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Abstract

We study the structure of the interregional inventor networks in Sweden by examining the residence of inventors and coinventors
involved in Swedish patent applications to the European Patent Office. Several factors are found to influence the spatial affinity of
regions. We find that spatial affinity extends beyond the region if it has less own R&D-related resources (business R&D, university
R&D and patenting); if it is close to the other region and if it is relatively small. The resources of that other region plays a positive
role if, in analogue fashion, that region has more R&D-related resources.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A fundamental observation of innovative activity is
that it is remarkably concentrated in space (Audretsch,
1998; Kelly and Hageman, 1999; Acs et al., 2002). This
suggests that external economies associated with knowl-
edge generation, appropriation, diffusion and use are
important reasons for the localization of these types of
activities. Many empirical studies are concerned with the
task of trying to quantify knowledge spillovers, i.e. invol-
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untary flows of knowledge between economic agents.
For example, geographically concentrated patent cita-
tions have been interpreted as signs of “localized knowl-
edge spillovers”.

In this study we use patent data in a different man-
ner. We concentrate on coauthorship of patents, which
we believe can be interpreted as indicators of knowl-
edge exchange, i.e. intended knowledge flows, between
actors within an inventor network. Two principal obser-
vations motivate our shift in focus. First, recent studies
have called into question the use of citations as signs of
knowledge spillovers, an approach initiated by Jaffe et
al. (1993). Their main finding, based upon studies of U.S.
patent citations, was that there were strong localization
effects of knowledge spillovers. In recent contributions it
has been questioned whether their results pertain to a too
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high aggregation level (Thompson and Fox-Kean, 2003),
or whether not social proximity of inventors gained from
earlier patent cooperation, explains most of spillovers as
found by Breschi and Lissoni (2003) and Singh (2004).
This is in line with other parts of the literature stressing
the importance of labor mobility for knowledge flows
(Zucker et al., 1998; Almeida and Kogut, 1999; Møen,
2000). Secondly, knowledge transfers should be qual-
itatively and quantitatively more substantial than cita-
tions as indicators of the overall flows of knowledge
within an innovation system. After all, even if cita-
tions do reflect knowledge spillovers, deliberate coop-
eration must be of much larger magnitude than casual
and random “spillovers”. Coauthorship structures there-
fore seem more adequate for assessing the relative merits
to the extent that knowledge travels across space. This
said, the aim of this paper is to analyze the factors deter-
mining the existence, spatial structure and strength of
interregional inventor networks in Sweden based upon
patent data.

Each patent application leaves a paper trail in the form
of a patent document. Inventors contributing to a patent
are listed, along with their addresses, in the databases of
the European Patent Office (EPO). Patent applications
containing at least one Swedish inventor have in this
paper been mapped, along with the location of coinven-
tors using the NUTEK (1998) aggregation of munici-
palities into 81 local labor market regions.1 Patents are
counted as fractions so that with four inventors, a quarter
is allotted each inventor’s residential region. The spa-
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tend to be more frequent from regions with extensive
patenting.2

With this information at hand, we ask: What deter-
mines the spatial structure of interregional inventor net-
works? That is, how do spatial frictions and different
regional characteristics affect affinity? These questions
are tackled in a regression framework in an aggregate
analysis for all patents and separately for 30 different
patent technology groups. There are several reasons why
a technology division makes sense, the propensity to
patent differs (Scherer, 1983), and the sensitivity to e.g.
distance could differ. According to the authors’ knowl-
edge a systematic technology division has not been con-
ducted before in a study of interregional coinventorships.

In principle most researchers are connected directly
or indirectly to other researchers. Thus network theory
is called upon to provide a framework within which
interregional inventor networks can be understood and
analyzed. Section 2 outlines such a framework. Using
this theory, a number of region-specific assets are iden-
tified that should be included in analyses of inter-
regional inventor networks, as outlined above. These
factors include: headquarters, infrastructure and access
to knowledge workers. Headquarters are often located
close to R&D activities (Stutz and de Souza, 1998). This
function is often viewed as central in corporations, due to
the need for communication across organizational units
(Malecki, 1997). Research is also an area that may need
special monitoring. For instance, Schumpeter (1934)
emphasizes the need for businessmen to be close to the
ial structure of the interregional inventor networks is
hen assessed as follows. We count the number of links,
efined as the number of times two regions are together
n patent applications. This establishes the extent of
wo-directional relationship between the regions. Then
e count the number of times a region is involved in

inks. Supposing then that each region’s links with other
egions are randomly and uniformly distributed, it is then
ossible to calculate the extent to which a region has links
o other regions in excess of randomly distributed links.

e call this number affinity, which is calculated from
he perspective of both regions, and thus one measure is
alculated for each region to each other region. In other
ords, affinity is the extent to which one region is linked

o another in excess of what pure randomness would
redict. In this way we control for the fact that links

1 The terms “coinventorship” and “coauthorship” are used inter-
hangeably to reflect the cooperation between inventors as documented
y patent data. In addition, “patents” and “patent applications” as used,
oth refer to patent applications.
technology developers because they often lack the vision
to see what is economically marketable, which may obvi-
ously create a tension between the two groups. Physical
infrastructure, or lack thereof, influences the time and
cost involved in establishing and maintaining inventor
networks. Thus, time distance is obviously an impor-
tant factor in an evaluation of the spatial structure and
strength of interregional inventor networks. In this con-
text it is important not only to consider travel time by
road, but also flight time between regions with access to
an airport. Third, the importance of pools of knowledge
workers in regions may influence the spatial structure of
interregional inventor networks. Only scattered evidence
exists on the structures of patent coauthorship. Section 3
reviews the literature to provide material against which
we can make some comparisons. Section 4 extensively
describes the interregional inventor networks in Sweden,
and our data material. Section 5 states our hypotheses
about the interregional inventor networks and examines

2 We explain this measure formally in Section 5.
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them using regression analysis. The material is analyzed
both in the aggregate and over technologies. Section 6
concludes.

2. Invention network theory

2.1. Introduction

The concepts of network and networking have gained
considerable popularity in innovation and invention stud-
ies during the two last decades.3 The present section
outlines some fundamental elements of an emerging the-
ory of inventor networks.4 A basic assumption is that all
activities in a market economy are organized by means of
different links and couplings between economic actors,
i.e. as networks. Market competition can be described as
a process in which obsolete, non-competitive links, and
economic actors are replaced by new and superior links,
and economic actors, respectively.

Networks and network relations have four important
characteristics (cf. Cappelin, 2003): (i) The relationship
(=link) between two nodes is characterized by a precise
direction, which identifies either a mutual relationship
or a relationship of control or of dependence of a node
with respect to another node.5 (ii) Each node has a spe-
cific function, which depends not only on its relationship
with other nodes, but also on its position in the overall
network. (iii) The relations existing in one network are
normally linked to relations in other networks, so that
many networks are interconnected with each other. (iv)

of production and other activities, such as invention and
innovation. Certain internal networks consist of links that
are arranged for the flow of resources. The links of other
internal networks function as channels for exchange of
information and knowledge. Moreover, these different
internal networks are connected in such a way that firms
and organizations are coherent.

2.3. The need for complementary assets in invention

Creating new inventions is a complex task in most
technology areas, which in many cases demands the
interaction between specialists with different compe-
tences. A link to a specialist will normally not be broken
unless a specialist with superior competence is found.
In such cases, all network members have to overcome
the sunk cost advantages of established links, since the
establishment of a new link implies investment costs for
all remaining network members. Hence, the dynamics
of inventor networks are strongly related to competence
building and knowledge creation processes in the econ-
omy.

The reason why inventor networks are necessary and
important is that modern knowledge economies are typi-
cally characterized by incomplete and scattered informa-
tion. No single individual or node can solve all problems.
Thus, problem solving, in this case the generation of
inventions, is the result of improvements made by vari-
ous configurations of individual actors, i.e. inventor net-
works, through an in itinere co-ordination or according to
The relations existing in a specific network are normally
affected by the relations existing in the same network
in previous periods, due to among other things the exis-
tence of cumulative learning (Nelson and Winter, 1982)
and of general path dependence.

2.2. Initial definitions

The starting point for our analysis is the micro-level of
individual decision makers. As decision makers we iden-
tify three types of decision units: individual inventors
working independently or in inventor networks, firms
and economic agents operating within firms or other
organizations engaged in innovative activities. A basic
presupposition is that firms and organizations have inter-
nal networks for communication and for co-ordination

3 A network consists of at least two nodes and at least one link.
4 The discussion in this section is inspired by in particular Johansson

(1995).
5 In the second case we say that the network has a hierarchical char-

acter.
heuristic and recursive processes and mutual interactive
learning. The learning process encompasses groups of
individuals, both within the individual firms and overall
in the economy, and it requires the development of links
and co-operation between different actors, also outside
existing patterns.

