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Research  on  measurement  error  in  network  data  has typically  focused  on  missing  data.  We  embed  missing
data,  which  we  term  false  negative  nodes  and  edges,  in  a  broader  classification  of  error  scenarios.  This
includes  false  positive  nodes  and  edges  and  falsely  aggregated  and  disaggregated  nodes.  We  simulate  these
six measurement  errors  using  an  online  social  network  and  a  publication  citation  network,  reporting
their  effects  on  four  node-level  measures  – degree  centrality,  clustering  coefficient,  network  constraint,
and eigenvector  centrality.  Our  results  suggest  that  in  networks  with  more  positively-skewed  degree

distributions  and  higher  average  clustering,  these  measures  tend  to  be less  resistant  to  most  forms  of
measurement  error.  In addition,  we  argue  that  the  sensitivity  of  a given  measure  to an  error  scenario
depends  on  the  idiosyncracies  of  the  measure’s  calculation,  thus  revising  the  general  claim  from  past
research that  the  more  ‘global’  a measure,  the less  resistant  it is  to  measurement  error.  Finally,  we  anchor
our  discussion  to  commonly-used  networks  in  past research  that  suffer  from  these  different  forms  of

ake  
measurement  error  and  m

. Introduction

Network analysis has long been plagued by issues of measure-
ent error, usually in the form of missing data. For instance, survey

ata used in early sociometric research often contained misrepre-
entations of ego-networks due to the limits of respondent memory
nd survey design (Marsden, 1990).

While missing data remains a major issue, much network
esearch currently faces the opposite problem. The growing avail-
bility of large, complex network datasets has transformed a
esearch environment that lacked sufficient data into one with an

verabundance (De Choudhury et al., 2010). Network researchers
egularly analyze networks with millions of nodes and edges
ith multiplex relations. However, while much research still
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focuses on missing data, it has overlooked other major classes of
measurement error that have emerged (for an exception, see
Borgatti et al. (2006)).

Here, measurement error refers to mistakes in collecting or cod-
ing a network dataset. For example, in a sociometric survey, if a
respondent misspells the name of a contact, then the contact might
erroneously be treated as two different individuals. However, mea-
surement error can also refer to the extent to which a network
dataset represents the reality of the relationships within a group
under study. For instance, even if all respondents report the cor-
rect spellings of their friends’ names, the understanding of what
qualifies as a friendship tie can vary by respondent.

Thus, in network research, there exist three levels of empirical
interpretation (see Table 1) – (1) the ideal network: the true set of
relations among entities in a network, (2) the clean network: the
set of relations among entities as coded in a network dataset with-
out data entry mistakes, and (3) the observed network: a network
dataset, often suffering from coding errors, that is actually avail-
able to a researcher. Resolving the differences between the ideal
network and clean network is difficult because it entails apply-
ing an objective understanding to what is an inherently subjective
relationship (see De Choudhury et al. (2010)). Because most mea-
surement errors are a result of inconsistencies in data collection
and coding, we focus our analysis on the discrepancies between
the clean and observed network.
First, we classify network measurement error into six types
– missing nodes, spurious nodes, missing edges, spurious edges,
falsely aggregated nodes, and falsely disaggregated nodes. In effect,
we build on the important work of Borgatti et al. (2006),  who

dx.doi.org/10.1016/j.socnet.2012.01.003
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:djwang@stanford.edu
dx.doi.org/10.1016/j.socnet.2012.01.003
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Table 1
Three levels of empirical network interpretation.

Description Example 1 Example 2 Illustration
Friendship network gathered
through sociometric surveys

Collaboration network gathered by
scraping publication database

Ideal network Network of true
relations between
entities

Ties represent actual, mutual
friendships between
individuals

Ties represent active collaborative
relationships between individuals

Clean network Network of relations
encoded in data
without measurement
error

Ties represent each
respondent’s own  perception
of friendship with others

Ties represent co-author
relationships, but not necessarily
active collaboration between
individuals

Observed network Network of relations
encoded in data with
measurement error

Ties represent reported
friendships, but some nodes
and ties are erroneously
coded

Ties represent co-author relations,
but some nodes and ties are
erroneous coded
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ompared the effects of spurious and missing nodes and edges on
entrality measures in Erdős-Rényi random graphs. By contrast, we
ompare the effects of our error scenarios by simulating them in
wo real-world networks and one random graph, each of which
ary in key structural characteristics, such as average clustering
nd degree distribution. We  then observe the effects of these error
cenarios on four different node-level network measures – degree
entrality, clustering coefficient, network constraint, and eigenvec-
or centrality.

In addition, we make recommendations for error correction
trategies, which depend on the type of measurement error sce-
ario, the network measure affected, and the structural attributes
f the network under study. We  also ground our discussion in com-
on  examples of network datasets from past research. By bringing

ttention to these understudied classes of measurement error, we
lert network researchers to important sources of bias that extend
eyond missing data.

.1. Related work

Early examinations of the measurement error in networks
ocused on missing data in sociometric surveys. Common sources
f error include respondent bias (Pool and Kochen, 1978),
on-response (Stork and Richards, 1992), and the design of ques-
ionnaires (Burt, 1984; Holland and Leinhardt, 1973). In addition,
his work identified factors in research design that could give
ise to measurement error. Specifically, the boundary specifica-
ion problem refers to the issue of deciding which units qualify
s legitimate members of a connected network (Laumann et al.,
983). Barnes (1979),  for instance, noted that specifying a restric-
ive boundary can underestimate centrality measures. As a solution,
ome used objective criteria for gathering network data, such as

nly including individuals who are, by definition, members of a
roup, such as students of a given school (Coleman, 1961; Kapferer,
969).1

1 See also work on network sampling and correction strategies for missing data
Granovetter, 1976; Marsden, 1990; Leskovec and Faloutsos, 2006; Handcock and
ile, 2010; Sadikov et al., 2011).
Our paper builds on the more recent work of Kossinets (2006)
and Borgatti et al. (2006),  who  simulate of measurement errors
on random Erdős-Rényi networks. Kossinets (2006) focuses on
missing network data, finding that clustering coefficients are over-
estimated when the boundary specification is too restricted, and
centrality measures are underestimated when non-response is per-
vasive. Borgatti et al. (2006) begin an important conversation about
the typology of measurement errors. They find that spurious nodes
and edges diminish the similarity between a network dataset and
its error-afflicted counterpart but not as much as the removal of
nodes and edges.

