
Metabolomics and systems biology: making sense of the soup
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Novel techniques for acquiring metabolomics data continue to

emerge. Such data require proper storage in suitably configured

databases, which then permit one to establish the size of

microbial metabolomes (hundreds of major metabolites) and

allow the nature, organisation and control of metabolic networks

to be investigated. A variety of algorithms for metabolic

network reconstruction coupled to suitable modelling

algorithms are the ground substances for the development

of metabolic network and systems biology. Even qualitative

models of metabolic networks, when subject to

stoichiometric constraints, can prove highly informative,

and are the first step to the quantitative models, which

alone can allow the true representation of complex

biochemical systems.
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FTIR Fourier transform infrared (spectrometry)

GC-MS gas chromatography-mass spectrometry

GC-TOF gas chromatography time-of-flight (mass spectrometry)

LC-MS liquid chromatography-mass spectrometry

MCA metabolic control analysis

Introduction
‘There is an epoch in the growth of a science during which

facts accumulate faster than theories can accommodate

them.’

Medawar, P. (1982) in Pluto’s Republic. Oxford University

Press, Oxford, p. 29.

‘But one thing is clear: to understand the whole one must

study the whole.’

Kacser, H. (1986) in The Organization of cell metabolism,

ed., G.R. Welch and J.S. Clegg, Plenum Press, New York,

p. 327.

It is becoming increasingly apparent that our ability to

generate large quantities of metabolomic or metabolic

profiling data will help to open up many previously inac-

cessible areas of biology. However, such data are merely

the inputs or ground substance to systems designed to

provide understanding or knowledge, and affecting this

may require substantial changes in the conventional and

purely hypothesis-dependent, reductionist thinking that

has heretofore been common [1��,2]. Metabolomics is a

burgeoning field (Figure 1), which produces voluminous

data that, like other ‘omics’ data, should be seen as a

resource that contributes specifically to the former half of

an iterative cycle of hypothesis-generating and hypoth-

esis-testing phases [2,3�,4,5��] (Figure 2).

In this review, I highlight advances in the way we both

gather and use metabolomic data for the large-scale

reconstruction of biological systems and for the genera-

tion of both testable hypotheses and the predictive mod-

els that lie at the heart of systems biology. To ‘make sense

of the soup’, we should concentrate on the questions ‘who

is there’, ‘who are they talking to’, ‘how are metabolic

networks organized’ and ‘what does it mean for our

understanding of the cell or organism?’ For readers seek-

ing recent reviews of the general field of metabolomics,

the following useful surveys have appeared during the

review period [6�–8�,9��,10�,11,12�–14�,15��,16�].

Getting the data
The first requirement is to have available techniques that

are as comprehensive as possible for metabolic analyses.

As the chemistry of different metabolites is very hetero-

geneous, isolating and measuring them all together (‘true

metabolomics’) is very hard, and most metabolic studies

are really ‘metabolic profiling’ of subsets of chemical

classes [8�]. Favoured instrumental methods in different

fields (especially plants and microbes versus animals)

have differed, largely for historical reasons, but there is

increasing convergence to use as many as possible for all

samples as their complementarity is appreciated. As well

as increasingly refined gas chromatography-mass spectro-

metry (GC-MS) methods, especially those using gas

chromatography time-of-flight mass spectrometry (GC-

TOF) instruments that allow much better deconvolution

than do most GC-MS instruments because they can

record spectra, and thus sample, very quickly, several

recent methods appear to show promise. Fourier-

transform ion cyclotron resonance (FT-ICR) mass spectro-

metry [17,18�] is a very high-resolution mass spectral

method (105 – 106, with mass accuracy better than

1 ppm), which allows separation and empirical formula

measurement of potentially thousands of metabolites
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without chromatographic separation. Although compara-

tively expensive, these sophisticated instruments will have

a significant role in the development of metabolomics,

especially when problems with ion–ion interferences at

high concentrations have been overcome. While their

sensitivity and resolution mean that they can be prone

to artefacts (gratuitous interferents), there is a clear

implication from a series of metabolomic studies that

we have only just begun to recognise how many metabo-

lites a typical cell can contain or produce [9��]. For instance,

the pioneering studies by Fiehn and colleagues of

Arabidopsis thaliana [19] indicated the presence of some

326 metabolites; better deconvolution of the data has

raised this to over 1000 (Fiehn, personal communication).

