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a b s t r a c t

The relationship between science and technology has been extensively studied from both
theoretical and quantitative perspectives. Quantitative studies typically use patents as proxy
for technology and scientific papers as proxy for science, and investigate the relationship
between the two. Most such studies have been limited to a single discipline or country. In
this paper, we investigate science–technology interaction over a broad range of science and
technology by identifying and validating a set of 18,251 inventor–authors through matching
of rare names obtained from paper and patent data. These inventor–authors are listed as
inventors on nearly 56,000 US patents between 2002 and 2006. Analysis of the distribution
of these patents over classes shows that this 6.7% sample is a suitable sample for further
analysis. In addition, a map of 290 IPC patent subclasses was created, showing the relation-
ship between patent classes and industries as well as the distribution of patent classes with
high science orientation and low science orientation.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The relationship between science and technology has been extensively studied from multiple perspectives. On one hand
a variety of models or descriptive frameworks (e.g. Triple Helix of university–industry–government relations) have been
proposed to characterize this relationship. On another hand, data have been used to develop metrics for the purpose of
quantifying the relationship. Most of these studies, whether conceptual or quantitative, are policy oriented. Many have been
concerned with knowledge production and the nature, mechanism, directionality, and/or magnitude of the transfer of that
knowledge between science and technology.

Quantitative studies have largely focused on the non-patent references (NPRs) on the front pages of US patents, the
majority of which refer to scientific or technical documents, such as journal articles or conference papers. Early work in this
area, such as that performed by Narin and colleagues (Carpenter & Narin, 1983; Narin & Olivastro, 1992, 1998), was based
on the assumption that a patent-to-paper reference was an indicator that a technology (in the form of a patent) directly
descended from science (in the form of a paper). More recent work, particularly that of Meyer, has shown that the inference
of a direct linkage from science to a resulting technology is unfounded in a large fraction of cases. Rather, the majority
of patent-to-paper references are there for other reasons. This does not discount the fact that the patent and paper are
related, but merely calls into question the directionality and mechanism of that relationship. While many publications refer
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to “science–technology linkage”, Meyer has eschewed that terminology in favor of “science–technology interaction” (Meyer,
2000), and we will follow that convention.

While many studies have used NPR data with the specific intent of linking economic benefit to public science through
technology development or patents, we suggest there is great value in simply understanding the overlap between science
and technology, regardless of the direction of or mechanism for the interactions. We believe there is a much less messy1 and
more comprehensive way to show the interaction between science and technology through inventor–authors. This is not a
new idea. Inventor–authors have been studied for the better part of two decades. However, we now have the means to scale
such a study to cover “all of science” and “all of technology”, and to quantify the overlaps or interactions between the two.
In this paper, we identify a large number of inventor–authors using rare names. Rare names that occur in both a literature
and a patent database are far more likely to identify a single person, an inventor–author, than are more common names.

The balance of the paper will proceed as follows. First, we give a brief background on relevant studies of science–technology
interaction, and more particularly on inventor–author studies. We then describe the data and methods used to identify and
verify inventor–authors. This is followed by a discussion of results and implications, introduction of a patent map showing
the science orientation of different technologies and industries, and finally by a short summary and suggestions for future
work.

2. Background

Several approaches to quantifying science–technology interaction have been used over the years. Primary among these
has been citation analysis using NPR’s. In most of these studies, patent references are linked to specific papers in SCI (Science
Citation Index) journals. Francis Narin and his company, CHI Research,2 generated significant business out of this type of
study (Hicks, Tomizawa, Saitoh, & Kobayashi, 2004), and eventually linked all science-based NPR’s to SCI papers starting
with the 1983 patent year (Narin & Olivastro, 1998). We presume this took a great deal of manual work. Meyer also has a
substantial body of work based on NPR’s (Meyer, 2000, 2002), much of which focuses on the area of nanotechnology (Meyer,
2001).

Paper-to-patent citation analysis has also been investigated (Glänzel & Meyer, 2003), although the numbers of patents
cited in papers is quite low relative to other citation types. Paper-to-patent citation volume is dominated by chemistry
references, thus this technique may be less applicable in other disciplines. Lexical approaches have also been used to establish
semantic linkages between patents and scientific articles. Outputs from this approach include correspondence tables between
patent classes and scientific disciplines (Bassecoulard & Zitt, 2004).

