0.001) 0.060*** (0.002)
Non-nano-articles knowledge flow 0.001*** (0.000) 0.001*** (0.000) 0.001*** (0.000) 0.001*** (0.000)
NSF nano-funding stock 0.541*** (0.008) 0.348*** (0.013)
Constant 2.684*** (0.130) 2.633*** (0.129) 1.590*** (0.119) 1.576*** (0.119)
Log likelihood −40540.6*** −38108.5*** −18445.6*** −18113.8***
Wald log-likelihood test for NSF nano-funding stockb – 4864.2*** – 663.6***

Notes—Dependent variables: nano-articles published in year and nano-patents granted in year. Robust standard errors in parentheses below coefficient
estimates. N = 4296. Significance levels: ˆ0.10, *0.05, **0.01 and ***0.001. Knowledge flows are computed as the number of articles co-authored
across organization types within one BEA.

a Group variable for random effects: region (BEA number), 179 groups.
b This Wald (1943) log-likelihood test is for the null hypothesis that adding the NSF nano-funding stock does not significantly improve the fit of

the regression.

Table 6
knowledge flows across differentiated organization type boundaries Poisson regressions with random effectsa for U.S. regions, 1981–2004

Explanatory variables for region and year Dependent variable

Nano-articles Nano-articles Nano-patents Nano-patents

Non-nano-patents knowledge stock 0.013*** (0.002) −0.014*** (0.002) 0.109*** (0.003) 0.093*** (0.003)
Firm-university non-nano-articles

knowledge flow
0.006*** (0.000) 0.005*** (0.000) 0.005*** (0.000) 0.004*** (0.000)

Firm-research institute non-nano-articles
knowledge flow

0.009*** (0.001) 0.015*** (0.001) 0.011*** (0.001) 0.015*** (0.002)

Firm-government non-nano-articles
knowledge flow

0.012*** (0.001) 0.013*** (0.001) 0.015*** (0.001) 0.014*** (0.001)

Firm-unclassified non-nano-articles
knowledge flow

−0.016*** (0.000) −0.012*** (0.000) −0.009*** (0.001) −0.005*** (0.001)

University-research institute
non-nano-articles knowledge flow

−0.003*** (0.000) −0.003*** (0.000) −0.004*** (0.000) −0.004*** (0.000)

University-government non-nano-articles
knowledge flow

0.002*** (0.000) 0.002*** (0.000) −0.005*** (0.000) −0.006*** (0.000)

University-unclassified non-nano-articles
knowledge flow

0.002*** (0.000) 0.003*** (0.000) 0.003*** (0.000) 0.003*** (0.000)

Government-research institute
non-nano-articles knowledge flow

−0.015*** (0.001) −0.019*** (0.001) −0.009*** (0.002) −0.011*** (0.002)

Government-unclassified non-nano-articles
knowledge flow

0.008*** (0.000) 0.006*** (0.000) 0.006*** (0.001) 0.006*** (0.001)

Research institute-unclassified
non-nano-articles knowledge flow

−0.006*** (0.001) −0.010*** (0.001) −0.001 (0.001) −0.005*** (0.001)

NSF nano-funding stock 0.530*** (0.008) 0.404*** (0.014)
Constant 2.583*** (0.128) 2.533*** (0.127) 1.417*** (0.115) 1.391*** (0.115)
Log likelihood −37231.3*** −35133.2*** −16821.1*** −16424.3***
Wald log-likelihood test for NSF

nano-funding stockb
– 4196.2*** – 793.6***

Log-likelihood test vs. Table 5c 6618.6*** 5950.6*** 3249.0*** 3379.0***

Notes—Dependent variables: nano-articles published in year and nano-patents granted in year. Robust standard errors in parentheses below coefficient
estimates. N = 4296. Significance levels: ˆ0.10, *0.05, **0.01 and ***0.001. Knowledge flows are computed as the number of articles co-authored
across organization types within one BEA.

