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a b s t r a c t

This paper examines the fusion of conflicting and not independent expert opinion in the
Transferable Belief Model. A hierarchical fusion procedure based on the partition of experts
into schools of thought is introduced, justified by the sociology of science concepts of epi-
stemic communities and competing theories. Within groups, consonant beliefs are aggre-
gated using the cautious conjunction operator, to pool together distinct streams of
evidence without assuming that experts are independent. Across groups, the non-interac-
tive disjunction is used, assuming that when several scientific theories compete, they can-
not be all true at the same time, but at least one will remain. This procedure balances
points of view better than averaging: the number of experts holding a view is not essential.
This approach is illustrated with a 16 expert real-world dataset on climate sensitivity
obtained in 1995. Climate sensitivity is a key parameter to assess the severity of the global
warming issue. Comparing our findings with recent results suggests that the plausibility
that sensitivity is small (below 1.5 �C) has decreased since 1995, while the plausibility that
it is above 4.5 �C remains high.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Is there a single all-purpose aggregation method for expert opinions? According to Ouchi [25], the answer is negative.
Indeed, there are at least three different ways to represent mathematically an expert opinion. One is probabilistic risk anal-
ysis [6]. Another approach is to use the fuzzy numbers theory to combine opinions represented as possibility distributions
[27]. We are interested here in a third approach: Dempster–Shafer theory of evidence [30].

We will use a variant of the theory of evidence named the Transferable Belief Model, and more specifically examine new
operators for information fusion recently proposed by Den�ux [9]. We study the applicability of these operators for the
aggregation of expert opinion, using a real-world dataset from Ref. [22].

This dataset illustrates four challenges for mathematical aggregation methods. First, it cannot be assumed that opinions
are, statistically speaking, independent: that would overestimate the precision of the actual information in the field. Second,
there is complete contradiction among experts: aggregation methods that take somehow the intersection of the opinions can
not work when the intersection is empty. Third, the disagreement between experts is not a balanced opposition, but rather a
dissent minority situation. Some aggregation methods, like averaging, give more weight to views held by a larger number of
experts, but this is arguably unbalanced because scientific theories should be evaluated only on their own merits, not by the
number of proponents. And fourth, there is no proxy available to calibrate the reliability of experts, so we cannot assume that
some experts are less reliable than others.
. All rights reserved.
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Section 2 describes the mathematical theory for information fusion in the Transferable Belief Model. It defines three ways
to combine opinions, namely the non-interactive conjunction, non-interactive disjunction and the cautious conjunction. Sec-
tion 3 discusses theoretically these operators, along with the well-known averaging and Dempster’s rules.

We argue that none of these ways to combine expert opinions adequately addresses the four challenges defined above. To
this end, we propose a hierarchical method for the fusion of expert opinion. Experts are not combined symmetrically, but
grouped into schools of thought. Within groups, beliefs are combined using the cautious conjunction rule, whereas across
groups the non-interactive disjunction is used.

These approaches are numerically applied and compared in Section 4. The data used in this study represents the opinion
of 16 experts on climate sensitivity, a key parameter of the climate change issue. We examine which fusion method works
best, showing that the answer is not the same for Bayesian beliefs and consonant beliefs. Section 5 analyzes sensitivity of the
results, comparing them with the more recent literature, and points to existing social science concepts that could be used
with the proposed hierarchical approach. Section 6 concludes.
2. Operators of the Transferable Belief Model

2.1. Basic belief assignments

The Transferable Belief Model is an elaboration of the Dempster–Shafer mathematical theory of evidence [7,29], a theory
that represents and combines uncertain beliefs. This section briefly reminds the parts of this model that are relevant for ex-
pert aggregation. The reader may refer to Refs. [8,33] for a more complete exposition including the mathematical
demonstrations.

As usual, let us denote by X a frame of reference, that is, a set of mutually exclusive states of the world. This paper as-
sumes a finite number of states of the world. Classical probability theory represents uncertainty by allocating a unit mass
of belief among states of the world, that is a function p : X! ½0;1� such that

P
x2XpðxÞ ¼ 1.