We argue that key structural features of real-world social
networks can also influence the robustness of certain network
measures to error scenarios. Erdős-Rényi graphs, like those in
Kossinets (2006) and Borgatti et al. (2006),  tend to have little
clustering and more uniform degree distributions, making their
comparison to empirical networks unrealistic (Newman and Park,
2003). We therefore use empirical network datasets for simulating
measurement error to issue more relevant cautions to empiri-
cal researchers about different forms of network measurement
error.

2. Error scenarios

First, network data can suffer from missing or spurious nodes,
which we  term false negative nodes and false positive nodes,  missing
or spurious edges, which are termed here as false negative edges and
false positive edges, or the erroneous merging or splitting of nodes,
which we call false aggregation and false disaggregation.  Since we
have already reviewed work on missing nodes and edges, their dis-
cussion below will be brief. Table 2 summarizes the measurement
error scenarios we  consider in this paper.

2.1. Nodes

2.1.1. False negative nodes
False negative nodes refer to the absence of nodes that should
be present in a network. Examples include network data gath-
ered via snowball sampling, which tend to underestimate the total
membership of the groups under study (Erickson, 1978). Other
sources of false negative nodes include non-response from surveys
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Table 2
Description of types of measurement error in network data.

Error scenario Example Empirical references

False negative nodes Non-response in sociometric surveys, boundary misspecification Stork and Richards (1992)
False positive nodes Fake user accounts in online communities Lewis et al. (2008) and Narayanan and Shmatikov (2009)
False  negative edges Imperfect respondent recall, limiting contact list in sociometric surveys Sudman (1985) and Brewer (2000))
False  positive edges False ties in online communities, tie-decay windows that are too wide Lewis et al. (2008))
False  aggregation In entity resolution on coauthorship networks, mistakenly treating

different authors as the same author
Newman (2002) and Fleming et al. (2007)

False  disaggregation In entity resolution on coauthorship networks, mistakenly treating
erent 

Newman (2002) and Azoulay and Zivin (2005)
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databases can record millions of author names), it is conceivable
that one problem is worse than the other.

At the very least, the results of our research can better inform
different spellings of the same author’s name as diff

Stork and Richards, 1992). Also, recent work on citation networks
ndicate that large portions of a publication’s references can be

issing from a citation database due to coding errors (Shi et al.,
010).

.1.2. False positive nodes
In contrast to false negatives, false positive nodes refer to nodes

hat are erroneously present in a network. Few network researchers
ave systematically examined this measurement error scenario
Borgatti et al., 2006). However, just as respondent bias can result
n the underreporting of nodes and relations, it can also lead to
he overrepresentation of certain elements of a network (Feld and
arter, 2002).

False positive nodes are pervasive in networks when the data
eing gathered are not subject to close scrutiny. Consider, for exam-
le, an online community where spamming scripts generate false
ser activity. By design, these ‘spam-users’ mimic  human online
ctivity, which is often impossible to filter completely given the
mount of data in large online communities.

Nevertheless, growing interest in online communities has
esulted in studies of Twitter (Narayanan and Shmatikov, 2009),
acebook (Ackland, 2009; Lewis et al., 2008), and the World of
arcraft (Nardi and Harris, 2006), which contain a wealth of rela-

ional information. It would be naive, though, to take the data
t face-value because among other issues, it is often difficult to
istinguish between real and fake users. For example, indepen-
ent assessments suggest that 27% of all Facebook accounts are
ake (Nyberg, 2010; Richmond, 2010). While data from online
ommunities can provide insight into complex network dynam-
cs, filtering false data stands as a major challenge for network
esearchers.

.2. Edges

.2.1. False negative edges
False negative edges occur when relationships between nodes

hat should be reported are not observed in a network. In sociomet-
ic surveys, the risk of false negative edges comes from respondents’
mperfect recall of their ego-networks (Bernard et al., 1984; Brewer,
000).2 In addition, the survey itself might restrict the number
f contacts a respondent may  list, enforcing an artificial limit on
easures like node degree (Burt, 1984).

.2.2. False positive edges
False positive edges occur when relationships between nodes

re erroneously present in a network. In surveys, respondents

ometimes report relations that are not actually present. In online
ommunity data, many contacts listed by users by no means rep-
esent real world relationships. Attempts to discern “real” ties

2 Brewer (2000) reviews 17 studies, in which the recall of social contacts among
urveyed respondents varied between 16% and 99%.
authors

from “false” or “virtual” ties have generally found that features
like temporal or spatial proximity can be used to discern actual
relationships (De Choudhury et al., 2010; Wuchty, 2009).

Other settings like co-authorship networks, which represent
collaborative relationships, can also contain false positive edges
(Newman, 2001; Wuchty et al., 2007). Here, spurious edges come
from failing to account for tie decay. Most researchers have dealt
with this issue by setting an arbitrary time window to signal the
period in which an established tie is meaningful (Fleming and
Frenken, 2007). Using windows that are unrealistically long, how-
ever, can introduce false positive edges.3

For example, in communication networks, such as the Enron
email corpus (Carley and Skillicorn, 2005), using every email to
represent ties between individuals would be inappropriate because
emails from years ago might be irrelevant to signaling more cur-
rent relationships. Conversely, using a tie-decay window that is too
narrow might overlook important ties from the past (De Choudhury
et al., 2010).

2.3. False aggregation and disaggregation

The final set of measurement errors is less common than false
positives or false negatives, but they nonetheless deserve consid-
eration. False aggregation refers to the error scenario in which two
nodes, A and B, are mistakenly treated as one node. False disaggre-
gation is the opposite problem, in which one node A, is erroneously
treated as two  separate nodes, A and B.