Invention processes are based on the integration of
various pieces of knowledge possessed by various eco-
nomic actors within an inventor network with differ-
ent and complementary knowledge and competences.
Learning is the process whereby previously existing
knowledge is selected and combined based upon a
new perspective. The creation of inventions requires
an intense process of interaction (Nonaka and Konno,
1998), which is characterized by transfers of both tacit
and explicit knowledge and which requires face-to-face
contacts, physical proximity as well as well developed
mediated contacts.

In particular, invention calls for the enhancement
of complementarities and diversity. The differences
between the various actors (nodes) and their knowledge
integration are part of an evolutionary process, as the
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different competencies are not static, but rather in contin-
uous evolution. External exchanges feed this evolution,
but each actor (node) within an inventor network keeps
its own individuality. In fact, it can contribute to the
common project, just because it masters a specific know-
how, while at the same time it is subject to evolution,
by embodying external knowledge, reacting to external
stimulus and facing new problems.

2.4. The cost and optimality decision

To understand and to explain economic couplings
between nodes, where inventors in inventor networks
represent a special type of coupling, it is natural to
make references to transaction cost theory and the theory
of economic contracts. The interaction between eco-
nomic agents, such as inventors, is often based upon
some sort of agreement, which may be interpreted as
an economic contract. Long-term (explicit or implicit)
contracts between economic agents are usually moti-
vated by the fact that one or several of them must
make investments that are transaction-specific. Every
exchange is in principle based upon an explicit or an
implicit contract. In particular, in exchanges aiming at
creating inventions, the contracts may be very important
since the contributions of the different agents involved
may be difficult to define and since the outcome is gen-
uinely uncertain. This implies that it is usually difficult
and uneconomic to formulate complete contracts under
these circumstances. Instead the incomplete contracts
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Our major concern here is interactions between inven-
tors, i.e. inventor networks for the purpose of generating
inventions. These networks are generally characterized
by durability and sunk cost features. Sunk costs are
accepted because investments may reduce long-term
uncertainties and transaction costs.

The above discussion focuses on co-operation links,
which are durable and have capital properties. Each such
link is an inventor link and a system of connected inven-
tor links form an inventor network. According to the
theoretical arguments put forward above, we shall expect
that co-operation on inventor links between economic
agents, i.e. inventors, or between different parts of the
same firm are frequent or generic phenomena. An impor-
tant type of link is the one where ownership of the inven-
tion belongs to an individual party. Appropriation of the
results is then relatively straightforward. On the other
hand, an inventor link is shared as a joint property when
two or more parties are involved. This form of relational
contracting may be supported by extra-market relations,
which bind the parties together. A motive for this solution
is a desire to stimulate continuing, long-term interaction.
Thus, inventor links and inventor networks can be made
self-reinforcing by the mutual interests of the coupled
parties.

The capital properties of an inventor link or an inven-
tor network obtain as a consequence of link- or network-
specific investments. When two or more parties decide
to establish a joint inventor network it is possible to think
of this as the outcome of an evolutionary, gradual search
nderlying inventor links/inventor networks have to be
upported by mutual economic commitments, ownership
elations, other forms of social ties, mutual trust, and/or
onfidence relations. Thus, formal and informal insti-
utions play a fundamental role for the functioning of
nventor networks, since they govern and co-ordinate the
elations between nodes, and thus reduce the transaction
osts between them.

The links are analyzed as capital objects, which are
asically sunk costs. Therefore, networks bring rigidity
nd structure into the interaction patterns in a market
conomy. The resources necessary to establish con-
ractual agreements constitute transaction costs (Coase,
992; Williamson, 2000), which include (i) exclusion
osts, (ii) various forms of interaction costs such as
egotiation, contract formation, information exchange,
ontract monitoring, and contract enforcement costs,
nd (iii) search and disequilibrium costs. In many
ituations it is possible to reduce transactions costs
y means of standardization of interactions. However,
his is more difficult within invention networks since
nventions are per definition un-standardized.
and trial process. We may also regard the outcome as
a Nash equilibrium of a non-cooperative game, where
each party would lose by leaving the network.

Recognizing that inventions are the result of novelty
by combination (Weitzmann, 1998; Olsson, 2000) we
may draw some general conclusions regarding inven-
tor networks. The principle of novelty by combination
implies that expanding an inventor network by bringing
in new competencies increases the chances of generating
inventions. Thus, large inventor networks should ceteris
paribus be more productive in terms of inventions than
small inventor networks. Metcalfe’s law states that there
are increasing returns in utility to the number of users in
network technologies such as telephones or the Internet.
However, this need not necessarily be the case in the cur-
rent situation. The potential inventive outcome and thus
economic value of an inventor network and its inven-
tive capacity increases the more individuals, institutions
and organizations participate in an inventor network, if
information flows freely within the network. In reality,
information does not flow perfectly, certain actors within
the network exchange information and maintain con-
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tacts more often. Hence, expansion of an inventor net-
work implies that the co-ordination costs may increase
rapidly.6 This implies that there is an optimal, but pos-
sibly unknown, size of inventor networks. Since inven-
tions are generated according to the principle ‘novelty
by combination’ the general conditions for generating
inventions differ between different technologies. Thus,
we shall expect the optimal size of inventor networks
to differ between different technologies, depending on
how the cost–benefit calculation plays out. To generate
inventions in certain technologies there is a need to com-
bine pieces of scientific and/or technological knowledge
from various fields, while in other technologies inven-
tions can be developed from a much narrower knowledge
base. Each ‘invention project’ is therefore subject to the
attempt to find an optimal organization size subject to
technological constraints. The appropriability problem
may also limit the size of inventor networks. The larger
the number of nodes, the larger the risk that one node
will try to appropriate the knowledge created for itself.

2.5. The evolution of inventor networks

Once an inventor network has been established, new
ex post reasons arise to keep it intact because of sunk cost
conditions. Often the members of an inventor network
develop joint knowledge and a specific co-operation lan-
guage through time. This is an evolutionary effect that
can further strengthen the ties between the members of

pared to a situation without them. It creates structure in
“the invention system”. Moreover, it strongly affects the
dynamics of invention systems due to the existence of
strong frictional elements. In this context we may just
add that scientific revolutions and changes in institutions
and communications and transportation infrastructures
have the capacity to bring about removal of old inventor
networks and replace them with new inventor networks.

Given that inventions are the result of novelty by com-
bination, inventions can be seen as the result of adaptive
search and learning processes, which lead to new combi-
nations of the existing knowledge in an inventor network.
An innovation occurs when the joint knowledge impulses
or signals between the different nodes are not only com-
patible with the inventor network and its mission and
goals, but also overcome a certain threshold of intensity.
This allows the inventor network to perceive the stim-
ulus. The network may then decide whether to conflict
with it or rather to adapt to it. In fact, whether or not the
stimulus is compatible with the existing cognitive sys-
tem, interactive processing may lead to the identification
of an incremental solution to an existing problem, and
this stimulates the act of discovery and invention.

On the other hand, a cognitive blockade or lock-in
effect may be determined by a too low accessibility
or a too low receptivity within the inventor network
(Steinmuller, 2000). In particular, accessibility between
the nodes in an inventor network is affected by exist-
ing infrastructural and institutional conditions. On the
other hand, receptivity is related mainly to the scope of
the inventor network and this effect is in particular impor-

tant when much of the knowledge that is shared has a
tacit character. However, this does not imply that mem-
bers (nodes) never leave inventor networks, or that new
members never enter inventor networks, i.e. that inventor
networks get new nodes. Furthermore, the relationships
between the nodes in an inventor network change over
time. This process of adaptation and co-evolution of the
relationships between nodes in an inventor network may
be defined as a process of learning and of knowledge
accumulation. The initial cohesive force of an inventor
network is often the result of an investment calculation.
All parties involved in setting up an inventor network
need to a varying degree to invest in special equipment,
special training, procedures and arrangements that are
directly motivated to make the network function prop-
erly.

Our discussion shows that the existence of inventor
networks brings rigidities into invention processes, com-

6 See Bolton (2003) for a discussion of benefits and costs of main-
taining innovation networks.
the diversified knowledge available within an inventor
network, since such knowledge helps to identify useful
forms of complementarities in the relations between the
different nodes in the inventor network. Time is clearly
also a crucial factor, as it facilitates perceiving a contin-
uous stimulus and absorbing and adapting gradually to
it.