Dempster–Shafer theory of evidence represents uncertainty by allocating the unit mass of belief among subsets of the
frame of reference X. Formally, let 2X denote the power set of X, that is the set of all its subsets. Elements of 2X will be de-
noted with upper case letters such as A # X or X # X. The empty subset will be denoted ;. A basic belief assignment (BBA) is a
function m : 2X ! ½0;1� such that:
X

A # X

mðAÞ ¼ 1: ð1Þ
The mass mðAÞ is the portion of the total belief supporting A which do not support more precisely any specific subset of A.
Any subset A � X such that mðAÞ > 0 is called a focal set of m.

As a classical example, consider a drawing from an urn containing white, black, and red marbles ðX ¼ fwhite;black; redgÞ.
Knowing only that there is 1/3 of white marbles would lead to the BBA defined as: mðfwhitegÞ ¼ 1=3, mðfblack; redgÞ ¼ 2=3.
This is not the same as drawing from an urn known to have 1/3 of each color, which would be represented with the BBA
defined as: mðfwhitegÞ ¼ mðfblackÞ ¼ mðfredgÞ ¼ 1=3.

For any subset A # X, the BBA that represents the certain belief that the state of the world is in A is the indicator function
1A : 2X ! ½0;1� defined by
1AðAÞ ¼ 1;
1AðXÞ ¼ 0; if X–A:

ð2Þ
The BBA 1X is called the vacuous BBA. It allocates all belief to X itself, and represents the absence of information. Following up
the urn example above, the vacuous BBA is defined by mðfwhite;black; redgÞ ¼ 1; mðXÞ ¼ 0 otherwise. Again, this is not the
same as the equidistribution. We will call mðXÞ the weight of ignorance.

In Shafer’s original theory, in addition to Eq. (1), a BBA must verify the axiom mð;Þ ¼ 0. The Transferable Belief Model
drops this constraint: it allows non-zero belief mass to the empty set, and considers that renormalization, defined as follows,
should not be applied systematically. Renormalizing a BBA m means replacing it by the BBA m� defined as
m�ð;Þ ¼ 0;

m�ðAÞ ¼ mðAÞ
1�mð;Þ ; if A–;: ð3Þ
Smets [31] discusses two reasons for using unnormalized BBAs: incompleteness and conflict. Incompleteness means that
mð;Þ measures the belief that something out of X happens. For example, if X ¼ fHead; Tailg models a coin toss, then mð;Þ
is the extend of the belief that the coin could fall sideways, break or otherwise disappear. In what follows, we assume that
the states of the world are collectively exhaustive, disregarding incompleteness.

Therefore in this context, mð;Þ relates to conflict only. The number mð;Þ, called weight of conflict, is a measure of internal
contradiction which arises when forming belief from information sources pointing in different directions. The extreme case
1; represents being confounded by completely contradictory information sources. As opposed to the vacuous BBA 1X which
can be adopted when one has no information at all, the complete contradiction BBA 1; represents a situation of confusion
arising from too much information inconsistency.
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2.2. Non-interactive fusion operators

The two basic combination rules of the transferable belief model will be denoted and . They provide a way to compute
the ‘‘intersection” or the ‘‘union” of two experts’ opinions.

Before turning to the formal definitions, these rules will be illustrated on a special case: the fusion of two experts holding
certain beliefs. Expert 1 views that the state of the world is in A # X, and expert 2 views that the state of the world is in B # X.
Their beliefs are represented, respectively, by 1A and 1B.

To start with , consider what the result of the fusion should be when one thinks that either expert 1 or expert 2 is a
reliable information source. In this case, one is led to believe that the state of the world is in A or B, that is in A [ B. The

combination rule is precisely such that 1A 1B ¼ 1A[B. It is called the non-interactive disjunction rule. This operator
can be qualified as a ‘‘gullible” rule, which means it accepts all that it is told.

The non-interactive conjunction rule is meant to be used when one thinks that both expert 1 and expert 2 are reliable
information sources. Apparently, there are two cases. When A \ B is non-empty, the fusion of the two opinions should be the
belief that the state of the world is in A \ B. When the experts have no common ground, that is A \ B ¼ ;, then we have a
contradiction problem. However, in the transferable belief model this is not a problem, this state of affairs is represented
with 1;. So actually in both cases, the operator should be such that 1A 1B ¼ 1A\B. This operator can be qualified as a ‘‘con-
sensus” rule, to mean that all parties accept the result.

