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bstract

Academics and policy makers are investigating the relations between science and technology in the emerging field of nano science
nd technology (NST) and the effectiveness of different institutional regimes. We use multiple indicators to analyze the performance
f inventors working in NST. We clustered patents into three groups according to the scientific curricula of the inventors. The first

roup consists of patents whose inventors are all authors of at least one scientific publication in NST, while the second is made up
f patents invented by individuals who have no scientific publication in the field. Thirdly, we isolated those patents that have at least
ne inventor who is also author of at least one scientific publication in NST. The underlining presumption of this classification is
hat of a proxy of different institutional complementarities of inventive collective action in NST.

logy; P
2007 Elsevier B.V. All rights reserved.
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. Introduction

Nano science and technology (hereafter also NST)
egards the understanding and control of matter at the
ano scale, which is a billionth of a meter. There is con-
ensus in the scientific community that NST broadly
nvolves: (i) research and technology development at
he atomic, molecular or macromolecular levels, in
pproximately the 1–100 nm range; (ii) creating and
sing structures, devices and systems that have novel

roperties and functions because of their small and/or
ntermediate size; (iii) the ability to control or manipulate
n the atomic scale.1

∗ Corresponding author. Tel.: +39 0328 3837430;
ax: +39 050 883344.

E-mail address: thoma@sssup.it (G. Thoma).
1 The definition is that of the National Nanotechnology Initiative

www.nano.gov). We validated this definition in several interviews
onducted with nano scientists in 2004–2005.

048-7333/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.respol.2007.02.009
atent quality; Inventive productivity

There is also consensus among scientists that NST
came into being in 1981, when the Scanning Tunneling
Microscope (US Patent 4343993; hereafter, also STM)
was invented by Gerd K. Binnig and Heinrich Rohrer at
the IBM Research Laboratory in Zurich. In 1986, they
were awarded the Nobel Prize for this discovery. The
STM yields atomic-scale images of metal and semicon-
ductor surfaces, something which had not been possible
with the so-called Topografiner, invented by Russell
Young in the late 1960s. The range of materials that can
be imaged with a scanning device increased with the

invention of the Atomic Force Microscope (US Patents
4724318 and RE33387; hereafter, also AFM) by Gerd
K. Binnig in 1986.2

2 The invention was filed in August 1986. A related scientific arti-
cle had been published 6 months earlier [cf. Gerber, C., Binnig, G.,
Fuchs, H., Marti, O., Rohrer, H., 1986. Scanning tunneling microscope
combined with a scanning electron microscope. Rev. Sci. Instrum. 57
(February), 221–224].

mailto:thoma@sssup.it
http://www.nano.gov/
dx.doi.org/10.1016/j.respol.2007.02.009
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These enabling instruments were invented at and with
the support of the IBM Corporation, which was inter-
ested in scientific advances within the semiconductor
industry. They soon realized that the STM and the AFM
could be used in a vast array of scientific and technolog-
ical fields, such as chemistry, biology, biotechnology,
telecommunications, and many others.

In this paper, we will try to make sense of and
to measure the importance of scientific knowledge in
fuelling technological inventions in NST. We contribute
to the literature on science–technology interactions and
the industrial dynamics of emerging fields by providing
recent and large-scale evidence about a young indus-
try and developing new methods for measurement and
quantitative analysis. In particular, we develop a method-
ology to match information on scientific publications
and patents, enabling characterization of several commu-
nities of inventors that implement science–technology
interactions in alternative ways. The paper is organized
as follows. In the next section, we briefly review the liter-
ature, pointing to limitations in existing methodologies
and substantive explanations. In Section 3, we introduce
descriptive statistics on NST and develop the proposed
methodology. In Sections 4 and 5, we investigate the
performance implications of alternative ways of arrang-
ing science–technology interactions, as evidenced by the
matching analysis. We propose some measures of patent
quality and test various hypotheses about differences
between indicators across patents produced by differ-
ent communities of inventors. Sections 6 and 7 add new
dimensions of performance, analyzing the productivity
of individual inventors and the propensity to found a
start-up company. Section 8 reviews the evidence and
poses new research questions.

2. Background literature on science–technology
interactions

In the 1990s, the notion that technological develop-
ments are increasingly dependent on advancements in
science was proposed repeatedly. On one hand, scien-
tometric literature drew attention to the sharp increase
in the number and share of non-patent literature cita-
tions in patents (Narin and Olivastro, 1992; Narin et al.,
1997), suggesting that inventors increasingly make direct
use of inputs from published scientific research. Patents
may be based not only on the prior art documented in
other patents, but in part or fully on new scientific knowl-

edge. Since published scientific research results can be
used to illustrate the state of the art against which the
application has to be evaluated, patent examiners will
then search for relevant references in the scientific liter-
h Policy 36 (2007) 813–831

ature. The logic of these references is to document the
material that is held against the application. Using this
metrics, a taxonomy of industries based on the depen-
dence on science can be developed (Grupp, 1992; Heinze
and Schmoch, 2004; Tijssen, 2004). More recently, tech-
niques for tracing back networks of patent citations have
been developed (Popp, 2005; Verspagen, 2005). Trac-
ing back the full ramification of citations from more
recent patents to historical ones can give insights into
the underlying dynamics of knowledge.

On the other hand, industry case studies on biotech-
nology (McKelvey, 1996; Orsenigo, 1990; Owen-Smith
et al., 2002; Zucker and Darby, 1996), chemical and elec-
trical engineering (Kenney and Goe, 2004; Mowery and
Rosenberg, 1998), semiconductor and laser (Klepper,
2001), and medical instruments (Trajtenberg, 1990)
illustrated important examples in which the very defi-
nition of industrial applications was only made possible
by the discovery of new physical properties of nature.
In these fields, the origin of entrepreneurship can often
be traced back to scientists from the academic world
or to scientists in large and technologically advanced
companies.

The importance of this literature can be better under-
stood in relation to the broader theoretical treatment of
the relations between science and technology and, more
generally, to the conditions for the productive use of
knowledge (Dasgupta and David, 1994). In fact, the cri-
tique of so-called linear models carried out in the 1980s
(Kline and Rosenberg, 1986; Rosenberg, 1982) made it
clear that technological knowledge is subject to a spe-
cific internal dynamics that is relatively independent of
scientific advancements. Firms only benefit from science
indirectly (Pavitt, 1990), and the use of scientific research
for industrial innovation is less about direct collabora-
tion and more about the constitution of human capital
(Cohen et al., 1987; Nelson, 1986).

Alongside this institutional treatment, a conceptual-
ization of the nature of technological knowledge has
taken place that goes beyond highly stylized representa-
tions. Design knowledge started to be characterized as
a collection of highly specific rules for problem solv-
ing and the selection of acceptable solutions (Klein,
1985; Stankiewicz, 2000; Vincenti, 1990), constituting
an autonomous body of knowledge. Design is not applied
research and engineering is not applied physics.

Against this background of criticism of the linear
model and the articulation of the relative independence of

different types of knowledge, the discovery of the sharp
increase in the “scientific content” of patents, inventions,
and companies still lacks a rigorous theoretical treat-
ment. Is this a sign that the linear model is still valid?
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and companies. This approach does not take the patent
as the unit of analysis but rather the individual, i.e. the
author, the inventor, or the entrepreneur. The analysis
A. Bonaccorsi, G. Thoma / R

r is it evidence of a fundamental change in production
echnology, whereby the flow of knowledge between sci-
ntific research and technology is less mediated and more
irect? Or is it just a transitory stage in the long-term
volution of industries?

In other words, there is a strong need to go beyond the
tylized evidence collected with patent data and industry
ase studies in the 1990s, and to build up a more gen-
ral framework for the analysis of the productive use of
nowledge.

This task, however, is made difficult by a number
f limitations in the existing literature. In substantive
erms, the critique of linear models has yet to generate a
tream of studies on the specific non-linear ways in which
cience and technology interact, providing evidence
egarding the nature and intensity of feedback loops and
terations. For example, Stankiewicz (1997) made the
mportant distinction between discovery-driven innova-
ion and design-driven innovation. The former depends
rucially on an understanding of nature, while the lat-
er is driven by internal technical issues and is mainly
nfluenced by applications and demand considerations.
owever, these categories of innovation and the possi-
le transition between them in long-term technological
volution have still to be identified and investigated.
he micro-mechanisms governing the generation, val-

dation, and transmission of knowledge between science
nd technology have not yet been explored in great detail.
he epistemic foundations of science–technology inter-
ctions are still unclear, despite the pioneering analyses
ffered by Callon et al. (1991).

