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A B S T R A C T

In a global economy where technology plays a vital role, technology fusion is important for developing designs of
outstanding innovations. These designs often involve the transfer of knowledge between different technological
industries, a term known as “interdisciplinarity.” This paper aims to contribute to the literature on
interdisciplinary innovation by using a novel methodological approach to explore how conventional technol-
ogies have evolved into interdisciplinary technologies in different industries. The new methodological approach
was based on patent citation analysis and negative binomial regressions conducted to: 1) observe the dynamics
and evolution of interdisciplinary technologies, and 2) explore how interdisciplinary knowledge influences
technology developments. The study found that interdisciplinary knowledge plays a significant role in the
development of valuable technologies in all investigated industries. An important managerial implication from
this is that firms should consider developing interdisciplinary technologies whenever possible.

1. Introduction

Interdisciplinarity is a popular concept in the literature on innova-
tion and management. However, it is often used interchangeably with
“cross-disciplinarity” by academic researchers. In fact, the two words
have been interchanged so often that it becomes difficult to understand
their differences. Interdisciplinarity involves integrating knowledge and
methods from different disciplines using a real synthesis of approaches,
whereas cross-disciplinarity refers to viewing one discipline from the
perspective of another (Jenseius, 2012; Stember, 1991). In the context
of technological innovation, interdisciplinarity is defined as the mer-
ging or combination of knowledge from various technical industries in
order to create new technologies, products, or processes. In most cases,
R & D collaborations are the primary movers behind this concept. These
occur as firms working together share their knowledge, with the
objective of enabling them to bring new products to the market
(Hagedoorn, 1993).

One popular research stream that has emerged from the concept of
interdisciplinarity has concentrated on the dynamics of technology
development through organizational collaborations and other network-
ing strategies. Findings from studies in this area have highlighted the
important role of alliances in acquiring interdisciplinary knowledge
(Frankort, 2013; Frankort et al., 2012; Gomes-Casseres et al., 2006;
Mowery et al., 1996; Oxley and Wada, 2009; Rosenkopf and Almeida,
2003). By comparison, another popular research stream has focused on

the role of interdisciplinarity in new technology or product develop-
ment (Chen and Li, 1999; Decarolis and Deeds, 1999; Deeds and Hill,
1996; Kotabe and Swan, 1995; Rothaermel and Deeds, 2004). However,
the linkage between the two research areas has not been adequately
investigated by researchers.

Understanding the relationship between interdisciplinary dynamics
and new product development is essential. Over the past few decades, a
lot of studies have investigated different characteristics and dynamics
of knowledge flows, mostly through the use of patent data (Gerybadze
and Reger, 1999; Hsu et al., 2015; Su et al., 2012). Since then, a number
of important findings and managerial implications have emerged. For
instance, a firm's competitive advantage was found not to be entirely
dependent on acquiring important knowledge, but also through trans-
lating such knowledge into new products as well (e.g., Blundell et al.,
1999; Sorescu and Spanjol, 2008).

One of the longstanding and still-debated research gaps is the need
to understand how interdisciplinary knowledge contributes to the
development of new inventions. While the bulk of empirical studies
have provided evidence that important inventions involve the transfer
of knowledge across technological domains (e.g. Arthur, 2007; Hunter
et al., 2011; Nemet, 2012), other studies found that such knowledge
transfers have no significant impacts on important inventions (e.g.
Nemet and Johnson, 2012). Because of these inconsistencies, a con-
sensus on the role of interdisciplinary knowledge in the development of
important inventions is far from being reached. This indicates the need
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for further investigation.
To fill the above described research gap, this paper aims to explore

the role of interdisciplinary knowledge in technological innovation
using a new approach. This is important for firms as it can help them
find ways to maximize their technological capabilities by facilitating
their knowledge search and acquisition. That outcome, in turn, may
provide them with efficient product designs and improved productiv-
ities (Arora and Gambardella, 1990; Cassiman and Veugelers, 2002; Wu
and Shanley, 2009).

The originality and contribution of this study to the innovation
literature lies mainly in its methodological approach. The approach
employed is novel in the sense that it constructs and measures the
interdisciplinarity of a patent in a way that has never been done before.
This unique method is based on the IPC classification and the idea that a
patent citing patents from multiple technology sectors is interdisciplin-
ary in nature. The more technology sectors cited, the more interdisci-
plinary a patent is. The first step in this approach utilized patent
citation data to show the evolution of interdisciplinary patents, and the
second analyzed the impacts of the constructed indicators of inter-
disciplinary knowledge on patent value. By utilizing patents' citation
data and IPC classification, different levels of interdisciplinary mea-
sures were constructed and analyzed. Using patent forward citation
count as a proxy for how valuable (or important) a technology is, the
study found strong positive relationships between interdisciplinary
variables and the development of important technologies. In doing so,
it has provided new empirical evidence that interdisciplinarity is a
relevant contributor to the development of important technologies.

In a nutshell, this paper is designed to contribute to the innovation
literature by exploring the dynamics and trends of interdisciplinary
knowledge, and how they influence the development of new technol-
ogies, using a novel methodology. Moreover, this involves a first-time
systematic analysis of citation data on a complete range of patents
granted by USPTO over a long period of time, the years 1983 to 2013.

The rest of the paper is organized as follows. Section 2 reviews the
existing literature on the technology development, why it is important,
and recent related research findings; the evolution of interdisciplinary
technologies; and the use of patent data to explore knowledge flows and
innovative performances. Section 3 presents the data and methodolo-
gical approach employed in this study. Section 4 presents and discusses
the empirical results, while Section 5 concludes the paper.