The idea of a common knowledge base giving rise to joint or concurrent development of science and technology through
inventor–authors has also been studied. Bonaccorsi and Thoma (2007) explore some of the reasons why individuals are useful
as a unit of study as opposed to using citations. Coward and Franklin (1989) were among the first to match inventors with
authors using literature and patent data. They explored the field of semiconductor-related science using a database of over
100,000 papers and 2452 patents, with the objective of matching patent data to their bibliometric model of the field. They
identified 247 inventor–authors, and found that this method gave better results (more matches) than either institutional
matching or linking through NPRs.

Most studies of inventor–authors since that time have been small scale, dealing with specific fields of science such as laser
medicine research (Noyons, van Raan, Grupp, & Schmoch, 1994) or nanotechnology (Meyer, 2006), or with the output of a
country (Tijssen & Korevaar, 1997). Murray (2002) took one seminal and highly cited paper–patent pair in tissue engineering,
and investigated the network of researchers and inventors who subsequently cited those works. Forti, Franzoni, and Sobrero
(2007) examined the network structures, productivity and impact of 55 academic authors who also patent with a control
group of their colleagues who did not patent.

Although most work in matching inventors with authors has also required an institutional match to validate the
inventor–author, there are cases in which academic authors have inventions that are assigned to an organization other
than the academic institution. Several studies have attempted to match these academic inventors with their patents that are
assigned to other institutions (Balconi, Breschi, & Lissoni, 2004; Meyer, 2003; Noyons et al., 2003). The work by Noyons et
al. (2003) is the largest scale and most comprehensive inventor–author study to date. Although their work was limited to
EU countries, they were able to link over 15,000 inventor–authors (combination of full and partial matches), roughly 60% of
which also showed institutional matches, and the other 40% of which purported to link the academic inventor with patents
assigned to other institutions.

As with all types of studies involving names, synonymy (multiple name variations for one person) and homonymy (mul-
tiple persons with the same name) are issues in inventor–author studies as well. Different approaches to reduce the effects
of these issues include restricting matches to same-country matches (Meyer, 2006; Noyons et al., 2003), limiting the domain
of study (Meyer, 2006), logic involving variations on name parts (Noyons et al., 2003), and textual analysis using vector space

1 Non-patent references are notoriously messy, difficult to clean and parse using automated methods, and difficult to match to journal articles. For
example, Verbeek et al. (2002) were able to link only 9.3% of 1.15 million NPR to specific articles in the Science Citation Index. They had better luck (26%)
identifying journal titles. This is still well short of the 50% or more of NPRs that are commonly assumed to be science-related.

2 CHI research was sold and divided several years ago. The patent research from CHI is now located at Ipiq.
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Table 1
Institutional distribution of papers for a unique author string

Author string Institution # papers Fraction

ABARBANEL H University of California, San Diego 39 .907
ABARBANEL H Scripps Institution of Oceanography 3 .070
ABARBANEL H Universidad Autonoma de Madrid 1 .023

matching on extracted terms (Cassiman, Glennisson, Verbeek, & van Looy, 2007). In this study, we approach the synonymy
and homonymy issues by restricting matches to rare names occurring in literature and patent data.

3. Data and methods

3.1. Data

The purpose of this study is to quantify the interaction between science and technology through inventor–author linkages
in such a way that those interactions can ultimately be compared by scientific discipline for policy purposes.3 To do this, we
need to cover “all of science” and “all of technology”, or at least as large a segment of each as is possible, rather than to focus
at the level of a single discipline. Large databases were thus needed for this study.

For the literature part of the study, we use Scopus data (as of January 2007) from a 5-year period, 2002–2006, comprising
5.96 million papers and 23.6 million authors with institutions. The advantage of using Scopus data over Thomson Scientific
(or Web of Science) data for author studies is that Scopus links individual authors and institutions at the paper level. By
contrast, with Thomson data, although all authors and all institutions are listed, institutional affiliations of each author must
be inferred except for first author/first institution combinations and papers with only one authoring institution.

