
Computer Science Review 25 (2017) 29–48

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review Article

Higher order mutation testing: A Systematic Literature Review
Ahmed S. Ghiduk a,b,*, Moheb R. Girgis c, Marwa H. Shehata b

a College of Computers and IT, Taif University, Saudi Arabia
b Department of Math. and CS, Faculty of Science, Beni-Suef University, Egypt
c Department of Computer Science, Faculty of Science, Minia University, Egypt

a r t i c l e i n f o

Article history:
Received 1 July 2016
Received in revised form 8 June 2017
Accepted 15 June 2017
Available online 4 August 2017

Keywords:
Mutation testing
Higher-order mutation testing
First-order mutants
Higher-order mutants

a b s t r a c t

Mutation testing is the process whereby a fault is deliberately inserted into a software system, in order
to assess the quality of test data, in terms of its ability to find this fault. Mutation testing is also used
as a way to drive the test data development process. Traditionally, faults were inserted one by one into
a software system, but more recently there has been an upsurge of interest by the area of higher-order
mutation, in which multiple faults are inserted into the system at once. Originally, this was thought to be
too expensive, as there was already a concern that the size of the pool of mutants for traditional mutation
was already too large to handle. However, following a seminal publication in 2008, it was realized that the
space of higher-ordermutants (HOMs) could be searched for useful mutants that drive testing harder, and
to reduce the overall test effort, by clever combination of first-order mutants. As a result, many authors
examined theway inwhichHOM testing could find subtle hard to kill faults, capture partial faultmasking,
reduce equivalent mutants problem, reduce test effort while increasing effectiveness, and capture more
realistic faults than those captured by simple insertion of first-order mutants. Because of the upsurge
of interest in the previous issues, this paper presents the first Systematic Literature Review research
specifically targeted at a higher-order mutation. This Systematic Literature Review analyzes the results of
more than one hundred sixty research articles in this area. The current paper presents qualitative results
and bibliometric analysis for the surveyed articles. In addition, it augments these results with scientific
findings and quantitative results from the primary literature. As a result of this work, this SLR presents an
outline for many future work.

© 2017 Elsevier Inc. All rights reserved.

Contents

1. Introduction... 30
1.1. Software Testing (ST) ... 30
1.2. Mutation Testing (MT) ... 30

2. Review methodology .. 31
2.1. Planning the review ... 31
2.2. Conducting the review... 31
2.3. Reporting the review.. 34

3. Results and discussion .. 37
3.1. The exploration of RQ1 .. 37
3.2. The exploration of RQ2 .. 37
3.3. The exploration of RQ3 .. 40
3.4. The exploration of RQ4 .. 40
3.5. The exploration of RQ5 .. 40

4. The findings of this SLR .. 42
4.1. Work have been done ... 42

4.1.1. Overcoming the high cost and expensiveness of HOMT ... 42
4.1.2. Coping with the realism problem.. 44
4.1.3. Solution of the equivalent mutant problem .. 44

* Corresponding author at: College of Computers and IT, Taif University, Saudi Arabia.
E-mail addresses: asaghiduk@tu.edu.sa (A.S. Ghiduk), moheb.girgis@mu.edu.eg (M.R. Girgis), marwahashem88@yahoo.com (M.H. Shehata).

http://dx.doi.org/10.1016/j.cosrev.2017.06.001
1574-0137/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.cosrev.2017.06.001
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2017.06.001&domain=pdf
mailto:asaghiduk@tu.edu.sa
mailto:moheb.girgis@mu.edu.eg
mailto:marwahashem88@yahoo.com
http://dx.doi.org/10.1016/j.cosrev.2017.06.001

30 A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48

4.2. Work to be done ... 44
4.2.1. Overcoming the high cost of HOMT .. 44
4.2.2. Coping with the realism problem.. 44
4.2.3. Solution of the equivalent mutant... 44
4.2.4. Test data generation ... 44

4.3. Threats to validity .. 44
4.3.1. Difficulties in finding all the studies that are related to our SLR ... 44
4.3.2. The difficulty in classifying the studies ... 44
4.3.3. The difficulty in data extracting... 44
4.3.4. Writing languages of some papers .. 44

5. Conclusion and future work ... 44
References ... 45

1. Introduction

1.1. Software Testing (ST)

ST is a process to identify the differences between current con-
dition of software and desired condition. The aimof ST is to develop
the software through determine whether the software achieves its
requirements, and to ensure that the software does not contain
any errors. In fact, most of the resources of a software project
(more than 50%) are invested in the detection and correction of
faults [1,2]. Despite this massive investment, it is widely known
that the complexity of software makes it impossible to detect all
the faults of software [1–3].

ST is very important to increase the confidence in the software
system or application because they may contain many hidden
errors. Some of these errors are unimportant, but some of them
are expensive or dangerous. Therefore, the software system or
application should be checked to obtain a high efficiency software.
There are many types of ST such as black-box testing, white-
box testing, component-based testing, and integration testing. This
study focuses on mutation testing particularly higher-order muta-
tion testing (HOMT) as a type of white-box testing.

ST depends on generating test cases which are collection of test
actions that are executed to verify a specific attribute or function
of the software application. There are many testing techniques
used to design the test cases. Some of these techniques work on
designing highly effective test cases that detects more errors with
less effort and time [1–3]. These techniques can be categorized
according to source code knowledge such as black-box, white-
box, gray-box techniques [4–6], used information source knowl-
edge such as program-based, specification-based, interface-based
techniques [4,5,7], or testing level knowledge such as unit-level,
integration-level, system-level techniques [2,7].

1.2. Mutation Testing (MT)

MT is developed by DeMillo et al. [8] and Hamlet [9]. In MT,
a change is made in the source code of the software. Then, the
software is executed to check if the test cases are able to detect
the errors. The changes in the faulty program do not have an effect
on the aim of the program. A goal of MT is to evaluate the quality
of the test cases in revealing the mutants. MT was developed to
find test inputs to kill the mutants in the tested program [9]. MT
requires creating faults (errors) in the tested program so it is called
a fault-based testing technique. The process ofMT is accomplished
in three steps as follow:

• First, inserting faults into the original program by making
simple syntactic changes to produce a set of faulty programs
called mutants; each mutant contains a different syntactic
change.

• Second, applying set of test cases on the original program
and also on all mutants. Then the ability of these test cases
on detecting errors are assessed by calculating themutation
score (MS). MS measures the effectiveness of a test set in
terms of its ability to detect faults.

• Third, comparing the results of the original program and
the mutated one. If the result of executing a mutant differs
from the result of executing the original program for any test
cases in the input test set, the fault denoted by the mutant
is killed or detected; otherwise it is said to be survived.

The MS is the ratio of the number of killed mutants to the
difference between total number of the mutants and the num-
ber of equivalent mutants. The value of MS is between ‘‘0’’ and
‘‘1’’. If MS has a lower value, this means that mutants cannot
be detected accurately by the test set. If MS has a higher value,
we say that most of the mutants were killed with this test set.
When MS = 0 that refers to the mutants cannot be killed by any
test set, and when MS = 1 that means the mutants are killed
easily. The MS is calculated by the following formula: MS =

Number of Killed mutants
Total number of mutants−Number of equivalent mutants .

Mutants can be categorized into two types: first-order mutants
(FOMs) and higher-order mutants (HOMs). FOMs are created by
applying mutation operators only once. HOMs are created by ap-
plyingmutation operatorsmore than once. Mutation operators are
set of modifications that are applied on the program to generate
mutants. Depend on the used programming languages, there are
many mutation operators such as statement deletion, logic or
arithmetic operator replacement and variable replacement. Table 1
provides examples of FOMs and HOMs.

MT can take place in many activities such as evaluating the
quality of the test set to produce a high quality and stable system.
On the other side, it has a number of obstacles. The first challenge
of MT is the enormous number of mutants. Whereas, not only the
original program is considered but each mutant is also executed
by set of test cases, which means high cost and high effort are
needed. The second challenge is the realism problem. Mutants
are created by inserting single and simple changes in the original
program; so the realistic faults are not denoted. Also, there is
no any guarantee that most of real faults have killed [10]. The
third challenge is the equivalent mutant problem. Some mutation
operators generate mutants semantically similar to the original
program. These mutants are called equivalent mutants and their
detection are very difficult and require more human effort. Several
approaches have been introduced to provide considerable solu-
tions for these problems such as do smarter approach [11,12], do
faster approach [13,14], do fewer approach [15], and incremental
mutation testing [16]. MT is applied not only to common program-
ming languages but also to other domains such as SQL, aspect-
oriented programs, network protocols, web services, etc [17].

HOMT is a new model of MT which studies HOMs. It was
proposed by Jia and Harman [18]. HOMs are considered as more

A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48 31

Table 1
Examples of FOMs and HOMs.

Original Program
Mutated Program p′

First-Order Mutant Higher-Order Mutant

Second-Order Mutant Third-Order Mutant

sum = x + y sum = x ∗ y sum = x ∗ y sum = x ∗ y + +

avg = sum/n avg = sum/n avg = sum − n avg = sum − n

complex faults [19]. They are generated by adding two or more
errors (faults) in the original program [18]. HOMs can be generated
by combining FOMs. HOMT can solve some MT problems [18–20].
HOMT may reduce the number of created mutants and also can
generate HOMs harder to kill than the FOMs such as subsuming
HOMs [10,18]. In addition, HOMT can limit unrealistic and avoid
generating equivalent mutants [18,20–22].

Because of the upsurge of interest in HOMT, this paper presents
the first survey paper specifically targeted at a higher-order mu-
tation. Although there have been previous surveys of mutation
testing, and testing more generally, this is the first survey that
specifically targets higher-order mutation. So far here is just about
sufficient interest and activity in this area that it now warrants a
survey, and therefore it is timely to publish a systematic literature
review on the topic of higher-order mutation. The contributions of
this paper are:

• Inspection of more than one hundred sixty research articles
in the higher-order mutation testing area.

• Presenting qualitative results and bibliometric analysis for
the surveyed articles.

• Augmenting these results with scientific findings and quan-
titative results from the primary literature.

• Summarizing the work which has been done to overcome
the key obstacles of HOMT.

• As a result of thiswork, this SLR presents an outline formany
open work in HOMT.

• Achieving the following research questions:

– RQ1: Howexpensive is higher-ordermutation testing?
– RQ2: For what extent can higher-order mutation test-

ing improve the subtlety of mutants?
– RQ3: For what extent can higher-order mutation test-

ing overcome the equivalent mutant?
– RQ4: For what extent can higher-order mutation test-

ing reduce the cost of effective testing?
– RQ5: For what extent can higher-order mutants simu-

late real-fault?

This systematic literature review (SLR) is performed according
to the processes defined by Kitchenham and Charters [23]. This
SLR is organized as follows: Section 2 describes the planning and
the method used to conduct the systematic review and reports
the results of this review. Section 3 introduces the results of this
SLR and answers the research questions. Section 4 introduces the
findings of this SLR especially the work which has been done,
the work to do and the threats to validity. Section 5 presents the
conclusion of this SLR and the future work.

2. Review methodology

This Systematic Literature Review (SLR) analyzes and appraises
all available works related to our research questions. According
to the guideline of Kitchenham and Charters [23], the goal of SLR
is to characterize best practices by means of specific procedures,
technologies, methods or tools by aggregating information from
comparative studies. This SLR contains three steps: (1) planning the
review, (2) conducting the review, and (3) reporting the review,
which will discuss in details throughout this section.

2.1. Planning the review

The planning phase is concerned with developing the review
protocol.

Research questions (RQs) : The main objective of this SLR is
analyzing the work which has been done to overcome the key
challenges of HOMT such as equivalent mutant, realism, explo-
sion of number of mutants, HOMT approaches, HOMs generation
techniques, and test data generation techniques for killing HOMs.
The following research questions are proposed to achieve these
objectives.

• RQ1: How expensive is higher-order mutation testing?
• RQ2: For what extent can higher-order mutation testing im-

prove the subtlety of mutants?
• RQ3: For what extent can higher-order mutation testing over-

come the equivalent mutant?
• RQ4: For what extent can higher-order mutation testing reduce

the cost of effective testing?
• RQ5: For what extent can higher-order mutants simulate real-

fault?

2.2. Conducting the review

This phase is divided into four main steps as follow:
1. Search strategy: To answer on the research questions, this SLR
uses some keywords to search for the primary studies in some
search resources as follow:

Search keywords: The coverage landscape of this SLR is the area
of higher-order mutation testing. The set of search terms were
devised in a systematic and iterative fashion, i.e., the search starts
with an initial set of keywords and iteratively improved this set
until no further relevant papers could be found to improve the pool
of primary studies. By taking all of the above aspects into account,
the search query is formulated as follows: {equivalent || subtle ||
higher order || second order || mutation testing || fault based} &&
{ mutation || mutant || tools || testing || techniques || methods ||
problems || analysis || approaches}. The SLR searched the whole
text of the studies if the search engine supported full text search.
If the search engine does not support full text search, the title,
abstract and keywords of the studies are included in the search
process.

Search Resources: To provide a comprehensive SLR covered all
the publications related to HOMT, more than 200 papers on mu-
tation testing from 1977 to 2017 are downloaded. SLR selected
the papers on second-order mutation testing (SOMT) in particular
and HOMT in general which were published between 1992 and
2017. The SLR searched for these papers in the following databases:
IEEE Explore, ACM Digital Library, Google Scholar, Web of Science,
Science Direct, Springer Library, Elsevier Online Library, Microsoft
Academic Search. Also we depended on the references that found
in our primary studies during the process of searching.
2. Studies Selection: This section discusses the criteria for inclusion
or exclusion the primary studies that are related to this work.