The false aggregation and disaggregation of nodes typically
occur during data cleaning. The problem is closely related to entity
resolution – the disambiguation of distinct ‘entities’ in a dataset,
such as similar author names in citation databases for bibliometric
analysis. Citation databases used to construct co-authorship net-
works often contain author names under multiple spellings (Ahuja,
2000; Fleming et al., 2007; Azoulay and Zivin, 2005). Sometimes,
different but close spellings can represent the same author while
in other cases, different spellings can actually refer to different
authors (or even worse, the same exact spelling can refer to two
different authors).

Some algorithms for entity resolution treat too many actual
authors erroneously as multiple authors (false disaggregation),
while others can mistakenly group different too many authors as
the same author (false aggregation). While it is almost impossible to
know the true list of disambiguated authors (given that publication
readings of previous studies, which have noted the entity resolution

3 Fleming and Frenken (2007, p. 952) note that varying the tie window in their
study does not greatly affect the structural features of their co-patenting networks;
we  suspect, however, in other contexts, misspecifying a tie-decay window can have
more detrimental effects.
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Table 3
Descriptive statistics for networks under study.

Nodes Edges Density Avg. clustering coefficient

Slashdot.com network
Empirical network 70,416 353,595 0.00014 0.0561
Degree sequence random network 70,416 350,073 0.00014 0.0112
Erdős-Rényi random network 70,416 353,595 0.00014 0.0001

ArXiv  citation network
35
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2. Apply an error scenario to G; call the new perturbed network,
G′(V′, E′);

3. For each node u that is in both G and G′ (u ∈ V ∩ V′) calculate a
given node-level network measure and store the measure for u
Empirical network 27,770 

Degree sequence random network 27,770 

Erdős-Rényi random network 27,770 

ssue, but have failed to completely account for it (for an exception,
ee Newman (2002)).

. Data and methods

.1. Datasets

Following Costenbader and Valente (2003),  we  compare dif-
erent types of measurement error by simulating them in two
mpirical datasets. Furthermore, because we are interested in how
ey structural features of a network can moderate the impact of
rror scenarios, we also simulate our error scenarios for rewired
etworks with the same degree sequences as their empirical coun-
erparts and Erdős-Rényi random graphs that have the same size
nd density as the real networks.4

We  use two empirical datasets that have been studied in past
esearch. First, we analyze the friendship network of Slashdot.com
sers, which contains 77,357 nodes and 353,595 edges (Leskovec
t al., 2010). Slashdot.com is an online technology forum where
sers share and comment on technology news. Slashdot users fre-
uently engage in online discussion and can nominate one another
s either ‘friends’ or ‘foes’.5 Second, we consider a citation network
f publications in the field of High-Energy Physics Theory, avail-
ble in the e-print repository, ArXiv (Gehrke et al., 2003). All articles
ere published between January 1993 and April 2003. This graph

ontains 27,770 nodes and 352,324 edges.6

Aside from their structural differences, we chose these two
atasets because they represent different types of commonly-
nalyzed networks (Newman and Park, 2003). In addition, both
etworks are similar in size, but vastly different in other structural

eatures. The average clustering in the citation network is over five
imes greater than in the Slashdot network (Table 3), and whereas
he degree distribution of the Slashdot network follows a power
aw, the citation network’s degree distribution does not (Fig. 1). In
ddition, we chose two large networks because manual data clean-
ng is often unrealistic for such data. Our later discussion of error
orrection strategies focuses on automated methods, which would

e unnecessary and less applicable to small networks. For smaller
etworks, manual data cleaning is more tractable and likely more
ccurate.7

4 We used a configuration model to generate a rewired network with a specified
egree sequence using the ‘configuration model’ function from the Python package
etworkx (Hagberg et al., 2008). The function allows for the creation of loops which

s  why the number of edges in our rewired networks is slightly lower than that in our
mpirical networks. Since the difference in edge count is trivial, we  are confident
hat this does not affect our results.

5 These data were gathered in November 2008. In our analysis, we remove ‘foe’
inks, which allow Slashdot users to express negative feelings toward certain other
sers.
6 See http://snap.stanford.edu for more information about these two networks

nd download links for the data.
7 We caution readers, though, that the effects of measurement error are also size-

ependent (Borgatti et al., 2006), but this issue is beyond the scope of this paper.
2,324 0.00091 0.3121
9,926 0.00091 0.0123
2,324 0.00091 0.0009

While we  are aware that these two networks themselves might
suffer from measurement error, we  treat them as if they were clean
to observe the effects of measurement error on networks with real-
world features (Table 1). However, we  are reasonably confident that
the Slashdot.com dataset is free from spam activity, and the ArXiv
database is routinely monitored for errors by human administrators
(Gehrke et al., 2003). In addition, we use versions of these datasets
that have been cleaned thoroughly for analysis in past research.

Although these two networks are directed networks, we treat
all ties as undirected to simplify our analysis. Thus, the degree dis-
tributions in Fig. 1 use the sum of in- and out-degrees.

3.2. Approach

Our goal is to compare the robustness of four node-level net-
work measures – degree centrality (Freeman, 1979), clustering
coefficient (Watts and Strogatz, 1998), network constraint (Burt,
1992), and eigenvector centrality (Bonacich, 1987) – to different
error scenarios (Table 4 summarizes these measures for our net-
works). Our intuition is that if, for instance, the overall ranking of
nodes by degree centrality does not change dramatically under an
error scenario, then the degree centrality measure is robust. The
process of simulating an error scenario follows:

1. Consider a clean network, G(V, E);
Fig. 1. Degree distribution of Slashdot and ArXiv citation networks.

http://snap.stanford.edu
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Table 4
Summary statistics for network measures used in analysis.

Slashdot friendship network ArXiv citation network Formula

Mean SD Skewness Mean SD Skewness

Degree centrality 10.0430 34.7102 22.9295 24.3687 30.8759 5.2178 Count of the number of ties for a node i; usually scaled
so  that the maximum value is 1 (Freeman, 1978:221).

Clustering coefficient 0.0560 0.1830 4.2856 0.2848 0.2071 1.2612 CCi = 2|ejk |
ki(ki − 1)

ejk is the set of edges between node i’s

neighbors; and ki is the number of i’s neighbors (Watts
and Strogatz 1998:441).