a Group variable for random effects: region (BEA number), 179 groups.
b This Wald (1943) log-likelihood test is for the null hypothesis that adding the NSF nano-funding stock does not significantly improve the fit of

the regression.
c This Wald (1943) log-likelihood test is for the null hypothesis that constraining all the articles-knowledge-flow coefficients to be the same (as

is implicit in Table 5) does not significantly reduce the goodness of fit of the regression.



arch Po

(

862 L.G. Zucker et al. / Rese

11. Conclusions

In this paper, we have described our investigations
of the impact of non-nano-knowledge stocks and knowl-
edge flows on knowledge production in nanotechnology.
The research question that we sought to answer in the
course of these investigations was “What factors influ-
ence the rates at which new knowledge is produced
in the field of nanotechnology?” We believe that this
question is an important one, not simply because answer-
ing it improves our understanding of the processes by
which new knowledge is produced in a rapidly evolv-
ing field, but because scientific knowledge is commonly
assumed to be a strong source of economic growth. If
we can identify conditions under which the rate of pro-
duction of knowledge in a given field is observed to
increase, we may be able to point to firm-, regional-, and
national-level strategies and policies that will encourage
the creation of those conditions, and that will ultimately
promote economic growth.

The data analyses reported in this paper provide the
following headline results:

(i) That the size of the cumulative knowledge stock of
articles published in non-nanotechnological fields
in a given geographical region has a significant
positive effect on the rate of production of nan-
otechnological articles and patents in that region
(see Table 3).

(ii) That the size of the cumulative knowledge stock of
patents published in non-nanotechnological fields
in a given geographical region has a significant
positive effect on the rate of production of nanotech-
nological patents in that region (see Table 3).

iii) That the volume of the cumulative knowledge flow
of cross-institutionally co-authored articles pub-
lished in non-nanotechnological fields in a given
geographical region has a significant positive effect
on the rate of production of nanotechnological arti-
cles and patents in that region (see Table 5).

(iv) That the size of the cumulative stock of funding
dollars awarded by the NSF to nanotechnology
projects initiated by institutions in a given geo-
graphical region has a significant positive effect on
the rate of production of nanotechnological articles
and patents in that region (see Tables 3 and 5).
These results allow us to draw two main conclusions.
In the first place, the data provide further support for
the general claim that scientific knowledge is strongly
cumulative. We suggest that the Kuhnian critique of
licy 36 (2007) 850–863

the cumulative advantage model (summarized in Sec-
tion 2) is valid only under more limited conditions than
are examined here. In the second place, the data supply
evidence that ongoing efforts to institutionalize chan-
nels for cross-institutional collaboration are worthy of
renewed support at organizational, regional, and national
levels.

We mentioned in Section 1 our conviction that
knowledge production is deeply embedded in a net-
work of social structures and practices. Such structures
and practices both constrain action and enable it (see,
e.g., Granovetter, 1985). We have found empirically
that the production of nanotechnological knowledge
is embedded in the wider social context of insti-
tutional organization, cross-institutional collaboration,
and national structures of incentives and rewards. This
embeddedness is constraining, in that the range of pos-
sible action is narrowed, but also enabling, as channels
for the flow of tacit knowledge deepen, and the flow
between organizations of different types becomes more
differentiated.

We predict that a productive seam of future data will
be found at the level of the individual scientist and/or
institution, which is the source both of resistance to, and
of support for, nanotechnological knowledge flow. Resis-
tance comes from the large number of scientists trained
in non-nanotechnological areas, who face a daunting
choice: either continuing to practice as they have in
the past and risking devaluation in the labor market,
or making the effort to acquire new knowledge and
skills, typically at substantial cost. Change comes from
a smaller number of scientists who take the positive
decision to learn new areas of science (e.g., biology in
addition to engineering) and/or to move to a new loca-
tion to improve their access to new knowledge. Providing
a precise specification of the mechanisms by which
individual decision-making and localized social context
together influence the growth of knowledge in particular
fields remains a formidable research challenge.
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