Inclusion criteria: when selecting the primary studies that pro-
vide us the answers to research questions, the studies that achieve
the following criteria are included:

32
A.S.Ghiduk

etal./Com
puterScience

Review
25

(2017)29–48

Table 2
Summary of primary SOM and HOM testing studies by publication year and publication type.

Study Reference (Publication Type: J.: Journal; C.: Conference; B. Ch.:
Book Chapter, Ph.D.: Ph.D. thesis)

Publication Year Number of Publications Two-year duration Two-year progress Average of two-year progress%

Offutt [24] (J.) 1992 1 1992 1 50%
Polo et al. [35] (J.); Jia and Harman [28,36] (C.) 2008 3 1992 to 2008 4 200%
Jia and Harman [18] (J.); Langdon et al. [27] Schuler and Zeller [12] (C.) 2009 3 2008 to 2009 6 300%
Langdon et al. [19](J.); Harman et al. [10], Kintis et al. [22], Papadakis
and Malevris [20] (C.)

2010 4 2009 to 2010 7 350%

Kapoor [37](J.); Harman et al. [38], Blanco-Muñoz [39] (C.) 2011 3 2010 to 2011 7 350%
Akinde [25](J.); Kintis et al. [26], Omar and Ghosh [40](C.) 2012 3 2011 to 2012 6 300%
Mateo et al. [41](J.); Omar et al. [29](C.); Jia [42] (Ph.D.) 2013 3 2012 to 2013 6 300%
Madeyski et al. [21], Ghiduk [43](J.); Derezińska and Hałas [44], Omar
et al. [32,45], Harman et al. [33](C.); Nguyen and Madeyski [46](B. Ch.)

2014 7 2013 to 2014 10 500%

Jia et al. [47] (C.), [48] (J.), Nguyen and Madeyski [30](B. Ch.) 2015 3 2014 to 2015 10 500%
Nguyen and Madeyski [49,50], Ghiduk [51](J.); Nguyen and
Madeyski [52](B. Ch.); Tokumoto et al. [53], Lima et al. [54], Wu et
al. [55] (C.)

2016 7 2015 to 2016 10 500%

Omar et al. [31] (J.), Nguyen and Madeyski [56](J.) 2017 2 2016 to FQ2017 9 450%

A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48 33

Table 3
The extracted data from the primary studies.

Research Issue No. of studies Ratio of studies

Reducing number of HOMs 10 55.6%
Constructing hard-to-kill HOMs 4 22.2%
Identifying equivalent HOMs 3 16.7%
Constructing more realistic HOMs 1 5.6%
Test generation for HOMs 3 16.7%
Genetic Improvement 1 5.6%

Total number of studies = 18 (some studies consider more than one research issue)

Used technique for constructing HOMs Frequency Most used technique (frequency)
Search based techniques 19 Genetic algorithm (10)(52.6%)
Data flow based techniques 1 Definition-use associations (1) (0.053%)
Systematic based techniques 25 Last To First (7) (36.8%)
Dynamic symbolic execution 1 Dynamic symbolic execution (1)(0.053%)
Random based techniques 8 Fair random (8)(42.1%)

Total number of used techniques = 19 (some techniques have been used more than one
time)

• IC1: Must be published in journal issue.
• IC2: Must be published in conference proceedings
• IC3: Focus on HOMT.
• IC4: Discuss HOMT approaches and their advantages.
• IC5: Discuss test data generation techniques and their ability

for killing HOMs.
• IC6: Discuss the difference between HOMT and traditional

mutation testing.
• IC7: Answer one or more of our research questions.

Exclusion criteria: A study is excluded if it meets one of the
following criteria:

• EC1: Study is not available in hard or electronic format.
• EC2: Duplicate studies reporting similar results.
• EC3: Study is not written in English.
• EC4: Study is not a full paper, short paper, MSc. thesis or

Ph.D. thesis (e.g., posters, and tutorials).
• EC5: Study does not relate to higher-order mutation testing

topic.

Table 2 presents a summary for the primary studies that were
surveyed and achieved the inclusion criteria (details are given in
Tables 9–11). The primary studies are organized according to the
publication year. Form Table 2, one can determine that SOMT was
first proposed in 1992 by Offutt [24]. Then, the development of
SOMT and HOMT was between 2008 and 2017 (first quarter of
2017: FQ2017). In addition, Table 2 presents two-year publications
progress (the total number of publications in each two consecutive
years) and the percentage of the average of the two-year progress
in the number publications. Fig. 1 shows the percentage of the
average of the two-year progress in the number of publications and
the trend line of the publications. The publications trend line shows
that the size of publications is directly proportional with the time.

From Table 2 and Fig. 1, one can conclude that in the last decade
the researchers perception about higher-order mutation testing
has been changed. The following points summarizes these new
perspectives and claims:

• Overcoming equivalent mutant problem: One of the problems
that has dumped a mutation testing since its inception has
been the problem of equivalent mutants. This problem is
essentially un-decidable. It is one that has been hard to
overcome. Recently, researchers claimed that higher-order
mutation testing can address this problem [21,25,26].

• Creating real faults: higher-ordermutation testing can create
mutants that are more like a real faults than first-order
mutation testing [19,27].

• Finding subtle faults: higher-order mutant subsumption in-
creases the effectiveness of mutation based testing, bymak-
ing newmutants are harder to kill than any of the individual
mutants from which they are constructed [28–33].

• HOMT is not expensive: it is not grossly expensive to compute
higher-order mutants. Although the space is enormous, the
valuable ones are sparse and can be found using techniques
such as search based software engineering [10].

• Reducing the effort required to achieve effective testing: effi-
ciency has proved to be a bugbear ofmutation testing in gen-
eral. Higher-order mutation testing increases the efficiency
of mutation based testing by combining first-order mutants
into a single higher-order mutant [11–15,34].

3.Data Extraction: The aimof this step is introducing the obtained
data from each selected study such as study title, study result, and
study objectives. These extracted data help us to answer the RQs.
We deduced from the primary studies the data given in Table 3.
Table 3 presents Research issue, number of studies in each issue,
ratio of studies, used technique for constructing HOMs, frequency,
and most used technique and its frequency.

From these data, we can inferred that most studies (55.6%)
concentered on reducing number of HOMs. While there are a very
few number of studies concentered on constructing more realistic
HOMs (5.6%), and genetic improvement (5.6%). Systematic-based
methods (100%) and search-based methods (100%) are the most
used in HOMT. Genetic algorithm (52.6%), last to first (36.8%), and
fair random (42.1%) are the most frequency techniques.
4. Study Quality Assessment : This section assesses each selected
study based on set of quality criteria. The quality criteria (QC) were
based on some quality assessment (QA) questions as in Table 4.
The used questions in this study was based on recommendations
of Kitchenham and Charters [57] and Khan et al. [58] with some
specific questions according to the proposed research questions
and the type of this study. The questions were answered with Yes
= 1 ‘‘Y’’ or Partly = 0.5 ‘‘P’’ or No = 0 ‘‘N’’ as in Table 4. These quality
assessments are applied on each selected study in the surveyed
studies and evaluated the quality score (QS) for each study through
the answering on 7 questions. The value of QS is between 0 (very
poor) and 7 (excellent). Table 5 gives an example for the process
of evaluating QS for only five studies form the selected studies.
After calculating the score for each selected study, we summed the
number of the studies that are equal in the score and recorded the
QS percentage for them as in Table 6.

34 A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48

Fig. 1. Percentage average of two-year progress.

Table 4
Quality assessment questions.

No Questions

QA1 Does the study topic cover the answers to the SLR questions?
QA2 Is there a clear statement of the objectives of the research?
QA3 Do the study results have been evaluated?
QA4 Is the study topic mentioned in previous studies?
QA5 Is the paper well referenced?
QA6 Does the paper contain links to previously selected resources?
QA7 Are the used methods in the study described?

2.3. Reporting the review

This section reports the analysis of the surveyed studies and
introduces set of classifications for the HOMT studies based on
their features.
1. HOMT approaches classification based on mutant degree

The surveyed higher-order mutation testing (HOMT) ap-
proaches given in Table 7 are classified into second-ordermutation
testing (SOMT) and HOMT approaches. The employed techniques
and their results are introduced as follow:

SOMT Approaches: Polo et al. [35] proposed three algorithms,
last to first (L2F), different operators (DiffOp), and random mix
(RMix), to generate SOMs. The L2F algorithm uses the list of n FOMs
and generates SOMs. This can be obtained by the combination of
the first FOM in the list with the last FOM in the list and so on. The

DiffOp algorithm generates SOMs by combining two FOMs each of
them was created by different mutation operator. The RMix algo-
rithm combines any two randomly selected FOMs into SOM. The
result of this study showed that the number of SOMs is reduced into
half the number of FOMs, and the mean ratio of equivalent SOMs is
only about 5% compared with 18.66% of equivalent FOMs [35].

Papadakis and Malevris [20] suggested five techniques to gen-
erate SOMs by combining FOMs. These techniques are last to first
(L2F), samenode (SNode), sameunit (SUnit), SU_F2Last and SU _Dif-
fOp. Their empirical study deduced that the number of generated
SOMs is reduced to half and this reduced the execution cost.

Kintis et al. [22] introduced two categories of SOMT strategies.
The first category includes two second order strategies RDomF and
SDomF. The second category includes two hybrid strategies HDom
(20%) and HDom (50%). The paper results showed that the number
of generated equivalentmutants ofweakmutation, RDomF, SDomF,
HDom (20%) and HDom (50%) strategies reduced about 73%, 85.4%,
86.8%,81.4% and 65.5% in turn compared with the number of gen-
erated equivalent mutants of strong mutation. Also the mutation
scores are 99.94%, 99.99%, 99.91%, 99.91% for the RDomF, SDomF,
HDom (20%) and HDom (50%) strategies, respectively. In 2012,
Kintis et al. [26] proposed I-EQM technique. This technique is able
to dynamically isolate first-order equivalent mutants using SOMs.
The proposed approach [26] applied three classification techniques
(HOM classifier, I-EQM classifier, Coverage Impact Classifier) on
FOMs. The objective of these techniques is to classify first-order

Table 5
Example on the process of evaluating quality score for 5 selected studies.

Study Ref QA1 QA2 QA3 QA4 QA5 QA6 QA7 Total Score

Jia and Harman [18] P = 0.5 Y = 1 Y = 1 N = 0 Y = 1 Y = 1 Y = 1 5.5
Polo et al. [35] Y = 1 P = 0.5 Y = 1 P = 0.5 Y = 1 Y = 1 Y = 1 6
Jia and Harman [28] P = 0.5 P = 0.5 N = 0 N = 0 Y = 1 Y = 1 N = 0 3
Myers and Sandler [2] N = 0 Y = 1 N = 0 Y = 1 P = 0.5 Y = 1 N = 0 3.5
Ghiduk [43] Y = 1 Y = 1 Y = 1 P = 0.5 Y = 1 Y = 1 P = 0.5 6
Kitchenham and Charters [57] N = 0 Y = 1 N = 0 P = 0.5 P = 0.5 P = 0.5 N = 0 2.5

Table 6
Quality scores for the all selected studies.

Description Quality scores

Very poor poor Good Very good Excellent

QS QS <2 2 ≤ QS <3.5 3.5 ≤ QS <5 5 ≤ QS <6 6 ≤ QS <7
QS percentage QS % <28% 28%≤ QS % <50% 50% ≤ QS % <71% 71% ≤ QS % <85% 85% ≤ QS % <100%
Number of Studies 10 18 35 19 27

A.S.Ghiduk
etal./Com

puterScience
Review

25
(2017)29–48

35

Table 7
SOMs and HOMs generation techniques.

Year Technique Degree Ref No. of SOMs Techniques No. of HOMs Techniques

2008 LTF, DiffOp and RM SOMs Polo [35] 1 1GR algorithm, GA and HC Algorithm HOMs Jia and Harman [28]

2009 GR algorithm, GA and HC Algorithm HOMs Jia and Harman [18] 0 2GP HOMs Langdon et al. [27]

2010
LTF , S Node, SUnit , SU_LTF and SU_DiffOp SOMs Papadakis and Malevris [20]

2 1i. Second Order Strategies category(RDomF and SDomF) ii. Hybrid
Strategies category (HDom(20%) and HDom(50%)

SOMs Kintis et al. [22]

Monte Carlo sampling, GA and GP HOMs Langdon et al. [19]
2011 MiLu (HOMs generation and assessment tool for c language) HOMs Harman et al. [38] 0 1
2012 MILU tool HOMs Akinde [25] 0 1

2013 Each-Choice (ECH) algorithm and Between-Operators (BTO) algorithm SOMs Mateo et al. [41] 1 1G A , Local Search algorithm, and Random Search algorithm HOMs Omar et al. [29]

2014
JudyDiffOp algorithm and NeighPair algorithm SOMs Madeyski et al. [21]

1 2CIA and RNA HOMs Ghiduk [43]
Each-Choice (ECH), Between-Operators (BTO) , LTF, and Random (RND)
algorithms

HOMs Derezińska and Hałas [44]

2015 Multi-objective Optimization Algorithm HOMs Nguyen and Madeyski [30] 0 1

2016 Multi-objective Optimization Algorithms HOMs Nguyen and Madeyski [49] 0 2Multi-objective Optimization Algorithms HOMs Nguyen and Madeyski [52]

36 A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48

mutants as possibly killable or possibly equivalent ones. This study
was compared to the Schuler and Zeller approach [59]. The ap-
proach results showed that I-EQM achieves a classification preci-
sion score is 71% and a classification recall score is 81% .

