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Keyword:
Literature-Based-Discovery
Objectives: This paper provides an introduction and overview of literature based discovery (LBD) in the
biomedical domain. It introduces the reader to modern and historical LBD models, key system compo-
nents, evaluation methodologies, and current trends. After completion, the reader will be familiar with
the challenges and methodologies of LBD. The reader will be capable of distinguishing between recent
LBD systems and publications, and be capable of designing an LBD system for a specific application.
Target audience: From biomedical researchers curious about LBD, to someone looking to design an LBD
system, to an LBD expert trying to catch up on trends in the field. The reader need not be familiar with
LBD, but knowledge of biomedical text processing tools is helpful.
Scope: This paper describes a unifying framework for LBD systems. Within this framework, different
models and methods are presented to both distinguish and show overlap between systems. Topics
include term and document representation, system components, and an overview of models including
co-occurrence models, semantic models, and distributional models. Other topics include uninformative
term filtering, term ranking, results display, system evaluation, an overview of the application areas of
drug development, drug repurposing, and adverse drug event prediction, and challenges and future direc-
tions. A timeline showing contributions to LBD, and a table summarizing the works of several authors is
provided. Topics are presented from a high level perspective. References are given if more detailed anal-
ysis is required.
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1. Introduction

Literature-Based-Discovery (LBD) seeks to discover new knowl-
edge from existing literature in an automated or semi-automated
way. Scientific literature is growing at an exponential rate [1] caus-
ing researchers to become increasingly specialized, and making it
difficult for researchers to stay current in even their narrow disci-
pline. There is too much information for anyone to read, much less
understand. This overwhelming volume of publications has led to
specialized, non-interacting literatures, creating islands of knowl-
edge in which discoveries in one area are not known outside of it
[2]. LBD seeks to build bridges between these islands, increasing
interdisciplinary information sharing. As the scientific literature
grows, LBD is becoming an increasingly necessary tool for facilitat-
ing research.

LBD has led to countless discovery proposals ranging from
treatments for cataracts [3], multiple sclerosis [4], and Parkinson’s
Disease [5], to understanding and discovering new health benefits
of curcumin [6], and potential treatments for cancer [7]. Perhaps
the most promising application areas are drug development [8–
10], and repurposing [7,11,12,9,13–16], and adverse drug event
(ADE) prediction [11,17–20]. Application areas outside the
biomedical domain include: development of efficient water purifi-
cation systems [21], accelerating the development of developing
countries [22], categorizing potential bio-warfare agents [23],
studying climate change [24], and identifying promising research
collaborations [25].

This paper gives an overview of current LBD techniques with a
focus on the biomedical domain. It begins with a description of a
general model, the theoretical framework of LBD systems. Next,
different methodologies are presented, followed by components
common to most systems, and evaluation methodologies. Lastly a
discussion of challenges and trends, and future directions is pre-
sented, and an overview of three application areas of LBD is
provided.
1 A UMLS concept represents a single meaning to which synonymous terms map.
2. Models

Nearly all LBD systems are based on or derived from Swanson’s
ABC co-occurrence model [26]. In this model, explicit knowledge is
found in text to generate ‘‘A implies B” and ‘‘B implies C” relation-
ships. Implicit knowledge is discovered by drawing a ‘‘therefore A
implies C” conclusion. There are two main ways to perform LBD,
open discovery and closed discovery [27]. In open discovery, the
user inputs a start term, and the system outputs a list of target
terms. In closed discovery, the user inputs both a start term and
a target term, and the system outputs a set of linking terms. Open
discovery is used to generate new discoveries, where as closed dis-
covery is primarily used to explain correlations or observations.
Fig. 1 shows how these two methodologies differ.
2.0.1. Term representation

Using the ABC co-occurrence model as a theoretical framework,
several core questions arise:

1. How do I represent a term?
2. What constitutes a relationship?
3. How do I find linking and target terms?

The answers to these questions distinguish LBD systems into
three high level categories:

1. Co-occurrence models – represent terms with words, or United
Medical Language System (UMLS) concepts.1 A co-occurrence in
text constitutes a relationship. Linking terms are found iteratively
through co-occurrences.

2. Semantic models – represent terms with words, or UMLS con-
cepts. Semantic parsers extract relationships from text. Linking
terms are found iteratively through semantic relationships.

3. Distributional models – represent terms as context vectors.
Explicit relationships (‘‘A implies B”) are found as co-
occurrences or as semantic relationships when constructing
the context vectors. Implicit relationships (‘‘A implies C”) are
found in vector space via vector operations and nearest neigh-
bor search.

These models are discussed in more detail in the next few sub-
sections, but first an overview of document representations, and



Fig. 2. A generic framework for LBD. Most systems follow a workflow similar to this one. A data source is preprocessed, or parsed to extract features of interest (be it CUIs,
predications, or word vectors). A human inputs start terms and linking terms are found. Next terms are filtered from the list of linking terms, ranked and thresholded. This
process is repeated, using the set of linking terms to produce a set of target terms. The target terms are then filtered, thresholded, displayed, and evaluated.

Fig. 1. Open and closed literature based discovery. Open discovery generates linking (Bi) and target (Ci) terms from just a user-input starting term (A). Closed discovery
generates linking terms (Bi) from a user-input start term (A) and target term (C). The intersection between the two sets of linking terms is returned.
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system components are presented. These are useful for distin-
guishing systems within each high level category.
2.0.2. Document representation

Systems within models differ in many ways, but decisions on
how a document is represented, and how a co-occurrence is
defined are key design decisions. Document representations may
be an article title [26], MeSH descriptors [28], an abstract [29], a
combination of those three [30], or even the full text of an article
[31]. Co-occurrences have been represented as bigrams [32] (i.e.
a co-occurrence is judged as two words appearing together as a
bigram), or as co-occurrences within a window [33], sentence
[34], or document [30]. Both of these decisions come down to
how to most compactly represent important relationships within
a document. As documents are represented with less information,
and as the distance between co-occurring term pairs narrows the
number of relationships found decreases, but the chance of missing
interesting relationships increases. This trade-off between preci-
sion and recall is seen again and again in LBD literature, and in
decisions about system components.
2.0.3. System components

With the core of an LBD system defined, several design deci-
sions are common to all LBD systems, including:

1. How do I eliminate uninteresting terms?
2. How do I explain and/or display the results?
3. How do I evaluate my system?
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The answers to these questions are generally system indepen-
dent, and techniques can be used across systems. Fig. 2 shows
the workflow of a typical LBD system. From a theoretical perspec-
tive, each component in this workflow is independent of one
another.

2.1. Co-occurrence models

Co-occurrence models directly use co-occurrences in text as
relationships between terms. Benefits of co-occurrence models
include their simplicity, and recall rates. Directly using co-
occurrences ensures all possible relations in text will be captured.
Co-occurrence models directly follow the ABC co-occurrence
model by finding linking terms with the starting term via co-
occurrences in text, and repeating this process by finding co-
occurrences with each linking term to form the set of target terms.
Terms may be represented as n-grams or UMLS concepts.

The first LBD systems used n-gram co-occurrences to generate
linking and target terms. N-gram co-occurrence models do not
necessarily rely on external knowledge sources, and can easily be
adapted to any corpus or domain. Their theoretical background is
in information retrieval. Primary authors of the method include
Swanson and Smalheiser [26], and Gordon and Lindsay [32]. N-
gram co-occurrence models have been largely replaced by other
models.

Concept co-occurrence models use concepts rather than n-
grams to represent terms. Using UMLS concepts provides normal-
ization, stop word removal, and identification of multi-word terms.
Concept co-occurrence methods typically use MeSH descriptors, or
MetaMapped MEDLINE titles and/or, abstracts as document repre-
sentations. Typical authors of concept co-occurrence models
include Weeber et al. [27], Srinivasan et al. [28], and Yetisgen-
Yildiz and Pratt [35].