Network constraint 0.5450 0.3937 0.0749 0.1623 0.2095 2.7682 Ci =
∑

j /= i

(
pij +

∑
k /=  i,k /=  j

pikpkj

)2

pij is strength of the

tie  between a node i and its neighbor j (in our case,
p = 1 for all ties); k and j represent i’s neighbors. Higher
values of Ci indicate that i acts as less of a structural
hole (Burt, 1992:54).

Eigenvector centrality 0.0071 0.0290 13.9200 0.0098 0.0256 8.9063 A node’s eigenvector centrality is the unit-normalized
sum of its ties to its neighbors, wherein each tie to a
neighbor is weighted by the neighbor’s ties, and each
of the neighbors ties are weighted, and so forth. To
facilitate calculation, given a graph G’s representation
as  an adjacency matrix A, the eigenvector centrality of
node i is given by the ith element of A’s
unit-normalized principal eigenvector (Bonacich,
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calculating Spearman’s rho for M and M′. We  remove edges until
0.05|E| remain. Removing edges has the effect of artificially dimin-
ishing a network’s average degree.
ote: We calculate skewness as the third moment about the mean.

from G in the vector M and the measure of u from G′ in the vector
M′.

. Calculate the rank correlation (Spearman’s rho) of M and M′.

We  use Spearman’s rho as an evaluation criterion because Pear-
on’s correlation would add noise as a result of its sensitivity
o linearity. We  prioritize the node ranking by a given network

easure because the distribution of our node-centric measures in
mpirical social networks tends to be highly skewed. Consider a
etwork with a positively skewed degree distribution. If the net-
ork’s top-ranked node by degree centrality loses half of its edges

ut remains top-ranked, this would diminish the linear correlation
etween M and M′(containing node degree centralities), but would
ave no effect on the rank correlation between M and M′. In other
ords, if we used Pearson’s correlation, we would risk exaggerating

he effect of measurement error. Spearman’s rho is simply a more
ractical measure.8

We  compare degree centrality, clustering coefficient, network
onstraint, and eigenvector centrality because they represent com-
only used network measures, the calculations of which range

rom local (degree) to semi-local (clustering coefficient and network
onstraint) to global (eigenvector centrality).9

. Initial simulations: empirical networks

.1. Simulation procedure
Our approach involves simulating an error scenario on what we
ake to be a clean network, G(V, E). We  describe one simulation run
or each error scenario below. For each error scenario, we  executed

8 Spearman’s rho, which ranges from −1 to 1, gives the Pearson’s correlation of
he  ranks of two  variables.

9 Network measures for a given node are considered local if their calculation only
nvolves features of the focal node itself. For example, degree centrality is a count of

 focal node’s edges (Table 4). The calculation of semi-local measures, like clustering
oefficient, involves the activity of a node’s neighbors. Finally, a global network mea-
ure is calculated using properties of the entire network. For example, betweenness
entrality requires collecting all shortest paths in a network.
1987:1172).

10 runs. Because we  observed very little variation in our results
between runs, we omit error bars and confidence intervals from
our results plots because they would be almost unobservable.10

False negative nodes.  Given G(V, E), at each step, we  remove
0.05|V| randomly chosen nodes from the network, yielding G′. For
each node in both G and G′, we calculate the value of some node-
level measure and store them in the vectors M and M′. We  then
calculate Spearman’s rho for M and M′. We  continue removing
0.05|V| nodes until only 0.05|V| are left in the network, recalculat-
ing and recording Spearman’s rho at each step (removing all nodes
would result in an empty graph).11

False positive nodes.  We  introduce spurious nodes to the initial
network one by one. For each spurious node, we  extend n edges
(n is equal to the degree of a randomly chosen node already in
G) from itself to n randomly chosen nodes that are already in the
network, preserving the network’s average degree (Borgatti et al.,
2006). Given G(V, E), at each step, we  add 0.05|V| spurious nodes to
the network. We  calculate the rank correlation of M and M′ at the
end of each step. We continue attaching spurious nodes until |V|
nodes have been added. After one run, G′ will contain 2|V| nodes.

False negative edges.  Given G(V, E), at each step, we remove
0.05|E| randomly chosen edges from the network, yielding G′ and
10 We  attribute the small amount of variation between runs to the relatively large
size  of our empirical and randomly-generated networks.

11 Another strategy for this simulation would be to first remove 0.05|V| nodes from
G  to generate G′ and calculate rank correlations, and then remove 0.10|V| from our
original G to generate a perturbed graph, and then 0.15|V| nodes, and so forth. Our
strategy to instead remove an additional 0.05|V| nodes from our perturbed graphs
each step is more computationally efficient. There is no reason that these two meth-
ods of simulation would yield different results. For example, the G′′ generated by
removing 0.10|V| nodes from G has the same probability of occurring as the G′′ gen-
erated by first removing 0.05|V| nodes from G to produce G′ and then another 0.05|V|
nodes from G′ . More formally, while the probability of G′′ occurring given G and G′

is higher than the probability of G′′ occurring just given G, we are only concerned
with comparing G and G′′ . Thus, these two simulation methods would only generate
different results if the probability of G′′ occurring given G varies between methods,
which it does not.
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Table 5
Amount of error tolerated by network measures before rank correlation < 0.95.

Error scenario Degree centrality Clustering coefficient Network constraint Eigenvector centrality

Slashdot network
False negative nodes 0.36 0.24 0.04 0.20
False positive nodes 0.04 0.76 0.04 0.96
False negative edges 0.16 0.08 0.03 0.09
False positive edges 0.04 0.76 0.04 0.44
False aggregation 0.16 0.24 0.12 0.16
False disaggregation 0.16 0.24 0.04 0.12
Citation network
False negative nodes 0.96 0.16 0.24 0.96
False positive nodes 0.64 0.03 0.32 0.08
False negative edges 0.60 0.06 0.12 0.56
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4.2.2. Comparing error scenarios
False negative edges pose the biggest problem in almost every

plot, whereas false negative nodes are not nearly as detrimental.
This is because by removing edges at random, we  are more likely
False positive edges 0.62 0.03 

False aggregation 0.13 0.13 

False disaggregation 0.24 0.10 

False positive edges.  Given G(V, E), at each step, we  add 0.05|E|
dges between randomly chosen unconnected pairs of nodes in the
etwork, yielding G′, artificially increasing the network’s average
egree. We  add edges until |E| edges have been added. At the end,
′ will contain 2|E|  edges.