Madeyski et al. [21] proposed NeighPair algorithm and JudyD-
iffOp algorithm. The idea of JudyDiffOp algorithm is a modulation
of the different operators algorithm [11]. The two algorithms are
based on creating SOMs by combining FOMs but each algorithm
combines the mutants in different way. These algorithms are ex-
perimented with RMix and L2F [35]. The experiments showed that
the number of created SOMs was reduced to half comparing with
created FOMs. The number of equivalent mutants was decreased
with average 47%, 58.5%, 66% for the RMix, L2F and JudyDiffOp,
respectively. While NeighPair algorithm is unhelpful for reducing
number of equivalent mutants.

HOMT Approaches: Jia and Harman [18] applied three search
based algorithms (GRAlgorithm,GA andHC Algorithm) to generate
a good HOMs called subsuming HOMs (SSHOMs). SSHOM is harder
to kill than the first-order mutants from which it is created. The
three algorithmswere applied on ten subject programs. The results
of this study mentioned that there exist many SSHOMs in each
studied program. Also the results deduced that genetic algorithm
is able to generate SSHOMswith percentage 80%, while the greedy
algorithm with 50% and hill climbing algorithm with 58%. Harman
et al. [38] usedMiLu (HOM generation tool for C) to generate FOMs
and HOMs. They also applied the method of combining DSE and
SBST techniques to create a high effective test data able to detect
both FOMs andHOMs. The study results showed that the generated
test data are able to kill FOMs with a high percentage than any
other previous test data generation approach. Also this technique
is considered the first technique in generating test data for killing
SOMs.

Akinde [25] applied MiLu tool for generating FOMs, SOMs and
HOMs. The study results showed that the number of equivalent
mutants when generating SOMs less than FOMs. Similarly, number
of equivalent mutants when generating HOMs closes to zero per-
centage.

Ghiduk [43] applied genetic algorithms based technique to
generate the test inputs for killing HOMs. This paper used MuJava
tool to generate FOMs of the program. Then, it proposed two
algorithms circular incremental algorithm (CIA) and random N
algorithm (RNA) based onMuJava to find theHOMs. Also, this paper
applied genetic algorithm to generate set of test inputs that killed
FOMs and HOMs.
2. HOMT approaches classification based on mutant generation

For the practicability and efficiency of HOMT, approaches to
generate good (strong) HOMs that are harder to kill are needed. As
given in Table 9, there are two types of approacheswere introduced
to find strong HOMs as follow:

Single Objective (SObj): Jia and Harman [18,28] applied single
objective search based optimization techniques to find SSHOMs.
They defined new fitness function to find SHOMs. Firstly, they cal-
culate the fragility function for the FOMs and HOMs after that they
calculate the fitness function forHOMs. The fragility function is de-
fined as follow: fragility ({MT1, . . . ,MTn}) =

|
⋃n

i=1kill(MTi)|
|TC |

,where
TC is the set of test cases,MT = {MT 1,, MT n} is a set of mutants
and the function kill ({MT 1, . . . , MT n}) represents the set of test
cases that kills mutants. The fragility value is between ‘‘0’’ and ‘‘1’’.
If the value is ‘‘0’’ this refers to the mutant could not be killed by
this set of test cases. If the value is greater than zero this means
that the mutant is weaker. When the value reaches ‘‘1’’ this leads
to the mutant can be killed by the test cases. If we considered the
sets from MT 1 to MT n represent the HOM consisting of the FOMs
FT 1 to FT n. The fitness function for a HOM is: fitness (MT1...n) =

fragility({MT1...n})

fragility({FT1,...,FTn})
. So the fitness of aHOM is the ratio of the fragility

of its HOM to the fragility of the FOMs which it was created from
them. If the fitness is greater than ‘‘1’’, the HOM is said to be a
weakmutant.When the fitness decreases from ‘‘1’’ to ‘‘0’’, theHOM
becomes strong mutant. If the fitness value equals ‘‘0’’, it is called
equivalent HOM.

Multi Objective (MObj): Langdon et al. [27,60] usedGP to search
for HOMs. Also in 2010, they [19] used Monte Carlo sampling, GA
and GP to find the strong HOMs. The two studies [19,27] used
GP for finding strong HOMs. The GP used two fitness functions
to formulate the mutants. These functions are semantic difference
and syntactic difference. The syntactic distance function is defined
as the summation of the number of changesmeasured by the actual
difference. Besides, the semantic distance function is calculated as
the number of test cases for which a mutant and original program
act differently. The result of this study demonstrated that the GP
approach is able to find HOMs hardly killing.

Nguyen andMadeyski [30,52] appliedmulti objective optimiza-
tion algorithms (NSGA-II algorithm) to createHOMs and using their
new objective and fitness functions to search for valuable SSHOMs.
The results showed that this technique have many benefits in
searching for strongly SSHOMs but the number of equivalentHOMs
is still large.
3. Test data generation approaches

This classification concentrates on categorizing the test data
generation approaches and techniques that were used for killing
FOMs and HOMs and showing their effectiveness. One of the major
challenges in mutation testing is generating test data to kill a large
number ofmutants. An effective test case is the test case that kills a
large number of mutants than another. Furthermore, a test suite is
effective if it contains a few number of test cases. To kill FOM, a test
input needs to satisfy three conditions are reachability, infection
and propagation [61,62].

Table 8 presents FOMs and HOMs test data generation ap-
proaches, the employed techniques, the type of killedmutants and
their ability for killing the mutants. The results of this SLR showed
that many scholars proposed approaches to reduce computational
costs and optimize the test data generation for mutation testing.
These approaches aim to construct test data that can detect non-
equivalent mutants in a shorter period, by reducing the costs of
test data generation and improving the quality of the resulting test
data set. In addition the results of this SLR showed that most of the
previous approaches on mutation test data generation used SBST
techniques such as hill climbing [76], ant colony optimization [77],
evolutionary algorithms [78,79], and genetic algorithm [80].

From Table 8, we can deduce that most of previous test data
generation approaches aim to kill FOMs and the work on killing
HOMs is very limited.Harmanet al. [38] introduced anewapproach
for generating test data approach that combines dynamic symbolic
execution (DSE) and search based techniques. The results of this
approach showed that this new technique can kill 38% of FOMs
using reachability and infection and kill 36% of the mutants using
reachability alone. In addition, the results showed that the tech-
nique kills 48% of the SOMs using reachability and infection, which
in turn kills 41% of the mutants using reachability alone.

Ghiduk [43] introduced GA-Based HOMT system (GAMTS) that
used GA technique to generate set of test inputs for killing FOMs
andHOMs. The results showed that the used technique killed 81.8%
of the FOMs, 90% of the SOMs, and 93% of the third-order mutants
of the total number of mutants in all subject programs. This study
showed that GA has high effective in killing non-equivalent mu-
tants of orders one, two, and three.
4. The used programming language

This subsection concentrates on identifying programming lan-
guages that were used by HOMT approaches. MT is used to test
both the specification of the program (specificationmutation) [81]
and the source code of the program (program mutation) [82].

A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48 37

Table 8
FOMs and HOMs test data generation approaches.

Reference Technique Degree of mutant Mutation Score(MS)

Harman et al. [38] DSEand SBST HOMs Unknown
Ghiduk [43] GA HOMs 60%<MS<95%
DeMillo and Offutt [61] Constraint-Based Testing (CBT) FOMs MS >90%
Hanh et al. [63] GA and simulated annealing (SA) algorithm FOMs MS = 85.7% for the GA and MS = 85.5% for the SA
Papadakis and Malevris [64] HC algorithm FOMs MS ≈96%
Louzada et al. [65] Elitist Genetic Algorithm (EGA) FOMs MS = 92.2%
Malhotra and Garg [66] GA FOMs MS ≈ 88.33%
Papadakis et al. [67] Enhanced Control Flow Graph (ECFG) FOMs MS = 86.3%
Rad et al. [68] Bacteriological Algorithms (BA)and GA FOMs MS = 87.5% for BA and MS = 90.6% for GA
Fraser and Zeller [69] GA FOMs 58.61% <MS <82.95%.
Papadakis and Malevris [70] Dynamic Symbolic Execution (DSE) FOMs MS = 63%
Mishra et al. [71] EGA FOMs Un known
Zhang et al. [72] DSE FOMs MS >80%
May et al. [73] Immune Inspired Algorithm(IIA) FOMs MS = 89.2%
Ayari et al. [74] Ant Colony Optimization(ACO) FOMs MS = 89%
Liu et al. [75] Improved Iterative Relaxation Method (IIRM) FOMs MS = 94.2%

Specification mutation is a black box testing, in which errors are
inserted into program specifications, while for program mutation
is a white box testing where errors are inserted into source code.
In program mutation, MT is applied on program source code and
this code is written in many programming languages. These lan-
guage such as Fortran language [83–85], Ada language [86,87],
C language [88–90], Java language [91–93], and C# language
[94–96]. From the previous HOMT approaches, more than 66.6%
of the studies used Java, while 27.8% used C languages. Table 9
presents the used programming languages for SOM and HOM test-
ing approaches.
5. Higher-order mutant generation tools

This subsection identifies the mutants generation tools that
were applied by HOMT approaches and the programming lan-
guageswhich are supported by each tool and the availability status
of the tool. MT is the process of generating set of software tests
and evaluating efficiency of these tests. This process is based on
two main steps as follow: First step is mutant generation phase.
In this step a mutant is generated by adding a single change into
the original program using amutation operator. Second step is test
input generation. After generating the mutants, the test suite is
generated and run on each of these mutants.

If a large number of mutation operators are used, it will create
many number of mutants. The used mutation operator in the
mutants generation processmust be different to avoid the creation
of equivalent mutants. There are many studies that interest in
designing the mutation operators [97–101]. The first set of the
mutation operators were created for the Mothra tool [102]. This
tool was used to generate the mutants for Fortran 77 programs.
Ahmed et al. [103] introduced a survey on object-oriented muta-
tion operators. In the past years, the researchers focused on design-
ing new mutation operators for some purposes such as security
problems targeted [104] or the mutation operators for specific
language [105].

In the recent years, the mutation operators are mostly used
in MT tools. Using of MT in industry depends on applying a fully
automated mutation tool. In 1970, it was the year of proposing
MT. Consequently many mutation tools were created to gener-
ate the mutants. Stages of developing MT tools are three stages.
Firstly, between 1977 and 1981 four MT tools were built such as
PIMS [84], EXPER [106], and FMS.3 [107] for Fortran and CMS.1 [34]
for Cobol. Secondly, from 1982 to 1999 four tools were built in
this period such as MOTHRA for FORTRAN [108], PROTEUM and
TUMS for C [109]. These three tools are considered as academic
tools. The fourth tool is called INSURE++ for C/C++ [110] and is
considered as industry tool. The two academic tools MOTHRA and
PROTEUM were widely used in this stage. These two tools were
mostly used in the advanced mutation techniques, such as weak

mutation [111], selectivemutation [98],mutant sampling [15], and
interface mutation [92]. Thirdly, in the period from 2000 to 2017,
there are increasing in the development of MT tools. More than
ten tools were built in this period such as Jester and Pester [112],
MuJava [113] for Java, Nester [114] for C#, JDAMA [115] for SQL,
MUSIC [116] for SQL, MILU [36] for C, and HOMAJ [45] for AspectJ
and Java. In the third stage, some of the generated tools are used
for FOMs generation such as MuJava [22] and the others are used
for FOMs andHOMs generation such asMILU [18] and HOMAJ [45].
We noted that MuJava and MILU tools are the most used tools in
the previous HOMT approaches [18,28,43]. Table 9 presented the
MT tools that were used by the previous HOMT approaches, tools
availability, and the supported programming languages by each
tool.

3. Results and discussion

To explore the research questions given in Section 2.1, this
section answers the research questions and introduces the threats
to validity.

3.1. The exploration of RQ1

RQ1 is designed to investigate how expensive is higher-order
mutation testing. Harman et al. [10] showed that HOMT is too ex-
pensive. They argued that search based techniques such as genetic
algorithms can introduce a solution for this problem. According to
the results of this SRL given in Table 9 search-based techniques
have been successfully used in more than 53% of the techniques
used in generating higher-order mutants. In addition as given in
Table 10 and Fig. 2, search-based techniques have been used in
approximately 100% of the techniques used to generate hard to
kill HOMs. Search-based techniques can easily explore huge size
domains (2000k ofmutants) to find the requiredmutants. As given
in Fig. 3, search-based techniques have been successfully used in
more than 33% of techniques used to reduce the number of HOMs.

3.2. The exploration of RQ2

RQ2 is designed to investigate the efficiency of higher-order
mutation testing in generating subtle mutants which are hard to
kill. According to this SLR, there are three research groups pub-
lished someworks in this topic. The first research group is Harman,
Jia, Langdon and others at King’s College of London, UK. This group
published many papers in the key problems of higher-order muta-
tion testing [10,18,19,27,28,33,36,38]. The second research group
includes Nguyen and Madeyski at Faculty of Computer Science
and Management, Wroclaw University of Technology, Poland. This

38
A.S.Ghiduk

etal./Com
puterScience

Review
25

(2017)29–48
Table 9
Details of extracted data from the primary studies.

Study Team work #Publications
and Ref.