On the methodological side, several shortcomings in
he existing measures should be recognized. First of all,
on-patent literature (hereafter also NPL) citations suffer
rom an important limitation: it is not clear to what extent
hey are assigned by inventors or by examiners. It is well
nown that inventors primarily introduce references in
he USPTO, while in the European system they are intro-
uced exclusively by the examiners. Breschi and Lissoni
2004) claimed that, at least in the US patent system –
ince references are assigned by different actors, who
uote mainly US references for reasons of availability
nd for different purposes – there is a severe distortion
n the interpretation of data. The full validity of infor-

ation on cited patents has to be established, given that
he motivations for a patent to cite another patent are
ather intricate and raise legal and strategic considera-
ions. Therefore, both measurement and validity issues

re involved here.

Second, NPL citations do not convey any informa-
ion about the degree to which the scientific content
as generated valuable innovation. Since we know that
Policy 36 (2007) 813–831 815

the distribution of patents by degree of usefulness is
extremely skewed, it is possible that patents with a high
number of non-patent references are among those that
are never used, and so have limited economic value. One
approach to mitigate this limitation is given by a careful
analysis of patent quality, using the indicators proposed
in the literature initiated by Trajtenberg (1990) and fully
developed by Jaffe et al. (1993).3 There is sufficient evi-
dence in the literature that the economic value of patents
is associated with the number and quality of citations
received in other patents (Hall et al., 2005; Harhoff et
al., 1999; Jaffe and Trajtenberg, 2002). Harhoff et al.
(2003) and Lanjouw and Schankerman (2001) have sug-
gested a different metrics, i.e. the existence of litigation
for patents, implying that patents for which assignees
are willing to pay for defense against infringement have
greater economic value.

There is another important limitation to non-patent
literature. Patent examiners typically start by checking
existing patents to look for prior art that might limit a
patent’s claim. They turn to NPL once these searches are
exhausted. Since only one reference to prior art is needed
to limit a claim, NPL will be most prevalent when there is
little prior patent art. Thus, over time, as more patents are
granted in a given field, we would expect NPL citations
to fall, though this need not be a signal of falling quality.4

More fundamentally, existing methodologies identify
science–technology interactions using documents, not
individuals. A relation is said to be in place if and only
if a paper trail can be identified. This largely ignores the
variety of motivations that may lead to citations.

Therefore, a new approach is needed to capture the
complexity of interactions between science and tech-
nology. In this paper we develop a new methodology
for tracing and measuring these interactions, based on
matching algorithms of names of individuals between
different datasets. We try to match the names of indi-
viduals between datasets, i.e. publications (individuals
as authors), patents (individuals as inventors) and com-
panies (individuals as entrepreneurs or partners). For
all individuals in our final dataset, we know whether
and when he/she has published, invented, and created
a company, and we know all the associated characteris-
tics (and related indicators) for his/her papers, patents,
3 For a survey of the literature, see Jaffe and Trajtenberg (2002).
4 We would like to thank one of the two anonymous reviewers for

this argument.
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portion of all documents.5

We used a keyword search strategy suggested by the
Fraunhofer-ISI Institute in Karlsruhe, which we found
816 A. Bonaccorsi, G. Thoma / R

focuses on building up time series datasets and on the
mobility and carriers of the individual across different
institutional settings (Bozeman et al., 2001; Gambardella
et al., 2005; Shane, 2004). In combining different roles
around the same individual, we will be able to build up
the full profile of inventors and to put forward various
conjectures about the intrinsic dynamics of science and
technology.

Assuming individuals, rather than patents or papers,
as the unit of observation has several advantages. First, it
helps in identifying heterogeneities in the performance
of inventors. Simple but robust classifications such as
the one we propose in this paper are powerful enough to
throw light on several paths to innovation followed by
scientists and inventors in the course of their professional
lives. In turn, this contributes to the identification of the
dynamic nature of science–technology relations.

Second, the value of scientific production and of
invention can be addressed directly. The literature on
patent quality, emphasizing the relation between the
value of the invention and successive citations in other
patents, uses indicators that are internal to the patent
system. Studies such as Shane (2004) try to trace for-
ward the history of patents from academia through to
the creation of startup firms, but do so with a limited
focus (a large US university). Using our dataset we are
able to disentangle the full path leading from scientific
publications to patents (or vice versa) or from scientific
publications and patents to the creation of a company, as
well as any other relevant path. Different performance
measures – scientific, technological, and economic –
are regressed over their initial characteristics and the
career paths, as in studies of the industrial dynamics of
firms.

Finally, focusing on inventors allows us to carry out
a longitudinal analysis at an individual level, helping
to identify and follow the steps of careers that lead to
scientific activity, invention, and entrepreneurship. In
this sense our analysis is a first preparatory work that
might be followed by extensive examination of scien-
tists’ resumes, in order to trace the evolution of careers
and the patterns of mobility.

3. Search regimes in nano science and technology

NST is an extremely interesting case in which the
micro-mechanisms of science–technology interactions
and the origins of entrepreneurship can be detected with

great precision, due to the novelty of the field and the
relative wealth of available documentation. We charac-
terize this new field along three dimensions. First of
all, the rate of growth in the production of scientific
h Policy 36 (2007) 813–831

results: scientific fields that exhibit exponential growth
(or grow at significantly greater rates than average) have
completely different properties with respect to regimes
that grow linearly. Second, the degree of diversity of
directions of research: in some areas all research pro-
grammes converge on a few areas, usually associated
with crucial experiments based on a commonly held
body of theory, while in other areas the agreement on
general theories generates a proliferation of (weakly
or strongly) competing hypotheses and research pro-
grammes, following a divergent dynamics. In NST we
expect a proliferation pattern of research programmes,
driven by the specific combination of deeper under-
standing of the properties of matter at low levels of
resolution and design objectives. Third, the importance
and nature of complementarities in knowledge: while
in big science the most important complementarities
take place with large experimental facilities, in new
emerging fields they are most likely to take the form
of human capital and institutional complementarities.
In particular, diversified knowledge bases are brought
to the frontier of science, while both discovery and
invention require a structured interdependence between
institutions characterized by different goals (e.g. indus-
try, academia, hospitals). Based on these dimensions,
a number of disciplines can be identified, including
life sciences after the molecular biology revolution,
computer science, materials science, and nano science.
These broad disciplines share the following proper-
ties: they have been growing exponentially or much
more than average for a long period, they follow a
dynamic process of divergent research, and they are
based on institutional and human capital complemen-
tarity. We will use these dimensions to characterize the
emerging field of NST, following the label of search
regimes proposed in the explanatory work of Bonaccorsi
(2005).

3.1. Data on nano patents and publications

The search strategy for nanotechnology patents
mainly had to be based on keywords, since the specific
IPC-subclass B82B for this field was introduced in the
year 2000 and does not cover the period up until then.
Therefore, it only contributes to identifying a very small
5 By retrieving the nanotechnological IPC classes B81B, B81C and
B82B, we found the following number of patents: in USPTO there
were, respectively, 37, 27 and 14, compared to 20, 12 and 1 in EPO.
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Fig. 1. Cumulate arrivals in nano scie

o be the most complete and extensively validated static
eyword methodology (Fraunhofer-ISI, 2002).6

In the following analysis, we selected data from
SPTO since 1971. Given the important role of the
nited States as a locus of technical change in recent
ecades, we believe that limiting ourselves to U.S.
atenting activity does not constitute a serious drawback
or a preliminary investigation of this kind.7 We executed
he ISI strategy with regard to the title and the abstract
f a patent.8

Nanotechnology proved to be a significant phe-
omenon. We obtained a sample of 4828 patents granted
efore May 2004, classified by 1192 examiners in 331
hree-digit U.S. technological classes. The collective
ction in NST involves more than 8000 inventors located
n over 3000 cities in 52 countries. The patents are
ssigned to more than 1900 assignees, located in over

00 cities in 37 countries.