Thus multidimensional separation methods are coming

to the fore [20�] as they can routinely separate more than

1000 compounds [21,22].

Liquid-chromatography-mass spectrometry (LC-MS)

methods typically have somewhat lower chromatographic

resolution than do GC-MS methods, but can access much

greater mass ranges because volatilisation (and hence

derivatisation) for the chromatographic step is unneces-

sary. Liquid-phase methods such as LC-MS can be sub-

ject to matrix effects (numerous causes often being

bundled together under the somewhat unhelpful and

inaccurate catch-all term ‘ion suppression’), a major

one being the presence of non-volatiles, which may

reduce the evaporation of volatile ions during the elec-

trospray process [23]. Although reverse phase methods

are widely used, normal phase methods can be highly

useful in the separation of more polar compounds. How-

ever, ion-exchange methods require the use of salts,

Figure 1
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Bibliometric and text mining analysis of the recent metabolomics literature (to the end of 2003). (a) The growth in metabolomics papers judged

by searching titles and abstracts of Web of Knowledge using ‘metabolom’* as the search term. (b) Text mining analysis of the metabolomics

literature. The text mining tool Ref Viz (Adept Scientific) was used to cluster, according to their keywords, papers that had ‘metabolome’ or

‘metabolomics’ in their title. The main groupings seem to be based on whether the emphasis is on technologies, on integration with other omics,
or in predicting higher order properties such as disease.
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Scientific advance may be seen as an iterative cycle linking knowledge/

ideas/mental constructs (‘ideas’) and observations/data (‘data’). The

hypothetico-deductive mode of reasoning uses background knowledge

to construct a hypothesis that is tested experimentally to produce

observations. This is only a part of the story, however, as the inductive

and abductive modes of reasoning are purely data-driven, i.e. are
based purely on generalising rules (or ideas or hypotheses) from

examples (and the hypothesis is the end, not the beginning).

Because of the high dimensionality of typical data, computer-intensive

methods are required to turn the data into knowledge. Scientific

advances should (and often do) exploit both deductive and inductive

modes of reasoning in an iterative cycle [2,5��].
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which can interfere with mass spectrometry methods, and

Tolstikov, Fiehn and colleagues [24,25�] have devel-

oped an excellent new hydrophilic interaction liquid

chromatography (HILIC) method for this, coupled to

electrospray mass spectrometry. In the liquid phase,

capillary electrophoresis coupled to mass spectrometry

has been used to separate a variety of anionic metabolites

from Bacillus subtilis [26�], many of which could be

quantified accurately by mass spectrometry. Coulometry

is another sensitive and somewhat underutilised detec-

tion method; Matson and colleagues give an example in

which some 600 metabolites could be discriminated [27].

A new development involves the direct injection of the

sample into a low-resolution electrospray mass spectro-

meter [28,29,30��], where quality data are obtainable in

less than 1 min, opening up the use of such methods in

high-information, high-throughput screening. Matrix-

assisted laser desorption ionisation (MALDI) mass spec-

trometry — the other soft-ionisation mass spectrometric

method of choice in proteomics — uses a matrix, typic-

ally of aromatic acids, whose molecular weight is similar

to those of typical metabolites and thus disallows the

mass spectrometric measurement of the latter. Siuzdak

and colleagues have neatly avoided this problem via the

development of the matrix-free ‘desorption ionisation

on silicon’ (DIOS) method [31]. They have recently

shown that when interfaced with a tandem time-of-

flight mass spectrometer it provides an extremely con-

venient tool for metabolite detection [32�], and that the

quantitative reproducibility of the method is signif-

icantly enhanced by using electrospray deposition

[33]. Mass spectrometer conditions are normally adjus-

ted rather arbitrarily, but the search space of possible

conditions is huge. The use of a genetic search algo-

rithm to improve substantially the quality of mass

spectra from complex mixtures showed both that excel-

lent improvements could be obtained in a comparatively

short time and that matrix effects could be reduced or

eliminated by varying the mass spectral conditions

systematically [34�].

