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Abstract-The empirical import of Shannon’s Information Theory and its impact on information science are 
discussed. It is argued that extension of the scope of Information Theory as well as development of new 
theories of information science presupposes better understanding of relevant empirical regularities and 
laws. Possibilities of broadening the empirical foundation of Information Theory by introduction of 
appropriate least effort criteria are discussed. 

INTRODUCTION 

The subject of study of information science is empirical phenomena associated with various 
information processes such as information generation, transmission, transformation, com- 
pression, storage and retrieval. The ultimate purpose is to gain a better understanding of the 
nature of information. Starting-as does every other empirical discipline-with a description of 
phenomena in the domain of its interest, information science seeks to establish general 
principles by means of which the observed phenomena can be explained, accounted for, and 
predicted. 

A theory of an empirical science is, in one sense, a representation or statement of a body of 
knowledge, founded on empirically verified relationships and laws, and knitted together by 
general principles, which may not necessarily be immediately apparent. It is in this sense that 
one refers to theory of light in physics or theory of valence in biology. 

The term theory is also used in a different sense, in the sense of a systematic representation 
of formal rules and principles, which have no direct empirical import. Thus a theory of 
equations in mathematics is a theory in the latter sense of the word. It is common to refer to 
such theory as calculus, i.e. calculus of variations. The essential difference between these two 
senses of the term theory is that in the first case the statements of a theory are interpreted and 
are empirically verified, at least to a certain extent, to “hold” for observed data. In the second 
case, a theory is not interpreted and, as far as its postulates and rules go, does not need an 
interpretation, i.e, does not need to “hold” for any particular kind of observed phenomena. 
Rather, it is an abstract or formal theory. 

On the other hand, it is not at all uncommon that an originally formal or abstract theory is 
later discovered to have fruitful interpretation within certain empirical contexts. This then 
becomes somewhat of an unexpected windfall for the empirical science in the domain of which 
a formal theory finds such a meaningful interpretation. Think, for instance, of the formal 
theories of logic and, in particular, of Boolean algebras, which though known for many years in 
their abstract, uninterpreted form, recently found important applications in modelling electronic 
circuits and computational devices. 

Information science is a yound discipline and neither its empirical laws nor its theories are 
sufficiently well developed. To some, Shannon’s Information Theory is the only theory in this 
subject field. The purpose of this paper is, first, to discuss the Information Theory as originally 
developed by Shannon and then to evaluate its potential significance as a theory of broader 
empirical foundation of information science. 

CALCULUS OF INFORMATION THEORY 

Shannon’s Information Theory is first and foremost a formal theory, built around the 
paradigm of entropy. The entropy equation is derived from certain axioms, which have no 
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empirical import. Since the understanding of the formal nature of Information Theory is 
essential for the exposition of its role in information science, we shall beiefly review these 
axioms (for the discrete case)[l, 91. 

Let X be a discrete random variable which can take on a finite number of values 
xl, x2, . J,, with probabilities p,, p2, . . . , pn. Let h(s) be a function which assigns a real number 
h(p;) to each event {X = xi}, whose probability is pi, i = 1.2,. . ,a. Let W(p,,pz,. . ,p,) = 

$ pin and denote H[( I/n), . . . (l/n)] = f(n). 
*:I 

Now, we postulate the following axioms, i.e. require that the function A(.) satisfy the 
following formal conditions: 

(1) 
(21 
(31 

(4) 

f(n) is a monotonically increasing function, i.e. n > n’ implies f(n) > f(n’); 
f(m ’ fl)=ffm)+f(nk 
H(p,, P?r.. f ,pn-i. 41,. f ‘ .y,) = H(p,. . . >pn-lr P,) 

+pJf(~ . . . . . ~):whereq,+q:t.,,+q,,,=p,~: 

H(p, 1 - p) is a continuous function of p. 

It has been shown that the only function A(.) which satisfies all of the above requirements 
(axioms) is, up to a constant multiplier, 

h(p,)==-log,pj, i= I,2 ,..., n 

and thus 

H(Pl7 PZ7 . . . >Pn I= - 2 Pi loga Pi- 

The above four axioms which have been postuIated as requirements for the functions hf.1 
and Ht.), are completely formal in nature and require no interpretation. In particular, there was 
no need to introduce the notion of “information” in connection with the above axioms, nor any 
other information-related notion such as “uncertainty” or “message.” In fact, all of the calculus 
of Shannon’s information theory can be developed without any reference to such constructs or 
notions. It is not even necessary to interpret the numbers pi, p2, _ . . ,p,, in the above axioms as 
“probabilities” to avoid indirect empirical import which the term “probability,” depending on 
its interpretation, may imply. We can simply say that pl,. . . ,pn are non-negative numbers 
which sum to 1 and are values of some measure on x. In particular, the entropy function 
H(P,> Lb,. . . ,p,) could be formally interpreted as a measure of spread of the values of a 
measure function p(Xi), i = I, 2,. . . ,IL 