We performed the same keyword search strategy for
ublications, cleaning it from references to technological

6 In order to circumvent the problem of an accidental selection
f keywords given by experts, they listed all terms in the patent
atabase beginning with “nano”. An expert in NST assessed each
erm to ascertain whether it is used in the context of nanotechnol-
gy and whether it indicates an unambiguous relation to this field.
orty keyword queries were obtained, identifying singularly a field.
ee Fraunhofer-ISI (2002), available at www.cwts.nl/ec-coe.
7 We ran the query procedure also on the EPO database for the same
eriods, obtaining lass than 20% of the patents identified at USPTO. It
s generally recognized that important inventions are patented across
atent offices, and are usually found at USPTO.
8 The source of data is constituted by the Delphion patent database

DPD), which is an on-line proprietary database, accessible from
ww.delphion.com. It includes data from different national Patents
ffices. In particular, it offers a complete text and images of all patents

ssued by the US Patent and Trademark Office (USPTO) since 1971.
t offers the possibility to query in a very intuitive manner the remote
atabase.
urce: Our elaboration from WoS-ISI.

classes. Follow-up interviews with scientists in the field
validated this strategy for publications (Beltram, 2005).
We searched both in the title and keywords of a publi-
cation. The data source is the SCI and SSCI of the ISI
database for the years 1988–2001. We obtained a pool
of 93,149 publications, authored by 119,640 individuals,
affiliated to 13,752 institutes.9

More generally, our dataset considers only a “seed”,
from which a more complete dataset might be gener-
ated by applying iteration techniques; so, for example,
citation links may be used to include not only papers
that show one of the keywords but also papers
cited in the seed that might be part of an emerging
field.10

3.2. Rate of growth of nano science and
nanotechnology

In the case of nano science, it is clear that there has
been impressive growth not only in individual fields
(such as carbon nanotubes, nanocoatings or nanobiotech-
nology) but in the discipline as a whole. In less than 10
years, an army of almost 120,000 scientists worldwide

has mobilized around the new discipline. Several thou-
sand new institutions worldwide have entered the field.
The scientific output of such collective action amounts
to about 100,000 publications (see Fig. 1).11

9 The unit of analysis is constituted by the parent institute. Data on
individuals have been cleaned by correcting for classical distortions.
Data on affiliations are raw data and should be treated carefully. The
cleaning of affiliations is underway.
10 In a later stage of the PRIME Nanodistricts project, a new dataset,

based on similar procedures, was developed by Zitt (2005). We plan
to investigate this type of database in future research.
11 The database mentioned in footnote 10 consists of approximately

180,000 publications in the period 1991–2004.

http://www.cwts.nl/ec-coe
http://www.delphion.com/
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laborat

3.3. Degree of diversity

As argued previously, there are strong reasons to
expect divergent dynamics in NST. Within the overall

12 The use of a single keyword search strategy, in general, might
have many drawbacks. For example, Zucker and Darby identify around
2000 USPTO-granted patents in the period 1981–2000 using the word
“nano” either in the title or in the description. Following the ISI Fraun-
hofer methodology, on the contrary, we identified no less than 2700
USPTPO-granted patents in the same period.
When we tried to replicate their approach, we obtained different results.
On one hand, we executed a search based only on the word “nano” in
the USPTO archive (www.uspto.gov): (TTL/nano$ OR SPEC/nano$)
AND ISD/1/1/1980 → 1/1/2001. We found more than 50,000 patents
Fig. 2. Cumulate arrivals in nanotechnology, May 2004. Source: Our e
2004.

In the case of nanotechnology, we can discern a less
stable dynamic of inventive output in terms of growth
rates. There has been an impressive growth in the produc-
tion of patents, especially in recent years (1996–2002).
The USPTO has patented several thousand inventions
in nanotechnology, with around 6600 files at the end
of 2005. In Fig. 2, the data on USPTO patents (used
throughout this paper) have been integrated with data on
EPO patents and WIPO PCT patents, using the same key-
word structure, in order to briefly observe other sources.
While European patents are at very low levels, the num-
ber of patents that fall within the patent cooperation
treaty, signed also by Japan, are very high. In particular,
Japanese patents exceed 7000 in the period 1976–2004
(7469 up to December 2004).

What can be observed is a dynamic process charac-
terized by an average growth rate which is far larger than
average in science and engineering for all the years in the
period. To give an order of magnitude, total publications
in SCI grew annually by 3% in the period 1990–1993
and around 1% in 1998–2001. The peak rate was 14% in
2003, following a drop of 2% in 2002 (our elaboration
on WoS-ISI data).

However, an exponential growth in publications was
not observed, while the growth of applications in patents
is exponential until 2002. This is in contrast with recent
interesting results from Zucker and Darby (2003), who
find exponential growth in publications in the period
1980–2000. We interpret this difference with respect to
methodology and substance. Zucker and Darby’s dataset
was built using the generic word “nano*” while our
dataset follows a static combination of keywords. There-

fore, the two datasets have different statistical properties.
Our dataset may underestimate the production of papers
that use only completely new keywords, as it is based
on a static keyword list. On the other hand, Zucker and
ion. Note: The patents for 2004 include only those granted before May

Darby’s dataset may include false positives – for exam-
ple, nano-seconds, nanoplankton, nanoflagelate, and so
forth – and is subject to manipulations from authors
that include the word “nano” merely out of fashion.12

In addition, Zucker and Darby’s data refer to the period
1980–2004, while our sample is limited to the period
1988–2001. As a matter of fact, the share of nano-articles
per 1000 science articles started to grow significantly
only after 1990 (Zucker and Darby, 2003, p. 55; Fig. 1).

From a substantive point of view, there may have been
a catching-up effect in recent years, due to the legitimat-
ing of keywords included in the sample (and hence a
decrease in growth rates). Comparing publications with
patents it is clear that the impressive growth in publica-
tions took place 5–7 years before the surge in patenting.
This is a relatively short period for the real economic
effects.
over the 1980–2000 period, clearly an unrealistic amount. More inter-
estingly, use of the word “nano” does not turn up the US04343993
patent granted in 1982 to Binnig and Rohrer for the invention of the
scanning tunnelling microscope; we verified directly that the suffix
“nano” does not appear in the 11-page document of that patent.

http://www.uspto.gov/
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of new words appearing year after year in the literature
are simply the result of strategic relabelling or routine
scientific description. After all, proposing new words to
Fig. 3. Stocks, use, entry, and exit of keywords with res

merging field of NST, there are several well-identified
ub-fields. The Fraunhofer-ISI methodology is based on
list of 40 subqueries, each of which is a combination
f keywords identified by 40 experts in the field. We
anked all subfields in terms of number of publications
nd patents and identified the most important.

The identified subfields at the top of the distribution
orrespond very closely to large scientific areas iden-
ified in the literature. In particular, we labelled query
umber 33 in the Fraunhofer-ISI query list (including
eywords such as ionic channels, molecular motors,
anospray) as nanotechnology, query 13 (e.g. scanning
robe microscopy) as nano-instrumentation, query 37
e.g. nanolayer) as nano fabrication, query 5 as nano
lectronics materials, query 11 (e.g. nanotube, nanowire,
anowhisk) as nanomaterials.

It is certainly possible that these subfields cover arti-
les and patents retrieved under other queries proposed
y the Fraunhofer-ISI and found in lower positions in the
anking. What is striking is the extremely high level of
oncentration of the distribution: for publications these
ve fields account for around 60% of the total, while for
atents they account for slightly more than 50% of the
otal.

This evidence is consistent with published reports on
he main areas of nano science and technology. Basi-
ally, applications of nano structures to life sciences,
lectronics, and new materials absorb the majority of
ublished research, while publications on the develop-
ent of nano-instrumentation cut across all subfields.
he distribution of subfields in patents differs slightly
ue to the relative immaturity of patentable devices in
he nano-biotechnology field.

An important dimension of diversity is dynamic:
s diversity increasing or decreasing over time? Are

esearch programmes moving away from others, or are
hey getting closer as they proceed? Or, put in other
erms, can we observe a pattern of divergence or a pattern
f convergence among research programmes?
the overall population by year. Source: Our elaboration.

Following the literature on field delineation in biblio-
metrics and scientometrics, we would say that research
programmes might be characterized by keywords and
combinations of keywords. A full appreciation of the
dynamics of search would require observation of the
way in which keywords originate and cluster together
over a long period. While this will be the object of future
research, we offer here a preliminary exploration of this
issue by looking at the industrial dynamics of keywords.