2.6. The spatial dimension of networks

Up till now we have treated the inventor networks
as non-spatial entities. However, inventor networks are
spatial configurations where each node has its specific
geographic location. Thus, the interaction between the
different nodes in an inventor network depends upon the
available material infrastructures and the functioning of
existing transport and information transfer systems (cf.
Button et al., 1998).

The general conditions for bringing competencies
into inventor networks differ between functional regions.
Generally speaking, it should in principle be much eas-
ier to find the competencies necessary for an inventor
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network in large dense regions compared to smaller
regions.7 This implies that the probability that the inven-
tor networks are contained within a region is much
greater in larger, more population dense, regions than in
smaller regions. The probability that inventor networks
should contain competencies from other regions is thus
expected to be higher in smaller regions than in larger
regions. Moreover, it is natural to expect that comple-
mentary competencies in all inventor networks mainly
should be found in large regions, and in particular, large
regions with research universities. Another reason why
inventors’ competencies (nodes) in larger regions are
preferred is that there is a higher probability that these
nodes in turn have better connectivity to other inven-
tor networks and thus are better informed than nodes in
smaller regions because of the existence of more inventor
networks in large regions.

2.7. Conclusions from network theory

Summing up the discussion above we may conclude
that an inventor network may be characterized by five
main parameters (cf. Cappelin, 2003): (i) the knowledge
accumulated and the competence of each node, (ii) the
distance, i.e. the friction, between the different nodes
of the network, (iii) the connectivity to other interact-
ing networks, (iv) the speed of change of the links and
the destruction and creation of links, and (v) the overall
trajectory of the overall structure of the network.
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tionships, where supplier refers to the supplier of a
potentially new technology, to customers of the applied
product, and to non-commercial links to other establish-
ments or head office exist. Non-commercial links refer
to the availability of knowledge that can be extracted
from participation at fairs, informal meetings, from trade
journals, etc.8 Head office monitoring is important as it
concerns the direct influence on the process of develop-
ing inventions from a managerial perspective. In other
words, new inventions may not necessarily lead to com-
mercially viable products, a point already stressed by
Schumpeter (1934).

For a given size of a functional region we expect
that the probability that an invention network should
be contained within the region increases with the vol-
ume of university R&D, the volume of private R&D and
the number of highly educated employees in the region.
Furthermore, the probability that an invention network
in a functional region should be contained within the
region decreases with the interregional accessibility of
the region.

3. Previous findings

Our review of the empirical literature mainly focuses
on examples with special emphasis on either the Swedish
inventor networks and/or those using patent data.9 A
large literature is presently developing on social network
analysis (Wasserman and Faust, 1994; Scott, 2000). A
In particular, invention may be related to:

The intensity of the interaction between the various
nodes of an inventor network through the existing
links; this is related to the interactive characteristics
of the invention process, as it is based on interactive
learning processes.
The speed of change of the invention network due to
changes in the accessibility of existing links, the dis-
appearance of links and nodes and the establishment
of new links and nodes; this is related to the combina-
tory characteristics of the invention process, which is
made by an original combination of pieces of knowl-
edge, which were previously disjoint.

multitude of actors are involved in networks lead-
ng to invention, as stressed by von Hippel (1988),
orter (1990) and Karlsson (1997). New inventions often
volve when networks based on customer–supplier rela-

7 With a region we here understand a functional region, which is
pproximately equal to a commuting region.
large literature is presently developing on social net-
work analysis. Network analysis has emerged as an
important tool to analyze the way inventors are inter-
connected. Two contributions identify individual inven-
tors and examine the overlap of patent coauthorship to
construct “social proximity” measures. Social proxim-
ity reflects earlier collaboration between inventors. For
example, if two inventors A and B have cooperated in
an earlier patent, it is more likely that a third inventor

8 Indeed, Freel (2003) provides compelling evidence on the non-
homogeneity of networks for innovations. Cassiman and Veugelers
(2002) investigate from Community Innovation Survey (CIS) data, the
likelihood of entering R&D cooperation when firm-specific appropri-
ability conditions and the public good nature of new knowledge varies.
Strategic protection was more important when entering cooperation
vertically with customers/suppliers than with research institutes.

9 Studies in bibliometrics tend to use journal coauthorship to study
networks. Some examples include Newman (2001a,b) who study sci-
entific collaboration in physics, biomedical research and computer
science, Persson et al. (1997) and Melin and Persson (1998) look at col-
laborative patterns of researchers at Nordic and European universities
respectively and Okubo and Sjoberg (2000) examine internationaliza-
tion tendencies of coauthorship in researching Swedish firms.
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C cooperates with B, if C and A cooperated before.10

Hence, patent citations may reflect social proximity
rather than “genuine” knowledge spillovers. Breschi and
Lissoni (2003) examine Italian social proximity through
the use of EPO data, and Singh (2004) uses Ameri-
can data, mainly on biotechnology patents from the US
patent office (USPTO). Breschi and Lissoni (2003) find
that social proximity explains almost the whole local-
ization effect of 366 citations. Singh (2004) finds that
the degree of social proximity is important for the extent
to which it replaces the need for close geographical dis-
tance. Thus, for inventors with close social proximity
to other inventors (e.g. through earlier research collab-
oration), distance becomes less important. However, for
teams with little social connection, geographical prox-
imity remains important.

Other researchers have used patent data to investigate
cooperation in invention. Mowery et al. (1996) examine
the change in technological capabilities resulting from
international joint-ventures by looking at which tech-
nology classes are cited in their patent portfolios, before
and after cooperation. They find evidence that cooper-
ation brings these citation profiles closer in line with
each other, which was especially clear from equity joint
ventures. Gauvin (1995) looks at the extent of inter-
national cooperation based on information on several
assignees from Canadian patents (this is the only patent
office providing this information). Comparing Japanese,
American and German main assignees, an interesting

recent decades (cf. Hagedoorn and Schakenraad, 1990),
only about 8% of all patents had multiple assignees, i.e.
joint ownership of the intellectual property embedded
in the patent. In a subsample consisting of multination-
als (“Fortune 500 firms”), firms were to a much higher
degree engaged in delocalized patents. Their average
number of inventors in a patent was 2.5.

The paper by Gay and Picard (2001) analyzes nation-
alities of coinventors of 602 French patents applied at the
USPTO, and the implications of citation distance, con-
ditioned on the degree by which patents are localized
completely to France. The paper finds that the residence
of coinventors strongly influences the international scope
for citations, even when self-citations are excluded.12

To sum up, these contributions reflect disparate ways
of utilizing patent data to study networks. European stud-
ies generally conclude that there are few inventors per
patent. A promising line of research connects patent
citation data with social proximity analysis. This type
of studies may generate results based on micro-data on
a level of detail not seen before. In this way, analyses
of inventor networks may reveal the span of networks,
which actors are involved and whether the outcome is
desirable from a policy-perspective point of view.

4. Characterization of the Swedish
coinventorship structure

The interregional inventor networks that we analyze

finding is that Japanese firms to a larger extent engage in
cooperation, and when they do they are to a higher degree
involved in cross-sectorial cooperation compared to their
American or German counterparts.

Mariani (2000) examines coauthorship relations of
201,531 patents in the European chemical industry,
based on EPO data. The main purpose is to compare
organizational characteristics, and the degree of localiza-
tion, examined across countries and regions for a sample
of 560 of those patents.11 Localization refers here to
whether all inventors reside in the same region on the
listed levels. Delocalization refers to when at least one
of a patent’s inventors reside elsewhere. She finds that
localization is 75.4% on NUTS1 (i.e. national chemical
patents), 70.5% on the NUTS2 level and 68.4% on the
NUTS3-level. Furthermore, despite the fact that inter-
national research cooperation has grown massively in

10 This example is taken from Granovetter (1973).
11 The European Union is by Eurostat divided into NUTS1-NUTS3.

In Sweden NUTS1 is the national level, there are 7 NUTS2 regions
and 21 NUTS3 regions (counties).
in this study by means of patent coauthorships could
be one of several kinds of networks pertaining to the
organization of knowledge capabilities. The most likely
form is of course within-firm organization of technolog-
ical know-how. In these cases, inventors work solely for
one commissioner.13 A patent could be the result of a
research joint-venture, whereby organizations use their
complementary capabilities.