Association rules [36,37] are another co-occurrence model that
incorporate statistical measures to determine the likelihood of a
relationship existing between terms. The theoretical background
is in data mining. Once term co-occurrences are found, two statis-
tics are computed for each linking term, confidence and support.
Confidence estimates the percentage of articles containing the link-
ing term that also contain the starting term, and support estimates
the count of articles containing both the starting and linking term.
Using these measures the strength of a relationship is estimated,
and a threshold is applied to remove low likelihood relationships.

2.2. Semantic models

Semantic models incorporate semantic parsers to determine
what constitutes a relationship. Co-occurrences, even those with
high frequency can only be interpreted as an association. Relation-
ships can be established by using the semantics of a sentence. Sem-
Rep [38] is the most popular semantic parser [39,40,34,14], but
ReVerb [41] and Stanford Parser [42] have also been used [34].

Semantic parsers increase the precision of linking at the
expense of recall. Some relationships may be missed during the
semantic parsing process, but the relations that are extracted are
more accurate and have a labeled type (e.g. TREATS, COEXISTS_-
WITH, PROCESS_OF, or NEG_CAUSES). This allows uninteresting
relation types to be removed [39], and negative relations to be
ignored [43,14].

SemMedDB2 (a database of semantic predications from SemRep)
is often used as data source [39,40,34,14]. Relationships can be
extracted from SemMedDB in the form of a discovery pattern
[39], which is one or more UMLS semantic type - SemRep relation
2 footnote: https://skr3.nlm.nih.gov/SemMedDB/.
type - UMLS semantic type triplet. For example, the discovery pat-
tern hmay_disrupti [7] is defined by:

Substance X hinhibitsi Substance Y and
Substance Y hcausesi Pathology Z therefore
Substance X hmay_disrupti Pathology Z

where Substance and Pathology are UMLS semantic types, hinhibitsi
matches the predication types INHIBITS, hcausesi matches predica-
tion types of CAUSES, PREDISPOSES, or ASSOCIATED WITH, and
hmay_disrupti matches predication types TREATS or PREVENTS.
Ahlers et al. [7] use this discovery pattern to find links between
anti-pychotic drugs and cancer in a closed discovery manner by
defining X to be Anti-Psychotic Agents, Z to be Cancer, and retriev-
ing all matching Y terms. Implementing discovery patterns with
semantic parsers other then SemRep may be difficult. For instance,
ReVerb and Stanford Parser do not map to a controlled terminology
(as SemRep does to the UMLS), and they produce a greater diver-
sity of output compared to SemRep.

Recently SemMedDB was converted to a Neo4j graph database
[44] making relation extraction using discovery patterns easier,
and enabling the intuitive fusing of information sources. Hristovski
et al. [8] generate ‘‘upregulates” and ‘‘downregulates” relations
between genes and diseases using DNA microarray analysis. The
genes are mapped to identifiers in the literature, and viewed as
nodes in a graph. The ‘‘upregulates” and ‘‘downregulates” relations
create edges in that graph. Combining the relations found through
microarray data and SemMedDB, hinhibitsi and hstimulatesi rela-
tions between the drugs and genes are found in SemMedDB to cre-
ate ‘‘Inhibit the Upregulated” and ‘‘Stimulate the Downregulated”
relation pairs. The result is a Maybe_Treats discovery pattern used
to discover new drugs.

2.3. Distributional models

Co-occurrence models and semantic models are similar. They
differ primarily on how a relationship is defined. Distributional
models are more distinct. They use co-occurrence information to
construct vector representations of terms. The explicit ‘‘A implies
B” relationships are found during vector construction, when co-
occurrences or relationships between all terms in a corpus are
recorded. Similar vectors contain similar co-occurrence patterns,
so ‘‘A implies C” relationships are found via nearest neighbor
search (NNS) or vector operations in vector space (sometimes
called semantic space). This is a computational convenience, as only
vector comparisons are made, and the ‘‘B implies C” relationships
do not need to be explicitly found. These vector representations
have theoretical backgrounds in cognitive representations of
terms, and approximate the idea of conceptual spaces in Gärden-
fors’ model of human cognition [45]. These distributional models
attempt to approximate how humans conceptualize and assemble
knowledge.

2.3.1. Vector construction
Vector construction may be done in several ways: Latent

Semantic Indexing (LSI) [30], Associative Concept Space (ACS)
[29], Hyperspace Analogue to Language (HAL) [33], Tensor Encod-
ing (TE) [46], Reflective Random Indexing (RRI) [47], or
Predication-Based Semantic Indexing (PSI) [48]. These techniques
either record co-occurrence information in a term-document
matrix, within a sliding window, or within semantic predications.

A term-document matrix considers a co-occurrence as any two
terms co-occurring in the document as a whole. The matrix has
dimensionality of vocabulary size by number of documents. Terms
present in each document are recorded in the matrix. Dimension-
ality reduction is then performed, most often via singular value

https://skr3.nlm.nih.gov/SemMedDB/
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decomposition (SVD) based techniques [30,49]. SVD captures as
much of the variation of the data as possible in the number of
dimensions specified [45]. Since data often exhibits regularities
SVD is effective for dimensionality reduction.

Sliding windows may also be used to collect co-occurrence
information. A matrix of dimensions jV j x jV j, where jV j is the
vocabulary size is constructed by tallying co-occurrences within
a pre-defined window size (generally eight [45] or ten [50] words
on each side of a focus term in the center of the window). As the
sliding window moves across text in one word increments, co-
occurrences are tallied in the matrix with a weight of one [45]. This
has the effect of making co-occurrence counts between words pro-
portional to the distances between them. More tightly coupled
words will have higher counts, and words used further apart will
have lower counts because they co-occur in fewer windows. Each
row of the matrix forms a word vector. The rows may be normal-
ized to form the final vector representations [45]. Sliding windows
may also be used to encode reduced dimensionality word vectors
directly, without the need to calculate an explicit term-by-term
or term-by-document matrix, as is the case with RRI techniques
[51].

Similar to RRI techniques is PSI, which encodes object-relation-
object triplets in a vector space. This gives the ability to model both
term (e.g. ‘‘Prozac” or ‘‘depression”) and relationship (e.g. ‘‘treats”)
meanings in a vector space. PSI uses SemRep predications to learn
the encodings, and vector operations are performed to find predi-
cation types that most strongly relate the two objects, or to gener-
ate knowledge in the form of analogies such as ‘‘Prozac is to
depression as what is to schizophrenia” [48].

2.3.2. Knowledge generation
Implicit knowledge can be gained within vector space. This is

typically done using a nearest neighbor search (NNS) that uses
cosine, euclidean distance, or information flow [45] as a distance
measure. Cole et al. [50] found that cosine outperforms other met-
rics in the presence of noisy B-terms, or when using both titles and
abstracts as corpora. NNSs are typically performed around the
starting (A) term for open discovery, and between the sum of A
and C terms to discover B terms for closed discovery. Although
NNSs in vector space can generate knowledge, it often produces
noisy results, and several modifications have been proposed to
increase accuracy. Vector priming [50] artificially boosts the
weights of co-occurring terms in the start term vector. Discovery
by analogy [52] computes both SemRep relation type vectors
and UMLS concept vectors. These are combined using vector oper-
ations to form a product vector, around which NNS is performed.