2. Literature review

2.1. The role of R & D in science and technology developments

Science and technology play important roles in the business world
(Castells, 2014; Kazmeyer, 2016; Utterback, 1994). In fact, important
scientific discoveries over the past decades have led to major techno-
logical breakthroughs. These technological advancements have in turn
caused dramatic changes in the ways businesses operate (Satell, 2013;
Vitez, 2016). For instance, since the scientific discovery of the binary
number system by Gottfried Wilhelm Leibniz from as long ago as the
17th century, a series of breakthrough technologies based on the binary
number system have emerged. These include the first-generation
computers by IBM in the 1950s as well as the advent of the Web in
the 1990s. Due to the widespread use of such technologies, most
business transactions and processes have become digitized. This clearly
demonstrates how such breakthrough technologies have brought sig-
nificant changes to the ways businesses operate. These digital technol-
ogies bring immense benefits not only to businesses but also to users, in
both commercial and social settings (Vitez, 2016). As a result, most
outstanding technologies no longer appear within a single technological
area but rather between multiple areas (Duysters and Hagedoorn, 1998;
Hacklin et al., 2009). Moreover, small businesses are becoming more
efficient and thus able to withstand competition from big companies.
Many of the developments in science and technology have been

attributed to improvements in knowledge and skills through R &D.
The findings of past studies examining the use of various forms of

R & D have been mixed. However, an increasing number of recent
publications and empirical studies have provided support for the
positive contribution of technical cooperation in science and technol-
ogy developments (Herstad et al., 2014; Maietta, 2015). In addition,
studies such as Roper and Hewitt-Dundas (2015) have provided
empirical evidence on strong and positive relationships among R &D,
knowledge, and firm performance. Furthermore, in a global knowledge
environment, many countries are collaborating with each other, with
the hope of reducing their R & D costs (Narula and Santangelo, 2009).
This kind of strategic alliance can lead to an effective integration of
R & D capabilities between different industries and, in turn, to the
creation of a more innovative and valuable new product. In the early
years of the “one technology-one industry” era, firms often focused
their R & D and production in a single technology area (Christensen
et al., 2005; Kodama, 1992). Knowledge transfer and product diversi-
fication were rarely practiced. Over the years, knowledge transfer
across different technological domains became popular and quickly led
to product diversification. Soon, the one technology-one industry
business strategy no longer applies. Now, relying on a technological
breakthrough alone is not sufficient any more. Firms must also consider
diversifying and expanding their product domains through knowledge
and technology fusion strategies.

Technology fusion often requires some form of knowledge and skills
sharing. This can include research collaborations either between
organizations or across national boundaries. Some empirical studies
have found that industry-university collaborations may not only lead to
cost efficiencies but also to improved innovations (Bodas Freitas et al.,
2013; Etzkowitz and Leydesdorff, 2000; Maietta, 2015). This type of
collaboration has been around for quite a long time and the rate at
which it is adopted is still growing. Consequently, industry-university
collaboration became one of the indicators of technology developments
(Sung et al., 2015).

2.2. Measuring interdisciplinarity of research publications

Interdisciplinary research is a popular phenomenon in scientific
studies. For decades, scholars have tried to measure the scientific
outputs of interdisciplinary researches through the use of bibliometric
approaches. The term “bibliometrics” was first coined and defined by
(Pritchard, 1969) as the application of mathematics and statistical
methods to books and other media of communication. There are two
main bibliometrics research approaches that have emerged from the
core literature – the structuralist approach and the spatial approach
(Wagner et al., 2011). While the former mainly uses citation analysis
based on the structure of science (characterized by authors, articles,
and disciplines), the latter uses the disciplinary distance between
authors or journals. Some of the recent studies employing spatial
distance approaches to investigate interdisciplinary research include
(Boyack, 2004; Leydesdorff, 2007a,b; Leydesdorff and Schank, 2008;
Porter and Rafols, 2009; Rafols and Meyer, 2010; Stirling, 2007; Van
den Besselaar and Heimeriks, 2001; van Raan, 2005). Three of the most
common methods used in spatial analysis are based on the concepts of
diversity, entropy, and betweenness centrality.

A number of papers have proposed indicators of interdisciplinarity
based on diversity measures. Some of these include (Stirling, 1998,
2007); (Porter and Rafols, 2009); and, (Rafols and Meyer, 2010).
(Stirling, 2007) provided a general framework for understanding
diversity in a range of different contexts by recognizing it as a function
of three necessary but individually insufficient properties: variety;
balance, and disparity. (Porter and Rafols, 2009) used bibliometric
indicators, the RaoStirling diversity index, and a visualization method
based on overlay science maps (Leydesdorff and Rafols, 2009) to show
how the degree of interdisciplinarity has changed between 1975 and
2005. Their study covered six research domains including long-estab-
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lished areas such as Math and relatively newly formed ones like
Neurosciences. (Rafols and Meyer, 2010) proposed a conceptual frame-
work that aims to capture interdisciplinarity using the concepts of
diversity and coherence. They developed their disciplinary diversity
indicators from ISI Subject Categories to describe the heterogeneity of a
bibliometric set viewed. This is a top-down approach that locates the set
on the global map of science.

By comparison, entropy is a particular case of the general concept of
diversity (Stirling, 2007). It is drawn from a mathematical concept
commonly used in areas such as thermodynamics, statistical mechanics,
and information theory. In this context of diversity, it is a measure of
disorder or uncertainty in a system of science. Entropy can be used to
measure either inputs, such as a disciplinary indicator of knowledge
stream intensity between research fields (Van den Besselaar and
Heimeriks, 2001), or outputs, such as in most other studies involving
the system of network citations coming from multiple fields to one field.

Another commonly used publication interdisciplinary measure is
based on the concept of betweenness centrality. The betweenness
centrality is defined as the number of the shortest paths that go through
an edge in a graph or network (Girvanand Newman, 2002). In the
context of interdisciplinarity, it refers to the shortest discipline paths
between journals (Leydesdorff, 2007a) or between authors (Schummer,
2004). (Schummer, 2004) employed a new visualization method based
on co-author analysis to analyze over 600 papers published in “nano
journals” in 2002 and 2003. This was done in order to compare the
patterns of research collaboration with those of classical disciplinarity.

2.3. From interdisciplinary knowledge to technology fusion

Technology fusion, through the combination of various technolo-
gies, is increasingly becoming a popular approach to successful
innovation (Caviggioli, 2016; Jin et al., 2011; Kodama, 1986). Firms
engaging in technology fusion are most likely to have the flexibility to
switch between multiple technological domains or to operate in all
simultaneously. As a result, technologies have become boundary-free
and products no longer appear within a single technological industry
but rather between them (Duysters and Hagedoorn, 1998; Hacklin
et al., 2009). This highlights the importance of understanding the
dynamics of technology fusion and the trajectories of interdisciplinary
knowledge in order to identify the trends of emerging technologies.
This understanding is necessary, as it can help provide firms with early
precautionary warnings on how and whether they should continue to
engage in their existing product lines or start switching to others.
Because of these, technology fusion has become one of the key
indicators of important technology development. However, the linkage
between technology fusion and interdisciplinary knowledge remains a
phenomenon.