Although it will probably never get close to matching

mass spectrometry for sensitivity, NMR continues to

improve in resolution and sensitivity [14�,35–37], and

has uncovered novel inborn errors of metabolism [38]. Its

chief virtue is arguably its non-invasive nature, which

can allow one to obtain spatially resolved metabolic

profiles and to investigate metabolomics in vivo [39],

while the nominal independence of the magnitude of the

response from different non-exchangeable protons is

helpful. For historical reasons it is more commonly

applied than mass spectrometry to mammalian samples,

and some large-scale studies show reasonably good inter-

laboratory reproducibility [40]. Additional specificity can

be obtained by using fluorinated metabolites (e.g. [41]).

LC-NMR and LC-NMR-MS are newly (re)emerging

techniques, reviewed briefly in [42,43] and extensively

in [44].

Like NMR, vibrational spectroscopies such as Raman and

Fourier transform infrared (FTIR) spectrometry are com-

paratively insensitive, but the latter especially allows

high-throughput screening and classification of biological

samples [45], and equally fits the ‘omics philosophy’ of

providing unbiased, whole-system measurements. Among

recent examples is its use in detecting the microbial

spoilage of meat [46�], where the onset of proteolysis

could be clearly identified. FTIR is also a valuable method

for the high-throughput screening of mutant strains for

different levels of target metabolites [47], a typical recent

example being a study of plant cell wall mutants [48].

For fundamental reasons outlined in the theory of meta-

bolic control analysis (MCA), changes in individual

enzyme (or presumably transcript) levels have little effect

on fluxes but major effects on metabolite concentrations

(e.g. [8�,49,50]). Following on from this, where the tran-

scriptome and metabolome have been compared on the

same samples, the metabolome indeed seems to be more

discriminatory [51].

Finally, we note that most metabolome measurements

are ‘metabolic snaphots’ [49] (and see http://dbk.ch.

umist.ac.uk/WhitePapers/mcabio.htm), and what is really

desired are methods for reporting, non-invasively and

without modifying them, changes in metabolite con-

centrations in living cells in real time, for which optical

strategies are likely to be required. As well as purely spec-

troscopic methods (UV/Vis, Raman, infrared), molecular

biological methods can provide in situ sensors, an excellent

example being that of the work of Fehr et al. [52�].

Making sense of raw metabolomic data
Deconvoluting raw metabolomic data can mean at least

three things: (i) working out the signal from metabolites

that are imperfectly separated using a ‘hyphenated’

chromatographic method such as GC-MS, and hence

their concentration, (ii) providing a chemical identity

for metabolites reproducibly recognised as being pre-

sent as judged by for example their retention index and

mass spectrum, and (iii) using the metabolomic data to

reconstruct the metabolic networks in which they par-

ticipate. (For reasons of space, and although it is an

important area, the use of chemometric methods for

manipulating the very high-dimensional metabolomic

data so as to classify samples according to some scheme

of interest (e.g. [53]), is not considered in any detail

here.) The first is very important, and improved (and

preferably public, non-hidden, non-proprietary) algo-

rithms are required here, with easy-to-use interfaces

and high but controllable degrees of automation that

process the raw ‘hyphenated’ data as inputs and produce

lists of metabolites as the output. Sumner and collea-

gues [54��] have produced MSFACTS (metabolomics
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spectral formatting, alignment and conversion tools) for

this purpose. A high-speed peak alignment algorithm

was devised by Synovec’s group [55], while an inter-

esting paper by Brereton and colleagues compared a

series of methods commonly used for identifying the

number of substances in a complex peak [56�], an

important prerequisite to optimal deconvolution.

The second of these (‘spectrum-to-structure’) has not

been adequately attacked, and needs automating, since

in plants some 80% of metabolites recognised by mass

spectrometry have mass spectra that do not appear in the

standard libraries, which have concentrated more on

organic chemical than on natural biological metabolites.

Curiously, one of the earliest forays into computational

machine learning, the DENDRAL and METADEN-

DRAL projects [57–59] sought explicitly to enquire as

to whether this problem could be automated, but com-

paratively little in the mass spectral world has happened

since. While the picture for NMR data is somewhat rosier

[60,61,62�,63,64], this ‘spectrum-to-structure’ problem

remains an important component of ‘making sense of

the soup’, as it is hard to argue that we understand a

metabolic system when we do not even know what most

of its metabolites are.