For the patent part of the study, we use data from the US Patent and Trademark Office (USPTO) for the same 5-year period,
2002–2006, comprising over 907,500 patents and 2.15 million inventors. Weekly front-page files are available on-line from
USPTO4 that contain inventor, assignee, and reference information, among other fields. Although the format of these files has
changed over the years (from tagged record to XML), full inventor and assignee data are available and can be easily parsed
from the source data. Inventors are not specifically linked to assignees in these data. Rather, relationships between inventors
and assignees must be inferred. Over the 5-year time period, 11.8% of US patents have no assignee, 85.8% have one assignee,
and only 2.4% have multiple assignees.

3.2. Methodology

Our matching of inventors with authors is based on the simple assumption that if a name is rare and occurs in the inventor
data, and in the author data, it is very possible that both instances are referring to the same person. Conversely, if a name
is common, and could represent tens, or even hundreds, of different authors or inventors, it will take much more effort to
find an accurate match. We wish to avoid this effort. Further, we do not believe finding all inventor–authors is necessary. For
policy purposes, and to show the overlap between science and technology on a disciplinary basis, a representative sample is
all that is required.

Let us now define what we mean by a rare name. Certainly, the most extreme case of rare would be where there is only
one institutional affiliation for a given name. However, if we were to limit the analysis to this definition of rare, it might
be difficult to obtain a sufficiently large and representative sample of inventor–authors. We have chosen to use a variable
definition of rare, one that will allow us to not only gather a larger sample, but to compare thresholds of rareness. Consider
the case in Table 1 for one author string.

Author ABARBANEL H is associated with three different institutions in the Scopus data. However, nearly 91% of the
publications assigned to this author name are at one institution. We thus make the assumption that this name is rare at a
threshold of .90. Note that we have truncated the author name to include only the first initial because authors, inventors,
publishers, and database vendors are not consistent in their use of multiple initials. Although this choice increases the effect
of homonymy in our analysis, it reduces the synonymy dramatically. We rely on the rareness fraction to reduce the effect of
homonymy.

The method used to process and match the author and inventor data is as follows:

• Using all author/institution pairs from the Scopus data, all author names were converted to authfi strings (last name with
first initial), and the Scopus orgid was used for the institution affiliation.

• For each unique authfi, the fraction of papers by institution was calculated, following the example given in Table 1. The
sum of the fractions for each unique author string should be equal to 1.0.

3 A detailed disciplinary comparison from the science perspective is planned, but is beyond the scope of this paper.
4 ftp://ftp.uspto.gov/pub/patdata/.

ftp://ftp.uspto.gov/pub/patdata/
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Table 2
Results of the inventor–author name matching process at different fractional thresholds

Rareness fraction range # auth names # inv names Inv–auth
matches

Inv–auth + inst
matches

Fraction valid
matches

# patents NULL
assignees

f = 1.00 1,106,404 278,146 35,360 7,843 .222 18,816 3708
1.0 ≥ f ≥ .9 1,138,340 281,214 38,842 9,068 .233 25,370 3973
1.0 ≥ f ≥ .8 1,222,530 292,594 47,454 11,362 .239 34,653 4653
1.0 ≥ f ≥ .7 1,305,848 304,527 56,774 13,440 .237 42,129 5391
1.0 ≥ f ≥ .6 1,462,269 330,886 76,027 17,077 .225 52,106 6948
1.0 ≥ f > .5 1,512,207 335,987 84,402 18,251 .216 55,820 7703
1.0 ≥ f ≥ .5 1,971,180 425,546 148,532
Unique (authfi) 2,182,303 436,521
Unique (authfi + inst) 8,712,536 1,049,650

• Using all inventor/assignee pairs from the patent data, all inventor names were converted to strings in last name with first
initial format, to match the author format. Assignee data were used for institutional affiliation. In the case of one assignee,
the inventor was given that institutional affiliation. In the case of no assignee, the affiliation was left NULL. In the case
of multiple assignees, additional logic was used to link inventors with assignees—first using common city, then common
state, and finally common country.

• For each unique inventor string, the fraction of patents by assignee was calculated (NULL was considered an assignee),
following the example given in Table 1. The sum of the fractions for each unique inventor string should be equal to 1.0.

• Author strings and inventor strings were then matched at different rareness fraction thresholds. For example, using a
threshold of 1.0, the author and inventor strings were required to match exactly, and both fractions were required to be
1.0. For a threshold of .7, the author and inventor strings were required to match exactly, and both fractions were required
to be .7 or higher.