It is clear from the listed contributions, that coauthor-
ship of patents is a strict definition of inventor networks.
Our effort concerns an investigation of (i) the extent to
which patent coauthorships extends over different func-
tional regions, i.e. the existence of interregional inventor
networks, and (ii) the factors determining the spatial
structure and strength of these interregional inventor net-
works. Complementary to this, we examine some of the
reasons for which patent coauthorship is confined within
the own region and examine whether motives for this

12 Self-citations are citations to the own organization or an organiza-
tion affiliated to it.
13 Of course, some inventors work for none but themselves.
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are similar to those governing interregional inventor net-
works. This is done for all patents as well as patents
divided according to technology. Hence it matters little
that we do not make a separation of teams and/or orga-
nizations.

We now turn to a description of our data. The princi-
pal source of information consists of 28,498 “Swedish”
patent applications to the EPO. A patent was consid-
ered Swedish if at least one of the inventors has an
address in Sweden. From this total we were able to assign
99.6% a technological class, and out of 49,852 Swedish
inventors we were able to assign 98.8% to a region. We
used the “fractional method” for assigning applications
to regions, meaning that if for example four inventors
were involved in the application, a quarter was allotted
each inventor’s region.14 When counting the number of
inventors we include non-Swedish, international inven-
tors. Fig. 1 shows the geographical distribution of patent
applications per capita (population as of 1998) counted
in fractions across 81 local labor market regions defined
by NUTEK (1998).

This figure shows that while patenting seems to
be generic among many regions, it is more frequent
among densely populated regions, in particular Stock-
holm, Gothenburg, and the Malmö regions, even after
adjusting for population size. In the latter region the
university town Lund plays an important role for patent-
ing. Other ‘hot spots’ of patenting include Västerås,
west of Stockholm, Uppsala hosting another important
university north of Stockholm, and Ludvika. Ludvika
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Fig. 1. Number of EPO patent applications (fractions) per capita for
Swedish local labor market regions.

and international inventors,15 the share of international
inventors in relation to the total number of inventors,
the extent to which Swedish inventors could be classi-
fied regionally, and the dispersion across regions mea-
sured by the Hirschmann–Herfindahl index (HHI), for
each technology. The table shows that much application
activity (>1000 applications) were in Electrical engineer-
ing, Telecommunication, Control technology, Medical
technology, Chemical engineering, Materials process-
ing, Machine tools, Mechanical elements, Handling,
Transport, Consumer goods, and Civil engineering. The
share of international inventors was 10.45% on average,
being less than 2% in Space technology but being close
to one third in Polymers and Biotechnology! The number
of inventors (incl. international) averaged 1.75, ranging
from 1.36 in Consumer goods and Civil engineering to an
average of 3 inventors per application in Organic chem-
istry.

Given that the average number of inventors is less
than 2, it is not surprising that the most common team

15 Danell and Persson (2003) report that Swedish applications with
non-Swedish coauthors to the USPTO have tripled since the 1980s.
Yet they constitute only 13% of all inventors in those patents.
nd Vasteras host several plants of the Swedish sec-
ion of ABB. These findings: (a) mimic the “stylized”
act that inventive activity tends to concentrate and (b)
uggests that individual companies and the technologies
hey develop have an impact on the patenting structure.

As stated in Section 1, we fully recognize that
he extent of patenting differs both because of dif-
erent technological opportunities (Dosi, 1988), and
ecause of different propensities to patent (Scherer,
983). Tables 1 and 2 give ample information about
ur patent database divided in 30 technological patent
lasses, and in the aggregate using the definitions of
inze et al. (1997).
Apart from showing the number of applications and

nventors, Tables 1 and 2 show the number of Swedish

14 In the original setup for this paper we ‘assigned’ a patent to the
egion of the first inventor. The literature rests ambiguous on whether
o count fractions or use the first inventor-method for assigning patents.
he motive for changing to fractions was rather, as was pointed out
y an Anonymous referee, that in the first setup we only counted links
rom the first inventor which loses the “between-inventor-linkages”.



420
O

.E
jerm

o,C
.K

arlsson
/R

esearch
Policy

35
(2006)

412–430
Table 1
Descriptive statistics about inventors, technologies 1–15

A. Technology B. Applications C. Inventors D. Swedish
inventors

E. International
inventors

F. International
inventors, share
(E/C) (%)

G. Swedish inventors
per application (S.D.)

H. Regionally
classified

I. Regionally
classified
(H/D) (%)

J. Regional
dispersion
(HHI)

1. Electrical engineering 1447 3091 2893 198 6.41 2.00 (1.60) 2866 99.07 0.1549
2. Audiovisual techn. 305 486 455 31 6.38 1.49 (0.94) 451 99.12 0.2411
3. Telecommunication 2987 6724 5900 824 12.25 1.98 (1.63) 5832 98.85 0.4238
4. Information techn. 817 1708 1533 175 10.25 1.88 (1.21) 1525 99.48 0.3027
5. Semiconductors 212 531 474 57 10.73 2.24 (1.32) 471 99.37 0.3858
6. Optics 390 784 702 82 10.46 1.80 (1.39) 696 99.15 0.3852
7. Control techn. 1851 3628 3268 360 9.92 1.77 (1.09) 3221 98.56 0.1700
8. Medical techn. 2368 4604 4282 322 6.99 1.81 (1.10) 4237 98.95 0.2429
9. Organic chem.. 841 3087 2521 566 18.33 3.00 (1.95) 2489 98.73 0.2633
10. Polymers 255 693 473 220 31.75 1.85 (1.10) 467 98.73 0.1968
11. Pharmaceutics 935 2504 2009 495 19.77 2.15 (1.28) 1982 98.66 0.2361
12. Biotechn. 504 1591 1089 502 31.55 2.16 (1.40) 1076 98.81 0.2473
13. Materials 765 1643 1496 147 8.95 1.96 (1.05) 1460 97.59 0.1423
14. Food Chem. 219 526 415 111 21.10 1.89 (1.41) 406 97.83 0.2029
15. Basic materials chem. 275 604 522 82 13.58 1.90 (1.18) 519 99.43 0.1678

Table 2
Descriptive statistics about inventors, technologies 16–30

A. Technology B. Applications C. Inventors D. Swedish
inventors

E. International
inventors

F. International
inventors, share
(E/C) (%)

G. Swedish inventors
per application (S.D.)

H. Regionally
classified

I. Regionally
classified
(H/D) (%)

J. Regional
dispersion
(HHI)

16. Chemical engineering 1138 2080 1907 173 8.32 1.68 (1.21) 1885 98.85 0.1589
17. Surface techn. 409 928 806 122 13.15 1.97 (1.12) 791 98.14 0.1501
18. Materials processing 1265 2596 2234 362 13.94 1.77 (1.12) 2216 99.19 0.0972
19. Thermal processes 705 1097 1040 57 5.20 1.48 (0.83) 1022 98.27 0.1338
20. Environmental techn. 286 522 480 42 8.05 1.68 (1.01) 476 99.17 0.1786
21. Machine tools 1195 1877 1779 98 5.22 1.49 (0.80) 1759 98.88 0.0949
22. Engines 685 1120 1067 53 4.73 1.56 (0.98) 1062 99.53 0.2397
23. Mechanical elements 1289 1923 1803 120 6.24 1.40 (0.75) 1791 99.33 0.1157
24. Handling 1864 2850 2634 216 7.58 1.41 (0.74) 2613 99.20 0.1111
25. Food processing 528 786 757 29 3.69 1.43 (0.90) 749 98.94 0.1591
26. Transport 1401 2225 2072 153 6.88 1.48 (0.88) 2028 97.88 0.1217
27. Nuclear engineering 207 401 384 17 4.24 1.86 (1.04) 379 98.70 0.3220
28. Space techn. 380 732 718 14 1.91 1.89 (1.18) 696 96.94 0.1637
29. Consumer goods 1351 1895 1838 57 3.01 1.36 (0.71) 1821 99.08 0.1760
30. Civil engineering 1492 2143 2036 107 4.99 1.36 (0.72) 2013 98.87 0.1140
Not classified 132 289 265 24 8.30 2.01 (1.37) 264 99.62 0.3099
Aggregate 28,366 55,668 49,852 5816 10.45 1.75 (1.21) 49,263 98.82 0.1600
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“size” behind an application is one inventor, which is
the case in 14,551 applications, teams of two occur in
7336 applications, 3411 applications have three inven-
tors, 1685 applications have four, 724 have five and so
on.16

The results of Mariani (2000) provide an opportunity
for comparison of the size of inventor groups. She found
that of 201,531 applied and approved chemical patents in
Europe, only 25.4% were developed by single inventors.
The average number of inventors was 2.5 for a sample of
560 patents. Furthermore, as those patents become more
nationally delocalized (i.e. spread over more than one
NUTS3 region), more inventors are involved. The num-
ber of inventors in “Swedish” chemical patents seems to
be somewhat lower. In their study on the social network
of Italian inventors, Breschi and Lissoni (2003) report
for a sample an average of about 1.9 Italian inventors
per patent. Again, the average number of inventors in
Swedish patents (1.75) is somewhat fewer.