2.4. User interaction models

Systems that focus on user interaction place the user as a cen-
tral part of the discovery process. Discovery begins with a flash
of insight, followed by an effort to realize and understand that
insight [47]. User interaction focused systems are designed to pro-
mote abductive reasoning, and provide tools for deductive and
inductive reasoning once a hypothesis has been generated. Their
focus is on user interaction, and displaying information in a man-
ner that facilitates greater understanding. User interaction systems
are based on theories of how humans assemble new information
and create new connections [53]. These systems are an aid to
human creativity, rather than a fully automated hypothesis gener-
ation machine.‘‘Abductive reasoning, as defined by the philoso-
pher and logician, C. S. Peirce (1839–1914) is concerned with the
generation of new explanatory hypotheses given a set of observa-
tions.” [54] Inductive and deductive reasoning can then be applied
to confirm or disprove these hypotheses. Although theories of
abductive reasoning have been applied to other models of LBD
[45], it is an important theory for user interaction systems. In these
systems, abductive reasoning is accomplished through the theoret-
ical framework of distributed cognition [47] in which a machine is
viewed as complementary to the human mind. Users interact with
the system to produce reasoning that is greater than the sum of its
parts. The goal is not to automatically produce new discoveries, but
rather to provide a ‘‘dynamic and interactive experience that
allows scientists to both explore and validate conceptual connec-
tions” [47]. Exemplary of these systems is Epiphanet [47] which
uses distributional term representations and facilitates exploration
of connections between associated concepts.

Theories of discovery browsing [55–57] may also guide the
design of systems. Discovery browsing is based on Information
Foraging Theory, and was first proposed for LBD by Wilkowski
et al. [53], and later implemented by Goodwin et al. [55] andWork-
man et al. [57]. In ‘‘discovery browsing” information is displayed to
the user, and the user selects topics they find interesting or surpris-
ing. The Spark system [57] uses SemRep predications with a highly
interactive graphical user interface to spark the creativity of the
user.

2.5. Other models

The majority of LBD systems fall into one of the above men-
tioned model paradigms, but there are other unique systems. Some
systems incorporate a rarity principle [31,58,57], and focus on
finding infrequently co-occurring terms rather than frequently
co-occurring ones. RaJoLink [31] epitomizes the idea. RaJoLink
operates by first finding rare terms in the starting term literature.
Several of the rare terms are selected, and common terms within
the selected rare term’s literatures are found which forms a set
of target terms. Linking terms are found in the last step in a tradi-
tional closed discovery manner. Later work [59] focused on also
finding document outliers.

Bibliometric based systems use citation information to find
linking and target literatures. Terms are then extracted from the
cited literatures. Kostoff et al. [58] uses the Science Citation Index
(SCI), a database of reference information to find articles related to
starting, linking, and target terms.
3. Uninformative term removal

Uninformative terms are terms that provide no new or interest-
ing information to the user. Uninformative terms may be existing,
uninteresting, obvious, or spurious. Terms that are overly general
or broad, such as disease, drug, test, or therapeutic don’t provide
any useful information, and are correlated with most terms [60].
Eliminating them is vital to providing a concise set of information
that is interpretable by a human user. Uninformative terms can be
removed via stop word removal, semantic type or relation type fil-
tering, or thresholding. Techniques are discussed in this section.

3.1. Stop word removal

Stop words may be general English words (e.g. ‘‘the”, ‘‘and”) or
words uninteresting for the biomedical domain (e.g. ‘‘doctor”, ‘‘pa-
tient”). Swanson and Smalheiser [26] manually created a stop word
list of 9500 + terms. It contains uninteresting and general English
words. Manual lists are difficult to create and automated methods
are preferred.

Stop word lists may be automatically generated using single
term occurrence count thresholds, but determining an appropriate
threshold is difficult and corpus dependent. Cohen et al. [61] elim-
inate terms that occur more than 100,000 times. Pratt and
Yetisgen-Yildiz [60] eliminate terms that occur in more than



Table 1
The measures shown in this table have been used to rank and/or threshold terms of
LBD systems. The measures are divided into groups based on how the measure is
calculated. Term co-occurrence based measures are based on co-occurrence rates of
two terms. Measures of independence are co-occurrence measures that test for
statistical independence of terms. Implicit term based measures are ranking measures
designed specifically to rank implicit knowledge generated by an LBD system.
Predication based measures are specific to semantic predication based techniques,
and vector space nearest neighbor search methods are specific to distributional
methods.

Term co-occurrence
Gordon and Lindsay [32] Relative frequency
Hristovski et al. [69] Confidencea

Hristovski et al. [36] Support
Swanson et al. [70] Literature cohesiveness (COH)
Cole and Bruza [50] Odds-ratio
Stegmann and

Grohmann [71]
Equivalence index

Measures of independence
Yetisgen-Yildiz and Pratt

[35,68]
Z-score

Wren et al. [67] Mutual Information Measure (MIM)
Cole and Bruza [50] Log Likelihood (ll)

Semantic predication
Hristovski et al. [72] Predication frequency
Wilkowski et al. [53] Degree centrality
Cameron et al. [73] Intra-cluster predication similarity

Nearest neighbor search
Gordon and Dumais [30] Cosine distance
Bruza et al. [33] Euclidean distance
Bruza et al. [33] Information flow

Implicit term
Hristovski et al. [69] X ! Z Support
Wren et al. [67] Average Mutual Information Measure (AMIM)
Wren et al. [67] Minimum Mutual Information Measure (MMIM)
Wren et al. [67] Average Minimum Weight (AMW)
Swanson and Smalheiser

[26]
Linking Term Count (LTC)

Yetisgen-Yildiz and Pratt
[68]

Linking Term Count with Average Minimum
Weight (LTC-AMW)

Rastegar et al. [14] Predicate independence/interdependence

a Confidence and relative frequency are equivalent.
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10,000 documents, and Preiss et al. [34] eliminate concepts that
occur in greater than 150,000 abstracts. Gordon and Lindsay use
both Term Frequency-Inverse Global Record Frequency [32] and
Term Frequency-Inverse Document Frequency (TF-IDF) [62] to
apply thresholds for stop word generation.

MetaMap automatically eliminates general English words, and
removing general English words for distributional methods is
likely unnecessary [45]. As such, automatic stop word generation
techniques focus on biomedical specific words. Stop word lists
may be automatically generated by observing that spurious terms
will likely generate many linking terms. By repeatedly and ran-
domly finding hidden knowledge, highly connected terms can be
identified and removed [43].

3.2. Hierarchical filters

Broad terms may be eliminated using the UMLS hierarchy. Con-
cepts on the first, second, and third level of the hierarchy [60,63]
may be removed, but since vocabularies have different hierarchical
structures, this technique alone is not sufficient.

The UMLS hierarchy has also been used to remove terms that
are too similar to either the start or linking terms. Using UMLS con-
cepts instead of n-grams maps all synonymous terms to the same
concept, but the concept distinctions are often too fine grained. For
example migraine and common migraine [64] are very similar, but
correspond to different UMLS concepts. Pratt and Yetisgen-Yildiz
[60] eliminate terms that are parents and children of the starting
concept, and later expand this to include grandparents and siblings
[35]. Similarly, the UMLS contains a list of synonymous concepts
which can also be used to find similar terms [43,34].

3.3. Semantic type filters

TheUMLS classifies all concepts into one ormore of 134 semantic
types. UMLS semantic types range from Reptile to Vitamin to Disease
or Syndrome. Each type is grouped into onemoremore of 15 seman-
tic groups [65], such as Disorder, Organizations, or Anatomy. By
restricting linking and target terms to specific semantic types or
groups, uninformative terms can be eliminated. Semantic type fil-
tering has become standard for most systems
[27,66,28,39,63,35,53]. Selectingappropriate semantic types is chal-
lenging. A system that is too restrictive may eliminate important
linking and target terms, and a system that is not restrictive enough
will produce toomany uninformative terms. Selecting the appropri-
ate semantic types requires an understanding of both the UMLS and
medical terminology. Since semantic groups are more broad than
semantic types, selecting appropriate groups [35] may be easier.
Selecting the desired relationships between terms may be even
easier. Hu et al. [63] exploit theUMLS semantic network to automat-
ically derive appropriate semantic types using user input of the
desired relationship types between start, linking, and target terms.