Year
[20xx]

Research Issue and(no. of
objectives)

Used technique FOM generation
Tool

(availability)

Programming
Language

Order of
Mutants

S#1 Jia,
Harman,
Langdon

4[10,18,28,36] 08,
08,09,10

Constructing hard-to-kill HOMs.
(Single objective)

Greedy Algorithm (GR), Genetic Algorithm (GA), and Hill
Climbing Algorithm (HC)

Milu (yes) C ≥ 2

S#2 Langdon,
Harman, Jia

2[19,27] 09, 10 Finding realistic and hard-to-kill
HOMs. (Multi-objective)

1. A multi-objective Pareto optimal approach using Monte
Carlo sampling, genetic algorithms and genetic
programming

Milu (yes) C ≥ 2

S#3 Nguyen,
Madeyski

5[30,46,49,50,56] 14, 15, 16,
16, 17

Constructing hard-to-kill HOMs.
(Single-objective)

Nondominated Sorting Genetic Algorithm Version II
(NSGA-II) Two Extension Version of NSGA-II (NSGA-III and
eNSGA_II) Steady State Multi-Objective Evolutionary
Algorithm (eMOEA)

Judy (yes) Java ≥ 2

S#4 Nguyen,
Madeyski

1[52] 16 Reducing HOMs based on test
cases (Multi-objective)

Nondominated Sorting Genetic Algorithm Version II
(NSGA-II) Two Extension Version of NSGA-II (NSGA-III and
eNSGA_II) Steady State Multi-Objective Evolutionary
Algorithm (eMOEA)

Judy (yes) Java ≥ 2

S#5 Omar,
Ghosh,
Whitly

5[29,31,32,40,45] 12, 13, 14,
14, 17

Constructing hard-to-kill HOMs.
(Single-objective)

Genetic Algorithm (GA), Local Search (LS), Data-Interaction
Guided Local Search (DIGLS), Test-Case Guided Local Search
(TCGLS), Restricted Enumeration Search (RES), Restricted
Random Search(RRS).

HOMAJ (no) Java,AspectJ ≥ 2

S#6 Madeysk,
Orzeszyn,Torkar,
Józala

1[21] 14 Reducing HOMs Overcoming
equivalent mutants problem
(Single-objective)

NeighPair algorithm JudyDiffOp algorithm. RandomMix
Last2First

Judy (yes) Java = 2

S#7 Polo,
Piattini,
Garcia-
Rodriguez

1[35] 08 Reducing the number of HOMs.
(Single-objective)

LastToFirst DifferentOperators RandomMix muJava (yes) Java = 2

S#8 Ghiduk 1[43] 14 Reducing the number of HOMs.
(Single-objective)

Circular Incremental Algorithm (CIA) Random N Algorithm
(RNA)

muJava (yes) Java ≥ 2

S#9 Ghiduk 1[51] 16 Reducing the number of HOMs.
(Single-objective)

LastToFirst DifferentOperators Data flow muJava (yes) Java ≥ 2

S#10 Lima et al. 1[54] 16 Reducing the number of HOMs.
(Single-objective)

GA DifferentOperators Each-Choice LastToFirst RandomMix muJava (yes) Java ≥ 2

S#11 Papadakis,
Malevris,
Kintis

2[20,22] 10,10 Reducing of HOMs. Comparing
weak mutation against strong
mutation (Single-objective)

Last2First SameNode SameUnit SU_F2Last SU_DiffOp RMix
DiffOp

muJava (yes) Java = 2

S#12 Derezińska,
Hałas

1[44] 14 Reducing of HOMs.
(Single-objective)

Between-Operators (BTO) Each-Choice (ECH) FirstToLast
(FTL) Random (RND)

Mutpy(no) Python 2 and 3

S#13 Mateo, Us-
aola,Aleman

1[41] 13 Reducing the number of HOMs at
system level. (Single-objective)

FirstToLast Each-Choice (ECH) Between-Operators (BTO)
Random

Bacterio(no) Java = 2

S#14 Akinde 1[25] 12 Reducing equivalent mutants
(Single-objective)

NA Milu (yes) C ≥ 2

S#15 Harman,
Jia,Langdon

1[38] 11 Test data generation
(Single-objective)

Dynamic symbolic execution Hill climbing SHOM(no) C ≥ 2

S#16 Harman,
Jia, Mateo,
Polo

1[33] 14 Reducing number of HOMs and
the number of test cases
(Multi-objective)

1. Genetic Algorithm Bacterio(no) Java ≥ 2

S#17 Jia, Wu,
Harman,
Krinke

2[47,55] 15, 16 Using HOMs for improving
non-functional properties of
programs (Multi-objective)

1. NSGA-II Milu(yes) C ≥ 2

S#18 Kintis,
Papadakis,
Malevris

1[26] 12 Using second-order mutants to
identify first-order equivalent
mutants. (Single-objective)

1. I-EQM considers the execution behavior of both first and
second-order mutants, to isolate likely to be first-order
equivalent mutants.

JavaLanche(yes) Java = 2

A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48 39

Table 10
Details of the studies.

Study S#1 and S#2 S#3 S#5

No. of subjects 10 3 10
Range of LOC 50 ≤ LoC ≤ 6000 5925 ≤ LoC ≤ 23996 121 ≤ LoC ≤ 14388
Total LOC 14850 43493 19146
Non trivial FOMs 46606 5896 2944
of Explored HOMs 1000000 as many as possible 1500000
Degree of HOMs 2 ≤ DHOM ≤ 13 2 ≤ DHOM ≤ 15 2 ≤ DHOM ≤ 7+
Overall Average Subtle HOMs 15% 8.74% 14%

Fig. 2. Algorithms comparison.

Fig. 3. Comparison of mutants reduction studies.

group presented a new classification of HOMs and used optimiza-
tion techniques for finding subtle HOMs [30,46,49,50,52,56]. The
third group consists of Omar, Ghosh and Whitly at Colorado State
University, USA. This group published some papers in generating
subtle higher-order mutants [29,31,32,40,45].

These three research groups recommended different termi-
nologies for mutants that are hard to kill such as subtle HOMs,
Strong SubsumingHOMs, valuableHOMs, and difficult to killHOMs.
The three research groups applied many search-based techniques

for finding hard to kill mutants. The first group applied threemeta-
heuristic algorithms: greedy algorithm (GR), genetic algorithm
(GA), andhill climbing algorithm (HC) to find subsumingHOMs. The
second research group used six techniques: genetic algorithm (GA),
local search (LS), data-interaction guided local search (DIGLS), test-
case guided local search (TCGLS), restricted enumeration search
(RES), restricted random search (RRS). The third research group
used four algorithm: nondominated sorting genetic algorithm ver-
sion II (NSGA-II) , two extension version of NSGA-II (NSGA-III and

40 A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48

eNSGA_II), a steady state multi-objective evolutionary algorithm
(eMOEA).

Table 10 introduces a comparison between three primary stud-
ies (S#1&2, S#3, and S#5) interested in constructing hard to kill
mutants which is given in Table 9. This comparison shows the total
lines of codes of the subject programs in each study, number of
non-trivial FOMs used to generate HOMs, total number of HOMs
explored by each study, the maximum degree of HOMs generated
by each study, and the overall average of subtle HOMs. The com-
parison shows that the study S#1&2 is the most effective one in
generation subsuming HOMs. The mean ratio of subtle HOMs to all
subsuming HOMs generated by studies S#1&2, S#3, S#5 are 15%,
8.74%, and 14%, respectively.

Fig. 2 presents a comparison between fourteen techniques used
in the three studies (S#1&2, S#3, and S#5) according to four crite-
ria: mean ratio of the reasonable HOMs to all HOMs, mean ratio
of subtle HOMs to all HOMs, mean ratio of subtle HOMs to all
reasonable HOMs, and overall ratio of subtle HOMs. In Fig. 2, the
first three criteria are referenced to the left axis and the fourth
criterion is referenced to the right axis. As a result, the genetic
algorithm technique proposed in study S#1&2 is themost effective
technique among all techniques in generating subsuming HOMs
and subtle HOMs. The second promising technique is S#3: eNSGAI
I. Although the successful of generating subtle HOMs, but the ratio
of the generated HOMs is small where it is not more than 15%.
Therefore, more research work is required to introduce other defi-
nitions for subtle mutants instead of subsumed mutants and more
effective techniques to generate it. We believe that combining GA
algorithm proposed in S#1&2 and eNSGAII algorithm proposed in
S#3 can enhance the generation of subtle HOMs.

3.3. The exploration of RQ3

RQ3 is designed to investigate the equivalent mutant problem
which is considered one of the key problem of mutation test-
ing. Equivalent mutant problem is considered as the most ex-
ploredmutation testing problem [10,18,21,22,24–26,59,117–151].
According to our SLR 43 articles and these are identified. Madeyski
et al. [21,129] introduced a survey on equivalent mutant problem.
In addition, they studied the impact of second-order mutants on
equivalent mutant problem. They classified the equivalent mutant
overcoming techniques into four categories: equivalent mutant
detection (EMD), suggesting equivalent mutant (SEM) or impact of
equivalent mutant (IEM) , avoiding equivalent mutant generation
(AEM), and higher-order equivalent mutants (HOEM). To answer
RQ3, our SLR extended Madeyski’s review by augmenting it by the
recent published work. Based on the same classification proposed
by Madeyski et al. [21,129], we classified the surveyed articles and
systems according to these four categories. Table 11 presents brief
for the equivalentmutant overcoming techniqueswith focusing on
higher-ordermutants techniques. As given in Table 11,HOMT have
been successfully used in avoiding generation of EM, detection of
first order EM, and reduction of the number of EM. Techniques for
detection HOEM are required.

3.4. The exploration of RQ4

RQ4 is designed to investigate the efficiency of HOM testing in
reducing the cost of mutation testing. One of the key problems
of mutation testing in general and HOM testing especially is the
explosion of the number of mutants. Where HOMs are created by
merging different FOMs. Supposem1...n be the number of mutation
operators which can be applied at P1...n places in the tested pro-
gram. Therefore, the number of FOMs is

∑n
i=0mi; the number of

HOMs is
∑n

i=2

(
i
n

)
mi [18].

So far there is a significant number of studies which have been
performed to reduce the number of HOMs. Table 9 reports the
primary studies for reducing the cost of higher-order mutation
testing. There are nine primary studies (S#1&2, S#3, S#5, S#6,
S#7, S#9, S#10, S#11, and S#12) focused on reducing the number
of higher-order mutants. These studies applied three different
methodologies for reducing the number of mutants: i) reduc-
ing number of mutation operators (m1...n) for example S#6 [21],
S#7 [35], S#10 [54], S#11 [20,22] and S#12 [44]; ii) selecting the
valuable set of HOMs for example S#1&2 [18,28], S#5 [31], and
S#3 [30,49]; iii) reducing the number of mutated places (P1...n) for
example S#9 [51].

These studies applied number of different techniques to reduce
the number of HOMs. S#1&2 employed three meta-heuristic algo-
rithms: greedy algorithm (GR), genetic algorithm (GA), hill climb-
ing algorithm (HC) and random search (RAND). S#5 used six tech-
niques: genetic algorithm (GA), local search (LS), data-interaction
guided local search (DIGLS), test-case guided local search (TCGLS),
restricted enumeration search (RES), and restricted random search
(RRS). S#3 used four algorithm: nondominated sorting genetic
algorithm version II (NSGA-II), two extension version of NSGA-II
(NSGA-III and eNSGA _II), and a steady state multi-objective evolu-
tionary algorithm (eMOEA). S#6 proposed NeighPair algorithm and
JudyDiffOp algorithm. The idea of JudyDiffOp algorithm is amodula-
tion of the different operators algorithm [11]. The two algorithms
are based on creating SOMs by combining FOMs but each algo-
rithm combines the mutants in different way. These algorithms
are experimented with random search (RMix) and (L2F) [35]. S#7
used three techniques last to first (L2F) and different operators
algorithm (DiffOp) and RMix. S#9 used three techniques L2F and
DiffOp and data flow algorithms. S#10 used six techniques DiffOp,
L2F, each choice,RMix, randomsearch (with ratio 10%, 20%, 50%)RS,
and selective mutants SM. S#11 used three techniques DiffOp, L2F,
and RMix. S#11 applied the used techniques in single unit or single
node. S#12 used four techniques between operators algorithm
(BTO), each choice (ECH), first to last (FTL), and random search
(RND).

Fig. 3 presents the results of all techniques in each study. The
results given in Fig. 3 shows that the reduction ratios of algorithms
GA in S#1&2, eNSGAII in S#3, RRS in S#5, RES in S#5, data flow
in S#9, each choice in S#10, RS in S#10, and SM in S#10 are the
highest reduction ratios which are 81%, 85.75%, 87.13%, 82.3%,
80.07%, 83.64%, 90.18%, and 84.17%, respectively. Table 12 presents
the number of first-order mutants, highest reduction ratio, lowest
reduction ratio, and mean reduction ratio for each study.

From the results given in Table 12, we can conclude that studies
S#1&2, S#11, S#6, S#3 and S#12 are the most effective studies
based on the number of first-order mutants which is in direct
propositional with higher-order mutants. By considering mean
reduction ratio and number of FOMs, we can conclude that S#1&2
and S#3 are themost effective studies proposed to reduce the num-
ber of generatedHOMswhere 66% and 77.05% ofHOMs are reduced
by the techniques of S#1&2 and S#3, respectively. Fig. 4 presents
a comparison between the mutant reduction studies according to
number of FOMs referenced to right axis and highest, lowest, and
mean reduction ratios referenced to left axis.

3.5. The exploration of RQ5

RQ5 is designed to investigate the efficiency of HOMs in finding
more realistic mutants. To the best of our knowledge, there is no
any research work studies the relation between HOMs and real
faults. Langdon et al. [19,27] considered the complex higher-order
mutants which need many changes to fix as real faults. According
to this idea, Langdon et al. [19,27] used genetic programming to
generate set of higher-order mutants (2nd, 3rd, and 4th order)

A.S.Ghiduk
etal./Com

puterScience
Review

25
(2017)29–48

41

Table 11
Equivalent mutant overcoming techniques.

