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Opinion
The effects of ocean acidification (OA) on marine species
and ecosystems have received significant scientific at-
tention in the past 10 years. However, to date, the effects
of OA on host–parasite interactions have been largely
ignored. As parasites play a multidimensional role in the
regulation of marine population, community, and eco-
system dynamics, this knowledge gap may result in an
incomplete understanding of the consequences of OA. In
addition, the impact of stressors associated with OA on
host–parasite interactions may serve as an indicator of
future changes to the biodiversity of marine systems.
This opinion article discusses the potential effects of OA
on host and parasite species and proposes the use of
parasites as bioindicators of OA disturbance.

Increased CO2, seawater chemistry, and marine life
Anthropogenic emissions of carbon dioxide (CO2) since the
beginning of the industrial revolution (ca. 1780) have
caused atmospheric CO2 to increase at an unprecedented
rate and have resulted in a corresponding increase in
dissolved CO2 in the global ocean [1]. This addition of
CO2 has altered the carbonate chemistry of seawater,
increasing hydrogen ion (H+) and bicarbonate ion
(HCO3

–) concentrations, and reducing the concentration
of carbonate ions (CO3

2–) (Box 1). The predominant con-
sequences of these changes to seawater chemistry, now
known as ocean acidification (OA) [2], are a reduction in the
average environmental pH experienced by all marine
organisms and a decrease in the availability of calcium
carbonate (CaCO3) for calcifying marine species.

Calcification involves the concentration of CaCO3 pre-
cursors in the extracellular compartment and could re-
quire increased metabolic energy as a consequence of OA
[3]. In addition, all living organisms maintain an internal
pH within an optimal range through acid–base regulation,
a process that also requires metabolic energy. Therefore, a
decrease in ambient pH caused by OA could increase the
metabolic demands of acid–base regulation and reduce the
amount of energy available to marine organisms for respi-
ration, growth, reproduction, and, ultimately, survival
(reviewed in [4]). Consequently, the changes to seawater
chemistry caused by OA have the potential to affect the
physiological performance of all marine organisms. Fur-
thermore, as it is unlikely that all organisms will be
affected equally by the changing demands of acid–base
regulation or calcification, OA also has the potential to
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highlight differences in physiological plasticity between
coexisting species, potentially disrupting interspecific
interactions.

As a biotic stressor, parasites regulate host populations,
community biodiversity, and ecosystem function [5–7]. As
a taxonomically diverse group of marine organisms, para-
sites are exposed to the abiotic stressors associated with
OA. It is the duality of the role of parasites, as biotic
stressors and stressed organisms, that may provide
insights into the effects of OA on host organisms [8].
The parasitic infection of host species is a quantifiable
stressor, which can be incorporated into experimental
design to test the physiological limits of organisms expend-
ing increased metabolic energy on acid–base regulation or
calcification. In addition, parasite density and abundance
can be quantified in observational studies, and these
parameters provide data regarding the presence or ab-
sence of a wide range of host organisms [9]. It seems clear,
therefore, that parasitology could potentially become a
valuable tool in understanding the current and future
effects of OA on marine organisms and that parasites
may also serve as bioindicators of the impact of OA on
marine ecosystems.

This brief opinion article summarises the known
impacts of OA on free-living marine organisms, highlights
the potential synergy between OA and parasitism, and
discusses the promising role of parasites as indicators of
OA disturbance.

Physiological consequences of OA
As described in Box 1, the addition of CO2 to seawater
alters the concentrations of hydrogen (H+), bicarbonate
(HCO3

–), and carbonate (CO3
2–) ions. These chemical spe-

cies play important roles in fundamental physiological
processes such as protein function, enzyme activity, ion
transport, and calcification. Protein function and enzyme
activity are responsible for many important physiological
processes, including growth and the generation of meta-
bolic energy. A change in the electrochemical state of
proteins or enzymes, caused by an increase in the extra-
cellular concentration of charged ions, can affect binding
and reaction rate properties, respectively (e.g., [10]). As the
increase in atmospheric CO2 over the past 200 years has
already changed the concentration of dissolved ions in
seawater (30% increase in H+, 5.6% increase in HCO3

–,
and a 17.8% decrease in CO3

2– [11]), OA may alter the
metabolic efficiency of marine organisms that possess poor
ionoregulatory mechanisms [1].
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Box 1. Fundamentals of ocean acidification

Carbon dioxide (CO2) in the atmosphere is in equilibrium with CO2

dissolved in the oceans. When CO2 is added to the atmosphere, the

concentration of CO2 in seawater also increases. Once absorbed by

the oceans, CO2 undergoes several interrelated chemical reactions,

which alter the speciation of dissolved carbon and cause a decrease

in oceanic pH:

CO2 þ H2O $ H2CO3 [I]

H2CO3þ H2O $ HCO3
� þ Hþ [II]

HCO3
� þ H2O $ CO3

2� þ Hþ [III]

CO2 is added to the atmosphere through the growth and decay of

organic matter and, at a much faster rate, through fossil fuel

combustion and cement production. Altogether, 118 Pg of CO2, or

one-third of anthropogenically produced CO2, has been absorbed by

the global ocean over the past 200 years [11].