Due to the close relationship between technology fusion and
interdisciplinary knowledge, researchers have been using interdisci-
plinary knowledge as an indicator of technology fusion. This allows
them to analyze the trajectories and dynamics of technology fusion
through the use of patent data (e.g. (Hu and Jaffe, 2003; Jaffe et al.,
2000; von Wartburg et al., 2005). In this type of analysis, the most
frequently occurring citation between certain pairs of patents is
perceived as an indication of the presence of technology fusion. With
the spike in patenting activity over the last couple of decades and the
reliability of patents databases, patent data have become the main
source of technological knowledge flows and interdisciplinary knowl-
edge (Choi et al., 2012; Cong and Tong, 2008; Griliches, 1990; Yoon
and Kim, 2012a). In addition, a lot of systematic designs and strategies
for technology fusion have been developed based on the implications
and findings of patent data analyses. These designs often lead to
improved inventions and products (Park et al., 2013).

The bulk of innovation literature on technology trend analysis has
been mainly focused in the area of identifying existing and emerging
influential technologies, mostly in a single technological domain

(Hullmann and Meyer, 2003; Kajikawa et al., 2008; No and Park,
2010). Some of these analyzed the technological trajectories over time
(Choi and Park, 2009; Hillman and Sandén, 2008; Verspagen, 2007)
while others used patent maps to examine the linkages and network
relationships between certain technologies (Lee et al., 2009a,b; Son
et al., 2012; Yoon, 2008; Yoon and Kim, 2012b). These patent maps
were developed based on text mining techniques and patent citations.
Unfortunately, not many of these studies investigated the trends in
interdisciplinary knowledge and their impacts on technology develop-
ments.

2.4. Analyzing the dynamics of interdisciplinarity using patent data

Patent data has been used in many innovation and economic studies
to analyze the dynamics of and trends in technology developments (e.g.
Lai and Wu, 2005; Lee et al., 2009a,b; Stuart and Podolny, 1996). In
fact, patent data use has escalated with the sharp global increase in
patenting activity over the past decades. The use of citation data in a
patent analysis is similar to the use of literature references in an
academic review paper. This similarity in use is due to the fact that
patent bibliometrics and literature bibliometrics have striking simila-
rities (Narin, 1994). In a patent analysis, the flow of knowledge is often
characterized by the relationship or link between a citing and a cited
patent (Trajtenberg et al., 1997). This means that interdisciplinary
knowledge flow occurs when both the citing and cited patents are not
from the same technology field – a concept that has been widely
adopted in the investigations of spillover effects between technology
classes (Narin, 1994).

Patent citation has been proved to be a reliable indicator of
technological activity in the past and has been used in many similar
studies (Nakamura et al., 2015; Nemet and Johnson, 2012; Wu and
Shanley, 2009). Furthermore, the links within the citing-cited patent
pairs have become the basis of complex patent network analyses. The
reason is that the links do not only allow tracing the flow of knowledge
from one technology field to another but also provide a way to measure
the intensity of knowledge flow. This is done by taking the number of
times a citation pair occurs as the strength (or intensity) of the
knowledge flow. The use of patent citation linkages provides an
indication of whether interdisciplinarity has succeeded in being effec-
tive and, if so, where it has succeeded. Moreover, data on patent
citations has been widely used as well in studies that involve investigat-
ing knowledge flows across institutions and national boundaries (e.g.
(Breschi et al., 2003; Ho and Verspagen, 2006; Shin and Park, 2007).

Despite its advantages, patent citation data is time sensitive and
therefore can easily cause truncation bias in the analysis if not
controlled properly. Older patents are often available longer than
newer patents and therefore can cause comparison bias between
citation pairs from either group. To solve this problem, a number of
studies have used year restrictions on citations, such as the 10-year
citation window (e.g. in Mariani, 2004; Nemet, 2009; Nemet and
Johnson, 2012). Nevertheless, the use of patent citation data has
received criticism when used in studies that involve legal considera-
tions and economic issues. This criticism is based on the argument that
citation behavior for academic journals and patents is not the same, and
that citation analysis relies heavily on the use of links in documents
(Kostoff, 1998; Leydesdorff, 2008; Meyer, 2000; Michel and Bettels,
2001).

Finally, the majority of previous related studies that have used
patent citation data involved identifying knowledge intermediaries and
examining their roles in the flow of knowledge. In spite of the
increasing number of studies in the area of interdisciplinarity and its
impacts on technology developments, the inconsistencies in the results
have proved the need for further investigation.
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3. Data and methodology

3.1. Variables

The data set used in this empirical study contains data on patents
granted by the US Patent and Trademark Office (USPTO) in the years
1983 to 2013. It covers a total of around 4.2 million patents. Adopting a
similar approach to Nemet & Johnson (2012b), patent citation was used
as a proxy for the flow of knowledge in which forward citation counts
were taken as measures for how valuable patents are, and the different
constructed patent backward citation counts as proxies for the different
levels (or types) of interdisciplinary innovation. A 10-year citation
window was imposed on both forward and backward citations to
minimize truncation bias (Nemet and Johnson, 2012). The lower-end
window is for the years 1983 to 1992, and the upper-end window
covers 2004 to 2013. The different indicators of interdisciplinarity are
constructed based on the IPC classification system and the patent
backward citation information.

IPC (International Patent Classification) is a hierarchical patent
classification system now used by more than 100 countries. The system
was introduced and designed by the Strasbourg Agreement in 1971
based on the different broad areas of technology. IPC has been used as a
primary way to search and classify patent documents according to the
technical fields to which they pertain. Because of this, IPC has become
the basis for investigating the state of the art in many fields of
technology (WIPO, 2016).

IPC classification uses a tree-like structure by which patents are
categorized in hierarchical levels. The first level known as a “section”
has eight groups of broad technical fields. It uses a single English letter
between A and H to represent each group – the letter A stands for
Human Necessities; B for Performing Operations and Transporting; C
for Chemistry and Metallurgy; D for Textiles and Paper; E for Fixed
Constructions; F for Mechanical Engineering, Lighting, Heating and
Weapons; G; for Physics; and H for Electricity. Each section is divided
into “classes.” Classes are the next IPC hierarchical level that contains
120 groups. Each class is labeled by a two-digit number. Classes are
often used to describe the type of technology in a given section. For
example, C21 deals with the Metallurgy of iron. Classes are further
subdivided into more than 640 “subclasses”. These subclasses often
describe the feature of a given type of technology class. Similarly, a
single English letter is added to the different combinations of a section
and class to get subclass labels. For example, A43B is a subclass that
represents a certain feature of a selected shoe type. The subclasses are
divided into the next hierarchical level called “main group.” Each main
group is represented by a three-digit number and often relates to the use
of a given feature. For example, A21C5/00 is a main group that deals
with “Dough-diving machines.” The lowest hierarchical level, “sub-
group,” is characterized by number of two or more digits and is
designated by dots preceding the titles of the main groups.
Altogether, there are around 70,000 IPC identified entries that can be
allotted to patent documents (WIPO, 2016).