3.4. Relation type filters

SemRep assigns one of 58 predefined relationship types to pred-
ications extracted from text. Relation type filtering can be used to
eliminate uninteresting (e.g. PREVENTS when you want to find STI-
MULATES or AUGMENTS type relationships) or negative (e.g.
NEG_CAUSES) relation types. Discovery patters [39] (introduced
in Section 2.2) combine semantic type and relation filters.

4. Term ranking

Term ranking can be used for ordering and displaying linking
and target terms, and for removing uninformative terms by apply-
ing a threshold. The ‘‘small world” problem [67] states that a start
term will most likely co-occur with a highly connected linking
term. Since a highly connected linking term co-occurs with many
terms, the ‘‘B implies C” linking step will cause the set of target
terms to approach the vocabulary size. Put simply, linking always
generates too many target terms, and thresholds may be applied
to eliminate many of them.

Statistical thresholds are less affected by corpus size than term
occurrence thresholds, and many statistical ranking measures have
been applied to LBD. A list of ranking methods are presented in
Table 1. The references provided give more detailed information.
Yetisgen-Yildiz and Pratt [68] evaluate several of these ranking
measures, and find that among these methods, using Linking Term
Count with Average Minimum Weight as a tie breaker (LTC-AMW)
is the best performing term ranking method.

5. Results display

Displaying results and explaining the generated discoveries is
important. Ranked lists of terms are the most common system out-
put, but this does not provide sufficient evidence explaining the
discovery. Swanson and Smalheiser [26] display terms and the arti-
cle titles where the terms co-occurred. This allows the user to
investigate further, and draw their own conclusions. Wren [74]
ranks and displays both implicit and explicit knowledge so that
the user can quickly see implicit knowledge that is ranked as
highly as explicit knowledge, a good indication of a discovery’s



Table 2
Discoveries replicated and dates used.

Author Discovery replicated Dates used

Gordon and
Lindsay [32]

Raynaud’s disease & fish oil 1983–1985

Hu et al. [63] Raynaud’s disease & fish oil 1980–1985
Migraine & magnesium 1980–1984

Weeber et al. [27] Raynaud’s disease & fish oil 1960–1986
Migraine & magnesium 1960–1986

Raynaud’s disease & fish oil 1960–1985
Somatomedin C & arginine 1960–1989
Migraine & magnesium 1980–1984

Preiss et al. [34] Magnesium deficiency & neurologic
disease

1966–1994a

Alzheimer’s disease & indomethacin 1966–1996
Alzheimer’s disease & estrogen 1974-June

1995a

Schizophrenia & calcium-independent
phospholipase A2

1960–1997

a Note: exact dates were not listed, but dates from the provided reference are
stated.
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validity. Cameron et al. [73] create graphs showing complex inter-
actions between terms of interest. This provides a rich explanatory
layer. Van der Eijk [29] constructs a vector space in which term
location represents similarity, and co-occurrences are shown as
edges. The display of results is critical to the adoption of LBD in
real-world laboratory environments, and has become a popular
research area [75,76].

6. Evaluation

Evaluation of LBD systems is challenging. This is due to the dif-
ficulty of acquiring a gold standard dataset. What constitutes a dis-
covery? How can one predict all future discoveries? Even if those
questions could be answered, the datasets are necessarily very
large, and human evaluation of all possibilities is likely impossible.
There are however, four evaluation methodologies that have
become standard:

1. Discovery replication – replicating previous discoveries, partic-
ularly Swanson’s initial discoveries.

2. New discovery proposal and empirical evaluation – using an
LBD system to propose new discoveries.

3. Time slicing – dividing the dataset into pre-discovery and post-
discovery segments. The pre-discovery segment is used to gen-
erate knowledge, while the post-discovery segment is used to
evaluate the goodness of the generated knowledge.

4. User interaction studies – evaluating howwell a system informs
and engages users, and its usefulness in a real-world
environment.

6.1. Discovery replication evaluation

Discovery replication consists of replicating a discovery made
by previous systems. It is a very constrained task, and the best
parameters for one discovery may not generalize well to another.
Other evaluation techniques should be used in combination with
discovery replication. Regardless, discovery replication is a proof-
of-concept of a system [32,26,77,78,71,60,79,28,33,39,63,40], and
it is the only evaluation technique used in many older publications.
For discovery replication, literature published before the to-be-
replicated discovery is used. For instance to replicate Swanson’s
Raynaud’s Disease-fish oil discovery [80], only data prior to 1986
(the publication year of Swanson’s paper) may be used. Discoveries
are generated using the pre-discovery literature, and if the term of
interest is returned as a target term, the discovery is deemed
successfully replicated. The Raynaud’s Disease-Fish Oil discovery is
the most commonly replicated, but authors have replicated as
many as fourteen discoveries [40]. Table 2 gives a few examples
of discoveries that authors have replicated, and the MEDLINE date
ranges used. The presence of the desired term in a list of target
terms doesn’t indicate the likelihood of the term being noticed
by a would-be researcher, or allow for quantitative comparisons
between systems or system components. Reporting the rank of
the terms of interest (e.g. fish oil is the 10th term in the list of target
terms) is a more quantitative approach. The higher the rank, the
better the system. These techniques may also be used to evaluate
closed discovery systems. The ranks of the linking terms of interest
are reported rather than the target terms.

6.2. New discovery proposal and empirical evaluation

A limitation to discovery replication is that it does not evaluate
the ability of the system to actually make new discoveries. New
discovery proposal [26,71,79,35,81,48,29,8,82,83,76,9] shows a
system is capable of generating practical new knowledge. Discov-
ery replication and new discovery proposal evaluation are often
used together to prove a system’s performance. Discovery proposal
without expert vetting or empirical evaluation is no longer suffi-
cient. A major critique of LBD has been the failure of proposed dis-
coveries to withstand expert assessment, and the lack of adoption
of LBD systems in their intended application domains [84,58,85].
Expert assessment and empirical evaluation attract the attention
of biological and biomedical scientists, and will likely alleviate
these criticisms.

Expert vetting may consist of evaluation by an expert or publi-
cation in the application domain. This allows for obvious, uninter-
esting, or incorrect hypotheses to be eliminated. Promising
hypotheses, though should be empirically evaluated via laboratory
testing. Examples of empirical evaluation include:

� DiGuacomo et al. [86] test Swanson’s Raynaud’s disesase – Fish
Oil hypothesis in a clinical trial.

� Fritjers et al. [87] confirm in vitro, their predicted associations
between compounds and cell proliferation.

� Cohen et al. [12] confirm their predicted therapies for prostate
cancer in vitro with cell cultures

� Wren et al. [79] perform in vivo testing of their predictions of
compounds affecting the development of cardiac hypertrophy
with rodent models.

� Lekka et al. [88] perform in vivo experimentation to support
their treatment for Multiple Sclerosis.

� Hu et al. [10] use microarray and proteomic data to confirm
hypothesized associations between specific genes and breast
cancer.

� Hristovski et al. [8] use microarray data to support their
hypotheses on Parkinson’s disease.

New discovery proposal and empirical evaluation is a critical
step, both for proving a system’s viability, but perhaps more
importantly for supporting and promoting LBD’s viability to out-
side disciplines. LBD is not just a theoretical tool for information
scientists, it is useful in laboratory environments, and using it to
produce proven new hypotheses is vital to its adoption.