The results of this process are shown in Table 2. We matched name strings down to a fractional threshold of f > .5. At
this level, 84,402 unique author strings matched inventor strings. If matching were done at fraction = .5, it would introduce
the case where many author strings will be given twice, each with a fraction of exactly .5. We would expect the precision
of matching to drop drastically at this point given that each name would have up to four possible matches (two author
institutions and two inventor institutions) instead of one.

Before proceeding to the validation step, it is instructive to examine some of the data from Table 2. For example, comparison
of the number of unique author names with the number of unique inventor names at different thresholds would suggest
that it is more common for an inventor to also author papers than it is for an author to also produce patents. In other words,
there are far more non-patenting authors than there are non-paper-producing inventors. Total numbers of unique author
and inventor names are also included in Table 2 to provide perspective on the scale of the inventor and author data.

Regarding validation of the inventor–author name matches, note that we did not require a country or institutional match
to this point in the process. This was done for two reasons; first, we wanted to measure the precision of matching based on
rare names only, without other filtering; second, the institutional names used in the Scopus and USPTO databases are often
quite different for the same institution (e.g. University of California, San Diego vs. Regents of the University of California),
and we were keen to avoid the cleaning steps.

To validate inventor–author pairs, each of the 84,402 inventor–author matches was manually inspected for an institutional
match to determine the actual matches; the resulting numbers of validated pairs (those with institutional matches) is given in
Table 2. Examples showing inventor–author names for which the institutional data did and did not match are shown in Table 3.
Interestingly, at a rareness fraction of 1.0, the valid matching rate is only 22%. There were another 10.5% of the inventor–author
pairs where the patent assignee was NULL. (This is only slightly lower than the overall NULL assignee rate of 11.8%.) Some
of these would undoubtedly be matches if the institutional assignee were named. However, if the rate at matching NULL
assignees is similar to that of matching named assignees, the resulting matching rate would only be .222/.895 = 25%. This
suggests that even among the rarest of names, those where there is only one affiliated authoring institution and only one
patenting institution, roughly 3/4 of the presumed inventor–author pairs are actually two different people, one who writes

Table 3
Examples of institutional matches and non-matches for rare inventor–author names

Author string f auth Inst auth f inv Inst inv Match

AASEN E 1 Monsanto Corporation 1 Fundo Wheels AS No
AASHEIM P 1 Trondheim University Hospital 1 Aerobus International, Inc. No
ABADI K 1 Leiden University Medical Center 1 PiRadian, Inc. No
ABALI B 1 IBM T.J. Watson Research Center 1 International Business Machines Corporation Yes
ABARBANEL H .907 University of California, San Diego 1 Applied Nonlinear Sciences, LLC No
ABARE A 1 Cree, Inc. 1 Cree, Inc. Yes
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papers at one institution, and another who patents at a separate institution. When the rareness threshold is lowered to .8, the
valid matching rate actually increases from 22% to nearly 24%. However, as the threshold is lowered even more, the matching
rate decreases, and is only 21.6% for all names at a threshold of greater than .5.

It is important to mention that our method does not match inventor–authors in cases where the author is an academic
researcher whose patents are assigned to an industrial institution rather than to the academic institution. Research on this
effect was reviewed in Section 2. However, our results show that even among the rarest of names 3/4 of inventor–author
name matches do not match on an institutional basis. This suggests that the academic inventor matching techniques used
by Noyons et al. (2003), Meyer (2006), and others, may actually overstate academic involvement to some degree. Those
methods assume that a name match between an academic author and an inventor of a non-academic patent in the same
country are the same person, and do not account for the fact that there may actually be an inventor at the assignee insti-
tution with the same name. To be fair, those methods do match on multiple initials, and are thus more precise in that
regard, undoubtedly giving rise to fewer false hits than in our method. Yet, rare names are often rare because they are
indigenous to specific countries or regions. Thus, limiting matches to within-country matches does not assure accurate
matching.

4. Discussion

4.1. Distribution by IPC sections

The numbers of unique patents for which the validated inventor–authors were listed as inventors is given in Table 2. At the
fraction > .5 level, 55,820 patents were identified. Of these, 55,387 patents were assigned to IPC subclasses (four character)
shown in the IPC8 classification guide (WIPO, 2006). This is 6.74% of all US patents issued (in those same IPC subclasses)
during the years 2002–2006, and is over 12% of all US patents with inventors whose names have a rareness fraction of greater
than .5. The remaining 433 patents are design patents and other patents not classified in one of the standard IPC subclasses.