For reasons that will become apparent with Eq. (8), we define below these two combination rules with slightly more gen-
eral functions than BBAs. Let l be a real-valued subset function l : 2X ! R which verifies Eq. (1), but may or may not be a
BBA, that is, take values in ½0;1� or not. The non-interactive conjunction of l1 and l2 is defined as the subset function
l1 l2 : 2X ! R such that, for any subset X:
ðl1 l2ÞðXÞ ¼
X

A # X

B # X

A \ B ¼ X

l1ðAÞ � l2ðBÞ:

ð4Þ
In the same way, is defined by:
ðl1 l2ÞðXÞ ¼
X

A # X

B # X

A [ B ¼ X

l1ðAÞ � l2ðBÞ:

ð5Þ
These operators are commutative, associative and if l1 and l2 are two BBAs then the result is also a BBA. These properties
allow us to treat the experts symmetrically when combining their opinions. Vacuous beliefs 1X is an absorbing element for
disjunction and a neutral element for conjunction. Conversely, contradiction 1; is absorbing for conjunction and neutral for
disjunction.

As an example, consider X ¼ fa; bg, and the BBA m defined by mðfagÞ ¼ mðfbgÞ ¼ 1=2. Then ðm mÞðfagÞ ¼
ðm mÞðfbgÞ ¼ 1=4, and ðm mÞð;Þ ¼ 1=2. Such a large weight of conflict in the result may seem surprising. One way
out is to systematically renormalize, as described by Eq. (3). The non-interactive conjunction followed by normalization
is known as Dempster’s combination rule, usually denoted as � in the literature:
m1 �m2 ¼ ðm1 m2Þ�: ð6Þ
However, in some situations the surprising result is the correct one, and renormalization should not be used. It depends on
what is being modeled. Consider, for example, a setting in which two scientists simultaneously replicate a large number of
fair coin tosses. Both conclude that pðHeadÞ ¼ pðTailÞ ¼ 1=2 in the long run. But if the experiments are independent, then
results of the coin tosses were in conflict half the time. This suggests that the non-interactive conjunction is relevant to
combine information sources only when some kind of independence relation can be assumed between information sources.
It justifies why this operator is called non-interactive.

2.3. Factorization and cautious conjunction

The non-interactive combination rules should not be used to combine experts who share pieces of evidence. To perform
information fusion in this kind of situations, Den�ux [9] introduced an operator called cautious conjunction. To define it
mathematically, it is necessary to introduce first the factorization of BBAs.

For any proper subset A � X and any real number s, we denote As the function l : 2X ! R such that:
lðXÞ ¼ e�s;

lðAÞ ¼ 1� e�s;

lðXÞ ¼ 0 ; if X–A and X–X

ð7Þ
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The letter s stands for ‘‘Shafer’s weight of evidence”. This value was previously denoted as w by Shafer [29, Chapter 5]. But
the recent literature [8] uses the letter w to denote the ‘‘weight of evidence” defined by w ¼ e�s.

Regarding the interpretation of As, when s P 0 the function As is a BBA, but when s < 0 it is not, so As can generally not be
interpreted as a state of belief. Smets [32] has shown that for any BBA m such that mðXÞ > 0 there is a unique function
s : 2X nX! R such that:
m ¼ A�XAsðAÞ ð8Þ
Any BBA m such that mðXÞ > 0 is the non-interactive conjunction of elementary pieces of the form AsðAÞ. The weights of evi-
dence function s may take negative values, in which case the BBA is not separable according to Shafer (1976)[29], who did not
consider negative weights of evidence.

This unique factorization theorem allows us to come back to the interpretation of As. It can be seen as the change in one’s
beliefs realized when integrating with weight s a piece of evidence stating that the state of the world is in A. Positive infinity
for s represents a perfectly convincing proof that the state of the world is in A. This remains excluded in the above definition,
for reasons discussed further below. Negative weights s < 0 have an algebraic justification similar to that of negative num-
bers: considering A with weight s exactly counterbalances considering A with weight �s, to produce vacuous beliefs 1X. It is
more difficult to achieve an intuitive understanding of negative information. Smets [32] suggested that As, for a negative va-
lue of s, represents a ‘good reason not to believe’ that the state of the world is in A.