6.3. Time slicing

Another limitation to discovery replication is overfitting. It only
shows a system can produce a single discovery. Time slicing
attempts to alleviate this limitation by showing a system can gen-
eralize and make many new discoveries. Time slicing evaluation
techniques use a cutoff date to divide the data set into pre- and
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post-cutoff segments. The pre-cutoff segment is used as a training
set to generate discoveries, and the post-cutoff segment is used as
a test set to evaluate the generated discoveries. This leaves two
questions:

1. How do I generate a gold standard?
2. How do I quantify the results?

6.3.1. Gold standard generation
A gold standard dataset is ideally a list of all new real world

knowledge discovered after the cutoff date, and all potential
knowledge that will be discovered in the future, something impos-
sible to attain. Instead the gold standard is estimated by finding
relationships present in the test set and absent from the training
set. These relationships represent new discoveries, but the ques-
tion of what constitutes a relationship, is nearly identical to that
same question when designing a system. Co-occurrences within a
sentence, or document may be used [66,35,68] to represent a rela-
tionship. This however, creates a noisy gold standard in which
many discoveries will be falsely reported. Semantic parsers
increase precision at the expense of recall [34], and using several
semantic parsers further expands this trade-off. Preiss et al. [34]
uses SemRep [38], ReVerb [41], and Stanford Parser [42] to gener-
ate three relationship sets. The presence of a relationship in one,
any two, or all three sets can indicate with increasing confidence
that the discovery is legitimate. Expert opinion can be used to gen-
erate a list of gold standard terms [89]. This will have the lowest
recall rates of all the techniques, and highest precision.

6.3.2. Time slicing quantification
Time slicing evaluation is quantified using precision and recall.

Early techniques using precision and recall were calculated for a
single start term [66]. Relationships were extracted for a single
term in the post-cutoff segment to form the gold standard, and
potential discoveries were generated for that term on the pre-
cutoff segment. The potential discoveries were compared to the
gold standard to calculate precision and recall. This idea was
expanded to use several start terms rather than just one [35],
and was proposed as a formalized evaluation framework by
Yetisgen-Yildiz and Pratt [68]. Time slicing methods borrow from
information retrieval metrics, and include:

� Precision and recall graphs over time [35] which measure
precision and recall rates based on the amount of data available
to a system.

� Average interpolated precision curve [68] calculates precision
and recall rates at evenly spaced intervals for several terms, and
takes the average. Yetisgen-Yildiz and Pratt use 100 random
starting terms [68].

� Precision at k [68] which calculates precision using only the
top k ranked target terms. This may be averaged over several
starting terms.

� Mean average precision (MAP) [68] calculates the average pre-
cision (the average precision at the point of retrieval of each rel-
evant result) for multiple starting terms and takes the mean.
This awards systems that rank gold standard terms highly,
and provides a single number that can be compared across
systems.

� F-measure [34] which is the harmonic mean of precision and
recall. This produces a single number to quantify performance
and make system comparisons easier. F-measure may be calcu-
lated for one term up to all terms in the vocabulary.

6.3.3. User interaction studies
User interaction studies monitor how users interact with an

LBD system. The goals may be to improve the user interface,
improve how information is displayed, or learn how the LBD sys-
tem is being used. User interaction studies are a particularly
important for user interaction based systems [47,57], but are valu-
able for any system. User interaction is a critical role in LBD, and
has traditionally been a neglected area. Yetisgen-Yildiz and Pratt
[89] state ‘‘The success of an LBD system in facilitating new discov-
eries depends on its interface’s ability to inform and engage its
users as they attempt to interpret and evaluate the proposed con-
nections.” User interaction/usability studies can help guide the
development of an effective user interface [89]. The studies focus
on how the user interacts with a system, and their ability to use
the system to actually make discoveries. It can lead to the redesign
and refinement of how information is displayed, and give insights
into how a system is actually being used [75].

Smalheiser et al. [76] provide an excellent long term study of
how users interact with the ArrowSmith LBD tool. Their study
reveals that users tend to use the system for concrete tasks such
as obtaining information for discussion sections of papers, or
‘‘assessing whether unexpected, anomalous findings in the labora-
tory warranted a follow-up”. Users also began to use the system in
new, unexpected ways such as constructing a list of terms that are
common to two literatures, and browsing articles ‘‘in light of
another context (e.g. a specific disease)”, such as the mitochondrial
complex as it relates to Parkinson’s Disease. User interaction stud-
ies are critical to bringing about the adoption of LBD systems into
laboratory environments. It is the responsibility of the developer to
create a useful, easy-to-use tool for researchers.

6.4. Other evaluation metrics

Other evaluation techniques have been proposed [79,61,29,14],
but are often specific to a particular system or methodology. Such
techniques are usually accompanied by discovery replication or
new discovery proposals to validate their techniques in a more
conventional way. Ahmed and Alhashmi [90] propose new ideas
for evaluation metrics, but do not provide sufficient details for
implementation. Briefly they are: goodness of path which evalu-
ates systems based on the quality of the path that links the two
concepts; early discovery which evaluates a system based on the
length of time between of the newly found hypothesis generation
and discovery; and noise discrimination which evaluates how
well a system can recover a target discovery with different levels
of artificial noise added.
7. Application areas

Successfully applying LBD to new drug development, drug
repurposing, and adverse drug event prediction can save millions
of dollars, and save lives by bringing new drugs to the market fas-
ter, and preventing fatal adverse drug events. This section gives an
overview of these application areas, and discusses some of the
challenges of LBD today.

7.1. Drug discovery

Much of the work with LBD and drug discovery has focused on
incorporating genetic microarray information into LBD systems [8–
10]. Incorporating microarray data is promising because it adds
empirical evidence to support generated hypotheses. Hu et al.
[10] correlate microarray analysis of genes and diseases with the
strength of those relationships in literature. Hristovski et al. [8]
incorporate microarray correlations into discovery patterns, and
Zhang et al. [9] identify potential prostate cancer drugs using a
combination of SemRep predications and microarray data. These
systems primarily use genes as linking terms, however using pro-
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teins as linking terms also makes sense, ‘‘because proteins are the
agents behind most physiological processes” [16]. Both proteins
and genes affect disease development and progression, and can
be targeted by drugs and chemicals.

7.2. Drug repurposing

Drug Repurposing is the process of finding new applications for
existing drugs. Drug repurposing is on the rise, accounting for ‘‘ap-
proximately 30% of the new US Food and Drug Administration
approved drugs and vaccines in recent years” [14]. Classic exam-
ples of drug repurposing include Viagra, which was developed as
a treatment for angina, and was repurposed to treat erectile dys-
function; Rogaine, originally developed for high blood pressure,
found success as a baldness treatment [74]; Topiramate, an anti-
epileptic drug was developed to treat obesity, and Prozac, an
anti-depressant was developed to treat premenstrual dysphoria
[11]. Although LBD did not play a role in these repurposings, LBD
is increasingly being used towards that goal [7,11,12,9,13–16].

LBD is useful for drug repurposing because it yields a better
understanding of the biological effects of a drug, and may be used
to evaluate a drugs benefit/risk profile. This allows one to arrive at
novel discoveries [11]. As of 2011, drugs developed using LBD are
in the preclinical stage [11].

A new drug costs between 500 million and 2 billion dollars to
develop, and can take between 10 and 15 years [14] to come to
market. The success rate is less than 10% [14]. The number of
new drugs approved by the FDA is declining [11], but currently
there are about 4,000 drugs approved for human use, and about
5,000 more drugs registered for investigational use [12]. Many of
the investigational drugs have been extensively studied and satisfy
basic regulatory requirements. By applying LBD to drug repurpos-
ing drug development costs may be reduced by up to 50%, and
bring drugs to market much more quickly [11].