Category Technique Reference Technique Efficiency/Findings

EMD

Compiler based technique
Baldwin and Sayward 1979[138] NA
Offutt and Craft 1994[117] ≈ 10%
Papadakis et al. 2015[131] ≈ 30%

Constraints based technique
Pan 1994[132], Offutt and Pan 1996, 1997[126,127] ≈ 50%
Nica and Wotawa 2012[133]Nica 2011[137] ≈ 40%
Ueshiba and Haga 2014 [121] Average 63.1% (13% to 100%)

Program slicing based technique Hierons et al. 1999 [118] ≈ 47.63%
Semantic based technique Ellims et al. 2007 [139] NA
Margrave’s change-impact analysis Martin and Xie 2007 [140] NA
Lesar model-checker for eliminating equivalent mutants Bousquet and Delaunay 2008 [141] NA
Code similarity Kintis and Malevris 2013 [151], Kintis 2016 [122] ≈ 50%
Static analysis Kintis and Malevris 2015 [124]Kintis 2016 [122] ≈ 56%
Data flow patterns Kintis and Malevris 2014 [134]Kintis 2016 [122] ≈ 70%
State infection conditions Just et al. 2013 [136] ≈ 88.9% (8 out of 9 equivalent mutants in a case study)

SEM/IEM

Bayesian-learning based technique Vincenzi et al. 2002 [147] NA
impact of EM on coverage Grün et al. 2009 [130] Suggests (non-)equivalent mutants
Impact of dynamic invariants Schuler et al. 2009 [148] NA
Changes in coverage to find EM Schuler and Zeller 2010, 2013 [59,149] 25% to 70%
Software Anomaly Detection Arcaini et al 2015, 2017 [128] [119] detecting static anomalies
Estimate the ability of mutation operators to find equivalent mutants Umar 2006 [120] Find the mutation operators which can generate equivalent mutants

AEM

Selective mutation Mresa and Bottaci 1999 [142] NA
Program dependence analysis Harman et al. 2001 [143] NA
Co-evolutionary search techniques Adamopoulos et al. 2004 [123] Avoids equivalent mutant generation
Equivalency conditions Offutt et al. 2006 [144] NA
Fault hierarchy Kaminski and Ammann 2009 [145] Avoids equivalent mutant generation
Semantic exception hierarchy Chen et al. 2009 [146] Proposed mutation operators for Java exception handling constructs
Classification of mutants Papadakis et al. 2014 [125] Kill 92% of all the killable mutants.

HOMs Avoiding Generation of Equivalent Mutant

Jia and Harman 2009 [18] NA
Kintis et al. 2010 [22], Kintis 2016 [122] EM is reduced from 65.6% to 86.8%
Offutt 1992 [24] ≈ 0.53% to 1.4% 2nd HOMs are EM.
Papadakis and Malevris 2010 [20] EM is reduced from 80% to 90%
Akinde 2012 [25] 1st Order 7.6% to 28.8% 2nd HOM 3.5% to 4.5%

Using HOMT to isolate FOEM Kintis et al. 2012 [26], Kintis et al. 2015 [150], Kintis 2016 [122] Precision score of 71% and a recall value of 81%

42 A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48

Table 12
Highest, lowest, and mean reduction ratio for each study.

Study No. of FOMs Highest reduction ratio Lowest reduction ratio Mean reduction ratio

S#1&2 94493 81% 51% 66%
S#5 2944 87.13% 53.84% 66.28%
S#3 5896 85.75% 74.03% 77.05%
S#6 46619 60.67% 50.67% 53.44%
S#7 1026 50.00% 42.40% 47.37%
S#9 1114 80.07% 46.59% 58.83%
S#10 1883 85.4% 54.9% 67.4%
S#11 62714 49.99% 27.68% 46.30%
S#12 4876 49.9% 38.3% 47.0%

Fig. 4. Highest, lowest, and mean reduction ratio for each study.

which are hard to kill (killed by one test case). This set of mutants
satisfies two objectives: semantic distance (number of test cases
which cause a mutant and original program behave in a different
way) and syntactic distance (sum the number of changes in the
logical control structure). In triangle program, the number of mu-
tants of 1st, 2nd, 3rd, and 4th are 85, 3400, 85000, and 1487500,
respectively. The number of hardest to kill mutants of 1st, 2nd, 3rd,
and 4th are 18, 325, 2615, and 12363, respectively.

A few of studies in traditional mutation testing (1st order) con-
centrated on some issues related to realism problem [152–156].
Though, these studies are out the scope of attention of this SLR, we
summarize the results of these studies to be a roadmap for similar
studies in HOMT. Daran and Thévenod-Fosse [155] introduced the
first experimental study to compare programs errors created by
real faults and those created by 1st order mutations. The study
included 1458 errors created by real faults and 2272 created by
mutations. The results of the experiments showed that 85% of
2272 errors created by mutations were also created by real faults.
Andrews et al. [153] explored the relation betweenmutants, hand-
seeded faults, real faults. They concluded that mutants are better
substitution for real faults than hand-seeded faults. Namin and
Kakarla [156] replicated the work of Andrews et al. [153] and con-
cluded that the correlation between the mutation score and fault
detection is weak for one of the subjects. Namin and Kakarla [156]
studied the properties of mutants and real faults. They concluded
that mutants and real faults sometimes behave in different way
(e.g. mutant detection ratio is 0.512, while fault detection ratio
0.686). Just et al. [152] studied coupling effect between mutants
and real faults. They concluded that coupling effect ratio is 73%.
Gopinath et al. [154] studied competent programmer hypothesis.
They concluded that a typical-change modifies about three to four
tokens or ten tokens especially if at least 80% of the real faults

are included. They claimed that understanding of the competent
programmer hypothesis may be incorrect. Table 13 introduces a
comparison of studies that explored the relation between first-
order mutants and real faults.

4. The findings of this SLR

Through the answers of the research questions and the report-
ing review section, we come up with the following findings.

4.1. Work have been done

4.1.1. Overcoming the high cost and expensiveness of HOMT
The high cost and expensiveness of higher-ordermutation test-

ing is due to the huge number of the generatedHOMswhich can be
created by combining the FOMs. This numerous amount ofmutants
makes the process of finding goodmutants is very costly. According
to the results of this SLR, overcoming this problem can be done
through two different strategies. The first strategy is using search
based techniques to find good representative small set of HOMs;
where search based techniques such as genetic algorithm, greedy
algorithm, and hill climbing algorithm, and random search as well
have been successfully used to find subtle HOMs amongmore than
2000000 mutants (see Table 9 and Table 10). The second strategy
is using tactics to reduce the number of HOMs. According to the
results of this SLR, the researchers used three different tactics to
reduce the number of HOMs: (1) reducing the number of muta-
tion operators which consequently reduces the number of FOMs
and number of HOMs; (2) selecting subset of HOMs instead of all
mutants such as subtle set (e.g. strong subsuming HOMs which
is considered the most valuable set of HOMs); (3) reducing the

A.S.Ghiduk
etal./Com

puterScience
Review

25
(2017)29–48

43

Table 13
Comparison of studies that explored the relation between mutants and real faults.

Study Research issueMs: mutantsRF:
real fault

No. and categories of mutation operators No. of RF
versions

No. of
1st Ms

Ratio of mutant
evaluated

Results

Daran and
Thévenod-Fosse [155]

Similarity in behavior between
Ms and RF.

24 operators3 categories: replacing
constant, identifier, or operator

1458 2272 1% 85% of errors created by
mutations were created by real
faults

Andrews et al. [153] Whether Ms or hand-seeded
faults are representative of RF.

32 operators 4 categories: replacing
constant, or operator, negate branch
condition, or delete statement

38space
program

11379 10% Mutation score and real faults
detection rate is very close.

Namin and Kakarla [156] Similarity in properties between
Ms and RF.

The same in [153] 38space
program

301400 10% Mutant detection ratio is 0.512,
while fault detection ratio 0.686.

Just et al. [152] Coupling effect between Ms and
RF.

NA operators4 categories: replacing
constant, or operator, deleting statement
or modifying branch condition

357 230000 100% Coupling effect ratio is 73%

Gopinath et al. [154] Competent programmer
hypothesis.

≈ 77 operators9 categories: add, replace,
or remove tokens, add or remove +/- 1,
change in constant value, changing a
constant to a variable, changing a variable
to another variable, changing a binary
operator to another, negation of a value.

240000 patches A typical-change modifies about
three to four tokens which maybe
ten if 80% of the real faults are
included.

44 A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48

mutated locations in the original programs using some techniques
such as data flow analysis.

4.1.2. Coping with the realism problem
Although, there is a number of researchers studied the key

issues of realism problem of traditional mutation testing such as
coupling effect between FOMs and real faults, competent program-
mer hypothesis, similarity in behavior and properties between
FOMs and real faults (see Table 13 for more details), these issues
are not studied for higher-order mutation testing. Only complex
property of higher-order mutants and real faults has been studied
by Langdon et al. [19,27].

4.1.3. Solution of the equivalent mutant problem
According to the results of our SLR, there are a wide number of

articles concentrated on equivalentmutant problem for traditional
mutation testing and higher-order mutation testing as well. The
equivalentmutant overcoming techniques for traditionalmutation
testing focused on equivalent mutant detection, suggesting equiv-
alent mutant or studying the impact of equivalent mutant, and
avoiding equivalent mutant generation. The equivalent mutant
overcoming techniques for higher-order mutation testing concen-
trated mainly on avoiding generation of higher-order equivalent
mutants (for more details see Table 11).

4.2. Work to be done

Although there is a significant number of articles has been
published in the area of higher-order mutation testing, there are
many key issues are not considered yet. The following subsections
discus the work to be done in HOMT field.

4.2.1. Overcoming the high cost of HOMT
According to the results of this SLR, there are additional work to

be done for overcoming the high cost ofHOMT. From the preceding
discussion, the high cost of HOMT can be decreased by using
search-based techniques or by reducing the number of mutants.
Many issues need investigation such as determining the most
effective search based technique for generating HOMs (which can
bedoneby empirical comparison between the common techniques
such as genetic, particle swarm, ant colony, and bat algorithms),
suggesting another representative subsets of HOMs rather than
subsuming set to be the target of HOMT, and suggesting another
methodologies for reducing number of mutants using criteria such
as paths, branches, or data flow etc.

4.2.2. Coping with the realism problem
There are many key issues needed to be investigate in the

realism problem of higher-ordermutation testing such as coupling
effect between HOMs and real faults, competent programmer hy-
pothesis, similarity in behavior and properties between HOMs and
real faults.

4.2.3. Solution of the equivalent mutant
Although there are some techniques have been proposed to

avoid generation of higher-order equivalent mutants, there are
some open works such as (1) detecting higher-order equivalent
mutants, (2) employing first-order equivalent mutants to generate
killable higher-order mutants.

4.2.4. Test data generation
Techniques for killing the different types of HOMs are needed

where only one research was presented to find test data for killing
SHOMs.

4.3. Threats to validity

4.3.1. Difficulties in finding all the studies that are related to our SLR
This problem is considered one of the major problems of

SLRs [157]. We used databases that were used before in [158] to
search for the sources. We also used keywords during searching
to select the primary studies about HOMT. If these studies do not
describe their objectives aboutHOMT, these studiesmay have been
removed. We applied the inclusion and exclusion criteria on the
selected papers to determine which paper would be the best for
our SLR.

4.3.2. The difficulty in classifying the studies
We tried to classify the approaches according to HOMs gener-

ation approaches and test input generation approaches. We found
the majority of HOMT testing approaches were designed to gener-
ateHOMs and thework on generating test case for killingHOMs are
so little.

4.3.3. The difficulty in data extracting
When we wanted to introduce the effectiveness of some tech-

niques that were used in selected approaches, we found some of
these papers did not give a complete description to the technique.
Due to this limitation, we were unable to compare these tech-
niques and offer a complete view of their effectiveness.

4.3.4. Writing languages of some papers
Some publications are written by languages which are not con-

sidered in this SLR in which English language is the basic language
for selecting studies.

5. Conclusion and future work

Mutation testing is the process which can be used to drive
the test data development process and assess the quality of these
data, in terms of its ability to find faults. Mutation testing can be
divided into two categories first andhigher-ordermutation testing.
Since 2008, there has been an upsurge in interest in HOMT, with
many authors examining theway inwhichHOMT could find subtle
hard to kill faults, capture partial fault masking, reduce equivalent
mutants problem, reduce test effort while increasing effectiveness,
and capture more realistic faults than those captured by simple
insertion of first-ordermutants. Because of this upsurge of interest
in the previous activities, this paper presented the first systematic
literature review specifically targeted at a higher-order mutation.
This SLR analyzed the results of more than one hundred sixty
research articles in this area. This SLR presented qualitative results
and bibliometric analysis for the surveyed articles. It augmented
these results with scientific findings and quantitative results from
the primary literature. In addition, it summarized the work which
has been done to overcome the key obstacles of HOMT. This SLR
deduced the following results:

1. The trend of publications in HOMT is directly proportional
with the time.

2. Most studies (55.6%) concentered on reducing number of
HOMs. While there are a very few number of studies
concentered on constructing more realistic HOMs (5.6%),
and genetic improvement (5.6%). Systematic-based meth-
ods (100%) and search-based methods (100%) are the most
used strategies in HOMT. Genetic algorithm (52.6%), last to
first (36.8%), and fair random (42.1%) are themost frequency
techniques in HOMT.

3. Most test data generation approaches aim to kill FOMs and
the work on killing HOMs is very limited.

A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48 45

4. More than 66.6% of the studies used Java, while 27.8% used
C languages.

5. MuJava andMiLu tools are the most used tools in HOMT.
6. Search-based techniques can easily explore huge size do-

mains (2000k) of mutants to find the required mutants.
7. The mean ratio of subtle HOMs to all subsuming HOMs

generated by the primary studies are between 8.74%, and
15%.