The IPC8 guide lists 8 sections (A–H), 129 classes (3 character codes such as A01), and 639 subclasses (4 character codes
such as A01B). In addition, the eight sections are subdivided into named groupings that loosely correspond to two character
codes, such as A0. In order to quantitatively link patents to scientific disciplines, we need to know if our 6.7% sample of the
patents is representative of the actual distribution of science-oriented patents.

Fig. 1 shows the distribution of our sample of 55,387 patents with respect to the distribution of all patents, and to
the distribution of patents containing non-patent references. Results are shown by IPC subsection (two-character codes)
using only the primary IPC code for each patent. Secondary classifications are not considered here. Category B8, related to
nanotechnology, is a very new category, with few patents, and has been omitted from the chart.

Perusal of Fig. 1 suggests that our sample of patents is not representative of the distribution of all patents. The differences
become even greater if viewed at the level of the 129 IPC3 codes. There may be many reasons why our 6.7% sample is not
representative. Here we explore two of those reasons.

First, there may not be equal likelihoods for different patents categories to link to science. If one assumes that the sample
distribution should be the same as the actual patent distribution, this contains the implicit assumption that each patent (and
thus each patent class) is equally likely to have an inherent linkage to the science that is being published today. We believe
that this is a poor assumption for intuitive reasons. As an example, we would expect the computer industry to be highly
linked to science because increases in computing are tied to semiconductor processes whose advances are taking place at the
micro-scales that are the subject of current scientific endeavors worldwide. By contrast, new methods of assembling clothing
or furniture, or a new tool used in the construction industry, are most likely due to advances in engineering rather than to
advances in the science that is published in peer reviewed journals. Verbeek et al. (2002) also found that some technology
fields are highly science-dependent while others are not.

Our intuition about the likelihood for different patent classes to be inherently linked to science is reflected in the sample
distribution, and also in the NPR distributions shown in Fig. 1. For example, categories A4 (Personal and domestic articles),
B6 (Transporting), and E0 (Building) are highly under-represented by our sample. The categories in section F (Mechanical
engineering) are also under-represented, but to a lesser extent. These are examples of categories that are engineering-
based rather than science-based. By contrast, categories C0,1 (Chemistry), G0,1 (Instruments) and H0 (Electricity) are over-
represented. These categories are all tied to basic sciences on an intuitive level. Although at first glance one might think that
G0,1 (Instruments) is engineering-based, it is the major category within section G (Physics), and thus does tie back to basic
science.

The second reason we wish to mention is that these differences may represent the different propensities for inventors in
different industries to publish. Some companies and industries have an unwritten policy not to publish (e.g. the American
automobile industry). This is likely a confounding factor, but not the primary one, given the arguments listed for the first
reason above. Taken by itself, this explanation would require the assumption that all patents are equally likely to link to
science, which we have already shown is not likely. These arguments suggest that our 6.7% sample of patents, while not
representative of the actual patent distribution, is reasonably representative of the distribution of patents that actually link
to science from a patent classification standpoint. The stability of the patent sample distribution over subsections was also
investigated by generating the same distributions at a rare name threshold of .7 (41,800 patents, 5% sample). Differences in
the percentage distributions for the 5% sample (not reported here) and the 6.7% sample shown in Fig. 1 were negligible. That
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Fig. 1. Distribution of patents assigned to validated inventor–authors by IPC subsection. Subsections are ordered (top to bottom) by the ratio of patents in
our inventor–author sample to all patents to show an ordering of relative science orientation.

the addition of 13,500 patents to the sample set did not shift the distributions appreciably suggests that the sample is indeed
robust, and sufficient for further analysis.

Additional data related to the IPC subsections shown in Fig. 1 are reported in Table 4. Perhaps the most interesting fact
in this table is the ratio of papers to patents for different technology areas. Among author–inventors, this may reflect the
relative importance of publishing vs. patenting in the different areas. The medical (A6) and agricultural areas (A0, A2) have
high paper-to-patent ratios, above 4.2. Chemistry-related areas (C0,1; C2, C3) also have relatively high ratios, near or above
3.0. Many engineering-related areas (F0, F1, F2, E2, B4) are on the other end of the spectrum, with ratios near 1.0.