7.3. Adverse drug event prediction

LBD provides a better understanding of drug mechanisms and
side effects, and in a similar way that this knowledge can be
Table 3
Comparison between LBD systems. Each row represents a different system, and each colu
MeSH descriptors come from MEDLINE. Term representations of CUIs indicate the system u
for a system. An X indicates the system uses the filter type in that column. The columns
hierarchical filter. An X indicates the system incorporates that filter type in its implementa
was evaluated, an X indicates the system was evaluated using that technique in the referen
proposal, and ‘‘T” for time-slicing. Many of the systems and author’s works have evolved

Author Model Document representation

Kostoff et al. [58] bibliometric abstracts,titles,MesH
Gordon and Lindsay [32] co-occurrence abstracts,titles
Weeber et al. [27] co-occurrence abstracts,titles
Wren et al. [79] co-occurrence abstracts,titles
Hu et al. [63] co-occurrence MeSH
Hristovski et al. [36] co-occurrence MeSH
Srinivasan [28] co-occurrence MeSH
Yetisgen-Yildiz [64] co-occurrence MeSH
Stegmann and Grohmann [71] co-occurrence MeSH
Pratt and Yetisgen-Yildiz [60] co-occurrence titles
Swanson and Smalheiser [26] co-occurrence titles
Preiss [43] semantic abstracts,titles
van der Eijk et al. [29] distributional abstracts
Gordon and Dumais [30] distributional abstracts,titles,MesH
Bruza et al. [33] distributional titles
Cohen et al. [61] distributional SemMedDB
Wilkowski et al. [53] interactive SemMedDB
Workman et al. [56] interactive SemMedDB
Petric et al. [31] rarity PMC Full Text
Hristovski et al. [39] semantic SemMedDB
Cameron et al. [73] semantic SemMedDB,MeSH
applied for drug repurposing, it can also be applied to adverse drug
event (ADE) prediction [11,17–20]. Adverse events can be caused
by normal use, misuse, or sudden discontinuation of medications.
ADEs often lead to hospitalization, and account for an estimated
12% of all emergency room visits [17]. Furthermore, the number
of serious or life-threatening ADEs is increasing [11]. ADEs pose
significant health and financial problems worldwide [19].

Since LBD can explain drug mechanisms and side effects it
makes ADEs more easily predicted and avoided. A recent study
by the Food and Drug Administration [91], found that ADE predic-
tion systems were able to predict many life-threatening cardiac-
related ADEs, and anticipated that development of similar tech-
nologies are in line with their initiatives and will be helpful tools
in the future. Unforeseen ADEs may occur after drugs are released
to the market, and LBD allows for early detection of these ADEs
through automated analysis of literature and clinical notes. By
quickly identifying ADEs both safety and quality of patient health
care increase [17].
8. Challenges and future directions

8.1. Lack of adoption

LBD has been around for over 30 years, but has not been widely
adopted outside of the information retrieval and text processing
community. A lot of criticism has focused on this lack of adoption
into laboratory and research environments. LBD’s lack of adoption
can be attributed to two primary concerns: lack of empirical eval-
uation, and a disconnect between users and developers. Both of
these topics have received considerable attention in recent years.

Concerns of lack of empirical evaluation are also discussed in
the Evaluation section (Section 6) since empirical evaluation has
become common for LBD systems. LBD publications are increas-
ingly focused on applications, making discoveries, and self-
validation of those discoveries. The biomedical domain is the pri-
mary application area. Bekhuis et al. [92] recommend that devel-
opers work on substantive problems for specific translational
purposes. By self-validating proposed discoveries and creating dis-
mn shows how the systems differ. Document representations of abstracts, titles, and
ses MeSH or UMLS concepts. The Filter columns show which types of filters are used

correspond to ‘‘S” for semantic type filter, ‘‘R” for relationship type filter, and ‘‘H” for
tion as described in the referenced paper. The evaluation columns show how a system
ced paper. The columns correspond to ‘‘R” for discovery replication, ‘‘P” for discovery
over time, and this table is meant to be indicative only of the references provided.

Term representation Filters Evaluation

S R H R P T

n-grams/MeSH X X X
n-grams X
CUIs X X
CUIs X
CUIs X X X X
CUIs X X
CUIs X X
CUIs X X X X
CUIs X X
CUIs X X X
unigrams X X
CUIs X X X
CUIs X
n-grams X
unigrams X
CUIs X X X
CUIs X X X
CUIs X X X
n-grams X X
CUIs X X X X
CUIs X



Fig. 3. Timeline of the development of LBD. Events are shown above the timeline at
the date of first publication. Colored bars represent publications for different
methodologies as they start and end over time. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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coveries with interdisciplinary teams, LBD will likely gain credibil-
ity and adoption in the intended application domains.

The disconnect between developers and users is being
addressed by many systems. This can be seen with the increased
attention given to user interaction studies, the increasing popular-
ity of user-interaction focused systems, and increasing attention
given to the display of results and interpretability. Skeels et al.
[75] state that the ‘‘interface must facilitate comprehension, inves-
tigation, and evaluation of the connections proposed”. User inter-
action studies have also revealed that users often use systems
differently than originally intended. Systems should be designed
to support those uses, as well as traditional ones.

Validation and effective interfaces are important, but Bekhuis
et al. [92] attribute some of the lack of adoption to differences in
thinking between biomedical scientists and data scientists.‘‘Biol-
ogy has a solid foundation on experimental, empirical science.
The notion that experiments can be conducted on data alone, even
when the data was collected by other researchers, is a difficult
paradigm shift for many scientists.” [16]. Moving beyond Swan-
son’s ABC model to develop new paradigms that more closely
resemble traditional experimentation methods may bring about
both acceptance by outside scientists, and ease of use, since the
methods are instantly familiar to those scientists. Recently Baker
et al. [93] developed a system that mimics traditional drug repur-
posing procedures. The system extracts side effect information
from Medline and uses machine learning techniques to predict
the molecular activity of chemicals. Specifically, it predicts
whether a molecule will bind to receptors of interest based on its
side effects. This parallels how traditional drug repurposing is
done, leading to a better understanding and trust of the process.
This tool is instantly recognizable, leading to more trust, familiar-
ity, and ease of use by its users.

8.2. Methodological gaps

8.2.1. Implicit term ranking
Removal of uninformative linking and target terms has been a

major area of research for LBD. This is due both to computational
difficulties and the overwhelming volume of data LBD systems
generate. Less focus however has been on the development of
ranking measures specifically for implicit (A to C) knowledge gen-
erated by LBD systems. Ranking measure development has focused
on explicit (A to B) measures. The majority of implicit ranking mea-
sures proposed (highlighted in Table 1) are adaptations of explicit
measures, or rely purely on frequency (e.g. linking term count).
Wren et al. [67] state that ‘‘it us unclear how these can be adapted
to implied relations of interest”, and although they develop ranking
measures specifically for implicit knowledge, these again are mod-
ifications of explicit measures (e.g. mutual information measure).
Development of ranking measures specifically for implicit knowl-
edge can reduce the impact of uninformative knowledge genera-
tion, since more effective thresholds can be applied, and the
most interesting terms will rank higher and therefore be easily rec-
ognized by the user.

8.2.2. Grouping output terms
The idea of systematically grouping similar output terms of an

LBD system was proposed by Weeber et al. [27] when they out-
lined their idea of functional groups. Weeber et al. analyze the link-
ing terms their system generates when replicating Swanson’s
Raynaud’s-Fish Oil discovery. They find three primary groupings
of interest: blood viscosity, platelet aggregation, and vascular reac-
tivity. Each of these groupings contain multiple, closely related
terms, and when each functional group is separately analyzed,
the output becomes more interpretable and meaningful. Other
authors have performed similar grouping schemes. Baker [16]
assigns a high level classification to terms by exploiting the MeSH
hierarchy. She provides a broad categorization by assigning the
descriptor at the third level of the ancestor tree relating to each
term. Although effective for her application, using the MeSH hier-
archy alone will be problematic when using multiple taxonomies
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of the UMLS (e.g. MeSH and SNOMED CT), as their structures differ
significantly. Cameron et al. [73] uses graph-based similarity mea-
sures, and hierarchical agglomerative clustering to group similar
‘‘contexts” of SemRep predications. The system creates an easily
interpretable graphical output that succinctly explains the interac-
tion between terms of interest. Their system output is impressive,
and is inspirational for the development of more advanced, gener-
alizable, and efficient output grouping methods.