False aggregation. Given G(V, E), it is possible to execute |V| − 1
ggregations between all possible pairs of nodes in G. Aggregating,

 pair of nodes entails randomly selecting two nodes from a net-
ork, A and B, removing B, and reattaching all of B’s neighbors to

 (which node is removed is determined randomly). After |V| − 1
erges, only one node would remain in the network. At each step,

.05(|V| − 1) merges are executed, yielding G′; Spearman’s rho is
ikewise calculated at the end of each step, and merges are executed
ntil 0.05(|V| − 1) possible merges remain.

False disaggregation. Disaggregating a node entails splitting a
ode, A, into two nodes A and B. We  also randomly remove some
f A’s neighbors and reattach them to the newly added isolate, B
each of A’s neighbors has a 0.50 probability of being reattached
o B). At each step, 0.05|V| nodes are split and Spearman’s rho is
alculated. We  continue splitting nodes until |V| splits have been
xecuted, doubling the size of G.

.2. Results

Fig. 2 reports the results of our error scenarios for three different
etworks: the empirical network of Slashdot users, a random graph
ith the same degree sequence as the empirical network, and an

rdős-Rényi random graph with the same number of nodes and
dges as the empirical network. Fig. 3 contains the corresponding
esults for the ArXiv citation network.

Each ‘cell’ in Figs. 2 and 3 plots the rank correlation results for a
iven network measure under each of the six error scenarios in

 given network. The x-axis is the proportion of the graph per-
urbed, which is specific to each error scenario. If proportion = 0.50
or the false positive nodes error scenario, this means 0.50|V| nodes
ave been added, while under false negative nodes, 0.50|V| nodes
ave been removed. For false positive edges, proportion = 0.50 sig-
als that 0.50|E| edges have been added whereas for false negative
dges, 0.50|E| edges have been removed. Under false aggregation,
f proportion = 0.50, 0.50(|V| − 1) pairs of nodes have been merged,
nd for false disaggregation, 0.50|V| nodes have been split.

.2.1. Comparing network measures
Comparing the rows in Figs. 2 and 3, degree centrality and eigen-
ector centrality (the first and last rows in both figures) appear to
e the most robust measures under our error scenarios. Their sim-

lar behaviors are unsurprising because the two measures tend to
e highly correlated. This supports the findings of Borgatti et al.
0.32 0.05
0.12 0.10
0.10 0.52

(2006), who show the reliability of their centrality measures suf-
fered almost identically in their error simulations.

In our findings, eigenvector centrality is slightly less robust than
degree centrality under false negative nodes and false negative
edges. Eigenvector centrality is calculated based on the recursively
weighted degrees of a focal node’s neighbors, whereas degree cen-
trality is simply the count of a focal node’s neighbors (Table 4). Thus,
an error scenario must target a node’s immediate ties to affect its
degree centrality. However, to affect the node’s eigenvector cen-
trality, an error scenario can perturb a node’s immediate ties, or
the ties of its neighbors, the ties of its neighbors’ neighbors, and so
forth.

In both empirical networks, clustering coefficient and network
constraint are the less robust than degree centrality (Figs. 2 and 3).
Again, the calculation of degree centrality is less dependent on the
activity of a node’s neighbors than the calculation of clustering
coefficient or network constraint. We  may  generalize this result
to argue that more global node-level network measures tend to be
more robust to measurement error.

Given this intuition, though, why  do clustering coefficient and
network constraint appear to be less robust than eigenvector cen-
trality, which is our most global measure (compare row 4 to rows
2 and 3 in Fig. 3)? We  suggest that the formulas used to calculate
some node-level measures are more sensitive to graph perturba-
tions than others regardless of how local or global the measure
is.

Consider the formula for clustering coefficient. A focal node that
has two  neighbors that also share a tie has a clustering coeffi-
cient = 1 (i.e. the maximum value of clustering coefficient). If the
tie between the focal node’s neighbors is removed, then the focal
node’s clustering coefficient = 0, which is the minimum value a
clustering coefficient can take.12 Thus, removing one edge has the
potential to transform a top-ranked node (by clustering coefficient)
into a bottom-ranked node. Because of the ways in which they are
calculated, the rank change from removing one edge does not per-
turb eigenvector centrality and degree centrality as much, even
though eigenvector centrality may require a more ‘global’ calcu-
lation.
12 A node A has two neighbors. A’s clustering coefficient is calculated by dividing
the  number of ties that exist between its neighbors by the number of ties that could
exist between them. If A’s two neighbors share a tie, their clustering coefficient is
1/1  = 1. If they do not share a tie, their clustering coefficient is 0/1 = 0.
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Our results also indicate that error scenarios have similar effects
on network measures for our empirical and rewired networks. That
the empirical networks and their rewired versions react to error
Fig. 2. Measurement error simulation re

o remove edges that are attached to high-degree nodes. The false
egative nodes scenario, on the other hand, removes nodes at ran-
om, most of which are low-degree nodes because of the graphs’
ositively-skewed degree distributions. Thus, whereas every node
as an equal probability of being removed under false negative
odes, the edges of a high-degree nodes are targeted under false
egative edges. Because these high-degree nodes are often critical
tructural features of an empirical network, an error scenario like
alse negative edges can affect network measures far more than an
rror scenario like false negative nodes, which targets each node
ith the same probability.

On the other hand, most node-level network measures are rel-
tively robust to false positive edges, their rank correlations for
he different networks in Figs. 2 and 3 hovering at 0.70 or higher
ven when half the network is composed of either false posi-
ive nodes or edges. This suggests that during data collection,
or a better approximation of the node-level measures, using a
ower tie-strength threshold for defining edges is more desirable,
.e. it is better to have false positive edges than false negative
dges.