4.2. Distribution by country

It is also informative to look at the country distribution of the sample using inventor addresses. Country shares and rank
are shown in Table 5 for all patents, patents with NPR, and our inventor–author-based sample. Fractional counting at the
patent level was used in all three cases. Comparison of the shares and rankings for the three different cases gives rise to some
interesting observations.

First, a comparison of patents with NPR to all patents can show the relative propensity of a nation to patent in fields
that have an interaction with science. For example, the United States, although it has the largest share of US patents by any
measure, has a larger share of patents with NPR than would be expected from the shares of all patents. This would suggest
that the United States has a higher than average propensity to patent in areas related to science. The same thing can be seen,
although to a lesser degree, for the United Kingdom, Canada, Israel, and several other countries further down the list.

By contrast, Japan, South Korea, and Taiwan have shares of patents with NPR that are far lower than would be expected
from their shares of all patents. This is most pronounced for Taiwan, whose share of patents with NPR is only about 20% of
the expected value. It would be easy to assume that these countries have a propensity to patent in fields that have lower
interaction with science. However, other factors suggest a closer look. It is well known that the science base in these countries



K.W. Boyack, R. Klavans / Journal of Informetrics 2 (2008) 173–182 179

Table 4
Additional data related to inventor–author matches by the IPC subsections shown in Fig. 1

IPC two-character code IPC label # patents
actual

# inv–auth
matches

# patents by
inv–auth

# papers by
inv–auth

Papers per
patent

G0,1 Instruments 226,032 6452 16,351 30,561 1.87
H0 Electricity 195,267 5378 15,749 24,648 1.57
C0,1 Chemistry 63,387 4687 8,810 32,517 3.69
A6 Health; amusement 72,552 3345 5,752 24,347 4.23
B2,3 Shaping 44,309 1119 1,787 4,805 2.69
B0 Separating; mixing 21,727 958 1,335 3,927 2.94
A0 Agriculture 16,937 666 814 4,164 5.12
C2 Metallurgy 7,528 528 747 2,169 2.90
F0 Engines or pumps 21,060 396 963 1,055 1.10
B6 Transporting 50,603 359 560 862 1.54
F2 Lighting; heating 14,460 294 496 670 1.35
F1 Engineering in general 20,691 218 515 423 .82
B4 Printing 14,328 216 444 402 .91
G2 Nucleonics 1,385 141 166 390 2.35
C3 Crystal growth 971 129 137 728 5.32
A2 Foodstuffs; tobacco 4,145 103 119 641 5.39
E2 Earth or rock drilling; mining 5,054 87 263 186 .71
D0 Textiles or flexible materials 4,434 87 139 436 3.14
E0 Building 13,575 54 61 168 2.75
D2 Paper 1,396 43 79 85 1.08
F4 Weapons; blasting 3,110 31 43 61 1.43
A4 Personal or domestic articles 18,408 29 40 68 1.70

Many author–inventors have patents in multiple IPC subsections, the sum of inventor–author matches is thus larger than reported in Table 2.

Table 5
Distribution of patents by country

Country All patents Patents with NPR Sample ShareS/ShareNPR

Rank Share Rank Share Rank Share

United States 1 51.5% 1 59.0% 1 63.3% 1.07
Japan 2 21.1% 2 16.7% 2 13.8% 0.82
Germany 3 6.5% 3 6.1% 3 8.6% 1.40
United Kingdom 6 2.2% 4 2.6% 6 1.5% 0.58
France 7 2.2% 5 2.3% 4 2.7% 1.15
Canada 8 2.0% 6 2.2% 5 1.7% 0.77
South Korea 5 2.7% 7 1.7% 19 0.2% 0.14
Netherlands 10 0.9% 8 0.9% 8 1.2% 1.26
Israel 13 0.7% 9 0.9% 10 0.9% 0.94
Sweden 11 0.8% 10 0.8% 12 0.5% 0.57
Switzerland 12 0.8% 11 0.8% 9 1.1% 1.39
Italy 9 1.0% 12 0.8% 7 1.2% 1.52
Taiwan 4 3.4% 13 0.7% 24 0.1% 0.11
Australia 14 0.6% 14 0.7% 17 0.2% 0.33
Finland 15 0.5% 15 0.6% 11 0.6% 0.99
Belgium 16 0.4% 16 0.5% 13 0.5% 1.01
Denmark 18 0.3% 17 0.4% 14 0.4% 1.05
India 21 0.2% 18 0.3% 16 0.4% 1.23
Austria 17 0.3% 19 0.3% 15 0.3% 1.32
Singapore 20 0.3% 20 0.2% 22 0.1% 0.48
China 19 0.3% 21 0.2% 29 0.0% 0.22
Russian Federation 25 0.1% 22 0.2% 23 0.1% 0.59
Spain 22 0.2% 23 0.2% 20 0.1% 0.74
Norway 23 0.1% 24 0.1% 18 0.1% 0.77
Ireland 26 0.1% 25 0.1% 28 0.0% 0.49