If a discipline is subject to a divergent search regime,
there will be many new keywords appearing per unit of
time. As can be seen in Fig. 3, there is constant and linear
growth in the number of entries of new keywords. We
defined new keywords (new entrants) as those that appear
for the first time in the dataset at any point in time. If a
keyword has been used at least once in any year before an
observation, it is not labelled as new. Consequently, each
year, the total number of keywords used includes new
keywords and old ones, drawn from the set of keywords
that appeared for the first time in any previous period.

The use of new keywords as an indicator of emerging
areas of research requires some qualification. In particu-
lar, it is sometimes observed that scientists relabel their
research in order to draw increased attention from gov-
ernments, funding agencies, and public opinion. In the
field of NST, this may have been done by physicists
and chemists in the USA after the significant boost in
funding for biomedical research during the time of the
Clinton Administration.13 More generally, new words
might be used to describe existing objects rather than new
objects. However, it is hard to believe that the thousands
13 We would like to thank Paula Stephan and participants at the Greno-
ble Workshop on Nanodistricts (March 2006) for raising our attention
to this issue.
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d total n
Fig. 4. Ratio between number of new keywords entered an

the scientific community requires justification if scien-
tists are to preserve their credibility. Therefore, although
the crude number of new words at aggregate level admit-
tedly inflates the degree of diversity, the persistence of
a massive entry of new words is a clear signal of a pro-
liferation pattern. Future research is needed in order to
disentangle this important issue.

The ratio between the number of new keywords and
the total number of keywords used each year is an indi-
cator of turnover. As is shown in Fig. 4, this ratio starts
at very high levels at the beginning, given that, by con-
struction all the keywords are new in the first year and
the set of old keywords starts small. However, it is worth
noting that the ratio stands at more than 40% even at the
end of the period. Each year, the nano science commu-
nity is able to generate more than 10,000 new words to
describe their production, i.e. 40% of used keywords. We
view this ratio as a remarkable indicator of turbulence,
deriving from a divergent dynamics of proliferation of
new research programmes.

As shown in Bonaccorsi (2005), similar levels of
turnover can be found in computer science, where the
ratio levelled out at 40% at the end of the observation
period. However, in that case the publications of the top
1000 scientists worldwide were examined, and not those
of the whole community, and one might argue than top
scientists have a better than average ability to generate
new research topics on a continuous basis. We can con-
clude, therefore, that nano science complies fully with
the second requirement to qualify as leading science, i.e.
divergent dynamics.

3.4. Level of complementarities: interface between

science and technology

In leading sciences institutional and human capital
complementarities are crucial to the development of
umber of keywords used by year. Source: Our elaboration.

research. Institutional complementarities arise because
the generation of discovery and invention requires
researchers with different perspectives on a given
object of research. Due to their different professional
backgrounds, these researchers are usually affiliated
to different institutional actors (e.g. public research,
industry, hospital, public administration, regulatory bod-
ies), bringing to the search process peculiar cognitive
attitudes and operational practices. Human capital com-
plementarities arise because the epistemic nature of
discovery requires the deployment of several disci-
plinary competencies, even within the same team and/or
the same institution.

Institutional and human capital complementarities
are the fundamental mechanism for realizing effective
science–technology interactions. In practice, however,
there are several possible ways to implement these types
of complementarities, for example, in terms of intensity
of interaction between researchers, flows of communi-
cation, and pattern of mobility. Given the previously
discussed relation between discovery and design, in NST
the fundamental complementarity is between industry
and academia.

To investigate the relation between nano science and
technology, we clustered patents in three groups accord-
ing to the scientific curricula of the inventors. The first
group consists of patents whose inventors are all authors
of at least one scientific publication in NST (only-
authors). By contrast, the second comprises patents
whose inventors have no scientific publication in that
field (only-inventors). In the third, we isolated those
patents that have at least one inventor, who is also author
of at least one scientific publication in the field of NST.
This taxonomy is an initial contribution to the devel-
opment of a new metrics of science and technology
relations based on individuals and communities rather
than on paper trails. Individual-based indicators can only
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e used after appropriate matching procedures between
ifferent datasets have been carried out.14

In this paper, we present only a crude taxonomy
ased on the extreme discrete values and very sharp
hresholds. Basically, we ask that all/no members of
he group have a zero level of a selected variable. If all
atent inventors have zero publications they are labelled
only-inventors”; if none have zero publications they
re labelled “only-authors”; if none of the two extreme
ases is true, they fall into a residual group called
authors–inventors”.15

The results of the matching procedure of the names
f the individuals are illustrated in Fig. 5.

Summing up the only-author and author–inventor
roups, it emerges that a significant majority of patents
over 66%) have at least one inventor that is also an
ctive scientist. Therefore, we find evidence of a highly
nterconnected knowledge system, in which the transfor-

ation of scientific achievements into patentable results

nd of both into commercial ventures is very rapid, and
akes place through the multiple roles played by scien-
ists themselves. Interestingly, the author–inventor group

14 These types of matching cannot avoid the problem of synonymy
r homonymy. In the past, the literature has dealt with the problem
y collecting CV data and the matching is usually done using ad hoc
nd tedious procedures. (For a set of contributions, see Bozeman and
angematin, 2004.)
iven the dimensions of our dataset, this methodology is not really

easible. In future works, we aim to develop automatic name-matching
lgorithms based on multiple indicator score methods.
15 We executed a simple matching procedure as follows:

- Inventor versus Inventor: Drexler K Eric = Drexler K$ Eric;

- Author versus Author: Drexler K Eric = Drexler-KE;

- Author versus Inventor: Drexler-KE = Drexler K$ Eric.

ric K. Drexler is regarded as one of the “founding fathers” of nano sci-
nce and technology. His most famous book, Engines of Creation: The
oming Era of Nanotechnology (New York: Anchor Press/Doubleday),
as published in 1986.
Policy 36 (2007) 813–831 821

is growing more rapidly than the two other groups (see
Fig. 6).

Surprisingly, this simple classification has strong
validity and good predictive power. Although future
research might develop more fine-grained taxonomies,
this is a promising start. We interpret the three groups
as approximations of different forms of institutional
complementarities.16

Following our taxonomy, only-inventor patents orig-
inate from inventors that have never published in the
field. In all likelihood, these inventors are industrial
researchers for whom at least one of the following propo-
sitions holds true: (i) they have not pursued an academic
career; (ii) they are not allowed to publish in the open
literature; (iii) they work on applications that cannot be
published in the scientific literature; or (iv) they work
in institutions where publishing is encouraged but have
no original results to submit, or publish in fields other
than those of NST, or publish in non-ISI journals, or are
technical staff (Fig. 7).

The literature on industrial research has noted that
companies that allow their researchers to publish in the
open literature do so because they want to gain access,
visibility, and a reputation in the scientific community.
Industrial researchers that do not have a track record of
published articles have more difficulty in getting access
to critical external knowledge and in building up absorp-
tive capacity (Rosenberg, 1990). Similarly, companies
that want to access external knowledge may hire peo-
ple with a track record in public research (Gittelman
and Kogut, 2003). Assuming that case sub (iv) is less
important, we might conclude that this group identifies
fairly precisely industrial R&D that has no or very weak
institutional complementarity with public research.

On the contrary, in the other two groups all or at least
some of the inventors have published at least once in the
literature. The only-authors group is interesting, because
it is made up of individuals for whom at least one of the
following propositions holds true: (i) they all work in
public research organizations and carry out both publish-
ing and patenting; (ii) they work in companies, but all of

them are encouraged to publish in the open literature; (iii)
they work in companies, but all of them have a previous
public research career behind them; (iv) a combination

16 It should be borne in mind that co-invention relations are stronger
than, for example, co-authorships or co-occurrence of keywords or co-
citations in documents. Patents are expensive, create exclusive rights,
and may give rise to streams of revenues. Being recognized as an
inventor is a right that has full legal implications. Therefore, if more
individuals are recorded as co-inventors of a patent, their mutual rela-
tions are likely to be institutionalized.
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Fig. 6. Entry of individuals by community. Source: Our elaboration.

in relati

The results of Fig. 8 allow us to conclude that there
is a higher probability that inventors-only are employed
primarily in companies.
Fig. 7. Distribution of patents by community

of proposition (ii) and (iii); (v) some of them work in
companies and are permitted to publish/have published
in their early career, some of them work in public insti-
tutions, and they collaborate and patent together.