The use of IPC classification in this study is necessary because of the
incredible range and coverage of patents per IPC category. According to
our data, there are a total of 637 different IPC subclasses. The number
of patents in each category ranges from 1 to 251,490 with the average
of 6639 patents per subclass. There are three IPC subclasses having only
one patent - H02S, F99Z and B99Z. The IPC subclass category with the
highest number of patents of 251,490 is H01L. Unlike the ranges
described in previous studies such as (Kay et al., 2014), the difference is
mainly related to the type of IPC classification used. While IPC 7 was
used in (Kay et al., 2014), the data for this study was based on an IPC 8
classification.

As illustrated in the example in Fig. 1, the number of subsequent
patents citing patent α is counted and recorded in a variable called
FWDCIT. In this example, FWDCIT = r. This variable was used in the
regression as the dependent variable and it is a proxy for the value of

patent α. In addition, three independent variables were constructed based
on the backward citation data. The first variable, SECCIT, denotes the
number of distinct IPC sections cited by patent α. In the example in
Fig. 1, patent α cites a total of n previous patents. These patents are
from a total of five different IPC sections – A, C, D, F and H; hence
SECCIT in this case is equal to 5. Similarly, the second variable, CLSCIT,
represents the number of distinct IPC classes cited by patent α; and the
third constructed variable, SBCCIT, denotes the number of distinct IPC
subclasses cited by patent α. In this given example in Fig. 1, CLSCIT = 6
and SBCCIT = 3. These three independent variables are used as
indicators of the different levels of interdisciplinary citations.

Nevertheless, it is important to know that there have been many
other types of indicators used in previous studies to trace the flow of
knowledge in innovation and measure innovative performances
(Hagedoorn and Cloodt, 2003). To this date, there is still no standard
way of measurement, and therefore the use of new interdisciplinary
indicators in this paper will contribute to understanding the evolution
of interdisciplinary technologies, the role of knowledge flow in
technology developments, and the collective efforts of previous indica-
tors of interdisciplinarity.

Finally, to control for the effects of other major known determinants
of forward citation count, one additional independent variable and one
categorical independent variable are added. The first is the CLMCNT
variable which represents the number of claims a patent has. The
number of claims in a patent has been found to strongly influence its
citation value and therefore has been used a lot as a control in past
similar studies (Nemet and Johnson, 2012). Additionally, categorical
dummies for the time variable YEAR are also used in the regressions to
control for the unobserved time-related disturbances such as huge
inflation spikes and other macroeconomic shocks.

3.2. Statistical approach and model specifications

In this study, a two-step approach was employed to analyze the
trends and impacts of interdisciplinary knowledge on patent value. 1)
The first step in the analysis was designed to examine the trends or
evolution of the interdisciplinary knowledge and their dynamics in
terms of patent value (proxied by forward citation counts) over the
years. In such cases, the lower-end citation window was not applicable.
As a result, a total of around 2.7 million patents (i.e., from 1976 to
2003) were analyzed in this step. 2) The second step estimated the
impacts of the constructed interdisciplinary indicators (built on the
basis of backward citations) on technology development (proxied by
forward citation counts). Using information on both backward citations
and forward citations requires both 10-year citation windows at the
lower and upper end of the period. This leaves a period of 1993 to 2003
for estimation that comprises of a total of 1.4 million patents.

In the first step, the primary goal is to understand how interdisci-
plinary inventions or technologies have evolved over time. To accom-
plish this, the total number of patents and the average counts of the
forward citations for the different categories of interdisciplinary vari-
ables are plotted as functions of time. This allows visualizing the
forward citation trends of each interdisciplinary variable over the
investigated years. The average annual forward citation count for each
of the interdisciplinary variables was computed using the formula:

∑Avg. Forward Citation = 1
M

FWDCIT
i=1

M

i

that is, the annual sum of all forward citations received by patents in a
given interdisciplinary group divided by the number of patents in that
group, M.

In the second step, a negative binomial regression was employed to
estimate the relationships between the constructed indicators of inter-
disciplinary citations and the forward citation. Negative binomial
regression was used due to the fact that the forward citation outcome
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variable has non-negative integer values only and therefore cannot be
estimated with linear models. Moreover, the mean of this outcome
variable is much smaller than the variance, indicating the existence of
over-dispersion. With overly dispersed data, negative binomial regres-
sion is more appropriate and reliable as compared to the other popular
count data Poisson regression. In addition, using negative binomial on
models that have high numbers of independent categorical variables
(i.e., 41 class variables or 67 subclass variables – see maximum values
of CLSCIT and SBCCIT variables in Table 1) does not require censoring.
The advantage of this use, as compared to those in popular censoring
regression models, is the fact that all information or data are used. With
censoring or truncated techniques, some information or data are either
grouped together or discarded.

The baseline specification model used in this step is shown below.
This is a standard functional form for Poisson and negative binomial
regression models:

E y x ε α x β ε h λ[ , ] = exp( + + ) =i i i i i i i

where:

○ hi = exp(εi) and λi = exp(α+ xiβ).xi represents one of the indepen-
dent interdisciplinary variables – SECCIT, CLSCIT, or SBCCIT;

○ yi denotes the dependent forward citation variable – FWDCIT;

○ E[yi|xi,εi] is the expected conditional mean of forward citation value
for given sets of values of the independent interdisciplinary variable
xi and error term εi.

To estimate the relationships between each of the constructed
interdisciplinary indicators and the forward citation count, three model
specifications below (based on the baseline specification above) are
devised and regressed. The first model contains only the first inter-
disciplinary variable SECCIT as the independent variable of interest.
Similarly, the second model consists of the second interdisciplinary
variable only (CLSCIT) whereas the third model has the third inter-
disciplinary variable only (SBCCIT). The main advantage of doing this
is that it prevents possible collinearity and correlation issues from
distorting the results.

E y x ε α z ε h k[ , ] = exp( + Ω + ) =i i i i i i i (Model I)

E y x ε α q ε h l[ , ] = exp( + ϕ + ) =i i i i i i ii (Model II)

E y x ε α w γ ε h m[ , ] = exp( + + ) =i i i i i i ii (Model III)

where:

○ zi is the first interdisciplinary variable SECCITi; and ki = exp(ziΩ)qi
is the second interdisciplinary variable CLSCITi; and li = exp(qiΦ)

○ wi is the third interdisciplinary variable SBCCITi; and hi = exp(wiγ).