8.2.3. Query expansion
Query expansion is a critical component of most information

retrieval systems, however it has received little attention for LBD.
This is likely due to the information explosion already problematic
for the field. It is likely, however, that without query expansion
many terms and documents of interest are being excluded from
the linking step. A user’s query is an imprecise description of their
information need, and query expansion augments the query to be a
more precise representation of that information need [94]. Some
examples of query expansion for LBD include: Kostoff et al. [58],
who perform a process of ‘‘core literature expansion”. They stress
the importance of this step. Manual query expansion has been
performed by Wilkowski et al. [53] who manually expand the start
term, serotonin to 183 concepts. They state that, in the future,
ontology resources could be used to automate this expansion.
Cameron et al. [73] manually augment starting and target terms
in his closed discovery process. Automated query expansion tech-
niques for LBD deserve more research, and it is likely that similar
methods can be used for query expansion, uninformative term
elimination of similar terms, and grouping of output terms, making
this a particularly important research area.

8.2.4. Word sense disambiguation
Applying Word Sense Disambiguation (WSD) to LBD has

recently received attention, but more work is warranted. Biomed-
ical documents are highly ambiguous and this ambiguity leads to
spurious connections [95]. Tools such as MetaMap and SemRep
help reduce ambiguity, but these tools alone are not sufficient.
Analysis of the 2009 Medline data shows that there are
1,072,902 terms in Medline that exist in the UMLS of which
35,013 are ambiguous, and 2979 have two or more senses with
the same semantic type, therefore semantic type filtering alone is
not sufficient. Zhang et al. [9] finds that ambiguity is a problem
with SemRep, and their solution is to eliminate all ambiguous
predications generated by SemRep. They note that this severely
reduces the number of generated predication. In fact, they found
ambiguity to be such a problem that they opt to use the 2006 ver-
sion of the UMLS over the 2012 due to the growth of ambiguity (in
particular ambiguity of protein names). Preiss et al. [95] show that
performing WSD as a preprocessor for LBD improves results. Wren
et al. [79] use the Acronym Resolving General Heuristic (ARGH) to
resolve acronyms. Development of more effective WSD algorithms,
particularly for MetaMap and SemRep will help LBD systems.
9. Conclusion

This paper covered the fundamental methodologies and compo-
nents of modern and historical LBD systems. Today, a wide variety
of systems from all methodologies exist. Table 3 shows several cur-
rent and historical systems and key differences between them. Sev-
eral of the systems have evolved over time, but the categorization
is based on the system at the time of the publication provided.
Recently there has been a trend towards integrating semantic par-
sers [96,48,40,56]. This allows for more precision when extracting
relationships. Since relationships have labeled types, relationship
filters may be applied, and LBD output can be better explained.
User interaction studies [76] have revealed how systems are being
used by researchers, and user-interaction based systems [47,57]
are becoming increasingly popular. There are benefits and draw-
backs to each system, and selecting appropriate methodologies is
application specific. Since evaluation is a difficult task, selecting
appropriate components is difficult, and there is no definitive
‘‘best” method for LBD. It is still an evolving area of research.
Fig. 3 shows contributions to LBD over time to provide an idea of
how the field has progressed. Even with all of LBD’s unanswered
questions, it is being applied in biomedical applications today;
drug development, drug repurposing, and adverse drug event pre-
diction are popular application areas. As LBD techniques become
more refined, they will likely become essential tools for these
applications and others.
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rajolink for uncovering relations between biomedical concepts, J. Biomed.
Inform. 42 (2) (2009) 219–227.

[32] M.D. Gordon, R.K. Lindsay, Toward discovery support systems: a replication,
re-examination, and extension of swanson’s work on literature-based
discovery of a connection between raynaud’s and fish oil, J. Am. Soc. Inform.
Sci. 47 (2) (1996) 116–128.

[33] P. Bruza, D. Song, R. McArthur, Abduction in semantic space: towards a logic of
discovery, Logic J. IGPL 12 (2) (2004) 97–109.

[34] J. Preiss, M. Stevenson, R. Gaizauskas, Exploring relation types for literature-
based discovery, J. Am. Med. Inform. Assoc. (2015) ocv002.

[35] M. Yetisgen-Yildiz, W. Pratt, Using statistical and knowledge-based
approaches for literature-based discovery, J. Biomed. Inform. 39 (6) (2006)
600–611.

[36] D. Hristovski, J. Stare, B. Peterlin, S. Dzeroski, Supporting discovery in medicine
by association rule mining in medline and umls, Stud. Health Technol. Inform.
(2) (2001) 1344–1348.

[37] S. Thaicharoen, T. Altman, K. Gardiner, K.J. Cios, Discovering relational
knowledge from two disjoint sets of literatures using inductive logic
programming, in: IEEE Symposium on Computational Intelligence and Data
Mining, 2009 (CIDM’09), IEEE, 2009, pp. 283–290.

[38] T.C. Rindflesch, M. Fiszman, The interaction of domain knowledge and
linguistic structure in natural language processing: interpreting hypernymic
propositions in biomedical text, J. Biomed. Inform. 36 (6) (2003) 462–477.

[39] D. Hristovski, C. Friedman, T.C. Rindflesch, B. Peterlin, Exploiting semantic
relations for literature-based discovery, in: Proceedings of the American
Medical Informatics Association (AMIA) Annual Symposium, 2006.

[40] D. Cameron, O. Bodenreider, H. Yalamanchili, T. Danh, S. Vallabhaneni, K.
Thirunarayan, A.P. Sheth, T.C. Rindflesch, A graph-based recovery and
decomposition of swanson’s hypothesis using semantic predications, J.
Biomed. Inform. 46 (2) (2013) 238–251.

[41] A. Fader, S. Soderland, O. Etzioni, Identifying relations for open information
extraction, in: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, 2011, pp.
1535–1545.

[42] M.-C. De Marneffe, B. MacCartney, C.D. Manning, Generating typed
dependency parses from phrase structure parses, in: Proceedings of
Language Resources and Evaluation Conference (LREC), vol. 6, 2006, pp.
449–454.

[43] J. Preiss, Seeking informativeness in literature based discovery, ACL 2014,
2014, p. 112.

[44] D. Hristovski, A. Kastrin, D. Dinevski, R. Thomas, Towards implementing
semantic literature-based discovery with a graph databse, in: The Seventh
International Conference on Advances in Databases, Knowledge, and Data
Applications, 2015.

[45] P. Bruza, R. Cole, D. Song, Z. Bari, Towards operational abduction from a
cognitive perspective, Logic J. IGPL 14 (2) (2006) 161–177.

[46] M. Symonds, P. Bruza, L. Sitbon, The efficiency of corpus-based distributional
models for literature-based discovery on large data sets, in: Proceedings of the
Second Australasian Web Conference-vol. 155, Australian Computer Society,
Inc., 2014, pp. 49–57.

[47] T. Cohen, G.K. Whitfield, R.W. Schvaneveldt, K. Mukund, T. Rindflesch,
Epiphanet: an interactive tool to support biomedical discoveries, J. Biomed.
Disc. Collab. 5 (2010) 21–49.
[48] T. Cohen, D. Widdows, R. Schvaneveldt, T.C. Rindflesch, Finding
schizophrenia’s prozac emergent relational similarity in predication space,
in: International Symposium on Quantum Interaction, Springer, 2011, pp. 48–
59.