Over the past 400 000 years, atmospheric CO2 has varied between

200 ppm and 280 ppm. Since the industrial revolution began in the

late 18th century, atmospheric CO2 has increased to 390 ppm, and is

currently increasing at a rate of �0.5% per year [63]. This rate and

magnitude of increase are unprecedented in the past million years

[64,65].

The increase in atmospheric CO2 over the past 200 years

translates into a decrease in average oceanic pH of 0.1 units and a

continuing decrease of �0.02 pH units per decade [66]. The current

oceanic pH is �8.1 units [11] and is predicted to drop to �7.7 units

by the year 2100 and to �7.3 units by 2300 [13].

Box 2. Fundamentals of calcification

Calcification is the process through which calcifying organisms

cause the precipitation of calcium carbonate (CaCO3) from seawater

and synthesise it into biomineral structures such as shells. The

formation of CaCO3 in seawater is described by the following

equation:

Ca2þ þ 2HCO3
� $ CaCO3 þ CO2þ H2O [IV]

Calcifying marine organisms predominantly use two polymorphs

of CaCO3: coccolithophores and foraminifera use calcite, pteropods

and corals use aragonite, and molluscs use either or both [67]. The

ability of calcifiers to synthesise CaCO3 structures depends upon the

concentration, or saturation state, of the mineral in the surrounding

seawater. Saturation states indicate whether a solvent is super-

saturated or undersaturated with respect to a specific solute, and are

represented by the symbol omega (Vsolute). Omega values greater

than one indicate supersaturation and less than one undersatura-

tion, e.g., Va > 1 indicates the supersaturation of aragonite in

solution. In undersaturated conditions (Va or Vc < 1), the biosynth-

esis of aragonite or calcite cannot occur, and CaCO3 structures begin

to dissolve; some research also indicates that calcification rates are

affected when omega values are greater than one [68]. The depth

below which CaCO3 structures dissolve, that is, where Va or Vc � 1,

is known as the saturation horizon. The addition of CO2 to the

atmosphere ultimately causes the saturation horizon to become

shallower; since ca. 1780, it has become shallower by between 30

and 200 m [69].

Predictive models have suggested that the surface oceans at high

latitudes and in hypoxic areas will be the first marine environments

affected by the shallowing of saturation horizons, for example, the

subarctic Pacific and tropical Indian Ocean [13,68,69]. The colder

seawater temperatures found at high latitudes increase the solubility

of CO2, and hypoxic zones typically have high CO2 levels due to

microbial respiration.
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Calcification (Box 2) is the process through which calci-
fying organisms, such as molluscs, crustaceans, corals,
echinoderms, and many species of plankton, synthesise
CaCO3 structures from dissolved calcium (Ca2+) and CO3

2–

ions in seawater [12]. Predicted decreases in CO3
2– con-

centrations caused by OA may reduce the rate of calcifica-
tion in many marine organisms by reducing the
availability of inorganic carbon [13]. Furthermore, all cal-
cifying organisms possess a biological mechanism to con-
centrate Ca2+ and CO3

2– in extracellular compartments
prior to biomineralisation [12]. A decrease in ambient
levels of CO3

2– in seawater may increase the amount of
energy required by calcifiers to maintain the concentra-
tions required for biosynthesis [14]. In addition, changes to
the ambient concentrations of dissolved CaCO3 will reveal
interspecific differences in the efficiency of Ca2+ and CO3

2–

concentrating mechanisms, potentially disrupting compet-
itive relationships between coexisting species.