Let us denote jXj the number of elements (cardinality) of a subset X # X. The weights can be computed by introducing the
function q called the commonality function:
qðXÞ ¼ ðm 1XÞðXÞ ¼
X

A�X

mðAÞ: ð9Þ
For any X � X, note that qðXÞP mðXÞ, therefore mðXÞ > 0 implies qðXÞ > 0, so the logarithm is well defined in the following:
sðXÞ ¼
X

A�X

ð�1ÞjXj�jAj lnðqðAÞÞ: ð10Þ
Using Eqs. (4 and 8), along with commutativity and associativity, it is straightforward to verify that, if two BBA m1 and m2

admit corresponding weight functions s1 and s2, their non-interactive conjunction can be computed simply by adding those:
m1 m2 ¼ A�XAs1ðAÞþs2ðAÞ: ð11Þ
This property allows us to clarify the intuition behind the operator. The non-interactive conjunction adds up distinct pieces
of evidence. For example, when combining two experts who point exactly in the same direction A with the same weight s, the
result is As As ¼ A2s. Once again, it is correct to argue that a stream of evidence pointing out in the same direction leads to
stronger beliefs only when they are distinct.

To combine experts that share evidence, Den�ux [8,9] defined the cautious conjunction operator, denoted by . It com-
bines any two BBA such that m1ðXÞ > 0 and m2ðXÞ > 0 by taking the maximum of their weight functions as follows:
m1 m2 ¼ A�XAmaxðs1ðAÞ; s2ðAÞÞ: ð12Þ
It can be shown that if m1 and m2 are BBAs, then m1 m2 is also a BBA (this is immediate only when m1 and m2 are sep-
arable). This combination rule is also commutative and associative, it treats experts symmetrically. It is also idempotent,
that is m m ¼ m, and distributes over the noninteractive rule ðm1 m2Þ ðm1 m3Þ ¼ m1 ðm2 m3Þ.

Distributivity has an interesting interpretation related to the fusion of beliefs. Consider two experts in the following sce-
nario. Expert 1s belief results from the noninteractive conjunction of two pieces of evidence, m1 ¼ As Bt . Expert 2 shares
one piece of evidence with expert 1, and has an independent piece, so that m2 ¼ As Cu. Then distributivity implies that in
the fusion, the shared evidence As is not counted twice m1 m2 ¼ As ðBt CuÞ.

2.4. Discounting beliefs

A BBA m that verifies mðXÞ ¼ 0 cannot be factorized as described above. Eq. (4) implies that ðl1 l2ÞðXÞ ¼ l1ðXÞ � l2ðXÞ,
and we defined As in Eq. (7) such that AsðXÞ > 0 always holds. Therefore, the right-hand side of Eq. (8) cannot be BBA such that
mðXÞ ¼ 0.

Various reasons justify to take BBAs such that mðXÞ ¼ 0 with a grain of salt:

	 No information source is 100% reliable, especially human ones.
	 Many philosophers consider that fundamentally, scientific knowledge can never be absolute and definitive. On the con-

trary, it is necessarily based on a possibly large but finite number of human observations, and is always open to revision
in front of new experimental evidence.

	 The elicitation of expert’s opinions, for example, by asking them probability density functions, is necessarily coarse.
Experts who allocated no significant probability weight to extreme outcomes might have agreed that there was a very
small possibility.
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Shafer [29, p. 255] proposed a simple way to add doubt to a BBA, called discounting. Let r be a number in [0, 1] called a
reliability factor. Discounting the BBA m means replacing it by the BBA defined as:
discountðm; rÞ ¼ rmþ ð1� rÞ:1X: ð13Þ
Discounting allows beliefs to be factorized, and therefore combined using the cautious operator. Admittedly, discounting ex-
pert beliefs is deliberately blurring the data, a practice to be considered with extreme care if used at all. However, the reasons
above justify using reliability factors, provided they are close enough to unity. The theoretical literature suggests that the
fusion operators can be extended by continuity to deal with mðXÞ ¼ 0, and the sensitivity analysis will allow to check that
results do not change much when r varies from 0.99 to 0.9999.

To sum up, that section defined a mathematical object used to represent an expert’s opinion, denoted m and called a BBA.
Four operators were defined to combine the opinions of two experts. The cautious conjunction operator is meant to be
used when experts share data. Otherwise, the non-interactive disjunction takes the union of expert beliefs, while non-
interactive conjunction takes their intersection. Dempster’s rule � is the renormalized non-interactive conjunction.