[49] J. Stegmann, G. Grohmann, Factor analytic approach to transitive text mining
using medline descriptors, in: Literature-Based Discovery, Springer, 2008, pp.
115–131.

[50] R.J. Cole, P.D. Bruza, A bare bones approach to literature-based discovery: an
analysis of the raynaud’s/fish-oil and migraine-magnesium discoveries in
semantic space, in: International Conference on Discovery Science, Springer,
2005, pp. 84–98.

[51] T. Cohen, R.W. Schvaneveldt, T.C. Rindflesch, Predication-based semantic
indexing: permutations as a means to encode predications in semantic space,
in: Proceedings of the American Medical Informatics Association (AMIA)
Annual Symposium, 2009.

[52] T. Cohen, D. Widdows, T. Rindflesch, Expansion-by-analogy: a vector symbolic
approach to semantic search, in: International Symposium on Quantum
Interaction, Springer, 2014, pp. 54–66.

[53] B. Wilkowski, M. Fiszman, C.M. Miller, D. Hristovski, S. Arabandi, G. Rosemblat,
T.C. Rindflesch, Graph-based methods for discovery browsing with semantic
predications, Proceedings of the American Medical Informatics Association
(AMIA) Annual Symposium, vol. 2011, American Medical Informatics
Association, 2011, p. 1514.

[54] T. Cohen, D. Widdows, R.W. Schvaneveldt, T.C. Rindflesch, Logical leaps and
quantum connectives: forging paths through predication space, in: AAAI Fall
Symposium: Quantum Informatics for Cognitive, Social, and Semantic
Processes, 2010.

[55] J.C. Goodwin, T. Cohen, T. Rindflesch, Discovery by scent: discovery browsing
system based on the information foraging theory, in: 2012 IEEE International
Conference Bioinformatics and Biomedicine Workshops (BIBMW), IEEE, 2012,
pp. 232–239.

[56] T.E. Workman, M. Fiszman, T.C. Rindflesch, D. Nahl, Framing serendipitous
information-seeking behavior for facilitating literature-based discovery: a
proposed model, J. Assoc. Inform. Sci. Technol. 65 (3) (2014) 501–512.

[57] T.E. Workman, M. Fiszman, M.J. Cairelli, D. Nahl, T.C. Rindflesch, Spark, an
application based on serendipitous knowledge discovery, J. Biomed. Inform. 60
(2016) 23–37.

[58] R.N. Kostoff, M.B. Briggs, J.L. Solka, R.L. Rushenberg, Literature-related
discovery (lrd): methodology, Technol. Forecast. Social Change 75 (2) (2008)
186–202.
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medicine by association rule mining of bibliographic databases, in: European
Conference on Principles of Data Mining and Knowledge Discovery, Springer,
2000, pp. 446–451.

[67] J.D. Wren, Extending the mutual information measure to rank inferred
literature relationships, BMC Bioinform. 5 (1) (2004) 1.

[68] M. Yetisgen-Yildiz, W. Pratt, A new evaluation methodology for literature-
based discovery systems, J. Biomed. Inform. 42 (4) (2009) 633–643.

[69] D. Hristovski, B. Peterlin, J.A. Mitchell, S.M. Humphrey, Using literature-based
discovery to identify disease candidate genes, Int. J. Med. Inform. 74 (2) (2005)
289–298.

[70] D.R. Swanson, N.R. Smalheiser, V.I. Torvik, Ranking indirect connections in
literature-based discovery: the role of medical subject headings, J. Am. Soc.
Inform. Sci. Technol. 57 (11) (2006) 1427–1439.

[71] J. Stegmann, G. Grohmann, Hypothesis generation guided by co-word
clustering, Scientometrics 56 (1) (2003) 111–135.

[72] D. Hristovski, T. Rindflesch, B. Peterlin, Using literature-based discovery to
identify novel therapeutic approaches, Cardiovasc. Hematol. Agents Med.
Chem. (Formerly Curr. Med. Chem.-Cardiovasc. Hematol. Agents) 11 (1) (2013)
14–24.

[73] D. Cameron, R. Kavuluru, T.C. Rindflesch, A.P. Sheth, K. Thirunarayan, O.
Bodenreider, Context-driven automatic subgraph creation for literature-based
discovery, J. Biomed. Inform. 54 (2015) 141–157.

[74] J.D. Wren, The ‘open discovery’ challenge, in: Literature-Based Discovery,
Springer, 2008, pp. 39–55.

http://refhub.elsevier.com/S1532-0464(17)30190-9/h0105
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0105
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0105
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0110
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0110
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0110
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0110
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0115
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0115
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0115
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0125
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0125
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0125
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0125
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0125
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0130
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0130
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0130
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0135
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0135
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0135
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0135
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0140
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0140
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0145
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0145
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0145
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0150
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0150
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0155
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0155
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0155
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0160
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0160
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0160
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0160
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0165
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0165
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0170
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0170
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0175
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0175
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0175
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0180
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0180
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0180
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0185
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0185
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0185
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0185
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0185
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0190
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0190
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0190
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0200
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0200
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0200
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0200
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0205
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0205
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0205
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0205
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0205
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0225
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0225
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0230
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0230
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0230
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0230
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0230
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0235
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0235
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0235
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0240
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0240
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0240
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0240
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0240
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0245
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0245
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0245
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0245
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0250
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0250
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0250
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0250
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0250
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0260
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0260
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0260
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0260
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0265
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0265
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0265
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0265
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0265
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0265
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0275
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0275
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0275
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0275
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0275
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0280
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0280
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0280
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0285
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0285
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0285
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0290
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0290
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0290
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0295
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0295
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0295
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0295
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0300
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0300
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0300
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0300
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0305
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0305
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0305
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0310
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0310
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0315
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0315
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0315
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0315
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0325
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0325
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0325
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0330
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0330
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0330
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0330
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0330
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0335
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0335
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0340
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0340
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0345
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0345
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0345
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0350
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0350
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0350
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0355
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0355
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0360
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0360
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0360
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0360
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0365
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0365
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0365
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0370
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0370
http://refhub.elsevier.com/S1532-0464(17)30190-9/h0370


32 S. Henry, B.T. McInnes / Journal of Biomedical Informatics 74 (2017) 20–32
[75] M.M. Skeels, K. Henning, M.Y. Yildiz, W. Pratt, Interaction design for literature-
based discovery, in: CHI’05 Extended Abstracts on Human Factors in
Computing Systems, ACM, 2005, pp. 1785–1788.

[76] N.R. Smalheiser, V.I. Torvik, A. Bischoff-Grethe, L.B. Burhans, M. Gabriel, R.
Homayouni, A. Kashef, M.E. Martone, G.A. Perkins, D.L. Price, Collaborative
development of the arrowsmith two node search interface designed for
laboratory investigators, J. Biomed. Disc. Collab. 1 (1) (2006) 8.

[77] M. Weeber, H. Klein, A.R. Aronson, J.G. Mork, L. De Jong-van Den Berg, R. Vos,
Text-based discovery in biomedicine: the architecture of the dad-system, in:
Proceedings of the American Medical Informatics Association (AMIA) Annual
Symposium, American Medical Informatics Association, 2000, p. 903.

[78] D. Hristovski, B. Peterlin, J.A. Mitchell, S.M. Humphrey, L. Sitbon, I. Turner,
Improving literature based discovery support by genetic knowledge
integration, Stud. Health Technol. Inform. (2003).

[79] J.D. Wren, R. Bekeredjian, J.A. Stewart, R.V. Shohet, H.R. Garner, Knowledge
discovery by automated identification and ranking of implicit relationships,
Bioinformatics 20 (3) (2004) 389–398.

[80] D.R. Swanson, Fish oil, raynaud’s syndrome, and undiscovered public
knowledge, Perspect. Biol. Med. 30 (1) (1986) 7–18.
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