Basically, these three communities represent differ-
ent ways of organizing the complementarity between
industry and academia. Only-inventors access scientific
knowledge through codified channels such as publica-
tions and conferences. They do not involve professional
scientists in their inventor community, nor do they
have a track record of scientific publications in their
past. Only-authors have full access to scientific knowl-
edge, but have no structured and permanent access
to knowledge of potential industrial applications, i.e.
have difficulties in combining knowledge about physi-
cal structures (discovery) with knowledge about design.
Since design-related knowledge is structurally more

idiosyncratic and less codified than scientific knowledge,
only-authors that come from academia implement the
minimum level of complementarity. Finally, the commu-
nity of authors–inventors gets access to both discovery
on to assignee type. Source: Our elaboration.

and design knowledge, both in the codified and in the
embodied form, on a permanent and organized way. They
realize most of the complementarity. We anticipate that
the more intense the complementarity, the more effective
the invention.

To explore the different institutional search regimes,
we classified the dataset of our patent assignees into three
groups, according to whether they are private companies,
public research organizations (hereafter also, PROs) or
individuals.17 We found that around 68% of the patents
are assigned to private companies while PROs own 26%
of them.
17 PROs include higher education institutions (both public and
private) and other non-university public research performing organi-
zations such as government labs, large national research centres and
public hospitals.
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Fig. 8. Distribution of patents by assignee typ

At least one active scientist is involved in the invention
f around 80 and 60% of the patents assigned respec-
ively to PROs and private companies.

. The impact of complementarity on inventive
erformance

As we have seen from the matching exercise, there is
onsiderable overlap between the different social roles
f researchers in the production of public knowledge and
f appropriable results. Two-thirds of patents have been
roduced by a team of inventors in which at least one
nventor has published in the field.

We propose that the specific pattern of interaction
etween different types of inventors has an impact on the
uality of patents, as measured in the relevant literature
see below).

Patents in the only-author group originate from two
ifferent patterns: researchers in the public sector that
ublish and patent, or industrial researchers in com-
anies that maintain close relations with academia. In
uture research we will disentangle the two communities,
ooking at individual data on patents and publications
nd tracing careers across various affiliations. For the
ime being, we predict that this community will produce
atents with a lower quality than the author–inventor
ommunity.

The latter will have the best performance, because
ere all groups of inventors benefit from at least
ne individual who has experience in publishing (cur-
ently or in the early career), while the others may
ell be pure industrial researchers. In this sense, the
uthor–inventor community is characterized by the high-
st degree of institutional complementarity. In fact, in
he only-author group it is required that all inventors
re also active in publishing. Therefore, if the patent is
ation to community. Source: Our elaboration.

obtained within a company, only industrial researchers
that are all exposed to the scientific community will
be involved, while if it is obtained in collaboration
between industry and academia, public researchers col-
laborate only with those industrial researchers that also
publish. In a word, in the only-author group there
is low distance (cognitive, social, and institutional)
between co-inventors. In practice, these patents do not
involve industrial researchers or technicians who, while
not personally involved in publishing, may have deep
knowledge of the technology. Therefore, we expect that
the author–inventor community, based on interaction
patterns that materialize high levels of institutional com-
plementarity, will exhibit better quality in the inventive
activity.

The relation between the two groups of only-author
and only-inventor is a bit more complex. On one hand,
patents originated by groups of inventors in which no
one has published (only-inventors) are characterized by
access to scientific knowledge through codified chan-
nels, leading to a prediction of poor quality. On the other
hand, the community of only-authors may be heavily
influenced by academic inventors that do not have access
to embodied design knowledge, also leading to a pre-
diction of poor quality. Balancing these two effects is
an empirical matter. We do not therefore advance any
specific proposition.

The proposition regarding the superiority of the
author–inventor community extends to the overall qual-
ity of patents, and to the upper tail of the distribution
of inventive productivity. We rank inventors by num-
ber of patents produced and investigate whether the

author–inventor community is more than proportionally
present in the upper part of this distribution. This qualifi-
cation is important, given the skewness of the distribution
of inventive productivity.
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(Family) may be particularly well suited as an indicator
of the economic value of patent rights.18
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Finally, we extend this proposition to one of the most
important consequences of the quality of patents, namely
the probability that an inventor becomes a founder of a
new company.

We therefore put forward the following testable
propositions:

Proposition 1.

(a) The quality of patents of the inventor-only commu-
nity will be lower than the quality of patents of the
author–inventor community.

(b) The quality of patents of the author-only commu-
nity will be lower than the quality of patents of the
author–inventor community.

Proposition 2. The productivity of authors–inventors’
inventive activity will be higher if counted by the num-
ber of patents produced in the top percentiles of the
distribution of patents/inventors.

Proposition 3. Given the higher technological perma-
nence of authors–inventors, we will observe more of them
as founders of companies.

5. Patent quality across different communities

In this section, we suggest some indicators that can be
used in measuring the performance of inventive activity.
Patent indicators have been widely used as a proxy of the
intensity and quality of innovations in different fields of
social sciences. It is not our intention to review that liter-
ature here, but a broad survey can be found in Jaffe and
Trajtenberg (2002). We will follow a multiple indicators
approach as suggested by Hall and Trajtenberg (2004),
Henderson et al. (1998), and Lanjouw and Schankerman
(2004).

One of the most widely used patent indicators are
patent references or citations. In patents, citations serve
an important legal function, since they delimit the scope
of the property rights awarded by the patent. Thus, if
patent B cites patent A, it implies that patent A rep-
resents a piece of previously existing knowledge upon
which patent B builds, and over which B cannot have
a claim. The applicant has a legal duty to disclose any
knowledge of prior art, but the decisions regarding which
patents to cite ultimately rests with the patent examiner,
who is supposed to be an expert in the area and hence
able to identify any relevant prior art the applicant may

miss or conceal. The presumption is thus that citations
are informative of links between patented innovations.
Hence, citations made (or backward citations) may con-
stitute a paper trail for spillovers, i.e. the fact that patent
h Policy 36 (2007) 813–831

B cites patent A may indicate knowledge flowing from
A to B.

Some scholars have suggested that a large num-
ber of citations to others implies that a particular
innovation is likely to be more derivative in nature
(Lanjouw and Schankerman, 2004). This is more evi-
dent when citations are within the same technological
field. Hence, dispersion index measures that take into
account the distribution across technological classes
have been elaborated, for instance the originality index,
which is 1 minus the Herfindal index of backward
citation across technological classes (Henderson et al.,
1998).

As citations are a paper trail for spillovers, received
(or forward) citations may be indicative of the impor-
tance of the cited patent (Trajtenberg, 1990). Received
citations over the long term indicate an innovation that
has contributed to future research. Citations received
soon after patent application suggests rapid recogni-
tion of its importance as well as the presence of others
working in a similar area, and thus the expectation of a
valuable technological area. Due to the problem of cita-
tion lag, we cannot trace forward citations over the long
term in NST. We suggest a count indicator (FWcit5) of
forward citations over the short term, in particular 5 years
between the publication date of the cited and the applica-
tion date of the citing. We expect FWcit5 to be positively
correlated to the patent value.

The claims in the patent specification delineate the
property rights protected by the patent. Principal claims
define the essential novel features of the invention and
subordinate claims describe detailed features of the inno-
vation. The patentee has an incentive to claim as much
as possible in the application but the patent examiner
may require that the claims be narrowed before granting.
The number of claims could be considered an indication
that an innovation is broader and of greater potential
profitability (Lanjouw and Schankerman, 2004).