The top 25 countries are ordered by share of patents with NPR (non-patent references).

is heavily weighted toward the physical sciences (see, for example, Fig. 3 in King (2004) for a citation share distribution for
Japan).5 Since these are precisely the fields with the highest science–technology interaction, corresponding to IPC sections
C, G, and H (see Fig. 1), it is difficult to understand why these countries would not have larger fractions of patents with NPR.
We note that these are all Pacific Rim countries with very different patenting systems and cultures than are found in the

5 Unpublished work by the authors shows very similar science profiles for Japan, China, Korea, and Taiwan.
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United States and Europe. There could be some systematic reason related to culture that results in lower than expected NPR
rates, even when these patents are examined and granted within the US system.

Second, comparison of the sample share with the share of patents with NPR, the ratio of which is shown in the last column
of Table 5, leads to observations about the usefulness of using rare names to identify inventor–authors by nation. Countries
with a share ratio greater than 1.0 are over-represented using our rare name method of identifying inventor–authors, while
those with a share ratio less than 1.0 are under-represented. The most over-represented countries percentagewise are Italy,
Germany, Switzerland, and Austria. Three of these four are dominated by Germanic names; thus a case can be made that
Germanic names have a higher level of rareness than names from other languages. On the other end of the scale are the
Asian names. South Korea, Taiwan, and China each have share ratios of less than .25. Japan has far more rare names than
its Pacific Rim counterparts, but still less than many other countries, with a share ratio of .82. English names show diverse
behavior; the United States is unexpectedly over-represented with a ratio of 1.07, while the United Kingdom (.58), Canada
(.77), Ireland (.49), and Australia (.33) have far fewer rare names among inventor–authors. We have no means of explaining
this difference among English-speaking countries. In short, our method of identifying inventor–authors using rare names
does not provide a representative sample when considered by nation or language. However, this does not seem to be a
problem when considering the purpose of the study—to quantify science–technology overlap on a broad basis. The results
of Section 4.1 and Fig. 1 suggest that our sample is sufficiently representative for this purpose.

4.3. Map of IPC classes

Fig. 1 showed science–technology interaction at the level of 22 IPC subsections. A much more detailed view of the interac-
tion is possible if one maps IPC subclasses. Fig. 2 shows a visual map of 290 IPC subclasses (four-character codes), generated
from co-classification of IPC subclasses using all US patents issued from 2002 to 2006. The patent map was generated using
the same process and algorithms we have used previously to generate maps of scientific journals (Boyack, Klavans, & Börner,
2005) and papers (Klavans & Boyack, 2006b). Co-classification counts were assigned for a pair of IPC subclasses if code1
was primary and code2 was secondary for a single patent. (Patents are often assigned to multiple categories; code1 is the
primary category assignment.) Counts were then summed by subclass pairs over all patents, the matrix was made symmetric
by adding the upper and lower halves, and a K50 similarity measure (Klavans & Boyack, 2006a) was calculated. Given the
number of very small subclasses, we kept only those subclasses with a total of 150 or more co-classification counts. Thus,
only 290 of the original 639 IPC subclasses were represented in the final co-classification matrix. Of the 9966 pair-wise
similarities between classes (23.8% of the matrix elements were non-zero), only 940 edges remained after the edge pruning
that is part of the VxOrd layout algorithm (Klavans & Boyack, 2006b). The resulting layout, visualized in Pajek (Batagelj &
Mrvar, 1998), is shown in Fig. 2. Node sizes reflect the relative numbers of patents by class.