Current OA research
The effect of altered environmental pH on marine systems
and organisms has been investigated as a basic biological
and biogeochemical parameter since the early 20th century
(reviewed in [15]). Recently, however, investigations into
decreased pH in the context of OA have become the focus of
increased scientific attention. Other than a few isolated
studies, the majority of research on OA has been conducted
since the late 1980s, with 79% of OA articles published
since 2004 (see bibliometric analysis in [15]). To date, OA
research has focussed on plankton, corals, molluscs, and
macroalgae (reviewed in [1,15]), and has found that the
overall biological impact of OA will be negative [4]. Obser-
vational and experimental studies conducted in the past
decade have documented a wide variety of biological
366
responses to OA stress: (i) calcifying phytoplankton and
macroalgal species, as well as corals and molluscs, have
demonstrated reduced calcification rates [14,16–18]; (ii)
mollusc species have weaker calcified structures [19,20];
(iii) mollusc and echinoderm species have exhibited altered
metabolic rates [3]; and (iv) the larvae of molluscs, echi-
noderms, crustaceans, and teleost fish have demonstrated
a suite of reactions to OA stress which include reduced
growth and survival, delayed development, and beha-
vioural modification (echinoderms and molluscs [21], fish
[22], molluscs and crustaceans [23]). Other, less frequently,
described effects of OA include impaired immune response
(bivalves [24]) and a reduced accumulation of essential
trace elements (cephalopods [25]).

Despite this increase in research into the effects of OA,
very few papers have considered a parasitic species in the
context of OA (but see trematodes [26]). To date, no inves-
tigation has examined the combined effects of OA on host–
parasite interactions, i.e., pH and calcification stress on
host species with pH stress on parasitic species, and/or
subsequent alterations to community biodiversity or eco-
system structure.

Ecological role of parasites
Undoubtedly, pH is an important regulatory factor in
parasite physiology and population dynamics, as demon-
strated by research into the effects of pH on parasites in
culture [27], in the internal environment of the host [28],
and, perhaps most importantly, in freshwater habitats
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[29–32]. Accordingly, it is likely that changing oceanic pH
will have an effect on marine parasite survival or infectivity,
especially for species that produce free-living developmental
stages (reviewed in [33]). In addition, infection-induced host
mortality rates can be exacerbated by changing abiotic
conditions which increase host stress, potentially resulting
in synergistic interactions between infection and one or
more abiotic factor (e.g., temperature [34], anoxia [35],
and anthropogenic stressors [36]). As it has been demon-
strated that host species such as molluscs and crustaceans
are vulnerable to stressors associated with OA [4], it is not
unrealistic to assume that parasitic infection of these spe-
cies could cause increased pathogenicity if the parasites are
less affected than the hosts. Conversely, if parasites prove
less tolerant of reduced pH than their hosts, pathogenicity
could be decreased, modifying an important regulatory
factor of host populations.

Ultimately, the interaction of the stress responses of
hosts and parasites, in the context of OA, could potentially
alter community parameters that can affect ecosystem
stability, e.g., species-specific mortality rates, population
density, fecundity (in the case of castrating parasites),
competition, and predator–prey relationships. Changes
to any of these parameters could destabilise trophic inter-
actions and affect marine community biodiversity and
ecosystem function [34,37], particularly if species which
play a keystone or ecosystem engineer role exhibit a low
tolerance to the abiotic stressors associated with OA.

Parasites as bioindicators
The use of host–parasite interactions as an effective bioin-
dicator of anthropogenic perturbation of community biodi-
versity and ecosystem structure has been frequently
encouraged since 1997 [38–41]. Parasites are a ubiquitous
component of all ecosystems and, due to their complex life
cycles, experience a wide range of environments which
represent most biological niches possibly affected by abi-
otic stressors, for example, the internal compartments of
host species (endoparasites), the microenvironment sur-
rounding the host’s tegument (ectoparasites), and expo-
sure to ambient conditions during indirect transmission
between hosts. Parasite species often possess very differ-
ent developmental stages which may exhibit a range of
tolerances to changing abiotic conditions. Although ecotox-
icologists have not reached a consensus on the effects of
pollutants on parasites [42], there exists a wealth of em-
pirical data regarding the direct and indirect effects of a
wide range of anthropogenic stressors on many parasitic
taxa which may contribute to their use as bioindicators.
Direct effects include: (i) altered parasite survival (trema-
todes [43], monogeneans [44]); (ii) reduced transmission
success (trematodes [45]); and (iii) altered host suscepti-
bility to infection (acanthocephalans [46], trematodes, and
ciliates [47]). Indirect effects include modified host species
interactions (gastropod–trematode [48]), which can result
from increased host tolerance to toxicants due to parasitic
infection (bivalve–trematode [49]; gastropod–trematode
[50]; crustacean–isopod and teleost–nematode [51]).