Further interesting information from Tables 1 and 2
regards the regional dispersion of different technologies.
This is calculated using the Hirschmann–Herfindahl
index, which is explained by the formula:

HHIk =
∑

r

s2
rk, (1)

where srk represents the share of applications in technol-
ogy k, and region r is one of our 81 local labor market
regions. The index ranges between 0 and 1, where 1
is obtained when all applications in a certain technol-
o
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Fig. 2. Local affinity in Swedish regions in relation regional population
size.

given that a link has region i as its starting point and
there are 82 regions, the probability that the link ends in
region j is 1/82. Suppose then that there are ni links start-
ing from region i. The observed number of links from i to
j can be written lij. Hence, the non-random part from i to
j, conditioned upon that the starting region is i is written:

Aij = lij − ni

82
, (2)

which is how we define affinity. Local affinity is a con-
cept that here refers to “within-region” affinity, which is
likely to be higher than interregional affinity, since peo-
ple are more likely to cooperate within the region of their
residence. Fig. 2 shows local affinity on the y-axis and
the size of regions (inhabitants) in 1998 on the x-axis.
Each dot represents the specific inhabitant–local affin-
ity combination for each of the 81 local labor market
regions. The relation between regional size and localiza-
tion seems to be close to linear, especially with respect
the larger regions. A simple linear regression of the rela-
tionship between local affinity and population gives us:

Arr = −477.8979
(−5.1259)

+ 10.7339Nr
(29.6290)

, R2 = 0.9184, (3)

where Arr refers to local affinity in region r and Nr to its
population in thousands of people in 1998. t-values are
shown below the estimates. There is indeed a highly sig-
nificant relationship between population size and local
affinity. One region had no patent application fractions
in it. Since, it therefore does not make sense to think of
gy are in one region. Judging from this index, the most
oncentrated activities are in telecommunications, semi-
onductors, and optics. The most dispersed technologies
re machine tools, materials processing, and handling.

. Interregional networks and the affinity
oncept

We now discuss properties of the interregional inven-
or networks in Sweden. A central concept in this
ndeavor is affinity. As explained before, affinity refers
o the number of links between two regions, deducting
he expected number conditional on that a link starts in a
ertain region. The total number of regions are here 82,
here 81 of them are our 81 local labor market regions,

nd the 82nd a ‘foreign’ region.17 Expressed differently,

16 Note that these inventors do not necessarily have to be unique, i.e.
nventors may appear in more than one application.
17 A natural extension of this paper is to study international net-
orks, which would then involve dividing this foreign component into

ountry-specific parts.
affinities from this region to another, it was excluded.
Fig. 3,18 depicts the interregional inventor networks

in Sweden as measured by affinity. The thickness of the

18 This figure was made with the help of Netdraw and Ucinet6
(Borgatti et al., 2002).
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Fig. 3. Affinity for Swedish regions based on patenting. Thicker lines
show stronger connections.

lines in Fig. 3 shows the degree of interregional affinity.19

The arrows, which could run both ways, indicate the
direction in which affinity is important. In addition, the
sizes of the nodes reflect the amount of patent appli-
cations in fractions assigned to the region. The three
largest regions – Stockholm, Gothenburg and Malmö –
are seemingly central nodes in the Swedish inventor net-
works. Due to their size, large regions have more inward
arrows, because inventors in smaller regions cooperate
more frequently with inventors in larger regions than
vice versa. Stockholm has many long-distance connec-
tions, and many regions have affinity to her. Similar
relationships obtain for Malmö and Gothenburg but their
centrality is more locally founded so that they are central

19 Only those links showing the highest affinities could be shown
because the links would otherwise be hard to distinguish.

nodes in the southern and western parts of Sweden. In
the north, the largest regions Umeå and Luleå seem to
some extent to be central nodes.

A casual look like this does not reveal why these rela-
tionships hold. As indicated, many size effects should be
involved. Obviously, the fact that the Stockholm region
hosts around 1.850 million people (1999) acts as an
attractor in the interregional inventor networks. There-
fore, to explain affinities, and try to disentangle effects,
we turn to regression analysis.

6. Model outline

In theory we have observations of affinities between
all regions. But regions without patenting cannot have
affinity to another region. We remove one such region,
keeping 80 × 81 = 6480 observations.20 A further issue
is how to deal with local affinities. It seems possible that
local affinities may be determined by partially different
factors than those of interregional networks. In fact, after
checking for problems of heteroskedasticity, the most
efficient way to deal with this seemed to be to separate
between interregional and local affinities.

Our theoretical discussion of inventor networks has
highlighted a number of factors likely to affect affinities.
Travel time distance is a natural explanatory variable.
Extensive travel costs should reduce the incentives for
inventor cooperation. There could also be differences in
how small and large regions “react” to distance. On the
one hand, we would expect inventors in larger regions in

their search for invention partners, to have more spatially
extended connections since the volume of their search
efforts enables them to find their research partners both
farther away, and therefore to be better equipped with
complementary assets. On the other hand, if resources
are to a higher extent to be found locally this means that
larger regions may find little reasons to search far away
from their own region. Size factors that should have a
bearing on affinity include patents, population, educated
workers, and private and university research. The full
regression model is

Aij = α0 + α1Pi + α2Pj + α3Ni + α4Nj + α5 HQi

+ α6 HQj + α7 HQi + α8 HQj + α9Ri + α10Rj

+ α11Ui + α12Uj + α13Ei + α14Ej + α15 e−λtij

+ α16Ni e−λtij + α17
Ni

Nj

e−λtij + εij, (4)

20 Note that observation zero is also a measure of affinity (or non-
affinity in this case), and that affinities are measured in both directions
between two nodes.
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where N denotes population, P the patents, HQ the head-
quarters, HQ the average size of headquarters, R the
private R&D in man-years, U the university R&D in
man-years, E are number of people with more than 2
years of university education, λ is a distance sensitivity
parameter, and tij is the travel time between region i and
j. For all our variables, i denotes the region where affin-
ity originates and j denotes the region to which region
i’s affinity is measured.

Size variables in region j are expected to raise affinity
as a general rule, since resources there should make them
more attractive. However, for size variables in regions
from where affinity originates, the effect on affinity may
work in two ways. More resources in region i would, on
the one hand, make it less likely that affinity is sought
to any other region. This should therefore have a neg-
ative effect on affinity and can be described as a static
effect. On the other hand, more resources in region i may
influence affinity positively due to a “demand” effect, i.e.
more cooperation with other regions is sought, and can
hence be labeled a dynamic effect. Of these effects it
seems likely that those more likely to be directly related
to the network activity as such, such as private R&D,
should be relatively more conducive to higher “demand”
for networking and could therefore affect affinity posi-
tively. The same relationship seems likely for the number
of patents in region i. The size variables U and E are
probably more directly related to resources and could
therefore affect affinity negatively. When it comes to
headquarters, and their size, HQi and HQj is the number
of companies with judicial belonging in i and j. HQ, is
the average size of headquarters in a region. We expect
that more headquarters in region i will lower affinity
because there will be stronger centralization and mon-
itoring of research activities to that region. Also, more
headquarters in region j will most likely lower affinity,
because researchers will then probably more likely move
to headquarters there and not stay in region i. Average
headquarter size is measured by the number of compa-
nies divided by the total number of employees of the
region. The reasoning for this variable is similar to that
of the number of headquarters. Bigger headquarters in
i will lead to less affinity and bigger headquarters in j
will also lead to smaller affinity. Generally, we expect
time distance to influence interregional affinity nega-
tively (α15 > 0). The term Ni

Nj
e−λtij of Eq. (4) is used

to test the possibility that time distance may have differ-
ent effects depending on the relative size of region i to
that of region j. We expect that when region i is relatively
larger than j, that they should be more sensitive to dis-
tance (α17 < 0). Similarly, the term Ni e−λtij is included
to test the possibility that for large regions i affinity could

be more negatively affected by distance. The reason is
that larger regions have better worked out transportation
infrastructure and more resources to search and establish
networks within the region.