Labeling of the map was done by hand at two different levels. First, most visually identifiable clusters in the map were
labeled using examination of both the IPC subclass names and the dominant institutional assignees in the clusters. Sec-
ond, the map was examined to see if it could be labeled by industry. Using industry names from Hoover’s taxonomy of 37
industries,6 we found that the map could indeed be segmented by industry into contiguous segments. We do not claim that
the industry boundaries on this patent map are absolutely precise, but rather show fuzzy boundaries between industries.
IPC subclasses are relatively course distinctions, and in many cases a single subclass may belong to multiple industries,
much as many large companies serve multiple industries. Seventeen of Hoover’s 37 industries are represented on the patent
map. In two cases industries have been combined: Automotive and Aerospace and Defense in one case, and Computer Hard-
ware + Software in the other. In these two cases, any division between the industries based on locations of IPC subclasses
on the map would have been artificial. Some industries are completely surrounded by others in patent space. For example,
the Telecommunications and Computer industries are bounded by Electronics on both sides. All but one of the industries are
represented by drawn boundaries on the map. The one exception is the Consumer Products industry, which comprises all of
the unbounded space.

The patent map shown in Fig. 2 could be the subject of an entire paper. Many stories about technology and industry
linkages could be told. Although such an analysis would undoubtedly be interesting, we choose to maintain our focus here
on science–technology interaction, and limit our interpretation of the map to that end. In Fig. 2, node color is related to
science–technology interaction. Here, relative science–technology interaction values were calculated as the ratio of the
fraction of patents in the sample to the fraction of all patents by class. Darker nodes, those with ratios over 1.15, show areas
where science–technology interaction is high, while lighter nodes (white or very light) with ratios lower than .87 show areas
where the interaction is low.

The IPC classes with high science orientation are not uniformly distributed throughout the map, but are concentrated
mostly in the lower half of the map. The industries with high science orientation nodes thus include Electronics, Computer,
Telecommunications, Chemicals, Metals, Pharmaceuticals, Agriculture, Energy, and Health Care. This does not mean that all areas
of these industries, or all patent subclasses that contribute heavily to these industries, have high science orientation. There
are many light colored nodes (low science orientation) in these industries. By contrast, nearly all nodes in the other industry

6 Hoover’s is a Dun & Bradstreet company that collects and sells detailed business information about companies and industries. Their free industry
taxonomy is available at http://www.hoovers.com/free/industries/.

http://www.hoovers.com/free/industries/
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Fig. 2. Map of IPC subclasses (three character) based on co-classification. Smaller labels list the dominant technology in adjacent clusters. Oval partitions
and labels indicate the dominant technology within the partition boundaries. Larger labels and dashed rectangular partitions group clusters by industry.

regions of the map (Automotive and Defense, Construction, Industrial Products, Leisure, Consumer Products, and Food) have a
low science orientation.

5. Summary and future work

The purpose of this work has been to investigate science–technology interaction over a broad range of science and
technology. We have done this by identifying and validating a set of over 18,000 inventor–authors and nearly 56,000 patents
by matching rare names obtained from paper and patent data. Matching of rare names alone provided a list of 84,000
potential inventor–authors. However, institutional matching was required to validate the matches, and found that only 22%
of the potential name matches were valid. Analysis of the distribution of our 6.7% sample of patents has shown that it
corresponds reasonably well to the distribution of patents containing non-patent references, and thus is a suitable sample
for further studies of science–technology interaction.

IPC patent subclasses (four character) were mapped using patent co-classification, and science–technology interac-
tion values based on our sample of patents were shown on the map. Fifteen different industry-based partitions of IPC
subclasses were identified. Of these, nine industries have a high science orientation, while the other six have low sci-
ence orientation. IPC subclasses with high science orientation can be distinguished from those with low science orienta-
tion.

There is much work that can be done with a set of validated inventor–author data such as that identified in this
study. Although we identified individual patents and papers associated with the inventors, we did not analyze the
specific papers associated with the authors. This could easily be done, and would enable studies of overlap from
the science perspective. If coupled with funding data, such studies could show the multiple overlaps of funding, sci-
ence production, and patent production. Mining of citation count data for papers and patents could enable studies
to show productivity and impact effects of inventor–authors with respect to their non-publishing or non-patenting
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peers, much like the studies of Meyer (2006) and Forti et al. (2007), but on a broader scale. Such studies would have
distinct policy implications in that they provide detailed input–output information that could be useful to decision mak-
ers.
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