8. The ratio of subtle HOMs is small where it is not more than
15%. Therefore, more work is required to introduce other
definitions for subtle mutants instead of subsumedmutants
and more effective techniques to generate it.

9. HOMT have been successfully used in avoiding generation of
EM, detection of first order EM, and reduction of the number
of EM. Techniques for detection HOEM are required.

10. Mean reduction ratio of the number of generated HOMs is
between 66% and 77.05%.

11. There is no any research work studies the relation between
HOMs and real faults.

As a result of this work, this SLR presented an outline for many
work to be done in HOMT. Our future work will concentrate on
doing meta-analysis for the results of this SLR and doing some
statistical comparisons among the primary studies in each key
issue of HOMT.

References

[1] B. Bezier, Software Testing Techniques, second ed., Van Nostrand Reinhold
Co., New York, NY, USA, 1990.

[2] G.J. Myers, C. Sandler, The Art of Software Testing, John Wiley & Sons, 2004.
[3] L. Copeland, A Practitioner’s Guide To Software Test Design, Artech House,

Inc., Norwood, MA, USA, 2003.
[4] R.V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison Wesley Longman Publishing Co. Inc., Boston, MA, USA, 1999.
[5] G. Kapfhammer, The Computer Science Handbook, Chapter Software Testing,

edition 2nd., CRC Press, 2004.
[6] S. Schach, Testing: Principles and practice, ACM Comput. Surv. 28 (1) (1996)

277–279.
[7] H. Zhu, P. Hall, J. May, Software unit test coverage and adequacy, ACM

Comput. Surv. 29 (4) (1997) 366–427.
[8] R.A. DeMillo, R.J. Lipton, F.G. Sayward, Hints on test data selection: Help for

the practicing programmer, Computer 11 (4) (1978) 34–41.
[9] R.G. Hamlet, Testing programs with the aid of a compiler, IEEE Trans. Softw.

Eng. 3 (4) (1977) 279–290.
[10] M. Harman, Y. Jia, W.B. Langdon, A manifesto for higher order mutation

testing, in: Third International Conference on Software Testing, Verification,
and Validation Workshops, ICSTW, 2010, pp. 80–89.

[11] W.Howden,Weakmutation testing and completeness of test sets, IEEE Trans.
Softw. Eng. 8 (4) (1982) 371–379.

[12] D. Schuler, A. Zeller, Javalanche: Efficient mutation testing for java, in: Pro-
ceedings of the 7th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC/FSE’09, New York, NY, USA, 2009, pp. 297–298.

[13] A.J. Offutt, R.H. Untch, Mutation Testing for the New Century, Chapter Mu-
tation 2000: Uniting the Orthogonal, Kluwer Academic Publishers, Norwell,
MA, USA, 2001, pp. 34–44.

[14] R. DeMillo, E. Krauser, A. Mathur, Compiler-integrated programmutation, in:
Computer Software and Applications Conference, COMPSAC’91, Proceedings
of the Fifteenth Annual International, 1991, pp. 351–356.

[15] A.P. Mathur, W.E. Wong, An empirical comparison of mutation and data low
based test adequacy criteria, 1993.

[16] M.A. Cachia, M. Micallef, C. Colombo, Towards incremental mutation testing,
in: ElectronicNotes in Theoretical Computer Science, Proceedings of the 2013
Validation Strategies for Software Evolution, VSSEWorkshop, 2013, pp. 2–11.

[17] Y. Jia, M. Harman, An analysis and survey of the development of mutation
testing, IEEE Trans. Softw. Eng. 37 (5) (2011) 649–678.

[18] Y. Jia,M. Harman, Higher ordermutation testing, J. Inf. Softw. Technol. 51 (10)
(2009) 1379–1393.

[19] W.B. Langdon, M. Harman, Y. Jia, Efficientmulti-objective higher ordermuta-
tion testing with genetic programming, J. Syst. Softw. 83 (2010) 2416–2430.

[20] M. Papadakis, N. Malevris, An empirical evaluation of the first and sec-
ond order mutation testing strategies, in: Proceedings of the 2010 Third

International Conference on Software Testing, Verification, and Validation
Workshops, Ser. ICSTW’10, IEEE Computer Society, 2010, pp. 90–99.

[21] L. Madeyski, W. Orzeszyna, R. Torkar, M. Józala, Overcoming the equivalent
mutant problem: A systematic literature review and a comparative experi-
ment of second order mutation, IEEE Trans. Softw. Eng.. 40 (1) (2014) 23–44.

[22] M. Kintis,M. Papadakis, N.Malevris, Evaluatingmutation testing alternatives:
A collateral experiment, in: Proc. 17th Asia Pacific Soft. Eng. Conf., APSEC,
2010.

[23] B. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering, in: Evidence-Based Software Engineering,
2007.

[24] A.J. Offutt, Investigations of the software testing coupling effect, ACM Trans.
Softw. Eng. Methodol. 1 (1) (1992) 5–20.

[25] A.O. Akinde, Using higher order mutation for reducing equivalent mutants in
mutation testing, Asian J. Comput. Sci. Inf. Technol. 2 (3) (2012) 13–18.

[26] M. Kintis, M. Papadakis, N. Malevris, Isolating First Order Equivalent Mutants
via Second Order Mutation, in: IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation, 2012, pp. 701–710.

[27] W.B. Langdon, M. Harman, Y. Jia, Multi objective mutation testing with
genetic programming, in: 4th Testing Academia and Industry Conference —
Practice and Research Techniques, TAIC PART’09, IEEE press, Windsor, UK,
2009, pp. 21–29.

[28] Y. Jia, M. Harman, Constructing Subtle Faults Using Higher Order Mutation
Testing, in: Proceedings of the 8th International Working Conference on
Source Code Analysis and Manipulation, SCAM’08, Beijing, China, 2008, pp.
249–258.

[29] E. Omar, S. Ghosh, D. Whitely, Constructing subtle higher order mutants for
Java and AspectJ programs, in: Proceedings of the 24th IEEE International
Symposium on Software Reliability Engineering, ISSRE, 2013, , pp. 340–349.

[30] Q.V. Nguyen, L. Madeyski, Searching for strongly subsuming higher order
mutants by applying multi-objective optimization algorithm, in: H.A. Le Thi,
N.T. Nguyen, T.V. Do (Eds.), Advanced ComputationalMethods for Knowledge
Engineering, in: Vol. 358 of Advances in Intelligent Systems and Computing,
Springer, 2015, pp. 391–402. http://dx.doi.org/10.1007/978-3-31917996-4_
35.

[31] E. Omar, S. Ghosh, D. Whitley, Subtle higher order mutants, Inf. Softw.
Technol. 81 (2017) 3–18.

[32] E. Omar, S. Ghosh, D. Whitley, Comparing search techniques for finding
subtle higher order mutants, in: GECCO’14, Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation, 2014, pp. 1271–1278.

[33] M. Harman, Y. Jia, P. Reales Mateo, M. Polo, Angels and monsters: An empir-
ical investigation of potential test effectiveness and efficiency improvement
from strongly subsuming higher order mutation, in: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering,
ASE’14, ACM, New York, NY, USA, 2014, pp. 397–408.

[34] A.T. Acree, On Mutation, Georgia Inst. Of Technology, 1980, Ph.D. Thesis.
[35] M. Polo, M. Piattini, I. Garcia-Rodriguez, Decreasing the cost of mutation

testing with second-order mutants, Softw. Test. Verif. Reliab. 19 (2) (2008)
111–131.

[36] Y. Jia, M. Harman, MILU: A customizable, runtime-optimized higher order
mutation testing tool for the full c language, in: Proceedings of the 3rd Test-
ing: Academic and Industrial Conference Practice and Research Techniques,
TAIC PART’08, IEEE Computer Society, Windsor, UK, 2008, pp. 94–98.

[37] S. Kapoor, Test case effectiveness of higher order mutation testing, Int. J.
Comput. Technol. Appl. 2 (5) (2011) 1206–1211.

[38] M. Harman, Y. Jia, W.B. Langdon, Strong higher order mutation-based test
data generation, in: Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering,
ESEC/FSE’11, 2011, pp. 212–222.

[39] E. Blanco-Muñoz, A. García-Domínguez, J.J. Domínguez-Jiménez, I. Medina-
Bulo, Towards higher-order mutant generation forWS-BPEL, in: Proceedings
of the International Conference on e-Business, 2011, pp. 1–6.

[40] E. Omar, S. Ghosh, An Exploratory Study of Higher Order Mutation Testing
in Aspect-Oriented Programming, in: Proceedings of the 23rd IEEE Inter-
national Symposium on Software Reliability Engineering, ISSRE 2012, 2012,
pp. 1–10.

[41] P.R. Mateo, M.P. Usaola, J.L.F. Aleman, Validating 2nd-order mutation at
system level, IEEE Trans. Softw. Eng. 39 (4) (2013) 570–587.

[42] Y. Jia, Higher Order Mutation Testing, University College London (UCL), 2013,
Doctoral Thesis.

[43] A.S. Ghiduk, Using evolutionary algorithms for higher-order mutation test-
ing, IJCSI Int. J. Comput. Sci. 11 (2) (2014) 93–104.

[44] A. Derezińska, K. Hałas, Experimental evaluation of mutation testing ap-
proaches to python programs, in: Proc. of 7th IEEE Inter. Conf. on Software
Testing Verification and ValidationWorkshops, ICSTW, IEEE Comp. Soc, 2014,
pp. 156–164.

http://refhub.elsevier.com/S1574-0137(16)30109-5/sb1
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb1
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb1
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb2
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb3
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb3
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb3
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb4
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb4
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb4
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb5
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb5
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb5
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb6
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb6
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb6
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb7
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb7
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb7
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb8
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb8
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb8
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb9
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb9
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb9
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb11
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb11
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb11
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb13
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb13
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb13
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb13
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb13
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb17
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb17
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb17
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb18
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb18
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb18
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb19
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb19
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb19
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb20
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb20
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb20
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb20
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb20
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb20
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb20
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb21
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb21
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb21
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb21
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb21
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb23
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb23
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb23
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb23
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb23
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb24
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb24
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb24
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb25
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb25
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb25
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb27
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb27
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb27
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb27
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb27
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb27
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb27
http://dx.doi.org/10.1007/978-3-31917996-4_35
http://dx.doi.org/10.1007/978-3-31917996-4_35
http://dx.doi.org/10.1007/978-3-31917996-4_35
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb31
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb31
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb31
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb33
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb34
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb35
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb35
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb35
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb35
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb35
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb36
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb36
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb36
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb36
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb36
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb36
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb36
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb37
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb37
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb37
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb41
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb41
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb41
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb42
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb42
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb42
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb43
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb43
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb43
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb44
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb44
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb44
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb44
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb44
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb44
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb44

46 A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48

[45] E. Omar, S. Ghosh, D. Whitley, HOMAJ: A Tool for Higher Order Mutation
Testing in AspectJ and Java, Software Testing, in: Verification and Validation
Workshops, ICSTW, IEEE Seventh International Conference on, 2014, pp. 165–
170.

[46] Q.V. Nguyen, L. Madeyski, Problems of mutation testing and higher order
mutation testing, in: Advanced Computational Methods for Knowledge En-
gineering, in: Vol. 282 of the series Advances in Intelligent Systems and
Computing, 2014, pp. 157–172.

[47] Y. Jia, F. Wu, M. Harman, J. Krinke, Genetic Improvement using Higher
Order Mutation, in: GECCO Companion’15: Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation, 2015, pp. 803–804.

[48] Y Jia, M Merayo, M Harman, Introduction to the special issue on mutation
testing, Softw. Test. Verif. Reliab. 25 (5–7) (2015) 461–463.

[49] Q.V. Nguyen, L. Madeyski, Empirical evaluation of multi-objective optimiza-
tion algorithms searching for higher order mutants, in: Cybernetics and
Systems — Smart Experience and Knowledge Engineering for Optimiza-
tion, Learning, and Classification/Recommendation Problems, vol. 47, 2016,
pp. 48–68.

[50] Q. Vu Nguyen, L. Madeyski, On the relationship between the order of
mutation testing and the properties of generated higher order mutants,
in: Ngoc Thanh Nguyen, Bogdan Trawiński, Hamido Fujita, Tzung-Pei Hong
(Eds.), Intelligent Information andDatabase Systems, ACIIDS2016, in: Lecture
Notes in Artificial Intelligence, vol. 9621, Springer-Verlag, Berlin Heidelberg,
2016.

[51] A.S. Ghiduk, Reducing the number of higher-order mutants with the aid of
data flow, e-Inform. Softw. Eng. J. 10 (2016) 31–49.

[52] Q.V. Nguyen, L. Madeyski, Higher order mutation testing to drive develop-
ment of new test cases: An empirical comparison of three strategies, in: N.T.
Nguyen, B. Trawiński, H. Fujita, T.-P. Hong (Eds.), Intelligent Information and
Database Systems, ACIIDS 2016, in: vol. 9621 of Lecture Notes in Artificial
Intelligence, Springer, 2016, pp. 235–244. http://dx.doi.org/10.1007/978-3-
662-49381-6_23.

[53] S. Tokumoto, H. Yoshida, K. Sakamoto, S. Honiden, MuVM: Higher Order Mu-
tation Analysis Virtual Machine for C, in: 2016 IEEE International Conference
on Software Testing, Verification and Validation, ICST, Chicago, IL, 2016, pp.
320–329.

[54] J.A.P. Lima, G. Guizzo, S.R. Vergilio, A.P.C. Silva, H.L. Jakubovski Filho, H.V.
Ehrenfried, Evaluating Different Strategies for Reduction of Mutation Testing
Costs, in: Proceedings of the 1st Brazilian Symposium on Systematic and
Automated Software Testing, Article No. 4, 2016.