3. Fusion in the Transferable Belief Model

Having defined the mathematical framework and the binary fusion operators, we discuss now the complete procedures
involving pooling the opinions of experts. Experts opinions are typically called for in situations in which there is not enough
statistical evidence to support precise probabilities. This motivates our interest in an imprecise probability theory, such as
the Transferable Belief Model, to model and combine beliefs. But imprecision has implications along the whole analytical
process, not just the fusion of beliefs.

First, we discuss the implications of imprecision for the process’ ultimate aim, to facilitate decision-making. In our view, it
implies to take a step back from the standard expected utility-maximization methodology implicit in probabilistic risk anal-
ysis. Second, we discuss the elicitation of opinions, a necessary step before the fusion, and question the validity of asking
experts for probability density functions when more imprecise communication instruments can be used. Third, we discuss
theoretically alternative ways to fusion beliefs, and fourth, we introduce a hierarchical approach to set the stage for the
numerical application that will follow.

3.1. Decision-making and uncertainty communication

A reason why decision analysis processes involving the fusion of opinion is important is that when decisions involve dif-
ferent parties and scientific experts are not unanimous, policymakers will tend to break the symmetry of the elicitation pro-
cess by myopically focusing on the results best supporting their interest. Another risk is that the press and other media
outlets tend to paint issues in black and white and to present two sides on everything. Organizations seeking a balanced
point of view would overemphasize the most extreme positions in the group, even when they are actually a minority not
representative of the experts’ general opinion.

Smets [35] offers a way to find a balanced point of view for decision-making in the Transferable Belief Model. He points
out that any BBA m such that mð;Þ–1 defines a probability function BetP, that he calls the pignistic probability function of m,
by:
BetPðxÞ ¼ 1
1�mð;Þ

X

X3x

mðXÞ
jXj : ð14Þ
Smets then argues that when beliefs are described by m, a decision-maker should choose actions that maximize the expected
utility, where expectation is computed using the probability distribution BetP. However, other decision-making rules can be
used. For example, Cobb and Shenoy [5] point out that the justification of BetP is an argument of symmetry, which funda-
mentally contradicts the semantics of ignorance underlying the use of BBAs. These authors suggest instead to use another
way to transform a BBA m into a probability distribution PlP, by renormalizing the plausibility of singletons:
PlPðxÞ ¼ 1
K

X

A3x
mðAÞ; ð15Þ
where K is chosen so that
P

x2XPlPðxÞ ¼ 1.
But offering a single precise probability distribution from which expected utility maximization can provide an optimal

answer to all policy issues is problematic. This position has been put forward by Morgan and Keith [22], who argued that
while expert aggregation can help decision-making by presenting a simpler picture of the multiplicity of opinions on a given
subject, in many cases presenting an aggregate probability is an oversimplification and it is better to leave with the decision-
maker the task of the combining the judgment of all experts. Keith (1996)[18] discusses in more detail why combining
experts is rarely appropriate, and suggests instead to use alternative analysis framework such as seeking robust adaptive
strategies or using scenario analysis to bound the problem.

Such an alternative framework could be provided by imprecise probabilities, where one uses sets of probabilities as basic
uncertainty representation. Mathematically, it is straightforward to view a BBA as implicitly defining upper and lower
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bounds on admissible probabilities, using Eqs. (17) and (16). But there are significant semantic and technical difficulties with
this view. The combination operators of the Transferable Belief Model, especially Dempster’s rule, do not correspond directly
with the combination operators of the imprecise probability theory.

Today there is no consensus in the scientific literature on precautionary decision-making. The core agreement is that
when beliefs are Bayesian, the standard approach is expected utility maximization. But in the more general case several rules
have been proposed. Some reject what has been historically the first axiom in the field: that there is a total ordering between
decisions. This leads to an analysis that recommends a set of maximal or E-admissible actions [37]. The set can be large, and
results do not prescribe further which action should be selected in that set. These incomplete ordering approaches provide
less guidance for decision-making than other rules. While this can be seen as a fatal limitation, rejecting the total ordering
axiom follows the intuition that when there is a multiplicity of opinions, it is not possible to determine precisely and objec-
tively an optimal answer to the policy issue.