Time distance, tij, has merited special consideration.
It consists of weighted travel times between functional
regions. Two types of travel time data have been used: (1)
Road travel time data from The Swedish National Road
Administration (1998). (2) Flight travel time from the
Swedish Civil Aviation Administration (2003). For the
flight time measure, it replaces road travel time whenever
two regions are directly connected by air connections,
given that it is faster than traveling by road. An assump-
tion here is that inventors in neighboring regions do not
consider it worth the time to go to a neighboring region
and use its airport, since there are considerable time
losses involved in flying from accessing airports. For
road traveling times, we use the fact that each region con-
sists of a number of municipalities, whereof we have road
travel times for traveling between all Sweden’s munic-
ipalities. Thus, a number of road travel times exist for
each pair of regions. We use commuting as weights of
these possibilities such that:

tw
ij =

∑
r

∑
sMrstrs∑

r

∑
sMrs

, r ∈ i, s ∈ j, (5)

where Mrs is the number of commuters between munic-
ipality r and s and trs its respective commuting time.
Thus, tw

ij is the most common commuting road travel-
time between region i and j. In addition, a number of

regions have only zeros in the observations on the num-
ber of commuters between the contained municipalities
(mostly regions far from each other). Yet, they may have
research networks. Then in the above formula tw

ij will
become zero. To avoid this happening, the average of
commuting times between all municipalities in the two
regions is used, which we write ta

ij:

ta
ij =

∑
r

∑
strs

nij

, r ∈ i, s ∈ j, (6)

where nij is the number of links between regions, i.e. the
sum of the number of pair-wise combinations between
the municipalities in them. The road traveling time
between two regions i and j are then

tr
ij =

{
tw
ij if tw

ij > 0,

ta
ij if tw

ij = 0.
(7)

The flight times between all functional regions were col-
lected from the web-pages of the Swedish Civil Aviation
Administration (2003). If more airports were available
in a region, the shortest flight time was used. Finally, the
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Table 3
Variable descriptives

Variable Description N Min. Max. Mean S.D.

Aij Affinity; conditional affinity between region i and j 6480 −343.5122 19718.49 −1.3315 303.8793
N Population 1000s in i, 1998 81 3.281 1829.74 109.3126 232.6577
P Patent applications 1000s in i 81 0.2857 9324.0246 330.2399 1149.2712
HQ Number of companies 1000s in i, 1996 81 0.117 72.097 3.2814 8.7408
HQ Average size of HQs: EMPLi/HQi, 1996 81 2.5176 11.0367 5.6973 1.7976
R 1000 man-years in business R&D in i, 1995 81 0 14.5371 0.5132 1.8927
U 1000 man-years in university R&D in i, 1995/1996 81 0 4.7830 0.2090 0.8026
E 1000 people with university education >2 years in 1996 81 0.176 323.628 12.5759 38.7378
λ Time sensitivity parameter: λ = 0.017 if i �= j, λ = 0.1 if i = j 6480 0.017 0.1 0.018 0.0092
tij Minimum of road and flight-travel time in minutes 6480 8.5913 1126.9 384.0013 259.8919
e−λtij Distance-weighted parameter 6480 0 0.7733 0.0581 0.1187
Ni e−λtij Interaction term: pop. size and time distance 6480 1.2039E−007 1098.7508 10.4886 57.4301
Ni
Njk

e−λtij Interaction term: relative pop. size and time distance 6480 2.4049E−010 53.7054 0.2095 1.4026

Data sources are EPO for patent applications, whereas population, number of headquarters, headquarter average size, business R&D and university
R&D have been compiled based on various statistical databases from Statistics Sweden.

shortest time of road and flight was used as our measure
of the time involved in traveling between two regions in
Sweden:

tij = min{tr
ij, t

f
ij}. (8)

On the other hand it is not unproblematic to mix road and
flight travel times, since flying is usually more expen-
sive, and hence any decision to cooperate is not on quite
the same footing. The following regressions were there-
fore run also without flight times, but without qualitative
effects on our results. For brevity, we therefore only
report the results using definition (8). The exponential
term e−λtij is used to describe the particular response of
commuting to time distance extensively reported on by
e.g. Ohlsson (2002) and confirmed in many studies. The
λ -values have the interpretation of sensitivity to time
distance. It takes one of two values: λ = 0.1 if region
i and region j are the same and λ = 0.017 if they dif-
fer. These values are based on empirical estimates from
Åberg (2000) and Hugosson (2001). These λ-values
have also been used by Andersson and Ejermo (2004,
2005), to spatially discount accessibility to knowledge
resources. The higher λ-value for intraregional time dis-
tance reflects the higher propensity to cooperate with
inventors within the region. Table 3 gives a brief descrip-
tion of our variables and reports some summary statistics.

As stated, several variables are size variables. It is
therefore informative to see the extent of intercorrelation
of the variables to judge the sincerity of multicollinearity.
Table 4 shows the correlation matrix of relevant vari-

Table 4
Pairwise correlation matrix of variables

Variable Ni Pi HQi HQi Ri Ui Ei

Ni 1
Pi 0.983 1
HQi 0.992 0.992 1
HQi 0.322 0.302 0.302 1
Ri 0.971 0.975 0.976 0.301 1
Ui 0.839 0.839 0.818 0.142 0.818 1
Ei 0.987 0.993 0.997 0.288 0.973 0.838 1

of them to turn out insignificant. We therefore run vari-
ants of the main regression, to study the stability of coef-
ficients. Likely candidates for exclusion are variables
which are highly correlated and are not significant in the
full model where all variables are included. In addition,
when we started running the regressions, we discovered
severe problems of heteroskedasticity. One source for
this has already been reported on. Initially we mixed
local affinities (i.e. “intraregional”) with interregional
ones. Heteroskedasticity results if the variance in each of
these groups is different. When separating the two groups
heteroskedasticity was substantially but not completely
reduced. Some intuitive reasoning behind the source for
this heteroskedasticity led us to how to do something
about it. Clearly, regions with very little patenting activ-
ity have larger variance in their affinity towards other
regions, since the few regions to which they actually
have affinity are more “random”.21 An analysis of the
residuals confirmed this. It was found that a weighted
least squares regression using Pw

i with w with a value of

21 This happens as a result of the discrete nature of affinities.
ables.
As expected, there are signs of strong multicollinear-

ity between many of the variables. If all variables are
included in a regression, we would therefore expect some
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around 0.3 removed almost all heteroskedasticity.22 We
find the results of the interregional networks regressions
in Table 5. The full model was run as Model 1. However,
from the policy maker’s perspective interest rests in vari-
ables which can be affected directly. Ni, Nj, Pi, Pj, HQi,
and HQj do not belong to this category, and can be con-
sidered as control variables. In addition to the full model,
we consider four smaller models where combinations of
the control variables are excluded.

Model 2 excludes population:

Aij = β0 + β1Pi + β2Pj + β3 HQi + β4 HQj

+ β5 HQi + β6 HQj + β7Ri + β8Rj + β9Ui

+ β10Uj + β11Ei + β12Ej + β13 e−λtij

+ β14Ni e−λtij + β15
Ni

Nj

e−λtij + εij.

Model 3 excludes population and patents:

Aij = γ0 + γ1 HQi + γ2 HQj + γ3 HQi + γ4 HQj

+ γ5Ri + γ6Rj + γ7Ui + γ8Uj + γ9Ei + γ10Ej

+ γ11 e−λtij + γ12Ni e−λtij + γ13
Ni

Nj

e−λtij + ζij.