One exception is the effect of false positive edges on cluster-

ng coefficients in the citation network, which appears to be just
s damaging as false negative edges (Fig. 3). Again, this can be
xplained by the sensitivity of the calculation of clustering coef-
cient to missing and spurious edges (adding an edge between
for Slashdot network, rank correlations.

the two unconnected neighbors of a node can increase the node’s
clustering coefficient from 0 to 1).

Finally, the effects of false aggregation and false disaggregation
lie between the effects of false negatives and false positives. This
is likely because false aggregation introduces the combined effects
of false negative nodes and false positive edges, whereas false dis-
aggregation reflects the effects of false negative edges and false
positive nodes.13

While their effects are similar, in some cases, false aggregation
renders network measures slightly less robust than false disag-
gregation. However, unless over 80% of nodes in the empirical
networks are falsely aggregated or disaggregated, their effects on
the reliability of most network measures is moderate – at their
worst, false aggregation and false disaggregation reduces the rank
correlation of most of our network measures to 0.50.

4.2.3. Comparing networks with varying structural features
13 False aggregation involves removing a node, and erroneously attaching the
removed node’s edges to another node. False disaggregation involves removing
edges from an existing node to attach to the newly-added spurious node.
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Fig. 3. Measurement error simulation resu

cenarios similarly suggests that the degree distribution of a net-
ork might account for its robustness to certain measurement

rror scenarios.14

In one exception, the effects of our measurement errors on
lustering coefficient in the citation network are similar for the
ewired network and the Erdős-Rényi network (see row 2 of Fig. 3),
ut different for the empirical citation network. This result can
e explained by the high average clustering associated with the
mpirical citation network compared with the low clustering in
he rewired and Erdős-Rényi networks.

Ultimately, these results suggest that the measurement error

imulations on Erdős-Rényi random graphs in Borgatti et al. (2006)
ould benefit from comparison to error simulations conducted

14 The rank correlations for centrality measures stay close to 0.9 even when almost
he  entire ArXiv citation network is corrupted (Fig. 3). This is intuitive because in this
etwork, there are many one-degree nodes, a few nodes with hundreds of edges,
nd  even fewer nodes in between. Thus, for a scenario like false positive edges to
reatly affect rank correlation in degree centrality, the addition of edges would have
o concentrate on a few low-ranked nodes, rather than being randomly distributed.

ost low-ranked nodes tend to stay low-ranked. As a result, because the calculation
f  rank correlation uses the vectors of the measures from all nodes in network, most
f  which low-ranked (i.e. most have one or zero degrees), it is not surprising that
he rank correlation here is so high.
 ArXiv citation network, rank correlations.

with empirical networks, or at least random networks that have
some real-world structural features.

5. Further simulations: node subsets and graph structure

In this section, we further investigate the relationship between
a network’s structural features and its robustness to measurement
error. First, we  examine differences in how error scenarios affect
different subsets of nodes. Second, we simulate the effects of error
scenarios on random networks with different degree distributions
and average clustering.

5.1. Highly-ranked node subsets

In many empirical networks, the distribution of nodes by a
given network metric tends to be positively skewed. This espe-
cially true in both the Slashdot and citation networks (Fig. 1).
Similarly, the distributions of clustering coefficient and network
constraint measures among nodes also exhibit positive skews
(see Table 4).
By virtue of these skewed distributions, an error scenario would
not be able to alter greatly, for example, the degree centrality rank
of the many low-ranked nodes in a network. In other words, highly-
ranked nodes have more to lose. As such, we  would expect the rank
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Our results also indicate that a network’s degree distribution
Fig. 4. Measurement error simulation results fo

orrelation of a measure for only high-ranking nodes in G and those
ame nodes in G′ to be much lower than the rank correlation of a
easure for all common nodes in G and G′.
We conduct further simulations with the Slashdot and citation

etworks to investigate this question. For each network measure,
e calculate the overlap for the top 1% of nodes (by some node-level
easure) in G and G′. For instance, we obtain the top 1% of nodes

y degree centrality in G and the top 1% of nodes in G′. We  then
ompute the proportion of these top 1% nodes in G that remain
mong the top 1% of nodes in G′. In the error scenarios in which
odes are removed – false negative nodes and false aggregation –
e compute the proportion using those top 1% of nodes in G that
ere not removed.15 We  run the same measurement error simula-

ions as described above and report these proportions for our three
ode-level network measures among the top 1%, 10%, and 50% of
odes in Figs. 4 and 5.

Comparing across columns in both Figs. 4 and 5, overlaps appear

o be lower when using the top 1% of nodes as compared with
sing the top 50% of nodes. As we suggested, this implies that
rror scenarios affect top ranking nodes far more than middle- or

15 D is a set containing the top x % of nodes in G by some node-level network
easure. D′ contains the top |D| nodes in G′ by the same network measure. We

ompute our overlap score by taking |D ∩ D′|/|D|.
dot network, top-ranking node subset overlap.

low-ranking nodes.16 Thus, in our baseline results reported in
Figs. 4 and 5, much of the variation in rank correlation can be
attributed to perturbations among top-ranking nodes.

Our results also display one exception, which is that false
positive edges appear to affect the degree centrality of top-
ranking nodes less than lower-ranking nodes (see row 1 in both
Figs. 4 and 5). As mentioned, the positively-skewed degree dis-
tributions of the Slashdot and citation networks implies that
only a few nodes have more than one neighbor. Thus, when
examining the top 50% of nodes, many nodes that previously
had only one neighbor have a great deal more to gain in terms
of ranking by degree centrality than the already top-ranked
nodes.

5.2. Degree distribution
might account for the robustness of certain network metrics.
Namely, networks with more skewed degree distributions have

16 We  do not compare measures for the top 10% of nodes, middle 10%, and bottom
10%, for instance, because the extreme positive skews for many of our node-level
measures would indicate that the middle and bottom 1% of nodes have the same
values in G and G′ . Using the top 1%, top 10%, and top 50%, we show that the rank
changes of larger node subsets that include more ‘less elite’ nodes are less volatile
than the rank changes for smaller subsets of ‘more elite’ nodes.
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Fig. 5. Measurement error simulation results for A

maller subsets of highly-ranked nodes and larger subsets of nodes
ith degrees equal to 1.