[55] F. Wu, M. Harman, Y. Jia, J. Krinke, HOMI: Searching Higher Order Mutants
For Software Improvement, in: Symposium on Search-Based Software Engi-
neering, Raleigh, NC, USA, October 2016.

[56] Q.V. Nguyen, L. Madeyski, Addressingmutation testing problems by applying
multi-objective optimization algorithms and higher order mutation, J. Intell.
Fuzzy Systems 32 (2017) 1173–1182.

[57] B. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering, Technical Report EBSE, 2007.

[58] K.S. Khan, G.Ter. Riet, J. Glanville, A.J. Sowden, J. Kleijnen, Undertaking
systematic reviews of research on effectiveness CRDs guidance for those
carrying out or commissioning reviews, Technical Report, 2001.

[59] D. Schuler, A. Zeller, (Un-) Covering Equivalent Mutants, in Software Testing,
Verification and Validation, in: ICST, 2010 Third International Conference on,
2010, pp. 45–54.

[60] W.B. Langdon, Genetic Programming and Data Structures: Genetic Program-
ming Data Structures = Automatic Programming!, Boston. 1998.

[61] R. DeMillo, A.J. Offutt, Constraint-based automatic test data generation, IEEE
Trans. Softw. Eng. 17 (9) (1991) 900–910.

[62] L.J. Morell, A theory of fault-based testing, IEEE Trans. Softw. Eng. 16 (8)
(1990) 844–857.

[63] L.T.M. Hanh, K.T. Tung, N.T. Binh, Mutation-based test data generation for
simulink models using genetic algorithm and simulated annealing, Int. J.
Comput. Inf. Technol. 3 (2014) 763–771.

[64] M. Papadakis, N. Malevris, Searching and generating test inputs for mutation
testing, J. Springer Plus 2 (2013) 1–12.

[65] J. Louzada, C.G. Camilo-Junior, A. Vincenzi, C. Rodrigues, An elitist evolution-
ary algorithm for automatically generating test data, in: World Congress on
Computational Intelligence, WCCI’12, IEEE, 2012, pp. 1–8.

[66] R.Malhotra,M. Garg, An adequacy based test data generation technique using
genetic algorithms, J. Inf. Process. Syst. 7 (2) (2011) 363–384.

[67] M. Papadakis, N. Malevris, M. Kallia, Towards automating the generation of
mutation tests, in: 5th Workshop on Automation of Software Test, 2010, pp.
111–118.

[68] M. Rad, F. Akbari, A. Bakht, Implementation of common genetic and bacteri-
ological algorithms in optimizing testing data in mutation testing, in: Com-
putational Intelligence and Software Engineering, CiSE, 2010 International
Conference on, 2010, pp. 1–6.

[69] G. Fraser, A. Zeller, Mutation-driven generation of unit tests and oracles, in:
International Symposium on Software Testing and Analysis, ISSTA’10, 2010,
pp. 147–157.

[70] M. Papadakis, N. Malevris, Automatic mutation test case generation via
dynamic symbolic execution, in: 21st International Symposium on Software
Reliability Engineering, ISSRE’10, 2010, pp. 121–130.

[71] K.K. Mishra, S. Tiwari, A. Kumar, A. Misra, An approach for mutation testing
using elitist genetic algorithm, in: International Conference on Computer
Science and Information Technology, IEEE, 2010, pp. 426–429.

[72] L. Zhang, T. Xie, N. Tillmann, J. Halleux, H. Mei, Test generation via dynamic
symbolic execution for mutation testing, in: International Conference on
Software Maintenance, ICSM’10, 2010.

[73] P. May, J. Timmis, K. Mander, Immune and evolutionary approaches to soft-
waremutation testing, in: Proceedings of the 6th International Conference on
Artificial Immune Systems. ICARIS’07, Springer-Verlag, 2007, pp. 336–347.

[74] K. Ayari, S. Bouktif, G. Antoniol, Automatic mutation test input data genera-
tion via ant colony, in: Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, GECCO’07, ACM, 2007, pp. 1074–1081.

[75] M.H. Liu, Y.F. Gao, J.H. Shan, J.H. Liu, L. Zhang, J.S. Sun, An approach to test
data generation for killingmultiplemutants, in: Proceedings of the 22nd IEEE
International Conference on Software Maintenance. ICSM’06, IEEE Computer
Society, 2006, pp. 113–122.

[76] S.J. Russell, P. Norvig, Artificial Intelligence: AModern Approach, second edn,
Pearson Education, 2003, Chapter 4.

[77] M. Dorigo, G. Di Caro, The ant colony optimization meta-heuristic, in: New
Ideas in Optimization, 1999, pp. 11–32.

[78] T. Back, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Press,
New York, 1996.

[79] D. Whitley, An overview of evolutionary algorithms: Practical issues and
common pitfalls, Inf. Softw. Technol. 43 (14) (2001) 817831.

[80] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, first ed., Addison-Wesley Longman Publishing Co. Inc., Boston, MA,
USA, 1989.

[81] A.S. Gopal, T.A. Budd, Program Testing By Specification Mutation, Technical
Report TR,, University of Arizona, Tucson, Arizona, 1983.

[82] R.A. DeMillo, ProgramMutation: An Approach To Software Testing, Technical
Report, Georgia Institute of Technology, 1983.

[83] Centre for Reviews and Dissemination,What are the criteria for the inclusion
of reviews on DARE? 2007. Available at http://www.york.ac.uk/inst/crd/faq4.
htm.

[84] T.A. Budd, R.A. DeMillo, R.J. Lipton, F.G. Sayward, The design of a prototype
mutation system for program testing, in: Proceedings of the AFIPS National
Computer Conference, Vol. 74, ACM, Anaheim, New Jersey, 1978, pp. 623–
627.

[85] R.J. Lipton, F.G. Sayward, The Status of Research on Program Mutation, in:
Proceedings of the Workshop on Software Testing and Test Documentation,
1978, pp. 355–373.

[86] A.J. Offutt, J. Voas, J. Payn,Mutation Operators for Ada, Technique Report ISSE,
George Mason University, Fairfax, Virginia, 1996 PP.96-09.

[87] J.H. Bowser, Reference Manual for Ada Mutant Operators, Technique Report
GITSERC- 88/02, Georgia Institute of Technology, Atlanta, Georgia, 1988.

[88] H. Agrawal, R.A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E.W. Krauser, R.J.
Martin, A.P. Mathur, E. Spafford, Design of Mutant Operators for the C Pro-
gramming Language, Technical Report SERC-TR-41-P, Purdue Univ., 1989.

[89] M.E. Delamaro, J.C. Maldonado, A.P. Mathur, Interfacemutation: An approach
for integration testing, IEEE Trans. Softw. Eng. 27 (3) (2001) 228–247.

[90] H. Shahriar, M. Zulkernine, Mutation-Based Testing of Buffer Overflow Vul-
nerabilities, in: Proceedings of the 2nd Annual IEEE International Workshop
on Security in Software Engineering, Turku, Finland, 2008, pp. 979–984.

[91] M.E. Delamaro, J.C. Maldonado, InterfaceMutation: Assessing Testing Quality
at Inter procedural Level, in: Proceedings of the 19thInternational Conference
of the Chilean Computer Science Society, SCCC’99, Talca, Chile,1999, pp. 78–
86.

[92] M.E. Delamaro, J.C. Maldonado, A.P. Mathur, Integration Testing Using Inter-
face Mutation, in: Proceedings of the seventh International Symposium on
Software Reliability Engineering, ISSRE’96,White Plains, New York, 1996, pp.
112–121.

[93] S. Kim, J.A. Clark, J. A.McDermid, ClassMutation:Mutation Testing for Object-
oriented Programs, in: Proceedings of the Net. Object Days Conference on
Object-Oriented Software Systems. 2000.

[94] A. Derezinska, Object-oriented Mutation to Assess the Quality of Tests, in:
Proceedings of the 29th Euromicro Conference, Belek, Turkey, 2003, pp. 417–
420.

[95] A. Derezinska, Advanced Mutation Operators Applicable in C# Programs,
Technique Report, Warsaw University of Technology, Warszawa, Poland,
2005.

http://refhub.elsevier.com/S1574-0137(16)30109-5/sb46
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb46
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb46
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb46
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb46
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb46
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb46
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb48
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb48
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb48
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb49
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb50
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb51
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb51
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb51
http://dx.doi.org/10.1007/978-3-662-49381-6_23
http://dx.doi.org/10.1007/978-3-662-49381-6_23
http://dx.doi.org/10.1007/978-3-662-49381-6_23
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb56
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb56
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb56
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb56
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb56
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb61
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb61
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb61
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb62
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb62
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb62
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb63
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb63
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb63
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb63
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb63
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb64
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb64
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb64
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb65
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb65
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb65
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb65
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb65
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb66
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb66
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb66
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb71
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb71
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb71
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb71
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb71
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb73
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb73
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb73
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb73
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb73
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb74
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb74
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb74
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb74
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb74
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb75
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb75
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb75
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb75
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb75
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb75
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb75
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb76
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb76
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb76
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb77
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb77
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb77
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb78
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb78
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb78
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb78
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb78
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb79
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb79
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb79
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb80
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb80
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb80
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb80
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb80
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb81
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb81
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb81
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb82
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb82
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb82
http://www.york.ac.uk/inst/crd/faq4.htm
http://www.york.ac.uk/inst/crd/faq4.htm
http://www.york.ac.uk/inst/crd/faq4.htm
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb84
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb84
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb84
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb84
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb84
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb84
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb84
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb86
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb86
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb86
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb87
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb87
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb87
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb88
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb88
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb88
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb88
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb88
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb89
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb89
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb89
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb95
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb95
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb95
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb95
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb95

A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48 47

[96] A. Derezinska, Quality Assessment of Mutation Operators Dedicated for C#
Programs, in: Proceedings of the 6th International Conference on Quality
Software, QSIC’06, Beijing, China, 2006.

[97] A.S. Namin, J.H. Andrews, D. Murdoch, Sufficient mutation operators for
measuring test effectiveness. in: Software Engineering, ICSE’08 ACM/IEEE
30th International Conference on, 2008, pp. 351–360.

[98] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, C. Zapf, An experimental deter-
mination of sufficient mutant operators, ACM Trans. Softw. Eng. Methodol.
5 (2) (1996) 99–118.

[99] Y.-S. Ma, A.J. Offutt, Y.-R. Kwon, Inter-class mutation operators for java, in:
Software Reliability Engineering, Proceedings. 13th International Sympo-
sium on, 2002, pp. 352–363.

[100] H.Y. Chen, S. Hu, Two New Kinds of Class Level Mutants for Object-Oriented
Programs, 2006.

[101] A. Derezinska, M. Rudnik, Quality evaluation of object-oriented and standard
mutation operators applied to c# programs, in: Proceedings of the 50th In-
ternational Conference on Objects, Models, Components, Patterns, TOOLS’12,
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 42–57.

[102] K.N. King, A.J. Offutt, A fortran language system for mutation-based software
testing, Softw. - Pract. Exp. 21 (7) (1991) 685–718.

[103] Z. Ahmed, M. Zahoor, I. Younas, Mutation Operators for Object-Oriented
Systems: A Survey, 2010.

[104] H. Shahriar, M. Zulkernine, Mutation-Based testing of format string bugs,
in: Proceedings of the 2008 11th IEEE High Assurance Systems Engineering
Symposium, HASE’08, IEEE Computer Society, Washington, DC, USA, 2008,
pp. 229–238, Sch. of Comput. Queen’s Univ. Kingston, ON.

[105] J.S. Bradbury, J.R. Cordy, J. Dingel, Mutation operators for concurrent java,
j2se 50, in: Proceedings of the Second Workshop on Mutation Analysis,
MUTATION’06, IEEE Computer Society, Washington, DC, USA, 2006, Sch. of
Comput. Queen’s Univ. Kingston, ON.

[106] T.A. Budd, R. Hess, F.G. Sayward, EXPER Implementor’S Guide, Technique
Report, Yale University, New Haven, Connecticut, 1980.

[107] A. Tanaka, Equivalence Testing for FORTRAN Mutation System using Data
FlowAnalysis, Georgia Institute of Technology, Atlanta, Georgia, 1981,Master
Thesis.

[108] R.A. DeMillo, D.S. Guindi, K.N. King,W.M.McCracken, A.J. Offutt, An extended
overview of themothra software testing environment, in: Proceedings of the
2nd Workshop on Software Testing, Verification, and Analysis, TVA’88, IEEE
Computer Society, Banff Alberta, Canada, 1988, pp. 142–151.

[109] M.E. Delamaro, Proteum — a Mutation Analysis Based Testing Environment,
University of Sao Paulo, Sao Paulo, Brazil, 1993, Master Thesis.

[110] Parasoft, Parasoft Insure++, 2006, http://www.parasoft.com/jsp/products/
home.jsp?product=Insure.

[111] A.J. Offutt, S. Lee, An empirical evaluation of weak mutation, IEEE Trans.
Softw. Eng. 20 (5) (1994) 337–344.

[112] I. Moore, Jester and Pester, 2001, http://jester.sourceforge.net/.
[113] Y.-S. Ma, A.J. Offutt, Y.-R. Kwon, MuJava: An automated class mutation sys-

tem, Softw. Test. Verif. Reliab. 15 (2) (2005) 97–133.
[114] SourceForge, Nester, 2002, http://nester.sourceforge.net/.
[115] C. Zhou, P. Frankl, Mutation Testing for Java Database Applications, in: Pro-

ceedings of the 2nd International Conference on Software Testing Verifica-
tion and Validation, ICST’09, Davor Colorado, 2009, pp. 396–405.