Preliminary data regarding the direct effects of anthro-
pogenic disturbance also indicate that abiotic stressors
have the greatest impact on free-living larval stages of
the parasitic life cycle, such as trematode cercariae and
miracidiae [33]. Similarly, current research shows that the
larval forms of fish, molluscs, echinoderms, and crusta-
ceans are vulnerable to stressors associated with OA [21–
23]. As free-living parasitic larvae and the larvae of other
marine organisms share many morphological and physio-
logical characteristics [52], it is possible that the free-living
larval stages of parasites will prove vulnerable to stressors
associated with OA and will be an effective bioindicator of
OA disturbance. Standard procedures have been estab-
lished for the experimental exposure of marine larvae to
simulated OA conditions [53]. These protocols could be
applied to miracidiae and cercariae to establish baseline
data on survival, longevity, and infectivity.

Parasite diversity and abundance can also provide data
on the presence or absence of host species, as parasites rely
on the presence of one or more particular hosts to complete
their life cycles [9]. For instance, trematode parasites re-
quire a mollusc as their first intermediate host, and OA-
induced reductions in the local abundance of these calcifiers
would reduce infections in subsequent hosts in the life cycle
and endanger the local persistence of trematode species.
Consequently, a decrease in parasitic diversity may reflect
changes in the availability of one or more host species. This
approach would obviously be limited to parasites whose life
cycles are fully described. Such observational evidence, in
combination with experimental data regarding host species
tolerance to abiotic factors, could identify host species that
are vulnerable to stressors associated with OA.

Concluding remarks
Despite the abundance of evidence which suggests that the
overall effects of OA will be negative, a significant number of
marine organisms either benefit from, or are unaffected by,
the associated changes to seawater chemistry [1]. For ex-
ample, some pteropod species which naturally migrate
through oxygen minimum zones are unaffected by elevated
CO2 levels [54], whereas certain coccolithophore species
increase calcification rates under simulated OA conditions
[55]. These positive or neutral responses may be the result of
a bias towards short-term experiments which do not test the
long-term consequences of OA or demonstrate actual spe-
cies-specific or life history stage-specific tolerance to an
acidified environment. In either case, the data aptly illus-
trate our lack of a comprehensive understanding of the
effects of OA at a basic, organismal level. The study of
host–parasite interactions in the context of OA will not only
help rectify this knowledge gap but will also begin to eluci-
date the impacts of an acidified environment on community
and ecosystem processes, such as trophic dynamics and
biodiversity.

One of the most complex and well-studied ecosystems
affected by OA is the intertidal zone, which includes some
of the most biologically productive marine habitats, for
example, upwelling areas, kelp forests, mangroves, and
estuaries; these habitats possess rich parasite faunas that
are known to regulate invertebrate populations and affect
biodiversity [6]. These systems may serve as a useful and
easily accessible starting point for an investigation of OA
effects on host–parasite interactions. The intertidal zone
also experiences extreme natural variation in many abiotic
367
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parameters, such as temperature and salinity, which can
interact synergistically with pH (temperature [56] and
salinity [57]). Therefore, intertidal organisms may have
preadaptations to these abiotic factors, or be living at or
close to their tolerance limit. Consequently, a study of
hosts and parasites from the intertidal zone could reveal
a rich cross-section of marine species that will benefit from,
be unaffected by, or be negatively affected by OA.

Coastal ecosystems are also commonly exposed to a
range of anthropogenic stressors: global warming, eutro-
phication, hypoxia, and petroleum contamination; these
could synergistically interact with the effects of OA. Recent
publications have stressed the importance of multifactor
experiments which combine the effects of OA with other
environmental variables [58]. Given the increasing avail-
ability of data regarding the tolerance of parasites to a
range of abiotic factors [26,59–61], the identification of
host–parasite pairs for use in the study of interactions
between OA and anthropogenic stressors should be
straightforward. In this context, the use of host–parasite
associations as indicators of community and ecosystem
change caused by OA becomes even more relevant. Viewed
simplistically, OA is one of many abiotic perturbations
imposed on marine ecosystems as a result of human activ-
ity. Multiple stressors caused by these perturbations have
the potential to interact synergistically and push marine
systems past their ecological tipping points. Therefore, the
responses of host and parasite species to multiple stress-
ors, including OA, could function as bioindicators of OA-
mediated change and interactions between OA and pre-
existing anthropogenic stressors.

Our recommendations to incorporate parasitology into
the study of OA and employ host–parasite interactions as
bioindicators of OA disturbance are: (i) host–parasite pairs
must be used in long-term CO2 perturbation experiments,
which simulate current and future seawater conditions; (ii)
specific host–parasite pairs that have demonstrated low
tolerances to other anthropogenic stressors should be
assessed as bioindicators of OA disturbance, for example,
Littorina littorea (mollusc) and Cryptocotyle lingua (trem-
atode) (heavy metal contamination [62]); and (iii) data
generated by the use of host–parasite associations as
bioindicators of OA disturbance should be incorporated
into a holistic view of how the global oceans are affected
by human activity.
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