4. Results

This section presents and discusses the empirical results in two
parts: 1) the longitudinal dynamics of the interdisciplinary patents; 2)
the results of the negative binomial regressions of the three models
discussed in Section 3.2.

4.1. The evolutionary trends and dynamics of interdisciplinary patents

Fig. 2 shows the trends of the number of patents citing different
counts of distinct IPC sections. For instance, the top line represents the
number of patents that cite previous patents from the same group of IPC
section (i.e., the number of distinct IPC sections cited = 1). The next
highest line denotes the number of patents that cite previous patents
from two distinct groups of IPC sections (i.e., the number of distinct IPC

Fig. 1. Schema for patent citations showing how the variables are constructed; arrows indicate the directions of the flow of knowledge.

Table 1
Descriptive statistics.

Variable Description N Mean Std. dev. Min Max

YEAR Year of patent issue 1,476,509 1998.64 3.085552 1993 2003
FWDCIT Forward citations

within 10 years
1,476,509 10.92975 18.94712 0 780

SECCIT Number of sections
bkwd cited

1,476,509 1.494327 0.902911 0 8

CLSCIT Number of classes
bkwd cited

1,476,509 1.948118 1.513268 0 41

SBCCIT Number of
subclasses bkwd
cited

1,476,509 2.368852 2.081099 0 67

CLMCNT Claim count 1,476,509 15.71645 12.97515 0 683
TECSEC Technology

industry
1,476,509 2.819201 1.312866 1 5
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sections cited = 2). It can be observed that the number of patents
decreases with the increase in the number of distinct IPC sections cited.
This indicates that the proportion of patents citing a higher number of
distinct IPC sections is much smaller than that of patents citing fewer
number of distinct IPC sections. Despite this, the number of patents in
each category seems to increase gradually over the years.

Similar patterns and trends seen in Fig. 2 are also observed in the
number of patents citing different counts of distinct IPC classes in Fig. 3.
First, the proportion of patents citing fewer distinct IPC classes is much
higher than that of patents citing more distinct IPC classes. Second, the
number of patents engaging in interdisciplinary citations through cross-
IPC class citation is generally lower than those in Fig. 2 but is increasing
over the years. Note, for simplicity and readability, only the number of
patents citing 10 or fewer distinct IPC classes are shown in this Fig. 2.

As observed in Fig. 4, the number of patents citing different counts
of distinct IPC subclasses is also increasing in general but at different
rates. The proportion of patents citing higher numbers of distinct
subclasses is lower than the proportion of patents that cite fewer. For
simplicity and readability, only the numbers of patents citing 12 or
fewer distinct IPC subclasses are shown in Fig. 4.

Fig. 5 shows the plots of the average counts of forward citations for
each group of interdisciplinary patents over the years. Note that the line
plots include only the average counts of forward citations for patents
citing up to 10 distinct IPC classes and 12 distinct IPC subclasses,
instead of all 41 distinct classes and 67 subclasses cited respectively.
Limiting the display of plots ensures readability. The important finding
from these graphs is that although all these average forward citation
counts fluctuate over time, they tend to increase gradually. These
results clearly imply that firms' interests in interdisciplinary patents
have been rising steadily over the years.

Fig. 6 depicts the distributions of the total forward citation counts
for each group of interdisciplinary patents for the entire 1986 to 2003
period. The shaded blue boxes in the middle of each vertical line graph
represent the 25th to the 75th percentiles of the distribution. The upper
remaining part of the line represents the 75th to the 100th percentiles
whereas the lower remaining part of the line shows the 0th to the 25th
percentiles. The main important observation from this is that the
number of forward citations received by a patent tends to increase
with the number of distinct IPC sections, classes, or subclasses from
which it cites. This clearly portrays a very important finding that the
more the interdisciplinary a patent is, the more forward citations it
receives.

The rapid increases in the number of interdisciplinary patents in
1998 (as depicted in Figs. 2, 3, and 4) are due to the steep increase in
overall number of patents granted by the USPTO in 1998. “This is an
increase of 31.5 percent over the 124,146 patents granted in 1997”
(USPTO, O. of the C.C., 1999).

To statistically confirm the findings above, the number of distinct
IPC sections, classes, or subclasses cited is regressed on the number of
forward citations using negative binomial regression. The results are
presented and discussed in the next subsection.

4.2. Regression results

The following are the negative binomial regression results of the
three models explained in Section 3.2: 1) Model I: Impacts of backward
citing distinct IPC sections on forward citation count, Table 2; 2) Model
II: Impacts of backward citing distinct IPC classes on forward citation
count, Table 3; and 4) Model III: Impacts of backward citing distinct IPC
subclasses on forward citation count, Table 4.

Table 2 shows the results of the negative binomial regressions
carried out to estimate the impacts of citing different numbers of
distinct IPC sections on the forward citation count. Since all the
independent variables are categorical dummy variables, the category
0.SECCIT (denoting patents that do not cite any previous patents) is
used as a reference group and therefore not listed in the table. Patents
backward citing zero previous patents are those that cited non-patent
documents only such as academic papers. As shown in the table, almost
all coefficients are significant and positive indicating that they have
higher impacts on the forward citation count than the reference group.
The important finding highlighted in these results is that the higher
number of distinct IPC sections cited (e.g., compare 1.SECCIT to
7.SECCIT under All industries column) by a patent, the higher number
of forward citations it receives. This is robust under all five different
industries. Such finding strongly infers that the more interdisciplinary a
patent is, the more valuable it is.

Table 3 lists the results of the negative binomial estimations carried
out on the different numbers of distinct IPC classes cited against the
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forward citation counts. The category 0.CLSCIT (denoting patents that
cited zero previous patents) is used as reference group and therefore
again not shown in the results. Similar to the previous results, most of
the coefficients are significant and positive indicating that they have
higher impacts on the forward citation count than the reference group.
It is also clear that the higher number of distinct IPC classes cited by a
patent, the higher number of forward citations it receives. However,
there seem to be certain limits before the coefficients start to decrease,
and these are different under different industries. This finding implies
that the more interdisciplinary a patent is in terms of cross-citing
patents from other IPC classes, the more valuable it is – but to a certain
extent. Note that even though the highest number of distinct IPC classes
cited is 41, only the results for first 12 are shown in the table. The full
results are provided in Table 5 in the Appendix A.