Model 4 excludes population and number of headquar-
ters (but we keep their average size)

Aij = δ0 + δ1Pi + δ2Pj + δ3 HQi + δ4 HQj + δ5Ri

a

A

M
p
j
m
e
a

h
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more of these resources exist in region j. For P and U
all the results are significant on the 1% level. For R it
is not significant in Model 4, significant on the 10%
level in 2 cases, and on the 1% level in one case. The
population variable is negative and highly significant in
Model 1, the only model where it is included. Because
of strong collinearity with the other variables we do not
think excluding this variable poses any major problem.
Patents in region i had a negative and strongly signifi-
cant effect on affinity. This means that the “supply” effect
which we discussed above, seems to be stronger. That is,
when more patenting occurs in region i, affinity seems
to become lower because more resources are available
within the region rather than having to be sought outside
the region. We will examine whether this pattern prevails
when we consider only local affinity. A similar result
was also found for R&D. This variable affected affinity
negatively when more R&D-resources were available in
region i and had high significance levels.23 Also for uni-
versity R&D the supply effect dominates, since affinity is
negatively affected in Models 3–5 from more university
R&D in region i, whereas coefficients are not significant
in Models 1 and 2. The education variable shows little
coherence judging from its effects. For region i its effect
is negative in two cases and positive in one. For region
j though, the effect is negative and significant (on vary-
ing levels) in three cases. A problem with this variable
is that it captures all higher education and not necessar-
ily that relevant for inventor networks. A different kind
of size variable is that of headquarters. Similar to the
+ δ6Rj + δ7Ui + δ8Uj + δ9Ei + δ10Ej

+ δ11 e−λtij + δ12Ni e−λtij + δ13
Ni

Nj

e−λtij + ϑij,

nd Model 5 excludes population and R&D:

ij = θ0 + θ1 HQi + θ2 HQj + θ3 HQi + θ4 HQj

+ θ5Ui + θ6Uj + θ7Ei + θ8Ej + θ9 e−λtij

+ θ10Ni e−λtij + θ11
Ni

Nj

e−λtij + vij.

any results appear to be robust across specifications. In
articular, for almost all results, coefficients for region
are much higher, seemingly validating the proposition
ade that size variables in j should have a more positive

ffect than in i. This seems true in particular for vari-
bles P, R, and U. Affinity is positively affected when

22 The value of w for each regression was chosen as to minimize
eteroskedasticity as judged from a Breusch–Pagan heteroskedasticity
est. The value used in actual practice varied between 0.29 and 0.32,
epending on model.
education variable this variable carries some noise. The
intention of this variable is to capture R&D-monitoring
effects, but most companies are not involved in inventor
networks and we could not presently account for this.
This variable showed only limited stability. For region j
there does nonetheless seem to be some indication that
monitoring may reduce affinity as we hypothesized, but
the coefficients are only significant in about half of the
cases (including average size of headquarters), and for
region i the effect even goes in the opposite direction
in one case (Model 2). Finally, time distance has a very
strong negative effect on affinity and is highly significant
in all five models where we include this variable. Hence,
we can strongly support the hypothesis that distance mat-
ters, since coefficients are highly significant. For regions
i which are large irrespective of the size of regions j, this
effect furthermore seems to be stronger; they have even
smaller affinity with distance. But for regions that are rel-

23 Only for Model 4 was this coefficient only significant on the 10%
level.
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Table 5
Estimation results, interregional affinity and aggregate models

Model Constant Pi Pj Ni Nj HQi HQj

1 −0.5965 (0.17) −0.0477 (12.54)*** 0.0317 (6.45)*** −0.0921 (3.98)*** −0.0604 (2.12)** 6.1811 (4.77)*** 0.2265 (0.14)
2 −0.6856 (0.19) −0.0497 (13.01)*** 0.0343 (6.94)*** 2.2410 (2.66)*** −2.5588 (2.46)**

3 9.9873 (2.75)*** −1.8826 (2.31)** −1.0693 (1.00)
4 0.9047 (0.26) −0.0460 (12.91)*** 0.0318 (6.57)***

5 0.7669 (0.22) −0.0500 (13.08)*** 0.0363 (7.55)*** 0.9413 (1.31) −2.0146 (2.03)**

Model HQi HQj Rj Rj Ui Uj

1 0.3726 (0.85) −0.6156 (1.60) −0.0033 (3.07)*** 0.0026 (1.68)* 0.0023 (1.54) 0.0144 (7.28)***

2 0.0962 (0.22) −0.8716 (2.33)** −0.0032 (2.90)*** 0.0027 (1.74)* −0.0015 (1.26) 0.0124 (7.78)***

3 −1.6102 (3.59)*** −0.5853 (1.51) −0.0034 (3.00)*** 0.0057 (3.55)*** −0.0075 (6.72)*** 0.0159 (9.79)***

4 −0.0701 (0.16) −0.9313 (2.49)** −0.0016 (1.75)* 0.0016 (1.05) −0.0029 (2.78)*** 0.0140 (9.65)***

5 −0.0587 (0.13) −0.8559 (2.29)** −0.0024 (2.07)** 0.0127 (8.04)***

Model Ei Ej e−λtij Ni e−λtij (Ni/Nj) e−λtij n R2

1 −0.4182 (2.09)** −0.5946 (2.26)** 16.6767 (2.89)*** 0.2697 (27.84)*** −5.8678 (19.89)*** 6400 0.69
2 0.0497 (0.30) −0.3584 (1.52) 15.8096 (2.69)*** 0.2687 (28.02)*** −5.7649 (19.71)*** 6400 0.69
3 −0.3620 (2.19)** 0.1329 (0.56) 17.8415 (2.90)*** 0.2622 (27.05)*** −5.5241 (18.78)*** 6400 0.68
4 0.3972 (4.00)*** −0.8312 (6.05)*** 15.8889 (2.71)*** 0.2659 (27.79)*** −5.7332 (19.67)*** 6400 0.69
5 0.2141 (1.39) −0.4151 (1.77)* 15.5776 (2.65)*** 0.2687 (28.00)*** −5.7400 (19.62)*** 6400 0.69

Absolute value of t-statistics are in parentheses.
* 10% significance level marked.

** 5% significance level marked.
*** 1% significance level marked.



O. Ejermo, C. Karlsson / Research Policy 35 (2006) 412–430 427

atively larger, the distance effect is actually smaller on
affinity. Reversing this reasoning, while distance always
affects affinity negatively, when region i is smaller rel-
ative to region j, affinities is more negatively affected
by distance. Phrasing this in relation to our theoretical
discussion it means that relatively smaller regions are
severely constrained by their higher search costs and are
more hindered by distance.

7. Local affinities

When we turn to examination of local affinities it is no
longer possible to use all variables as outlined by Model
1, since regions i and j are now the same and perfect
multicollinearity would arise between certain variables.
Hence, we rewrite the Models 1–5 as 1′–5′ with only
one of the pairwise variables included for each model.
Instead the following models are used.

• Model 1′

Aii = α̂0 + α̂1P + α̂2N + α̂3 HQ + α̂4 HQ + α̂5R

+ α̂6U + α̂7E + α̂8 e−λtii + α̂9N e−λtii + ε̂ii.

• Model 2′

Aii = β̂0 + β̂1P + β̂2 HQ + β̂3 HQ + β̂4R + β̂5U

+ β̂6E + β̂7 e−λtii + β̂8N e−λtii + ε̂ii.

• Model 3′

•

•

T

t
i
t
fi
t
s
i

affinities local in Model 1′.24 The effects of number
of headquarters and their average size show no stabil-
ity across regression models. Number of headquarters
has a negative and significant effect only in Model 1,
but this may probably be attributed the multicollinear-
ity effect, since the coefficient changes sign, seemingly
randomly in Models 2′–4′. Average headquarter size
is positive and significant only in Model 3′, whereas
the coefficient sign again seems unstable among the
other models. University R&D has a positive and sig-
nificant sign in Model 3′ but is negative and significant
in Model 1′. Number of highly educated has a negative
effect on local affinity in Model 4′ and is insignificant
in the other models. Quite importantly, time distance
also shows no coherent pattern in terms of its effect on
affinity. This means that the strong result we obtained
from interregional inventor network does not carry over
to the local level. There is however a very intuitive
explanation for this result. The unit of analysis is the
local labor market region which is defined by ease of
interaction within it. This means that the average time
distance for traveling within it may not be a limiting
factor for interaction. Thus, the only remaining robust
result is that local patenting affects affinity positively.
What could then explain local affinity? Likely candi-
dates could probably be found among organizational
characteristics and company structures, but needs fur-
ther exploration.
Aii = γ̂0 + γ̂1 HQ + γ̂2 HQ + γ̂3R + γ̂4U + γ̂5E

+ γ̂6 e−λtii + γ̂7N e−λtii + ζ̂ii.

Model 4′

Aii = δ̂0 + δ̂1P + δ̂2 HQ + δ̂3R + δ̂4U + δ̂5E

+ δ̂6 e−λtii + δ̂7N e−λtii + ϑ̂ii.