Patent family size, measured as the number of juris-
dictions in which a patent grant has been sought, should
be directly related to the expected (private) value of
protecting an innovation and thus to the value of the
innovation, since applying for protection in each coun-
try is costly (Lanjouw et al., 1998). Hence, family size
18 We obtained the family size from Delphion-Derwent, a private
vendor. Delphion extends the family data received from INPADOC
to create the family unit and considers the set of patents filed with
different patenting authorities that refer to the same invention.
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Table 1
Descriptive statistics of patent indicators over the period 1989–1999

Sample Min Max Median Mean Std Skewness Kurtosis

Overall
Originality 2932 0.00 0.93 0.56 0.50 0.28 −0.72 2.33
FWcit5 2932 0.00 114.00 3.00 5.15 7.18 3.92 33.39
Family 2932 1.00 884.00 7.00 11.56 26.48 17.04 464.09
Claims 2932 1.00 236.00 15.00 18.80 16.11 3.79 32.64

Authors–inventors
Originality 1056 0.00 0.93 0.59 0.51 0.28 −0.77 2.39
FWcit5 1056 0.00 73.00 3.00 5.34 7.43 3.27 20.10
Family 1056 1.00 422.00 7.00 12.76 24.68 8.71 108.59
Claims 1056 1.00 199.00 17.00 20.20 17.21 3.86 31.61

Only-authors
Originality 919 0.00 0.90 0.53 0.48 0.29 −0.61 2.08
FWcit5 919 0.00 54.00 3.00 5.17 6.14 2.34 11.56
Family 919 1.00 468.00 4.00 7.64 18.02 19.01 469.15
Claims 919 1.00 155.00 14.00 17.97 14.70 2.76 16.90

Only-inventors
Originality 957 0.00 0.91 0.56 0.50 0.26 −0.77 2.55
FWcit5 957 0.00 114.00 2.00 4.92 7.80 5.17 51.39
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Claims 957 1.00 236.00

ource: Our elaboration.

.1. Empirical evidence

In the following analysis, we decided to consider only
he utility granted patents with an application date in the
eriod 1988–1999. We opted to start from 1988 because
he period of our dataset of scientific publications in NST
overs 1988–2001. Secondly, our patent dataset is lim-
ted to 1999, since the FWcit5 cannot be computed for
he following years.19

Table 1 reports the descriptive statistics of the sug-
ested indicators. Some of them have a large spectrum of
ariation (max–min) and are strongly skewed, which fits

ith previous findings in the literature that most patents

urn out to be of very little value, and only a handful have
ignificant importance.

19 There might be some truncation bias in the sample. One possible
ource of truncation bias is the application lag for patents applied for
efore 1999 and not granted at the end of the period. It can be argued,
owever, that this should not be very large given that the average appli-
ation lag is 2.28 years and we found that less that 1.5% of nano patents
ave an application lag greater than 5 years. Secondly, there may be
truncation bias relating to the citation lag when we include in the

stimates patents applied during 1999, given that we normalized the
itation to a 5-year lag window and built up the dataset in the mid-
le of 2004. To overcome this limitation, we ran the regressions with
he data up to 1998 and the results hold. In this paper, we decided
o report the estimates up to 1999 because of the larger degrees of
reedom.
14.01 33.82 18.41 460.48
18.06 16.06 4.39 43.30

We compared the performance of the inventive activ-
ity across the three communities in three different ways.

Firstly, we compared the means of indicators for dif-
ferent groups, noting a number of statistically significant
differences (Table 2). The originality index for only-
authors is significantly lower than for authors–inventors
and only-inventors. In these terms, the only-authors rely
less on interdisciplinary previous art.

The higher originality of authors–inventors patents
is followed by a larger technological importance and
patent scope, with regard to which the other two groups
do not differ significantly. Only-inventors patents have
received greater protection, which could signal that
they have a higher economic impact. Authors–inventors
produce patents that are significantly more original,
and have wider scope and expected value than only-
authors. With respect to only-inventors, patents produced
by authors–inventors are also more cited, in addition
to having a wider scope. These results fully con-
firm Proposition 1(a and b), i.e. the quality of patents
obtained by the author–inventor community domi-
nates.

On the other hand, patents produced by only-authors
are significantly less original and have less expected

value than patents produced by only-inventors. We can
interpret this finding in two ways. First, since patents
produced by only-inventors are usually assigned to com-
panies (see Fig. 8), it may be argued that they receive
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Table 2
Comparison of the means: t-test statistics

Authors–inventors vs. only-authors Authors–inventors vs. only-inventors Only-authors vs. only-inventors

Originality 2.78*** 1.18 −1.69***

FWcit5 0.58 1.26* 0.78
*** .94 −5.12***

.88*** −0.13

**statistically significant at 5% level; ***statistically significant at 1% level.

Table 4
Maximum likelihood factor loadings of one latent variable model

Only-authors Only-inventors Authors–
inventors

Overall

Originality 0.39 0.21 0.33 0.29
FWcit5 0.18 0.43 0.22 0.25

quality index, taking authors–inventors as the baseline.
Model 1 includes only the categories of inventors, while
Family 5.31 −0
Claims 3.10*** 2

Source: Our elaboration. Note: *Statistically significant at 10% level;

stronger protection, due to potential strategic behaviour,
and hence have a larger family size. Alternatively, it may
be possible that only-authors are relatively more rep-
resented by academic inventors, who focus only on a
limited technological area. If this is true, it appears that
accessing complementary knowledge is easier when it
is formed by codified scientific knowledge than when it
refers to idiosyncratic design knowledge.

Secondly, given the strong skewness of the quality of
innovation, comparison of the means has well-known
limits. It might therefore be more interesting to look
at the distribution of patents across different commu-
nities at the top percentiles of the distribution of the
suggested patent indicators. Table 3 depicts forward cita-
tions and shows that on average authors–inventors have
more patents in those percentiles than the other two com-
munities.

Finally, we built a quality index with the mean of
different patent indicators, as suggested in Appendix A.
In particular, we built a common factor patent quality
index that is assumed to be an unobserved characteristic
of a patent positively influencing four quality indica-
tors: backward citations, forward citations, number of
claims, and family size. Estimation of the common
quality index q is based on information extrapolated
from the covariance matrix of our four observable indi-
cators. By assuming the normality distribution of the
common factor, we can estimate by maximum likeli-
hood, which ensures a unique solution. The quality index

is distributed normally with zero mean and variance
σ2.

Table 4 presents the factor loadings for the specified
model. Both the restriction of no common factor and

Table 3
Patents by different community at the top percentiles of the distribution
of the patent indicator

Percentiles 75p (%) 90p (%) 95p (%) 99p (%)

Authors–inventors 43.88 37.41 44.90 42.86
Only-authors 30.61 31.97 12.59 28.57
Only-inventors 25.51 30.61 42.52 28.57

Source: Our elaboration.
Family 0.20 −0.08 0.34 0.15
Claims 0.24 0.26 0.31 0.31

Source: Our elaboration.

on more factors are rejected. It is worth noticing that
the sign of the coefficients is positive, as we expected,
excluding family size for only-inventors. We interpret
this as over-protection of their patents with respect to
their value.

Table 5 reports the distribution of the quality index
for different communities given the above factor load-
ing. The quality index gives a one-dimensional summary
of four different indicators of patent quality, normal-
ized around zero. Again the authors–inventors exhibit
the highest performance, while only-authors display a
lower quality of inventive activity with respect to the
other two communities.

Similar results were obtained even when the fac-
tor index was conditioned for the geographic origin of
the inventors and the patent application year. Table 6
shows the OLS regression of patent characteristic on the
the others add control variables and Model 3 also adds
the interaction effects between categories of inventors

Table 5
Distribution of the quality index across communities

Percentiles Only-authors Only-inventors Authors–
inventors

Overall

P25 −0.39 −0.32 −0.28 −0.32
P50 −0.02 −0.01 0.05 0.01
P75 0.30 0.31 0.40 0.34
P90 0.52 0.56 0.69 0.60
P99 0.97 1.03 1.16 1.06

Source: Our elaboration.



A. Bonaccorsi, G. Thoma / Research Policy 36 (2007) 813–831 827

Table 6
OLS regression of the inventor type on the multidimensional quality index

Model 1 Model 2 Model 3

Coeff. S.E. Sign Coeff. S.E. Sign Coeff. S.E. Sign

Only-authors −0.12 0.02 *** −0.06 0.02 *** −0.08 0.03 ***

Only-inventors −0.07 0.02 *** −0.07 0.02 *** −0.06 0.02 ***

PROs × only-authors −0.04 0.03
PROs × only-inventors −0.07 0.04 *

Control variables
Number of inventors −0.01 0.05 −0.01 0.05
Time dummies × ×
Country dummies × ×
Constant −0.04 0.44 −0.04 0.44

Number of observations 2802 2802 2802
Adjusted R-squared (%) 2 16 17
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otes: (1) ***1% level significance; **5% level significance; *10% lev
ll models. (3) Models 2 and 3 have been estimated by including time

nd the institutional role, namely PROs. The negative
nd significant coefficient for only-authors and only-
nventors in all models suggest that patents produced
y authors–inventors have higher quality, as predicted
y Proposition 1(a and b). This effect does not depend
n country differences or time trends. Moreover the
nteraction effects between assignee type and PROs are
egative, although not significant for only-authors. This
s consistent with the above theoretical discussion. On
ne side the only-inventor group might lack adequate sci-
ntific knowledge, while the only-authors might not have
tructured and permanent access to potential industrial
pplications.