The results of the negative binomial estimations for the third model
(Model III – see Section 3.2) are shown in Table 4. The categorical
independent variables in this case is the number of distinct IPC
subclasses cited. The reference category is the 0.SBCCIT (denoting
those patents that cited zero previous patents) which is again not shown
in the results. Similar to the previous two tables, most of the coefficients
are significant and positive indicating that they have higher positive
impacts on the forward citation count than the reference group.
Similarly, this indicates that the higher number of distinct IPC

subclasses cited by a patent, the higher number of forward citations it
receives, but to a certain limit that varies with the industries. This
finding is consistent with the previous two and thus strongly confirms
that the more interdisciplinary a patent is (in terms of cross-citing
patents from different IPC subclasses), the more valuable it is (to a
certain limit). Note the highest number of distinct IPC subclasses cited
is 67 however only the results of the first 16 are shown in the table. The
full results are provided in Table 6 in Appendix A.

5. Conclusion

This study explores how conventional technologies have evolved
into interdisciplinary technologies in different industries. Patent cita-
tion analysis and negative binomial regression were conducted to
observe the dynamics and evolution of interdisciplinary technologies
and to investigate how interdisciplinary knowledge influences technol-
ogy developments. The study found that interdisciplinary knowledge
plays a significant role in the development of valuable technologies in
all investigated industries. It is observed that interdisciplinary knowl-
edge contributes positively to technology developments and that the
use of interdisciplinary knowledge in technology developments (or
inventions) has been increasing rapidly over the period.
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Table 2
Model I: Impacts of backward citing distinct IPC sections on forward citation count.

All industries Chemistry Electrical engineering Optics Mechanical engineering Other industries

1.SECCIT 0.639*** 0.353*** 0.519*** 0.531*** 0.417*** 0.424***
2.SECCIT 0.886*** 0.650*** 0.815*** 0.797*** 0.638*** 0.671***
3.SECCIT 0.859*** 0.873*** 0.707*** 1.021*** 0.830*** 0.780***
4.SECCIT 1.011*** 1.106*** 0.686*** 1.245*** 1.033*** 0.872***
5.SECCIT 1.154*** 1.356*** 0.870*** 1.415*** 1.119*** 0.976***
6.SECCIT 1.210*** 1.276*** 0.621*** 1.516*** 1.291*** 1.112***
7.SECCIT 1.124*** 1.372*** 1.376 1.333*** 1.448*** 0.789***
8.SECCIT 0.805*** 1.419*** 0.983 0.629 1.323*** 0.400**
CLMCNT 0.0215*** 0.0187*** 0.0212*** 0.0179*** 0.0172*** 0.0187***
Constant 1.189*** 1.191*** 1.719*** 1.529*** 1.167*** 1.215***
Alpha(ln) Cnst 0.223*** 0.343*** 0.141*** 0.195*** −0.0226*** -0.0244***
N 1,476,509 297,910 379,953 246,218 396,035 156,393

Note: ***, **, * indicate significance of the estimated coefficient at 0.1, 1, and 5% respectively.
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5.1. Contribution to theory

The empirical results of this paper bring new insights to the
evolutionary dynamics of interdisciplinary knowledge and how it can
contribute to technology developments. The contribution of this paper
to the innovation and economic theories is based on the following. First,
the empirical results provide support to the notion that knowledge
fusion through interdisciplinary patent citations contributes positively
to technology development. This implies that the more interdisciplinary
a technology or invention is, the more valuable or influential it will be.
Second, the paper provides a new methodological framework for
identifying interdisciplinary patents and analyzing their impacts on
patent value. This framework can allow researchers and analysts to
trace the trends and evolution of interdisciplinarity in innovation.

5.2. Management implications

Some of the management implications that can be drawn based on
the above stated findings include the following. First, the finding of
strong positive relationships between interdisciplinary variables and
the forward citation value clearly implies that interdisciplinarity plays a

vital role in the development of an important technology. This means
that managers and decision makers in firms should consider prioritizing
their R & D projects that guarantee the use of interdisciplinary knowl-
edge. Second, the higher number of claims is the indication of higher
patent value; therefore firm managers should always try to have as
many claims as they can per patent application. This should guarantee a
high number of future citations to their patent as demonstrated by the
findings of this study. Patents that are highly cited can be licensed out
and become revenue sources to firms in terms of license fees. Third,
firms should know that there is a limit or threshold to knowledge
integration or interdisciplinarity. According to the findings of this
study, there is an adequate level of interdisciplinarity. This means that,
depending on the type of industry or product, there are certain limits to
the number of classes or technological domains to acquire knowledge
from; otherwise it may lead to excessive fusion and lack of technolo-
gical or business focus.

5.3. Limitations

Despite its use in many research innovation and economic-related
studies, there is still criticism that patent value cannot be explicitly

Table 3
Model II: Impacts of backward citing distinct IPC classes on forward citation count.

All industries Chemistry Electrical engineering Optics Mechanical engineering Other industries

1.CLSCIT 0.617*** 0.311*** 0.508*** 0.537*** 0.380*** 0.413***
2.CLSCIT 0.779*** 0.552*** 0.676*** 0.687*** 0.555*** 0.591***
3.CLSCIT 0.863*** 0.718*** 0.751*** 0.818*** 0.702*** 0.696***
4.CLSCIT 0.935*** 0.838*** 0.852*** 0.938*** 0.818*** 0.739***
5.CLSCIT 1.014*** 0.967*** 0.901*** 1.085*** 0.914*** 0.859***
6.CLSCIT 1.107*** 1.099*** 1.000*** 1.185*** 1.061*** 0.995***
7.CLSCIT 1.199*** 1.229*** 1.048*** 1.306*** 1.197*** 1.078***
8.CLSCIT 1.261*** 1.378*** 1.134*** 1.328*** 1.252*** 1.183***
9.CLSCIT 1.326*** 1.355*** 1.187*** 1.543*** 1.366*** 1.178***
10.CLSCIT 1.396*** 1.399*** 1.122*** 1.646*** 1.400*** 1.388***
11.CLSCIT 1.333*** 1.483*** 0.931*** 1.434*** 1.440*** 1.179***
12.CLSCIT 1.480*** 1.593*** 1.148*** 1.540*** 1.530*** 1.594***
CLMCNT 0.0212*** 0.0182*** 0.0213*** 0.0176*** 0.0164*** 0.0182***
Constant 1.196*** 1.199*** 1.713*** 1.535*** 1.182*** 1.224***
Alpha(ln) Cnst 0.220*** 0.338*** 0.144*** 0.196*** −0.0328*** -0.0308***
N 1,476,509 297,910 379,953 246,218 396,035 156,393

Note: ***, **, * indicate significance of the estimated coefficient at 0.1, 1, and 5% respectively.