The third of these ‘deconvolution’ issues, metabolic

network reconstruction, is dealt with below.

However, another important feature of post-genomics

data is represented by their storage, along with the

relevant metadata, in suitable databases constructed

according to a public and standardised data model

[6�,7�,65�], as has already happened for transcriptomic

[66,67] and proteomic data [68�,69].

Developments in metabolic modelling
Although we ultimately need to solve the inverse pro-

blem [70], metabolic modelling in the ‘forward’ direc-

tion, typically using linked ODE solvers such as Gepasi
[71] (and see links to others at http://dbk.ch.umist.

ac.uk/sysbio.htm#links), continues to provide important

knowledge. An especially useful development is the

production of data standards, especially the Systems

Biology Markup Language (SBML http://www.sbml.

org) [72��], which will allow interoperability between

different models, including their metadata, and model-

ling packages. Regarding the latter, the well-known E-

cell system [73] has now been revamped and extended

to work not just under Linux but also on several oper-

ating systems including MS-Windows [74�] (and see

http://www.e-cell.org/), which will undoubtedly extend

its user base substantially. The FluxAnalyzer [75�] is a

MATLAB-based system for the modelling of flux dis-

tributions in metabolic pathways, while advances in the

important area of metabolome visualization include

GenMAPP [76].

Metabolic network organisation and
reconstruction
Recognising that metabolites and metabolomes are system

variables, the problem of reconstructing metabolic net-

works, which themselves constitute part of the parameters

of the system, becomes an ‘inverse problem’ or one of

system identification [12�,77,78,79��,80�]. Several general

questions immediately arise about the size, nature, struc-

ture and organisation of metabolic networks [81��]. As to

the ostensible size of the ‘natural’ metabolome, we should

comment that many organisms can and will metabolise

xenobiotics for non-nutritional purposes, making the

potential size of the metabolome practically infinite, and

it is possible to read values such as 200 000 for the claimed

number of (mainly secondary) metabolites in the plant

kingdom [13�]. However, annotated genomic data alone

can provide the baseline of reactions, which are more or

less well known or may be presumed to occur under at least

some conditions in the organism of interest. Although

these are available in the general metabolic databases

such as KEGG (Kyoto encyclopaedia of genes and gen-

omes; http://www.genome.ad.jp/kegg/) [82], it is necessary

to produce organism-specific ones. Important steps in

these directions include the Ecocyc project [83,84] (note

license conditions) (see http://biocyc.org:1555/ECOLI/

class-subs-instances?object¼Pathways) and the related

MetaCyc sites (http://metacyc.org/), while the latest E.
coli model has 931 unique biochemical reactions [85�,86�].
The yeast metabolic reaction scheme [87��] is especially

useful, as it also exploits biochemical and physiological

knowledge (and not merely reconstructions based solely

on genomic data), sequence matching and reaction gues-

sing. These models give numbers of metabolites in the

hundreds, which are comparatively easy to handle, and

while these will be underestimates due to (i) imperfect

knowledge, (ii) the lack of specificity among enzymes, and

(iii) the production of substances at very low concentra-

tions that we do not routinely detect, they form a very good

starting point. An analysis (Figure 3) of the distribution of

molecular weights (MWs) of the metabolomes of E. coli
[88��] and S. cerevisiae [87��] suggests that most of the

major metabolites are under MW 300. A candidate mouse

metabolome is already available [89], and one for humans

must be imminent. A very nice example of the use of post-

genomic metabolic reconstruction concerns the bacterium

Tropheryma whipplei, the causative agent of Whipple’s

disease, whose presence was originally detectable only

by molecular methods of nucleic acid hybridisation. Until

recently the organism could be grown only in fibroblasts.

However, an analysis of its genome showed that it lacked

the ability to produce several amino acids, which allowed

Renesto et al. [90] to design a medium that would support

its growth axenically.

Solving inverse problems of metabolic network recon-

struction from metabolome data (even with a well-

observed time series) in general is hard, but there are
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several constraints that can help to make it easier, and here

real progress is being made. First, several important studies

suggest that metabolic networks often show a scale-free

[81��,91�,92�] or ‘small world’ [93] kind of organisation.