. Productivity of publishing and patenting for
ifferent communities

In the previous section, using multiple patent indica-
ors we found that the inventive activity of only-authors
s of lower quality, while that of the authors–inventors
s the highest. In this section we explore the relation
etween patenting and publishing. In particular, the aim
as to test if authors–inventors have a higher partici-
ation rate in the top percentiles of the distribution of
atents and publications across individuals. The distri-
ution is obtained by ranking all authors or inventors
y total number of articles or patents produced in the
eriod. The findings show an interesting pattern. First,
lthough authors–inventors do not out-perform only-

uthors in terms of publishing distribution in the top
ercentiles, the observed difference is very small (see
able 7). The top 1% of most productive scientists

hat have patented consists of 87 individuals, a figure
ficance. (2) The likelihood-ratio test rejects the null hypothesis across
untry dummies.

that can be broken down almost equally into inven-
tors that cooperate only with other scientists (n = 46)
and inventors that cooperate also with people without
a publication record. This means that even highly pro-
ductive scientists benefit from strong complementarities
with inventors with different backgrounds. The higher
quality of patenting is strongly reflected in the top list
of inventors by count (Table 8): here, authors–inventors
represent 87% of the top 1% of most productive inventors
and 77% of the top 5%. These results strongly con-
firm Proposition 2, i.e. authors–inventors have a larger
number of patents in the top percentiles of patenting
productivity.

7. Entrepreneurial productivity

The list of founders we used is provided by a ques-
tionnaire survey done by www.netinvestor.com. They
interviewed around 1000 companies that have launched
NST-based products. We extracted a list of 425 founders
of such companies. It turned out that 67 of them hold at
least one patent as defined in our database.

In Table 9, we classified those 67 by community mem-
bership according to the suggested taxonomy. As can
be seen, 70% of founders belong to the author–inventor
community; the result holds even if we weight for the
size of the community.

This confirms Proposition 3, i.e. given the higher
technological permanence of authors–inventors, we will

observe more of them as founders of companies. The
post-entry performance at these firms is an interesting
research question, which will be addressed in future
works.

http://www.netinvestor.com/
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Table 7
Distribution of inventors across different communities in the top percentiles of the publishing distribution

Top percentiles Only-authors Only-inventors Authors–inventors Overall

Units
1p 46 Nd 41 87
5p 209 Nd 226 435
10p 437 Nd 433 870
25p 1129 Nd 1146 2275

Top percentiles Only-authors (%) Only-inventors Authors–inventors (%) Individuals (%)

Shares
1p 53 0 47 100
5p 48 0 52 100
10p 50 0 50 100
25p 50 0 50 100

Sources: Our elaboration.

Table 8
Distribution of inventors across different communities in the top percentiles of the patenting distribution

Top percentiles Only-authors Only-inventors Authors–inventors Overall

Units
1p 5 6 76 87
5p 37 65 333 435
10p 102 151 617 870
25p 412 476 1387 2275

Top percentiles Only-authors (%) Only-inventors (%) Authors–inventors (%) Individuals (%)

Shares
1p 6 7 87 100
5p 9 15 77 100
10p 12 17 71 100
25p 18 21 61 100

Sources: Our elaboration.

Table 9
Distribution of founders by community

Founders Only-inventors Only-authors Authors–inventors Overall

Units 4 16 47 67
Share % 6 24 70 100
Normalization ratio 2.10 1.93 1.00
Normalized units 8 31 47 86
Normalized share % 10 36 55 100

e autho
Notes: The normalization procedure takes into account the fact that th
normalization ratio adjusts for the size of the community.

8. Conclusions and suggestions for further
research

The importance of scientific discoveries in fuelling

technological inventions has been widely documented in
many fields. This is particularly evident in NST where we
found that the production of more than two-thirds of the
nano patents involves an active scientist. To summarize,
r–inventor community is larger than the other two communities. The

we have presented detailed and original evidence on an
emergent field in which:

- the production of new knowledge is growing much

faster than the average for science and enginee-
ring;

- although the application areas seem quite well defined,
within each area there is evidence of a divergent pat-
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tern of growth, following a process characterized by
turbulent entry dynamics of new keywords;
scientists have a tremendous impact on patenting activ-
ity in a variety of forms, and the whole field is
characterized by high levels of institutional comple-
mentarity between industry and academia.

These features qualify NST as a new leading sci-
nce, characterized by high growth, divergent dynamics,
nd new forms of complementarity. Some pointers seem
o suggest that in NST these elements are present with
reater intensity and speed than in other leading sciences
xamined in their birth period (for instance, biotechnol-
gy), although this proposition will need to be subjected
o rigorous testing in future research.

In order to provide evidence on these aspects, we
eveloped a battery of new indicators, namely indicators
f entry and turnover of keywords, and individual-
entred indicators based on the matching of publication
nd patent data.

Based on this descriptive and interpretative evidence,
e developed some testable propositions that relate the

nstitutional setting of NST research to performance, as
easured by a factor model of patent quality. In spite

f the evidence of a highly interconnected knowledge
roduction system, the transformation of scientific dis-
overies into economic welfare is not immediate and
irect. A simple taxonomy of inventors revealed evi-
ent differences in their technological and economic
erformance, according to some standard indicators. In
articular, communities characterized by the highest lev-
ls of institutional complementarity (authors–inventors)
erform better in both patenting and entrepreneurial
ctivity, and achieve a remarkable performance in pub-
ishing as well.

Further research is needed for wider validation of
he results and to combine the suggested framework
ith geographical and institutional contexts in which the

nventors are embedded.
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Appendix A. A multidimensional measure of
patent quality

The construction of the multidimensional measure of
patent quality relies on factor analysis. In factor mod-
els, each series of data (quality indicator in our case) is
broken down into a common component and an idiosyn-
cratic component. The common component is driven by
only a few common shocks, denoted by Q < N, where N
is the number of indicators. In a static factor model, the
common shocks affect the indicators only contempora-
neously. The basic model is given by X = UB + E = K + E,
where X is the (T × N) matrix of observations on N series
(indicators) of length T. The series are normalized to
have mean 0 and variance 1. U is the (T × Q) matrix
of Q common shocks and B is the (Q × N) matrix of
factor loadings, which determines the impact of com-
mon shock q on series n. The common shocks and the
factor loadings together make up the common com-
ponent K. After the influence of common shocks has
been removed, only the idiosyncratic component (E)
remains. To estimate the common component, we have
to find a linear combination of the indicators in X that
explains as much as possible the total variance of each
indicator, minimizing the idiosyncratic component (for
a technical discussion of factor models, see Jolliffe,
2002).

The parallel with least squares estimation is clear
from this formulation, but the fact that the common
shocks are unobserved complicates the problem. The
standard way to extract the common component in
the static case is to use principal component anal-
ysis. In principal component analysis, the first Q
eigenvalues and eigenvectors are calculated from the
variance–covariance matrix of the dataset X. The com-
mon component is then defined as: K = XVV′, with
V = [p1, . . ., pQ] and where pi is the eigenvector cor-
responding to the ith largest (i = 1, . . ., Q) eigenvalue of

the covariance matrix of X. This method does not ensure
a unique solution. A further problem is that ex ante it is
not known how many common shocks Q affect the series
in X. Following the approach suggested by Lanjouw and
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Schankerman (2004), we use a multiple-indicator model
with an unobserved common factor:

yki = λkqi + β′X + eki

where yki indicates the value of the kth patent indica-
tor for the ith patent, q the common factor with factor
loadings λk and normally distributed, and X is a set of
controls. The main underlining assumption is that the
variability of each patent indicator in the sample may be
generated by the variability of a common factor across
all the indicators and an idiosyncratic part ek not related
to the other indicators and distributed N(0, σ2

k ).
In our setting, the common factor is the unobserved

characteristic of a patent that positively influences four
quality indicators: backward citations, forward citations,
number of claims, and family size. Estimation of com-
mon quality index q is based on information extrapolated
from the covariance matrix of our four indicators. By
assuming the normality of qi and ek, we can estimate
by maximum likelihood, which ensures a unique solu-
tion. Once the estimates of λk are obtained, the model is
inverted to calculate q.