EMPIRICAL IMPORT OF PROBABILITY 

On the other hand. it is precisely the interpretation of the measure function p(q) as 
probability that establishes the first link between information theory and nature. The construct 
or concept of probability relates information theory to certain empirical observations and 
permits to view the theory as a model of these phenomena. We adopt here the viewpoint of 
Margenau of probability as a physical quantity which, like most other important constructs of 
science, is definable both in constitutive and epistemic sense[8]. The constitutive definition is 
due to Laplace and takes the probability of an event to be the number of favorable cases 
divided by the total number of “equipossible” cases. It is often called the u priori form of 
probability insofar as the probabilities of events are determined prior to observation and 
measurement. The epistemic definition of probability was first developed by Ellis. Cournot and 
others, and takes probability to be the ratio of the actual number of times the event occurs in a 
series of tests to the total number of events. Consequently, it is often referred to as frequency 
theory of probability. The latter is obviously a rule of correspondence, linking the theoretical 
construct “probability” to empirical world or nature. Furthermore, probability now becomes a 
measurable physical quantity. Consequently, interpreting the numbers p,, . ,p,,, which appear 
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as arguments of the functions h(e) and H(.), as “probabilities” in the epistemic sense, we 
provide the foundation for the empirical interpretation of the whole theory because of the 
central role these functions play in it. 

Unfortunately, the interpretation of information theory provided by the empirical import of 
the construct of probability does not automatically provide a link between observable physical 
phenomena and “information” in any of its empirical senses. Shannon did establish this 
connection by making certain assumptions about the relationship of probability as a measurable 
physical quantity on the one hand and the phenomenon of information on the other. Essentially, 
this connection is based on the assumption that information is not directly observable and thus 
not directly measurable, but can be observed only in terms of associated phenomena, some of 
which may be measurable. One such associated observable, Shannon claimed, is the probability 
of an event: the more improbable an event is, the more information is contained in a message 
that the event did happen. 

Thus, although probability man not be the same thing as information, it might, perhaps, be a 
sufficiently good in&cant of it. In a similar vein, the state of a quicksilver column in a 
thermometer, observed in terms of its extension or height is not the same thing as temperature. 
But the state of a quicksilver column in an appropriately constructed device is a good indicator 
or index of temperature, and so we can determine the temperature of an object by bringing it 
into contact with a thermometer and measuring the height of the quicksilver column in the 
thermometer. So, the argument runs, why not measure information by measuring the associated 
probabilities in some appropriate fashion? 

Probability as an index of information, which we shall equate, roughly speaking, with the 
contents of a message, is more specifically interpreted and related to the function h(p,), called 
information measure of an event, in the following senses: 

(1) The smaller is the probability of an event to occur, the greater is the “amount of 
information” conveyed by a message that the event did in fact occur, i.e. pi > pi implies 
h(Pi) < h(Pj)* 

(2) There is no information contained in a message conveying the occurrence of a certain 
event, i.e. pi = 1 implies h(pi) = 0. 

(3) If two events are independent of each other, then the amount of information conveyed 
by a message that both these events occurred is equal to the sum of information contained in 
messages conveying the occurrence of these two events separately, i.e. if the event E is a joint 
event of two independent events Ei and Ej, then p(E) X p(Ei)p(Ej) implies h(p) = h(pi) + h(pj). 

At the first glance, there seems to be indeed both a good analogy between probability as an 
index of information and the height of quicksilver column in a thermometer as an index of 
temperature, and a good analogy between the methods of associated measurements. Un- 
fortunately, there are significant differences. 

First, the relationship between temperature of a body and its extension-in our case the 
height of quicksilver column in a measuring device-is not just postulated on a speculative 
basis, but firmly established by a low of physics. There is no empirical law of any kind, relating 
information associated with an event to its probability. 

Secondly, the postulates (l)-(3), although reasonable in some instances, are not at all 
plausible assumptions for explicating information in its general sense. In particular, the 
postulate (3) of additivity of information associated with independent events often cannot be 
justified on empirical grounds, when semantic or pragmatic aspects of information are under 
consideration. For example, consider two independent events with the same probability of 
occurrence which carry the same message to a receiver. Clearly, the amount of information 
transmitted by such two identical messages is not equal twice the amount of information which 
had been conveyed to him by one message. In fact, the second message, being identical with the 
first, did not increase at all the amount of information transmitted by the first message. 
Similarly, one can easily find many examples demonstrating that postulate (3) is usually 
untenable in situations in which pragmatic information considerations, such as value or 
pleasure, prevail. 