We  examined this question by generating three random
referential attachment graphs, in order of increasing positive
kewness in their degree distributions. Specifically, we increased
he power law scaling parameter (otherwise known as ˛) (Albert
nd Barabasi, 2002), which resulted in one graph where  ̨ = 2.5,

 second where  ̨ = 3.0, and finally, a third graph, in which
 = 3.5.17

Our results in Fig. 6, show evidence that graphs with less skewed
egree distributions are more resistant to measurement error.
pecifically, the robustness of degree centrality to false positive
odes and edges diminishes as the degree distribution of a network
ecomes more positively skewed (see row 1 of Fig. 6). Here, adding
n edge to a low-degree node affects its degree centrality ranking
ore than adding an edge to a high-degree node. Given that there

re more low-degree nodes in graphs with more positively-skewed

egree distributions, the probability of a spurious edge being ran-
omly attached to a low-degree node is also higher, which results

n greater changes in degree centrality rank.

17 We generated these random power law networks using the ‘ba.game’ function
rom the Python package iGraph (Csardi and Nepusz, 2006). The ‘ba.game’ function
llows for the creation of networks equal in the number of nodes and edges but
arying in the scaling parameter for preferential attachment.
itation network, top-ranking node subset overlap.

The reliability of clustering coefficient suffers more under every
error scenario as the positive skew of a graph’s degree distribution
increases. Random edge removal tends to target the edges of those
nodes that have many neighbors. In graphs with more positively-
skewed degree distributions, these high-degree nodes tend to have
a higher proportion of the graph’s edges and thus, are more impor-
tant to the network’s overall connectedness. As a result, edge
removal tends to affect these high-degree nodes’ ego-networks the
most. In networks with less-skewed degree distributions, false neg-
ative edges would affect the edges of the network’s nodes more
uniformly.

5.3. Average clustering

The Slashdot and citation networks also differ in average cluster-
ing (Slashdot = 0.056; citation = 0.285, see Table 3). We  generated
three 10,000-node random networks with the same power law

degree distribution (alpha = 2.5), same densities (density = 0.001),
and average clustering coefficients of 0.01, 0.20, and 0.40.18 As
expected, altering the average clustering of a graph did not

18 We generated these random networks with different average clustering using
the  ‘power law cluster graph’ function from the Python package networkx (Hagberg
et  al., 2008). The ‘powerlaw cluster graph’ function allows for the generation of
networks with fixed size, level of preferential attachment, and average clustering.
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Fig. 6. Measurement error simulation results for random preferen

ield dramatic differences in the robustness of degree centrality
 eigenvector centrality, and network constraint to our error scenar-
os. Variation in these three measures depend more on the number
f neighbors attached to a focal node whereas the calculation of
lustering coefficient depends on the configuration of ties between

 focal node’s neighbors.
The clustering coefficients in our simulated networks with

igher average clustering were less robust to false positive nodes
nd edges than in networks with less clustering (see Fig. 7). Con-
ider a focal node that has two neighbors that share a tie. Removing
he edge between its two neighbors reduces its clustering coeffi-
ient from 1 to 0, while then adding a neighbor that has no other
ies diminishes the focal node’s clustering coefficient from 1 to
/3. Because these scenarios are more likely in highly clustered
etworks, such networks are also more sensitive to measurement
rror.

According to these results, graphs with low clustering and less
ositively skewed degree distributions tend to be more resistant

o our error scenarios. This underscores the importance of how
rror scenarios affect empirical networks and Erdős-Rényi ran-
om graphs differently. Because Erdős-Rényi networks have little

ee Holme and Kim (2002) for a description of the algorithm implemented in this
unction.
tachment graphs, varying degree distributions, rank correlations.

clustering and more uniform degree distributions, simulating mea-
surement error using such networks can underestimate their actual
effects.

6. Discussions and conclusion

6.1. Summary

In this article, we expanded on prior work by examining
a variety of measurement errors often overlooked in network
research (e.g. false positive nodes and edges and the false
(dis)aggregation of nodes). In addition, we  compared a wider
assortment of node-level network measures (degree central-
ity, clustering coefficient, network constraint, and eigenvector
centrality), testing their robustness to our different forms of
measurement error. We also investigated network-structural prop-
erties (average clustering, degree distributions) as explanations
for the varying effects of measurement error. Below, we summa-
rize our main results, recommend error correction strategies, and
anchor the discussion to examples of commonly used network
datasets.
6.1.1. The contingent impact of error scenarios
Table 5 summarizes the robustness of our four network mea-

sures to measurement error by reporting the amount of error that
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reversed. Similarly, in graphs with low average clustering, false
aggregation diminishes the reliability of clustering coefficient more
than false disaggregation, while the opposite holds in graphs with
high average clustering.

Table 6
Forms of measurement error present in common network datasets.

Error scenario Facebook
friendship
network

ISI Web  of
Science citation
network

Add Health
friendship
network
Fig. 7. Measurement error simulation results for random prefere

ne of our empirical networks can sustain before the rank corre-
ation of a node-level measure (in the perturbed and unperturbed
etworks) falls below 0.95.19 We  chose 0.95 as a cutoff because it

s arguably high enough that any bias introduced by measurement
rror in a measure would be trivial. In addition, Table 6 shows that
here is great variation in the amount that graph must be corrupted
efore the rank correlation for a measure reaches 0.95.

While generally, we  find that networks with low average clus-
ering and less positively-skewed degree distributions are most
esistant to measurement error, our results contain important
uances. Unlike Borgatti et al. (2006),  we do not observe that
issing nodes and edges are consistently more damaging than spu-

ious nodes and edges. For instance, the Slashdot network requires
ore error in the form of false positive edges than false negative

dges to diminish the reliability of eigenvector centrality, while the
pposite is true in the citation network (Table 5).

We explain this contradiction by looking to differences in
etwork-structural features. In networks with less positively-
kewed degree distributions, false positive and negative edges tend

o have similar effects on the reliability of network measures. In
ontrast, in graphs with more positively-skewed degree distribu-
ions, false negative edges cause greater harm than false positive

19 Recall that these proportions reported in Table 6 have different meanings spe-
ific  to different measurement error scenarios (see Section 4.1).
ttachment graphs, varying average clustering, rank correlations.

edges (Fig. 6). In general, these results suggest that erring on the
side of representing too many weak ties as real ties makes for more
reliable network measures than including only stronger ties.