Model 5′

Aii = θ̂0 + θ̂1 HQ + θ̂2 HQ + θ̂3U + θ̂4E + θ̂5 e−λtii

+ θ̂6N e−λtii + v̂ii.

he results are shown in Table 6.
We find that more patenting in the region seems

o enhance local affinity significantly. Thus, one may
ndeed speak of a local supply effect. When more inven-
ive activity goes on locally, the region turns inward to
nd research partners. Regional R&D also seems to have

his effect, since the coefficient is positive and highly
ignificant in Model 1′ and significant on the 10% level
n Models 2′ and 3′. Higher population tends to keep
7.1. Division by technology

In view of earlier discussions, we have reasoned that
properties of technologies could influence our results.
We therefore specify the models based on the 30 patent
technologies listed before, and now run regressions using
the interregional relationships. Since we have reasoned
that population is a catch-all variable for many size-
effects, we run one model where we include it, one where
we exclude it, and a third where we also exclude number
of headquarters. We call these estimated models T1–T3,
specified as follows. Model T1 is

Aij,k = ρ0 + ρ1Pi,k + ρ2Pj,k + ρ3Ni + ρ4Nj + ρ5 HQi

+ ρ6 HQj + ρ7 HQi + ρ8 HQj + ρ9Ri + ρ10Rj

+ ρ11Ui + ρ12Uj + ρ13Ei + ρ14Ej + ρ13 e−λtij

+ ρ14Ni e−λtij + ρ15
Ni

Nj

e−λtij + µij,

24 This result mirrors what we found in Fig. 2 and the regression
between local affinity and population reported on in Section 5.
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Table 6
Estimation results, intraregional/local affinity and aggregate models

Model Constant Pi Ni HQi HQi Ri

1′ 45.8637 (0.14) 3.5001 (7.35)*** 16.8208 (4.00)*** −575.2820 (3.70)*** −46.8371 (0.77) 0.4366 (3.33)***

2′ 141.8465 (0.51) 3.0958 (5.90)*** −222.8311 (1.58) 6.1267 (0.11) 0.2912 (1.86)*

3′ −468.4270 (1.08) −194.0505 (1.08) 154.6798 (2.04)** 0.3145 (1.77)*

4′ 36.1744 (0.13) 3.0386 (5.74)*** −0.1180 (0.00) 0.2453 (1.58)
5′ 74.3043 (0.23) 3.2666 (6.09)*** −155.2401 (1.10) 22.7259 (0.37)

Model Ui Ei e−λtij Ni e−λtij n R2

1′ −0.4523 (2.30)** 35.0802 (1.49) 1012.4688 (0.78) −33.9181 (2.41)** 80 0.98
2′ 0.1128 (0.70) −0.6655 (0.03) −322.2925 (0.28) 4.9985 (0.48) 80 0.97
3′ 0.4217 (2.32)** 36.2666 (1.32) −3509.9248 (2.19)** 30.1163 (2.30)** 80 0.97
4′ 0.2220 (1.50) −31.9959 (2.16)** 264.9963 (0.24) −5.2227 (0.63) 80 0.97
5′ 0.1736 (1.10) −15.2227 (0.64) −881.7590 (0.69) 9.2776 (0.85) 80 0.97

Absolute value of t-statistics are in parentheses.
* 10% significance level marked.

** 5% significance level marked.
*** 1% significance level marked.

where k = 1, . . ., 30 stands for the specific patent tech-
nology in question. Model T2 is

Aij,k = ω0 + ω1Pi,k + ω2Pj,k + ω3 HQi + ω4 HQj

+ ω5 HQi + ω6 HQj + ω7Ri + ω8Rj + ω9Ui

+ ω10Uj + ω11Ei + ω12Ej + ω13 e−λtij

+ ω14Ni e−λtij + ω15
Ni

Nj

e−λtij + ςij,

and Model T3 is specified as

Aij = τ0 + τ1Pi,k + τ2Pj,k + τ3 HQi + τ4 HQj

+ τ5 HQi + τ6 HQj + τ7Ri + τ8Rj + τ9Ui

+ τ10Uj + τ11Ei + τ12Ej + τ13 e−λtij

+ τ14Ni e−λtij + τ15
Ni

Nj

e−λtij + ςij.

Thus, we run 30 × 3 regressions. Due to continuing
problems of heteroskedasticity, and that the source of
this could not be pinned down to one variable as
before, we ran a procedure in STATA (rreg) that per-
forms the regressions iteratively in order to deal with
heteroskedasticity.25 Table 7 summarizes the number of
positive and negative values that are significant on at least
the 10% level for each parameter and all three models.26

25 The first step of this procedure is to eliminate gross outliers.
Second, weights are computed iteratively in a way that reduces the

The separate technology regressions show feature
regularities and irregularities. A general observation is
that changing things in region j, the region to which j
has affinity, does not have statistically significant effects
for affinity. What matters for technological affinity is
what is going on in the region where affinity originates.
Some results give us an indication on what is important in
region i. We should also bear in mind differences result-
ing from the exclusion of the population variable as in
Model T2, and the exclusion of number of headquarters
in T3. The number of patent applications in region i has
a consistently negative effect on affinity. This echoes
the result we obtained from the aggregate regressions.

Table 7
Count of the number of significant (≤10% level) coefficients, with
respective sign for 30 different patent technologies

Variable Model T1 Model T2 Model T3

+ − + − + −
Pi,j 0 30 0 27 0 27
Pi,k 0 0 0 0 0 0
Ni 13 17 – – – –
Nj 0 0 – – – –
HQi 17 13 15 12 – –
HQj 0 0 0 0 – –
HQi 19 10 19 8 18 8
HQj 0 0 0 0 1 0
Ri 13 17 11 13 13 12
Rj 0 0 0 0 0 1
Ui 12 16 11 15 8 18
Uj 0 0 0 0 0 0
−λt
influence of leverage observations using Huber and bi-weight proce-

dures.
26 The full estimation results by technology can be obtained upon

request from the authors.
e ij 10 6 4 4 4 6
Ni e−λtij 0 0 3 5 6 4
Ni
Nj

e−λtij 12 15 4 4 5 5
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More patenting activity in region i tends to make regions
turn inward for research partners. Headquarters, when
included, have somewhat more positive than negative
effects on affinity. Average headquarter size has simi-
lar effects but are more frequently positive. R&D shows
many cases of both positive and negative sign. Here it
seems clear that more information about the nature of
R&D could perhaps provide a clearer picture. Univer-
sity R&D, on the other hand, tends to unambiguously
favor local inventor networks, or less affinity to other
regions when it is present in region i. Number of edu-
cated people also is problematic in the sense of consistent
patterns. Another less clear effect is with time distance.
Whereas time distance (the term e−λtij ) has a predomi-
nantly negative influence on affinity in Models T1 and
T2, its effect turns slightly in favor of a positive effect in
Model T3. The other time distance effects also seem to be
hard to attach consistent meaning. A quick look at rank-
ings of distance sensitivity across technologies reveals
that Control technology consistently scores among the
least distance sensitive technologies. On the other end
of the scale, Electrical engineering and Machine tools
are technologies where affinity is consistently most neg-
atively affected by distance. It seems clear that better
data, especially such that give more detailed informa-
tion on education, business R&D, and university R&D
that can be related to technologies could shed better light
on the relationships on the technology-level.

8. Summary and conclusions
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come of results were largely unclear and seem to indicate
that better material, i.e. on a technology level, is needed.

What policy conclusions can be drawn? First of all,
distance matters. Distance matters for the way that R&D,
and R&D-networks are configured. Secondly, there is a
role for university R&D. It seems unlikely that networks
change overnight when more university R&D is put in
a region, but its location seems to influence how net-
works of inventors operate. Third, if a region conducts
more R&D-related activities (patenting, business R&D,
and university R&D) relatively more ‘inward’ or local
networking occurs.

Our analysis has not been done on a company
structure basis. Of course, the location of headquarters
and historical reasons for locating in certain regions,
bring about path dependence that should be important
to take into consideration. That is, the story may also
be one of how past location affects the direction and
development of inventor networks. We think this is
an important future research issue that requires more
elaborated databases with detailed information on
affiliation and ability to follow individual inventors over
time to be able to be addressed.
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tion. Ph.D. Thesis. Jönköping International Business School.

Okubo, Y., Sjoberg, C., 2000. The changing pattern of industrial
scientific research collaboration in Sweden. Research Policy 29,
81–98.

Olsson, O., 2000. Knowledge as a set in idea space: an epistemological
view on growth. Journal of Economic Growth 5 (3), 253–275.

Persson, O., Melin, G., Danell, R., Kaloudis, A., 1997. Research
collaboration at Nordic Universities. Scientometrics 39 (2), 209–
223.

Porter, M., 1990. The Competitive Advantage of Nations. London,
Macmillan.

Scherer, F., 1983. The propensity to patent. International Journal of
Industrial Organization 1, 107–128.

Schumpeter, J., 1934. The Theory of Economic Development. Harvard
University Press, Cambridge, MA.

Scott, J., 2000. Social Network Analysis. Sage Publications, London.
Singh, J., 2004. Innovation and knowledge diffusion in the global econ-

omy. Ph.D. Thesis. Harvard School of Business Administration and
Department of Economics.
business interaction. Ph.D. Thesis. Jönköping International Busi-
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