On the other hand, the postulates of information theory have empirical interpretations which 
hold very well for those aspects of information processes-in particular communication 
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processes-which involve objects and events as physical information carriers (specifically sign 
vehicles) and which are based on the laws of physics. It was indeed in this sense that Shannon 
developed his Information Theory as a model of communication. In the context of sign-based 

information processes, Information Theory can be more generally viewed as a theory focused 
on the syntactic dimension of these processes, in particular as a theory of sign media, sign 
shapes, and sign formation and transformation (coding). Since these sign vehicles are empirical 
prerequisites for information processes to occur. it is quite appropriate to interpret Shannon’s 
Information Theory in the context of sign processes as a theory of information potential of sign 
vehicles. 

THE PRINCIPLE OF LEAST EFFORT 

Syntactic, semantic and pragmatic dimensions of sign processes are only convenient 
abstractions for the purposes of semiotic analysis; there are no actual sign processes which 
would be purely syntactic, or semantic, or pragmatic in nature. Rather, every sign process 
involves of necessity all three aspects, even though under certain conditions it may be 
expedient to concentrate the attention just on one of these three aspects. Furthermore, 
syntactic, semantic and pragmatic dimensions of a sign process are, in general, not independent. 
They interact and influence each other to a certain extent and the extent to which one 
dimension affects the other two varies, as a rule, with the type of signs, context, interpreter, 
purpose, etc. The investigation of these dependencies and their effects on information proces- 
ses is one of the major challenges for information science as an empirical discipline. 

The question, to what extent Shannon’s Information Theory as a syntactic theory of 
information potential can be meaningfully made use of in semantic and pragmatic studies of 
information processes, is an open problem. More needs to be known about the phenomena 
which are characteristic of such interactions of semiotic dimensions, and more regularities and 
laws which hold for such phenomena need to be discovered before a definite answer can be 
provided on a firm empirical basis. 

In the meantime, only tentative conjectures can be made in this respect from the rather 
limited store of knowledge about regularities governing phenomena related to information 
potential of sign vehicles for transmission of messages and phenomena on one hand and 
phenomana related to their semantic and pragmatic aspects on the other. Some of these 
regularities or laws might eventually be explained by a combination of Information Theory with 
the Principle of Least Effort (in one form or another), with the latter providing for the empirical 
import. The Principle of Least Effort, in applications to linguistic problems, is commonly 
associated with Zipf’s name[l3]. However, much more significant theoretical development, 
tying the principle to Information Theory, is due to Mandelbrot[6,7]. Applied to words as sign 
vehicles (i.e. potential information carriers), the result can be briefly summarized as follows: 

Assume “informationally” optimal system of word frequencies, i.e. word frequencies, for 
which discourse requires the smallest possible mean number of letters for a given entropy value 
H, or carries the largest amount of Shannon’s information given the mean value of the number 
of letters. Then the shortest average word length, i.e. 

min i f(Xi)m(Xt) 
i=l 

subject to 

H = - 2 f(Xi) log /(xi) = const. 
i=l 

is given by 

f(Xi) = C[r(Xi) + VlbB (*) 

where f(xi) is the relative frequency of the word type xi; m(Xi) is the word length; r(Xi) is the 
rank of the word Xi in a list of words ordered by decreasing frequency: and C, V and B are 
constants. 
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For the special case of V = 0, the rank-frequency relationship equation. (*) which was 
derived by Mandelbrot from the above stated theoretical assumptions on the basis of calculus 
of Information Theory and the Principle of Least Effort is known as hyperbolic distribution or 
Pareto law. It has been shown by Fairthorn[3] that a wide range of empirical regularities 
conform with the hyperbolic distribution law. Its cumulative distribution function, F(x) = 

T f(x), approximates for B = 1 to 

F(x) = a log, x + b 

where a and b are constants. 
Below are given selected examples of empirical regularities or laws of informational 

phenomena which admit a reasonable interpretation in terms of some least effort criterion and 
which have the hyperbolic distribution form or can be derived from hyperbolic distribution by 
straightforward mathematical transformations. Included in this set of examples is, for the sake 
of completeness, the original version of the Zipf’s law as it was formulated by him based on 
extensive empirical observations. However, Mandelbrot’s theoretically derived expression in 
the form of eqn (*) for word frequency distribution turned out to fit the data even better. 

(1) Zipf’s Law. Let f(xi) be the number of occurrences of the word type Xi in some given 
text. Let different word types xi, i = 1,2,. . . ,n be arranged in order of decreasing frequency 
and let r(Xi) be the order of the word type xi in that list, called its rank [the most frequent word 
has rank I]. Then 

T(Xi) ’ f(X;) = C i = 1,2,. . . qn 

where C is a constant depending on a particular text[2]. 
(2) Bradford’s Law. Let n be the total number of periodicals which publish articles on a 

given subject. If this set of periodicals is divided into k groups, each containing n,, nz, . . . ,n,, 
periodicals and such that there is the same number of articles on that particular subject in each 
of the k groups, then 

i=l,2 ,..., k; k=l,2 ,... ,m; where n, is the so-called nucleus and Sk > 1 is the Bradford 
multiplier for k divisions of the n periodicals[3]. 