References

Beltram, F., 2005. Interview with the authors on the discovery meth-
ods and instrumentation tools in Nano Science and Technology.
Available upon request from the authors.

Bonaccorsi, A., 2005. Search regimes and the industrial dynamics of
science. Paper presented at the PRIME General Assembly, Manch-
ester: under review. Available at: http://www.prime-noe.org/index.
php?project=prime&locale=en&level1=menu1 prime 1b8057d
059a36720 1&level2=6&doc=Annual Conference&page=3.

Bozeman, B., Mangematin, V., 2004. Editor’s introduction: building
and deploying scientific and technical human capital. Research
Policy 33, 565–568.

Bozeman, B., Dietz, J.S., Gaughan, M., 2001. Scientific and techni-
cal human capital: an alternative model for research evaluation.
International Journal of Technology Management 22, 716–740.

Breschi, S., Lissoni, F., 2004. Knowledge networks from patent data:
methodological issues and research targets. In: Glänzel, W., Moed,
H., Schmoch, U. (Eds.), Handbook of Quantitative S&T Research.
Kluwer Academic Publishers.

Callon, M., Courtial, J.P., Laville, F., 1991. Co-word analysis as a tool
for describing the network of interactions between basic and tech-
nological research: the case of polymer chemistry. Scientometrics
22, 155.

Cohen, W.M., Levin, R.C., Mowery, D.C., 1987. Firm size and R&D
intensity: a re-examination. The Journal of Industrial Economics
35, 543–565.

Dasgupta, P., David, P.A., 1994. Toward a new economics of science.
Research Policy 23, 487–521.
Fraunhofer-ISI, 2002. Search methodology for mapping nano-
technology patents. Karlsruhe, Germany: ISI. In: Mapping
Excellence in Science and Technology across Europe Nanoscience
and Nanotechnology, EU Report. Available at: www.cwts.nl/ec-
coe.
h Policy 36 (2007) 813–831

Gambardella, A., Giuri, P., Mariani, M., 2005. The Value of Euro-
pean Patents. Evidence from a Survey of European Inventors. Final
Report of the PATVAL EU Project.

Gittelman, M., Kogut, B., 2003. Does good science lead to valuable
knowledge? Biotechnology firms and the evolutionary logic of
citation patterns. Management Science 49, 366–382.

Grupp, H., 1992. In: Grupp, H. (Ed.), Dynamics of Science Based
Innovation. Springer-Verlag.

Hall, B.H., Jaffe, A., Trajtenberg, M., 2005. Market value and patent
citations. RAND Journal of Economics 36, 16–38.

Hall, B., Trajtenberg, M., 2004. Uncovering GPTs with Patent Data.
In: NBER Working Paper No. 10901. Cambridge, MA.

Harhoff, D., Narin, F., Scherer, F.M., Vopel, K., 1999. Citation fre-
quency and the value of patented inventions. Review of Economics
and Statistics 81, 511–515.

Harhoff, D., Scherer, F.M., Vopel, K., 2003. Citations, family size,
opposition and the value of patent rights. Research Policy 32, 1343.

Heinze, S., Schmoch, U., 2004. Opening the black box. In: Glänzel,
W., Moed, H., Schmoch, U. (Eds.), Handbook of Quantitative S&T
Research. Kluwer Academic Publishers.

Henderson, R., Jaffe, A.B., Trajtenberg, M., 1998. Universities as a
source of commercial technology: a detailed analysis of Univer-
sity Patenting, 1965–1988. Review of Economics and Statistics
80, 119–127.

Jaffe, A.B., Trajtenberg, M., 2002. Patents, Citations, and Innova-
tions: A Window on the Knowledge Economy. The MIT Press,
Cambridge, Massachusetts.

Jaffe, A.B., Trajtenberg, M., Henderson, R., 1993. Geographic local-
ization of knowledge spillovers as evidenced by patent citations.
The Quarterly Journal of Economics 108, 577–598.

Jolliffe, I.T., 2002. Principal Component Analysis, second ed.
Springer-Verlag, New York.

Kenney, M., Goe, R.W., 2004. The role of social embeddedness in
professorial entrepreneurship: a comparison of electrical engineer-
ing and computer science at UC Berkeley and Stanford. Research
Policy 33, 691–707.

Klein, S., 1985. What is technology? Bulletin of Science, Technology
and Society 1, 215–218.

Klepper, S., 2001. Employee startups in high-tech industries. Industrial
and Corporate Change 10, 639–674.

Kline, S.J., Rosenberg, N., 1986. An overview of innovation. In: Lan-
dau, R., Rosenberg, N. (Eds.), The Positive Sum Strategy. National
Academy Press, Washington, DC.

Lanjouw, J.O., Pakes, A., Putnam, J., 1998. How to count patents
and value intellectual property. The uses of patent renewal and
application data. Journal of Industrial Economics 46, 405–432.

Lanjouw, J.O., Schankerman, M., 2001. Characteristics of patent lit-
igation: a window on competition. RAND Journal of Economics
32 (1).

Lanjouw, J.O., Schankerman, M., 2004. Patent quality and research
productivity: measuring innovation with multiple indicators. Eco-
nomic Journal 114, 441–465.

McKelvey, M., 1996. Evolutionary Innovations. The Business of
Biotechnology. Oxford University Press, Oxford.

Mowery, D., Rosenberg, N., 1998. Paths of Innovation: Technological
Change in 20th-Century America. Cambridge University Press,
New York.
Narin, F., Olivastro, D., 1992. Status report: linkage between technol-
ogy and science. Research Policy 21, 237–249.

Narin, F.S., Hamilton, K.S., Olivastro, D., 1997. The increasing linkage
between U.S. technology and public science. Research Policy 26,
317–330.

http://www.prime-noe.org/index.php%3Fproject=prime%26locale=en%26level1=menu1_prime_1b8057d059a36720_1%26level2=6%26doc=Annual_Conference%26page=3
http://www.prime-noe.org/index.php%3Fproject=prime%26locale=en%26level1=menu1_prime_1b8057d059a36720_1%26level2=6%26doc=Annual_Conference%26page=3
http://www.prime-noe.org/index.php%3Fproject=prime%26locale=en%26level1=menu1_prime_1b8057d059a36720_1%26level2=6%26doc=Annual_Conference%26page=3
http://www.cwts.nl/ec-coe


esearch

N

O

O

P

P

R

R

S

S

S

A. Bonaccorsi, G. Thoma / R

elson, R.R., 1986. Institutions supporting technical advance in indus-
try. The American Economic Review 76, 186–189.

rsenigo, L., 1990. The Emergence of Biotechnology. Cambridge
University Press, Cambridge and New York.

wen-Smith, J., Riccaboni, M., Pammolli, F., Powell, W.W., 2002. A
Comparison of U.S. and European University–Industry Relations
in the Life Sciences. Institute for Operations Research, Manage-
ment Science: INFORMS, p. 24.

avitt, K., 1990. What we know about the strategic management of
technology. California Management Review 32, 17.

opp, D., 2005. They Don’t Invent Them Like They Used To: An
Examination of Energy Patent Citations Over Time. In: NBER
Working Paper No. 11415.

osenberg, N., 1982. Inside the Black Box. Cambridge University
Press, Cambridge and New York.

osenberg, N., 1990. Why do firms do basic research (with their own
money)? Research Policy 19, 165–174.

hane, S., 2004. Academic Entrepreneurship: University Spinoffs and
Wealth Creation, Edward Elgar.
tankiewicz, R., 2000. On the concept of “Design Space”. In: Ziman,
J. (Ed.), Technological Innovation as an Evolutionary Process.
Cambridge University Press, Cambridge and New York.

tankiewicz, R., 1997. The development of beta-blockers at Astra-
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