Second, there are important stoichiometric constraints and

‘elementary modes’ [94,95,96�,97��,98��] that restrict both

the networks and their regulations which are possible,

although further restrictions are necessary to make even

these analyses manageable [99�]. As with blood vessels in

higher organisms, the metabolic fluxes in E. coli are

arranged into a major ‘backbone’ that dominates the main

fluxes [100��]. However, we note that many of these

representations use graph theory, which is somewhat

‘static’, and may fail to capture the richness of the dynamics

and control of such networks [101�].

This said, a particularly elegant strategy combines the

networks that are reconstructed qualitatively from the

genomic data with the constraints imposed by (quantita-

tive) mass balancing [102,103��]. This allows one, subject

to additional constraints about how cells ‘choose’ or have

evolved to regulate their fluxes in terms of growth rate or

growth yield (most likely the former [104]), to make some

extremely powerful and successful predictions of whole-

cell behaviour at the metabolic and physiological levels

from such in silico analysis alone [105��,106,107�,108��,
109,110��]. The success of this endeavour highlights the

very great importance of the topological structure of

metabolic networks (independently of their kinetic prop-

erties), to their effective functioning.

An especially helpful analysis of metabolic networks in

terms of ‘network motifs’ was introduced by Alon and

colleagues [111��,112��] (and see also much work over the

years more specifically on the design of metabolic and,

especially, genetic networks by Savageau and colleagues,

for example [113,114�]). Network motifs, by loose anal-

ogy with protein structural motifs, are arrangements of

reactions, including feedback structures, which regularly

occur in biology and are therefore assumed to have

functional use [115�]. Codifying them is thus a very

important activity. Of all the possible feedback arrange-

ments between n separate elements, a very restricted

subset is found to occur regularly in nature (i.e. to have

been selected by evolution). One example is the series of

feed-forward loop network motifs [116�]. As well as those

bestowed by nature, it is possible to produce artificial

regulatory networks. To this end, Guet et al. [117] used

combinatorial methods to vary the ‘logical phenotypes’

exhibited by various strains of E. coli, while Pilpel and

colleagues did the same for regulatory networks [118].

A development of MCA called co-response analysis [119]

has proved of value both in pattern recognition analysis of

the metabolome [120] and in recognising that the co-

variation of pairs of metabolites from the same organism

under different conditions can provide very useful infor-

mation of their ‘connectedness’. Thus Kose et al. [121],

drawing on elements of graph theory, developed clique

correlation analysis, and especially the use of maximal

cliques, for the visualisation of metabolomic data. More

recently, Steuer et al. [122�] have sought to relate meta-

bolite covariance matrices, while statistical and machine

learning methods have proved useful — as with tran-

scriptomics and proteomics data — in deconstructing the

highly multivariate data that metabolomics provides

[123�]. In an analysis of E. coli mutants, a genetic algo-

rithm analysis of direct injection mass spectra identified

just two or three peaks that served to pinpoint the nature

of the mutation involved [124]. Indeed in our hands

genetic algorithms and genetic programming have proved

extremely successful strategies for discovering which

metabolites are most important for ‘explaining’ some

biological process of interest (e.g. [3�,30��,46�125–

128,129�]). In many cases we simply do not know the

kinetic properties of the system’s components, and

genetic programming has also proved useful in the ana-

lysis of the inverse problem of metabolism referred to

above [130��]. Another very useful strategy is to approx-

imate the kinetic properties with generic rate equations,

for example by power laws [113], while Heijnen and

colleagues (e.g. [131�] have more recently exploited

lin-log kinetic equations for this purpose.

Perturbing, rather than merely observing, metabolic net-

works is much closer to the (not so) new ‘systems’ biology

that is largely aimed at solving the inverse problem of

genetic and metabolic networks. However, deciding

Figure 3
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Histogram of molecular weights of typical microbial metabolites.