[116] H. Shahriar, M. Zulkernine, MUSIC:Mutation-based SQL Injection Vulnerabil-
ity Checking, in: Proceedings of the 8th International Conference on Quality
Software, QSIC’08, Oxford, UK, 2008, pp. 77–86.

[117] A.J. Offutt, W.M. Craft, Using compiler optimization techniques to detect
equivalent mutants, Softw. Test. Verif. Reliab. 4 (3) (1994) 131–154.

[118] R. Hierons, M. Harman, S. Danicic, Using program slicing to assist in the
detection of equivalent mutants, Softw. Test. Verif. Reliab.. (1999).

[119] P. Arcaini, A. Gargantini, E. Riccobene, P. Vavassori, A novel use of equivalent
mutants for static anomaly detection in software artifacts, Inf. Softw. Technol.
81 (2017) 52–64, January 2017.

[120] M Umar, An Evaluation of Mutation Operators for Equivalent Mutants,
Department of Computer Science, King’s College, London, 2006, M.Sc. Thesis.

[121] T. Ueshiba, H. Haga, Detecting equivalent mutants using symbolic computa-
tion, in: Proceedings of the International Conference on Electrical, Electron-
ics, Computer Engineering and their Applications, Kuala Lumpur, Malaysia,
2014, pp. 6–11.

[122] M. Kintis, Effective Methods To Tackle the Equivalent Mutant Problem when
Testing Software with Mutation, Department of Informatics, Athens Univer-
sity of Economics and Business, 2016, Ph.D. Thesis.

[123] K. Adamopoulos, M. Harman, R.M. Hierons, How to overcome the equiv-
alent mutant problem and achieve tailored selective mutation using co-
evolution, in: K. Deb (Ed.), Genetic and Evolutionary Computation—GECCO
2004, in: Lecture Notes in Computer Science, Vol 3103, Springer, Berlin,
Heidelberg, 2004, pp. 1338–1349 GECCO 2004.

[124] M. Kintis, N. Malevris, MEDIC: A static analysis framework for equivalent
mutant identification, Inf. Softw. Technol. 68 (2015) 1–17.

[125] M. Papadakis, M. Delamaro, Y. Le Traon, Mitigating the effects of equiva-
lent mutants with mutant classification strategies, J. Sci. Comput. Program.
95 (P3) (2014) 298–319.

[126] A.J. Offutt, J. Pan, Automatically detecting equivalent mutants and infeasible
paths, Softw. Test. Verif. Reliab. 7 (1997) 165–192.

[127] A.J. Offutt, J. Pan, Detecting equivalentmutants and the feasible path problem,
in: Computer Assurance. 1996 COMPASS’96, Systems Integrity. Software
Safety. Process Security. Proceedings of the Eleventh Annual Conference on,
Gaithersburg, MD, 1996, pp. 224–236.

[128] P. Arcaini, A. Gargantini, E. Riccobene, P. Vavassori, Rehabilitating equivalent
mutants as static anomaly detectors in software artifacts, in: 2015 IEEE Eighth
International Conference on Software Testing, Verification and Validation
Workshops, ICSTW, Graz, 2015, pp. 1–6.

[129] W. Orzeszyna, Solutions To the Equivalent Mutants Problem: A Systematic
Review and Comparative Experiment, School of Computing, Blekinge Insti-
tute of Technology, Sweden, 2011, M.Sc. Thesis.

[130] B.J.M. Grün, D. Schuler, A. Zeller, The Impact of Equivalent Mutants, in:
International Conference on Software Testing, Verification, and Validation
Workshops, Denver, CO, 2009, pp. 192–199.

[131] M. Papadakis, Y. Jia, M. Harman, Y. Le Traon, Trivial compiler equivalence: A
large scale empirical study of a simple, fast and effective equivalent mutant
detection technique, in: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Florence, 2015, pp. 936–946.

[132] J. Pan, Using Constraints To Detect Equivalent Mutants, ISSE Department
George Mason University, 1994, M.Sc. Thesis..

[133] S. Nica, F. Wotawa, Using Constraints for Equivalent Mutant Detection. WS-
FMDS, 2012, pp. 1–8.

[134] M. Kintis, N. Malevris, Using data flow patterns for equivalent mutant de-
tection, 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation Workshops, Cleveland, OH, 2014, pp. 196–205.

[135] M. Patrick, M. Oriol, J.A. Clark, MESSI: Mutant evaluation by static semantic
interpretation, in: Proceedings of the 2012 IEEE Fifth International Confer-
ence on Software Testing, Verification andValidation, ICST’12, IEEE Computer
Society, Washington, DC, USA, 2012, pp. 711–719.

[136] R. Just, M.D. Ernst, G. Fraser, Using state infection conditions to detect equiva-
lentmutants and speed upmutation analysis, in: Proceedings of the Dagstuhl
Seminar 13021: Symbolic Methods in Testing. 2013.

[137] S. Nica, M. Nica, F. Wotawa, Detecting equivalent mutants by means of
constraint systems, in: VALID 2011: The Third International Conference on
Advances in System Testing and Validation Lifecycle, 2011, pp. 21–24.

[138] D. Baldwin, F.G. Sayward, Heuristics for Determining Equivalence of Pro-
gramMutations, Techreport, Yale University, NewHaven, Connecticut, 1979,
p. 276.

[139] M. Ellims, D. Ince, M. Petre, The Csaw C mutation tool: Initial results,
in: Proceedings of the Testing: Academic and Industrial Conference Practice
and Research Techniques- MUTATION, IEEE Computer Society, Washington,
DC, USA, 2007, pp. 185–192.

[140] E. Martin, T. Xie, A fault model and mutation testing of access control
policies, in: Proceedings of the 16th International Conference onWorldWide
Web, Ser. WWW’07, ACM Press, New York, New York, USA, 2007, pp. 667–
676.

[141] L. du Bousquet, M. Delaunay, Towardsmutation analysis for Lustre programs,
Electron. Notes Theor. Comput. Sci. 203 (4) (2008) 35–48.

[142] E.S. Mresa, L. Bottaci, Efficiency of mutation operators and selective muta-
tion strategies: An empirical study, Softw. Test. Verif. Reliab. 9 (4) (1999)
205–232.

[143] M. Harman, R. Hierons, S. Danicic, The relationship between program depen-
dence and mutation analysis, in: W.E. Wong (Ed.), Mutation Testing for the
New Century, Kluwer Academic Publishers, Norwell, MA, USA, 2001, pp. 5–
13.

[144] J. Offutt, Y.-S. Ma, Y.-R. Kwon, The class-level mutants of mujava,
in: Proceedings of the 2006 International Workshop on Automation of Soft-
ware Test - AST’06, Ser. AST’06, ACM Press, New York, New York, USA, 2006,
pp. 78–84.

[145] G. Kaminski, P. Ammann, Using a fault hierarchy to improve the efficiency of
DNF logic mutation testing, in: Proc. Int. Conf. Software Testing Verification
and Validation ICST’09, 2009, pp. 386–395.

[146] C. Ji, Z. Chen, B. Xu, Z. Wang, A newmutation analysis method for testing Java
exception handling, in: Proc. 33rd Annual IEEE Int. Computer Software and
Applications Conf. COMPSAC’09, vol. 2, 2009, pp. 556–561.

[147] A.M.R. Vincenzi, E.Y. Nakagawa, J.C. Maldonado, M.E. Delamaro, R. A.F.
Romero, Bayesian-learning based guidelines to determine equivalent mu-
tants, Int. J. Softw. Eng. Knowl. Eng. 12 (6) (2002) 675–690.

[148] D. Schuler, V. Dallmeier, A. Zeller, Efficient mutation testing by checking in-
variant violations, in: ISSTA’09: Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, Ser. ISSTA’09, ACM Press, New
York, New York, USA, 2009, pp. 69–80.

http://refhub.elsevier.com/S1574-0137(16)30109-5/sb98
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb98
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb98
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb98
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb98
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb100
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb100
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb100
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb101
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb101
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb101
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb101
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb101
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb101
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb101
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb102
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb102
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb102
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb103
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb103
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb103
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb104
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb104
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb104
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb104
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb104
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb104
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb104
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb105
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb105
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb105
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb105
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb105
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb105
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb105
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb106
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb106
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb106
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb107
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb107
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb107
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb107
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb107
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb108
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb108
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb108
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb108
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb108
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb108
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb108
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb109
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb109
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb109
http://www.parasoft.com/jsp/products/home.jsp%3Fproduct%3DInsure
http://www.parasoft.com/jsp/products/home.jsp%3Fproduct%3DInsure
http://www.parasoft.com/jsp/products/home.jsp%3Fproduct%3DInsure
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb111
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb111
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb111
http://jester.sourceforge.net/
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb113
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb113
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb113
http://nester.sourceforge.net/
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb117
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb117
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb117
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb118
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb118
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb118
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb119
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb119
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb119
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb119
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb119
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb120
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb120
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb120
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb122
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb122
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb122
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb122
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb122
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb123
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb124
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb124
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb124
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb125
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb125
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb125
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb125
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb125
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb126
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb126
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb126
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb129
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb129
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb129
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb129
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb129
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb132
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb132
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb132
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb135
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb135
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb135
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb135
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb135
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb135
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb135
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb138
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb138
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb138
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb138
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb138
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb139
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb139
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb139
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb139
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb139
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb139
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb139
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb140
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb140
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb140
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb140
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb140
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb140
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb140
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb141
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb141
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb141
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb142
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb142
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb142
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb142
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb142
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb143
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb143
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb143
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb143
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb143
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb143
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb143
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb144
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb144
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb144
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb144
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb144
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb144
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb144
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb147
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb147
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb147
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb147
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb147
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb148
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb148
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb148
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb148
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb148
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb148
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb148

48 A.S. Ghiduk et al. / Computer Science Review 25 (2017) 29–48

[149] D. Schuler, A. Zeller, Covering and uncovering equivalent mutants, Softw.
Test. Verif. Reliab. 23 (2013) 353–374.

[150] M. Kintis, M. Papadakis, N. Malevris, Employing second-order mutation for
isolating first-order equivalent mutants, Softw. Test. Verif. Reliab. 25 (5–7)
(2015) 508–535, STVR, Special Issue on Mutation Testing.

[151] M. Kintis, N. Malevris, Identifying more equivalent mutants via code similar-
ity, in: Proceedings of the 20th Asia-Pacific Software Engineering Conference,
APSEC, 1, 2013, pp. 180–188, December 2013.

[152] R. Just, D. Jalali, L. Inozemtseva, M.D. Ernst, R. Holmes, G. Fraser, Are mutants
a valid substitute for real faults in software testing? in: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, ACM, New York, NY, USA, 2014, pp. 654–665.

[153] J.H. Andrews, L.C. Briand, Y. Labiche, Is mutation an appropriate tool for
testing experiments? in: Proceedings of the 27th International Conference on
Software Engineering, ICSE’05, ACM, New York, NY, USA, 2005, pp. 402–411.

[154] R. Gopinath, C. Jensen, A. Groce, Mutations: How close are they to real faults?
in: Proceedings of the 2014 IEEE 25th International Symposium on Software
Reliability Engineering, ISSRE’14, IEEE Computer Society, Washington, DC,
USA, 2014, pp. 189–200.

[155] M. Daran, P. Thévenod-Fosse, Software error analysis: A real case study
involving real faults and mutations, in: Steve J. Zeil, Will Tracz (Eds.),
Proceedings of the 1996 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA’96, ACM, New York, NY, USA, 1996, pp. 158–171.

[156] A.S. Namin, S. Kakarla, The use of mutation in testing experiments and
its sensitivity to external threats, in: Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA’11, ACM, New York, NY,
USA, 2011, pp. 342–352.

[157] B. Kitchenham, R. Pretorius, D. Budgen, O. Pearl Brereton, M. Turner, M. Niazi,
S. Linkman, Systematic literature reviews in software engineering: A tertiary
study, Inf. Softw. Technol. 52 (2010) 792–805.

[158] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,
Systematic literature reviews in software engineering - a systematic litera-
ture review, Inf. Softw. Technol. 51 (1) (2008) 7–15.

http://refhub.elsevier.com/S1574-0137(16)30109-5/sb149
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb149
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb149
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb150
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb150
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb150
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb150
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb150
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb151
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb151
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb151
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb151
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb151
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb152
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb152
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb152
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb152
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb152
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb152
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb152
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb153
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb153
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb153
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb153
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb153
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb154
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb154
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb154
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb154
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb154
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb154
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb154
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb155
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb155
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb155
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb155
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb155
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb155
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb155
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb156
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb156
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb156
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb156
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb156
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb156
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb156
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb157
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb157
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb157
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb157
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb157
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb158
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb158
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb158
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb158
http://refhub.elsevier.com/S1574-0137(16)30109-5/sb158

	Higher order mutation testing: A Systematic Literature Review
	Introduction
	Software Testing (ST)
	Mutation Testing (MT)

	Review methodology
	Planning the review
	Conducting the review
	Reporting the review

	Results and discussion
	The exploration of RQ1
	The exploration of RQ2
	 The exploration of RQ3
	 The exploration of RQ4
	 The exploration of RQ5

	The findings of this SLR
	Work have been done
	Overcoming the high cost and expensiveness of HOMT
	 Coping with the realism problem
	Solution of the equivalent mutant problem

	Work to be done
	Overcoming the high cost of HOMT
	Coping with the realism problem
	Solution of the equivalent mutant
	Test data generation

	Threats to validity
	 Difficulties in finding all the studies that are related to our SLR
	The difficulty in classifying the studies
	The difficulty in data extracting
	Writing languages of some papers

	Conclusion and future work
	References