(3) Lotka’s Law. The number of scientists who publish x papers in a given field is 
approximately (l/x*) the number of scientists who publish one paper only, i.e. 

N(1) 0.608 
N(x)=yr=7 

where N(1) is the number of scientists who publish one paper, and N(x) is the number of 
scientists who publish x papers [S]. 

(4) Skinner’s Law of w&d association. The rank-frequency of individual word responses to 
Jung’s word association test is given by 

where F is the frequency of a response word, R is its rank and C, 8 are constants [ll]. 
(5) Law of vocabulary size. The number of different words (i.e. word types), d, in a text N 

words long (i.e. containing N word tokens) is equal to 

d = ; (0.423 + k - log, N + log, k) 

where k is a parameter depending on the type of text[4]. 
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(6) Response-time Law. The reaction time t of a human subject making a sequence of 
choice-responses is proportional to the amount of information which needs to be processed (i.e. 
is proportional to the average uncertainty or entropy of the source of signals): 

t=U-b CpilOgp, 

where p, is the probability of the ith signal being presented and a, b are constants[2]. 
(7) Law of indexing exhaustiuity. The following relationship holds between the degree of 

exhaustivity of content representation when a document is indexed by a group of indexers and 
the number of indexers in the group: 

h(n)= C,+klogn 

where n is the number of indexers, h is the degree of exhaustivity, C is a constant representing 
average exhaustivity of a single indexer and k is a parameter[l4]. 

SUMMARYANDCONCLUSIONS 

Shannon’s Information Theory is often considered a branch of mathematics and rightfully 
SO. It can be developed in its entirety from a set of formal axioms and neither its axioms nor 
the theorems need to be interpreted in any empirical sense. It is true that the development of an 
abstract mathematical theory might not have been Shannon’s original intention. Rather, the 
theory may have been originally developed with reference to the very practical communication 
engineering problems of maximizing the efficiency of signal transmission in terms of cost and 
reliability. In Shannon’s own words, the problem which motivated his research is described as 
follows: 

The fundamental problem of communication is that of reproducing at one point either 
exactly or approximately a message selected at another point. Frequently the messages have 
meaning; that is, they refer to or are correlated according to some system with certain 
physical or conceptual entities. These semantic aspects of communication are irrelevant to 
the engineering problem. The significant aspect is that the actual message is one selected 
from a set of possible messages. The system must be designed to operate for each possible 
selection, not just the one which will actually be chosen since this is unknown at the time of 
design [ 101. 

The claims of enthusiastic proponents of Information Theory, who sought to apply it 
indiscriminantly to any kind of information processes have so far not been justified. In 
particular, Information Theory has made little impact on information science, which ought to be 
its main and natural domain of application. We attempted to show here that the cause of the 
failure is essentially this: concepts and postulates of Information Theory, which have adequate 
interpretations in the context of communication engineering problems or. more generally, with 
respect to syntactic phenomena of information processes, are not adequately interpretable on 
the semantic and pragmatic level. In other words, Information Theory derives its basic 
empirical import from phenomena associated with sign vehicles and media as physical objects 
and phenomena associated with transformation of sign shapes (forms). 

On the other hand, the tendency to underestimate the significance of Information Theory for 
information science may prove to be premature and in the final result wrong. Combined with 
and augmented by appropriate empirical laws and general principles, Information Theory may 
still make important contributions to the study of semantic and pragmatic phenomena of 
information processes, in particular to the elucidation of effects of syntactic factors on such 
phenomena. A significant achievement in this respect was made by Mandelbrot who augmented 
Information Theory by the Criterion or Principle of Least Effort to derive the statistical 
structure of language which has an excellent match with empirical facts [61. 

Efforts of extending the application of Information Theory by augmenting it with ap- 
propriate empirical principles of information science have so far been limited essentially to 
Mandelbrot’s work. But even there, the “Principle of Least Effort” was considered by 
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Mandelbrot as fuzzy and neither empirically nor theoretically sufficiently well established, so 
that he took recourse to more specific optimality criteria, namely “cost” and “economical 
criterion of matching.” Thus an open research problem is to study alternative operational 
definitions of the concept “least effort” and how they relate to particular informational 
phenomena. This should help us to sharpen the concept of the Principle of Least Effort and 
give us a better understanding of empirical foundations of information processes, which in turn 
may open the doors to new applications of Information Theory in information science. 
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