E. coli data are from [88��] and were kindly supplied by Dr Irilenia

Nobeli (who points out that some of the larger molecular weight

metabolites such as lipids are not included as they were not then in
Ecocyc). S. cerevisiae data were extracted from [87��]. Although the

assumptions are rather different it is clear that most of the common

microbial metabolites are of relatively low molecular weight.
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which perturbation to make is a very interesting area

(known as ‘active learning’ [132,133]), as this can greatly

improve the quantity and quality of information avail-

able from a particular experiment [5��]. Vance et al.
[134�] presented a computational strategy for working

out the causal connectivities of metabolic networks from

such perturbations, and a somewhat related strategy was

used by Kholodenko and colleagues for genetic and

signalling networks [135�]. This, and a slightly different

strategy by de la Fuente, Mendes and colleagues [136�]
(which also used linear perturbation theories as in MCA)

are summarised in a readable way by Stark, Callard and

Hubank [101�], while Ross gives a differently focused

overview of recent advances in deconstructing chemical

networks from time series data [137�]. In a similar

vein, the site of interaction of mitomycin C in a small

subnetwork of the E. coli SOS system was identified

[138�].

Integrating metabolomics into systems
biology
Although such ideas are very far from being new

[139,140], there is a huge interest in understanding

complex biological systems from the more holistic ‘sys-

tems’ point of view. Such strategies — contrasted with

those of the qualitative and more reductionsist molecu-

lar biology era [1��,141] — are usually considered to

involve both quantitative experimentation and mathe-

matical simulation/modelling (see above) in an iterative

fashion [13�,78,142,143]. Although metabolomics mea-

surements have a major role to play in metabolic net-

work reconstruction, true systems biology will require

the integration of metabolomic measurements with

measurements of the time-dependent concentrations

of other types of components. The availability of protein

microarrays consisting of all the cloned proteins of an

organism will allow them to be screened systematically

for drug or metabolite binding [144,145], and this will be

a major contribution to integrative biology. A partic-

ularly exciting possibility is that of purifying proteins

directly from target organisms in a mass spectrometer

without cloning them, and thereby producing micro-

arrays directly [146].

Some applications
While the metabolomic data constitute the ‘ground

substance’ for inferring knowledge, and are the focus

of this microbiologically oriented review, several very

significant findings of basic or applied biomedical inter-

est have emerged from recent metabolomic studies. A

major driver is discovering biomarkers (for definition see

[147]) or disease status [9��,148,149�]. Thus Nicholson,

Grainger and colleagues [150�] used 1H-NMR measure-

ments together with discriminant partial least squares

analysis to distinguish various forms of coronary heart

disease via blood samples, although only a small number

of samples was used. As well as assessing biomarkers for

clinical diseases, it is also vital to gain an understanding

of the normal human serum metabolome in health [151],

where interesting diet-dependent changes could be

observed [152].

There is much interest in determining the mode or site of

action of compounds, in functional genomics, in target

discovery and in toxicity assessment, which are thereby

interrelated. Ott and colleagues [153,154�] combined

NMR profiles and neural networks with great success

in detecting the mode of action of crop protection sub-

stances in aqueous extracts of plants, while Nicholson and

colleagues have been particularly active in developing the

use of metabolite measurements for assessing drug tox-

icity [10�]. It is obvious that these methods are generic,

and that metabolomics will increase in importance

in toxicology, mode of action analysis and functional

genomics.

Many new signals are waiting to be discovered via the

metabolomics approach. Shi et al. [155�] used a general-

ised purification and metabolomics approach to detect a

novel signalling metabolite, uric acid, released from dying

mammalian cells.

On the biotechnological front, Askenazi and colleagues

[156] integrated transcriptome and (limited) metabolome

profiles, the latter measured using LC-MS, to improve the

yields of lovastatin and (þ)-geodin from Aspergillus terreus,
and it is clear that improved understanding of the meta-

bolic pathways and fluxes [157] to products of biotech-

nological interest should be revolutionised by the

exploitation of the types of metabolomics and network

biology methods reviewed here.

Future perspective and concluding remarks
Metabolomics is a burgeoning science (Figure 1) that

brings together analytical technology, genomics and com-

putation, and lies at the core of the systems biology

agenda. Major areas for development will involve

improving the sensitivity, universality and discrimina-

tion of our instruments, and this will involve new

approaches and better deconvolution. Structural (i.e.

chemical) identification of the many uncharacterised meta-

bolites is still a very important and routinely unsolved

problem, while integrating metabolic models in genom-

ically characterised organisms with their experimentally

determined metabolomes will allow an iterative im-

provement of our understanding of the latter. This can

be seen as the hallmark and purpose of the systems

biology agenda.
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