The effects of false aggregation and false disaggregation also
vary with the graph structural features. For example, in graphs
with less positively-skewed degree distributions, false aggrega-
tion poses a bigger problem than false disaggregation to clustering
coefficient and eigenvector centrality (Fig. 6). However, in graphs
with more positively skewed degree distributions, this pattern is
False negative nodes + + +
False positive nodes + + +
False negative edges + + +
False positive edges + +
False aggregation +
False disaggregation + +

Note: ‘+’ signifies that network dataset suffers from this type of measurement error.
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Finally, we find support for the assertion by Borgatti et al. (2006)
hat centrality measures are similarly robust to measurement error.
uriously, though, the reliability of less ‘global’ measures like
lustering coefficient suffers more compared with more ‘global’
easures like eigenvector centrality. We  suspect that the differ-

nces in the robustness of our four network metrics has to do with
he steps involved in calculation. For instance, the sensitivity of a
ode’s clustering coefficient to the removal (or addition) of a sin-
le edge (or neighbor) is far greater than that of a node’s degree or
igenvector centrality.

.2. Correction strategies

.2.1. Data collection and cleaning
Despite our conclusions above, the network researcher is often

ot afforded the luxury of choice between network measures or
ypes of networks to use for an empirical analysis. However, based
n our results, we can make several recommendations with regard
o error correction strategies.

Rather than gathering additional data or cleaning and entire
etwork dataset, cleaning certain node subsets would improve
easurement reliability more than focusing on other subsets. Our

esults in Figs. 4 and 5 indicate that the reliability of network
easures for ‘elite’ nodes generally drops more as a result of mea-

urement error than for other node subsets. This is especially useful
hen data collection or cleaning is labor- and time-intensive and

esources are scarce.
Suppose, for instance, that a network dataset suffers from ran-

om missing edges. If the degree distribution of the network is
ositively skewed, then most of the missing edges likely belong
o high-degree nodes. Gathering more complete data for highly
ctive nodes is a far better strategy than attempting to collect
omplete data for all nodes. As shown in Figs. 4 and 5, even col-
ecting data for the top 1% of nodes for a 10,000 node network

ould constitute a major improvement to the reliability of network
easures.
In addition, our results suggest that although the false aggre-

ation and disaggregation of nodes impose the same degree of
easurement error, false disaggregation appears to pose less of

 problem under some scenarios. Thus, as mentioned, when con-
ucting entity resolution on nodes, stricter matching rules should
e employed. Also, when setting a threshold for tie strength, using

 lower threshold, which yields more false positive edges, results in
ore reliable measures than higher thresholds, which yield more

alse negative edges.

.2.2. Network imputation
While the imputation of network data remains an important

rror correction strategy for missing nodes or edges (Guimera and
ales-Pardo, 2009; Huisman, 2009; Kim and Leskovec, 2011), our
esults suggest that it should only be used in scenarios where false
egatives are more detrimental than false positives. For exam-
le, according to Fig. 2, in the Slashdot network, false negative
odes diminish the reliability of clustering coefficient, network
onstraint, and eigenvector centrality more than false positive
odes. The imputation of missing nodes would then stand as viable
orrection strategy for these measures. However, false positive
odes are worse for degree centrality than false negative nodes.
hus, imputation could introduce even greater measurement error
ith the presence of spurious nodes.

.3. Implications for empirical network research
.3.1. Implications and examples
Table 6 summarizes three examples of common network

atasets, identifying the types of measurement error that they
rks 34 (2012) 396– 409

might face. Before citation networks can be generated from pub-
lication datasets like the ISI Web  of Science, they often require
large-scale entity resolution which automates the identification of
unique authors (Table 6). According to our results in Table 6, if an
entity resolution algorithm leaves 13% of the nodes in a network
as improperly matched (false aggregation), then the reliability of
semi-local node-level measures like clustering coefficient or net-
work constraint diminishes only marginally (Spearman’s � = 0.95,
Table 6).

A second example concerns a social network that suffers from
respondent recall or survey design bias. The National Longitu-
dinal Study of Adolescent Health (Add Health) dataset contains
friendship network data that likely suffers from false negatives.
Artificially limiting the size of an individual’s reported ego-network
introduces false negative edges, which can severely affect semi-
local measures like network constraint even if just 20% of a
networks edges are missing (Fig. 2). We caution the reader though,
that compared to our networks under study, the Add Health data
contain a much smaller network, which can make it even more
sensitive to measurement error (Borgatti et al., 2006).

Finally, given the abundance of online community network data
available, researchers must also be sensitive to false positive nodes
and edges in their dataset. As mentioned, an estimated 27% of all
accounts on Facebook are fake, which can make measures of clus-
tering or brokerage wholly unreliable (see results in Fig. 4).

6.3.2. Future directions
While we have ventured a systematic comparison of six differ-

ent measurement error scenarios, there is much that we have not
covered. We  have little intuition about how the size of a network
influences the robustness of its measurements to error scenarios.
Borgatti et al. (2006) identify density as an important graph-level
feature, but we suspect that their results may  in part be driven by
the sizes of the networks they consider. To a great extent, paying
attention to the interaction between a network’s size and struc-
tural features would add greater insight to any analysis of network
measurement error.

Also, our results are based on random perturbations of our net-
works (i.e. the random removal or addition of edges), and should
only be taken as a baseline. In many cases, measurement error is
distributed non-randomly throughout networks. Limiting the con-
tact list of a sociometric survey response, for example, would affect
individuals with more ties than they can list, but not those with few
contacts. While we  compare across measurement error scenarios,
we  encourage researchers to investigate different variations of the
same measurement scenario.

In addition, we have not analyzed the direction of the bias
engendered by our measurement error scenarios, nor have we
touched on changes in the empirical distribution of a given net-
work measure as a result of measurement error. Both these features
can affect the perceived relationship of network measures to non-
network outcomes. As such, we  view our work as a springboard
for further research on the statistical implications of using error-
afflicted network measures.
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