Table 4
Model III: Impacts of backward citing distinct IPC subclasses on forward citation count.

All industries Chemistry Electrical engineering Optics Mechanical engineering Other industries

1.SBCCIT 0.519*** 0.287*** 0.398*** 0.364*** 0.358*** 0.405***
2.SBCCIT 0.716*** 0.486*** 0.615*** 0.606*** 0.507*** 0.548***
3.SBCCIT 0.839*** 0.626*** 0.729*** 0.780*** 0.647*** 0.637***
4.SBCCIT 0.952*** 0.756*** 0.860*** 0.915*** 0.751*** 0.722***
5.SBCCIT 1.053*** 0.881*** 0.962*** 1.051*** 0.844*** 0.780***
6.SBCCIT 1.138*** 0.953*** 1.064*** 1.157*** 0.962*** 0.865***
7.SBCCIT 1.209*** 1.064*** 1.128*** 1.220*** 1.019*** 1.030***
8.SBCCIT 1.308*** 1.176*** 1.215*** 1.361*** 1.164*** 1.063***
9.SBCCIT 1.368*** 1.213*** 1.360*** 1.374*** 1.184*** 1.155***
10.SBCCIT 1.422*** 1.288*** 1.324*** 1.462*** 1.291*** 1.363***
11.SBCCIT 1.457*** 1.379*** 1.294*** 1.486*** 1.418*** 1.303***
12.SBCCIT 1.522*** 1.389*** 1.308*** 1.605*** 1.500*** 1.387***
13.SBCCIT 1.634*** 1.569*** 1.397*** 1.670*** 1.562*** 1.634***
14.SBCCIT 1.584*** 1.705*** 1.428*** 1.528*** 1.447*** 1.530***
15.SBCCIT 1.694*** 1.777*** 1.240*** 1.758*** 1.618*** 1.689***
16.SBCCIT 1.711*** 1.792*** 1.533*** 1.752*** 1.590*** 1.712***
CLMCNT 0.0197*** 0.0178*** 0.0198*** 0.0161*** 0.0159*** 0.0174***
Constant 1.233*** 1.209*** 1.759*** 1.587*** 1.192*** 1.239***
Alpha(ln) Cnst 0.199*** 0.334*** 0.120*** 0.160*** −0.0404*** -0.0407***
N 1,476,509 297,910 379,953 246,218 396,035 156,393

Note: ***, **, * indicate significance of the estimated coefficient at 0.1, 1, and 5% respectively.
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reflected by forward citation. The quality of how USPTO categorizes a
patent into multiple IPC sections, classes, and subclasses is unknown
and scarcely investigated. In addition, there is also a concern about how
sensitive forward citation is to time. It is highly possible that the
number of forward citations a patent gets (e.g., patenti) in a given year
(e.g., yeart) is likely to influence the number of forward citations it will
get in the subsequent year (i.e., yeart + 1) and later years. This occurs as
patents citing patenti in yeart may help promote patenti to subsequent
patents in yeart+1 and later years. This is known as the lag effect of a
citation. Finally, there are also concerns about the use of a 10-year
citation window. There is a high probability that citations outside the
10-year window, i.e., below the 10-year backward citation window or
above the 10-year forward citation window, are significantly large
enough for some patents. Ignoring them may lead to lower patent
citation values and therefore distorted results.

5.4. Future research

Potential future research paths include: 1) To conduct a similar
study that is based on CPC; 2) To investigate the dynamics of
interdisciplinary evolution by using other patent databases such as
EPO or JPO; 3) To investigate the interdisciplinary impact of a patent
by analyzing the IPC sections, classes, subclasses of its forward citation
patent; and 4) The lag effect of a forward citation and its impacts on
subsequent citations.
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Appendix A

Table 5
Full regression results of Model II.

All industries Chemistry Electrical engineering Optics Mechanical engineering Other industries

1.CLSCIT 0.617*** 0.311*** 0.508*** 0.537*** 0.380*** 0.413***
2.CLSCIT 0.779*** 0.552*** 0.676*** 0.687*** 0.555*** 0.591***
3.CLSCIT 0.863*** 0.718*** 0.751*** 0.818*** 0.702*** 0.696***
4.CLSCIT 0.935*** 0.838*** 0.852*** 0.938*** 0.818*** 0.739***
5.CLSCIT 1.014*** 0.967*** 0.901*** 1.085*** 0.914*** 0.859***
6.CLSCIT 1.107*** 1.099*** 1.000*** 1.185*** 1.061*** 0.995***
7.CLSCIT 1.199*** 1.229*** 1.048*** 1.306*** 1.197*** 1.078***
8.CLSCIT 1.261*** 1.378*** 1.134*** 1.328*** 1.252*** 1.183***
9.CLSCIT 1.326*** 1.355*** 1.187*** 1.543*** 1.366*** 1.178***
10.CLSCIT 1.396*** 1.399*** 1.122*** 1.646*** 1.400*** 1.388***
11.CLSCIT 1.333*** 1.483*** 0.931*** 1.434*** 1.440*** 1.179***
12.CLSCIT 1.480*** 1.593*** 1.148*** 1.540*** 1.530*** 1.594***
13.CLSCIT 1.510*** 1.633*** 0.705*** 1.781*** 1.590*** 1.617***
14.CLSCIT 1.489*** 1.365*** 1.023** 1.582*** 1.743*** 1.503***
15.CLSCIT 1.628*** 1.387*** 1.489*** 2.066*** 1.763*** 1.392***
16.CLSCIT 1.718*** 2.012*** 1.093 2.077*** 1.632*** 1.297***
17.CLSCIT 1.516*** 1.361*** 0.655 1.942*** 1.948*** 0.724**
18.CLSCIT 1.286*** 1.538*** 0.691 1.617*** 1.380*** 0.766*
19.CLSCIT 1.137*** 1.360*** – 1.513*** 1.267*** 0.731*
20.CLSCIT 0.832*** 1.205* 0.473 0.846 1.503*** −0.122
21.CLSCIT 1.749*** 2.921*** – 1.461* −0.288 0.000261
22.CLSCIT 0.417* 0.373 1.403* 0.714 0.677 −0.246
23.CLSCIT 0.0330 0.167 – 0.825 0.162 −0.0244
24.CLSCIT 1.367*** 1.527 – – 2.428*** 0.526
25.CLSCIT 1.197*** 2.286*** – 0.824 – 0.170
26.CLSCIT 1.262* 2.056 – – 2.350* −0.496
27.CLSCIT 1.911*** 0.236 – 0.883 2.660*** –
28.CLSCIT 1.693*** 2.001*** – 1.217 – –
29.CLSCIT −0.708 – – – −0.368 –
33.CLSCIT −0.750 −0.525 – – – –
35.CLSCIT 0.779 0.993 – – – –
36.CLSCIT 0.0803 – – – – 0.304
37.CLSCIT 0.329 0.717 – – – –
38.CLSCIT 1.137 – – – – 1.318
39.CLSCIT 0.231 – – – – 0.338
41.CLSCIT −0.613 – – – – −0.422
CLMCNT 0.0212*** 0.0182*** 0.0213*** 0.0176*** 0.0164*** 0.0182***
Constant 1.196*** 1.199*** 1.713*** 1.535*** 1.182*** 1.224***
Alpha(ln) Cnst 0.220*** 0.338*** 0.144*** 0.196*** −0.0328*** −0.0308***
N 1,476,509 297,910 379,953 246,218 396,035 156,393
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Table 6
Full regression results of Model III.

All industries Chemistry Electrical engineering Optics Mechanical engineering Other industries

1.SBCCIT 0.519*** 0.287*** 0.398*** 0.364*** 0.358*** 0.405***
2.SBCCIT 0.716*** 0.486*** 0.615*** 0.606*** 0.507*** 0.548***
3.SBCCIT 0.839*** 0.626*** 0.729*** 0.780*** 0.647*** 0.637***
4.SBCCIT 0.952*** 0.756*** 0.860*** 0.915*** 0.751*** 0.722***
5.SBCCIT 1.053*** 0.881*** 0.962*** 1.051*** 0.844*** 0.780***
6.SBCCIT 1.138*** 0.953*** 1.064*** 1.157*** 0.962*** 0.865***
7.SBCCIT 1.209*** 1.064*** 1.128*** 1.220*** 1.019*** 1.030***
8.SBCCIT 1.308*** 1.176*** 1.215*** 1.361*** 1.164*** 1.063***
9.SBCCIT 1.368*** 1.213*** 1.360*** 1.374*** 1.184*** 1.155***
10.SBCCIT 1.422*** 1.288*** 1.324*** 1.462*** 1.291*** 1.363***
11.SBCCIT 1.457*** 1.379*** 1.294*** 1.486*** 1.418*** 1.303***
12.SBCCIT 1.522*** 1.389*** 1.308*** 1.605*** 1.500*** 1.387***
13.SBCCIT 1.634*** 1.569*** 1.397*** 1.670*** 1.562*** 1.634***
14.SBCCIT 1.584*** 1.705*** 1.428*** 1.528*** 1.447*** 1.530***
15.SBCCIT 1.694*** 1.777*** 1.240*** 1.758*** 1.618*** 1.689***
16.SBCCIT 1.711*** 1.792*** 1.533*** 1.752*** 1.590*** 1.712***
17.SBCCIT 1.648*** 1.529*** 1.272*** 1.731*** 1.719*** 1.373***
18.SBCCIT 1.642*** 1.736*** 1.499*** 1.526*** 1.575*** 1.808***
19.SBCCIT 1.873*** 1.717*** 1.765*** 1.736*** 2.066*** 1.597***
20.SBCCIT 1.808*** 1.656*** 1.648*** 1.800*** 1.817*** 1.939***
21.SBCCIT 1.800*** 1.349*** 1.405*** 1.630*** 1.934*** 2.112***
22.SBCCIT 1.901*** 1.514*** 1.566*** 1.898*** 1.748*** 1.981***
23.SBCCIT 1.931*** 1.308*** 1.113** 2.175*** 2.144*** 2.058***
24.SBCCIT 1.846*** 2.056*** 1.358*** 1.768*** 2.012*** 1.880***
25.SBCCIT 1.825*** 1.409*** 1.037** 1.701*** 2.272*** 2.113***
26.SBCCIT 1.809*** 1.801*** 1.096*** 1.955*** 2.247*** 0.480
27.SBCCIT 1.469*** 1.265*** 1.311** 1.760*** 1.757*** 1.743**
28.SBCCIT 2.225*** 1.618*** 1.374* 2.159*** 1.972*** 3.437***
29.SBCCIT 1.953*** 1.940*** 2.282*** 1.992*** 1.946*** 0.420
30.SBCCIT 1.840*** 2.149*** 1.513*** 1.562*** 1.650*** 1.822**
31.SBCCIT 2.180*** 1.563** 2.196*** 2.420*** 2.109*** 0.307
32.SBCCIT 1.532*** 1.640 1.032 1.645*** 2.083*** 0.540
33.SBCCIT 2.466*** 3.725** – 2.671*** 1.588** 1.139*
34.SBCCIT 1.272*** 0.752 – 1.970* 1.329** −0.606
35.SBCCIT 1.427*** 0.666 – 1.996** 1.499*** −0.635
36.SBCCIT 1.950*** 3.189*** – – 1.815*** −0.117
37.SBCCIT 0.663** 0.952 – 1.217 1.020* −0.415
38.SBCCIT 1.355*** −1.444 – 1.557* 1.405* 0.815
39.SBCCIT 0.434 1.144 0–0.512 – −0.355 0.246
40.SBCCIT 0.784* −1.616 – 1.002 1.947*** −0.0149
41.SBCCIT 1.182** 1.881 – 2.037** 0.227 −0.583
42.SBCCIT 0.935** 1.713* 1.413* – −0.131 −0.572
43.SBCCIT 0.583 – – 1.089 – −0.00640
44.SBCCIT 1.964*** – – – 2.840*** −0.185
45.SBCCIT 2.060*** 2.078 – 0.866 3.081*** −1.484
CLMCNT 0.0197*** 0.0178*** 0.0198*** 0.0161*** 0.0159*** 0.0174***
Constant 1.233*** 1.209*** 1.759*** 1.587*** 1.192*** 1.239***
Alpha(ln) Cnst 0.199*** 0.334*** 0.120*** 0.160*** −0.0404*** −0.0407***
N 1,476,509 297,910 379,953 246,218 396,035 156,393
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