In any case, communication of the results obtained by information fusion in the Transferable Belief Model does not have
to put forward a single probability distribution. Instead, it can involve the measures of belief and plausibility associated with a
BBA m. The value of the belief function for an event X # X, denoted belðXÞ, measures the strength of conviction that X must
happen. The value of the plausibility function, denoted plðXÞ, relates to the strength of conviction that X could happen. With
the special case belð;Þ ¼ plð;Þ ¼ 0, these functions are defined when X–; as:
belðXÞ ¼
X

A # X

A–;

mðAÞ; ð16Þ

plðXÞ ¼
X

A # X

A \ X–;

mðAÞ: ð17Þ
An intuitive interpretation of the theory of evidence sees mðXÞ as a mass of belief that can flow to any subset of X.
In this view, belðXÞ represents the minimal amount of belief that is constrained to stay within X, while qðXÞ repre-
sents the amount of belief that can flow to every point of X, and plðXÞ the maximal amount of belief that could flow
into X.

These functions can be used with the ‘‘calibrated vocabulary” approach to communicate qualitatively about uncertainty.
For example, if the analytical result is belðXÞ > 0:90, it could be said that X is correct with very high confidence. If plðXÞ < 0:33,
it could be said that X is unlikely. No calibrated uncertainty vocabulary (probabilistic or otherwise) is universally accepted,
and presumably it would depend upon the readers’ language and culture.

Calibrated vocabularies have often been defined using a probability scale [17,39,41]. Such scales have to be revised, if one
wishes to account for the multi-dimensionality of uncertainty: a BBA m allows to express levels of belief, plausibility, and
contradiction.

3.2. Elicitation: Bayesian or consonant BBAs?

We now turn to the methods for expert elicitation, upstream of the information fusion itself. Approaches in experts elic-
itation include:

1. Expert’s opinion elicitation in the tradition of risk assessment: asking the experts about probabilities, obtaining subjective
probability density functions.

2. Expert’s knowledge elicitation in the tradition of fuzzy logic: collecting opinions in natural language, modeling them with
fuzzy numbers or possibility distributions [43].

3. Qualitative methods: Asking the experts to make hypothetical choices. Opinions can then be deducted from elicited pref-
erences, using the assumption that choices follow rationally from beliefs. This approach was applied to belief functions by
Yaghlane et al. [42].

Formally, information fusion in the Transferable Belief Model can deal with these three approaches. We will focus on the
first two, because qualitative methods, which could potentially be used to elicit directly BBAs, are also less well developed.
There is a natural embedding of probability distributions in the set of BBAs and a natural embedding of possibility functions
in the set of BBAs.

Any probability function p : X! ½0;1� naturally defines a BBA m by:
mðfxgÞ ¼ pðxÞ for any x 2 X;

mðXÞ ¼ 0; if jXj–1:
ð18Þ
A BBA m that naturally corresponds with a probability p by the above equation is said to be Bayesian. A BBA is Bayesian when
its only focal sets are singletons.
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By definition, a normalized possibility distribution is a function p : X! ½0;1� such that maxx2XpðxÞ ¼ 1. Given such p, a
BBA m naturally associated with p can be computed via. its commonality function as follows:
qðAÞ ¼ min
x2A

pðxÞ; ð19Þ

mðAÞ ¼
X

B�A
ð�1ÞjBj�jAjqðBÞ: ð20Þ
In the numerical application (Section 4 and the following), we will use a dataset where opinions are given as probabilities,
using Eq. (18) to transform them into Bayesian belief functions when needed.

We will also explore information fusion when beliefs are more imprecise. This is necessary theoretically because proba-
bilities are a very special kind of BBAs, in which all belief mass is supported by singletons, and the information fusion meth-
ods need to be tested in a more general case.

There is also a potential practical interest to explore information fusion without assuming that beliefs are Bayesian. While
in this specific dataset, as in many other, opinions are specified with probabilities, other elicitation exercises might use dif-
ferent approaches. These include providing judgements using natural language, probability bounds or possibility estimates.
We argued that presenting a single probability distribution was not justified when statistical data is insufficient, even con-
sidering the whole pool of experts. This data scarcity argument is even stronger at the individual level, since each expert
holds only a fraction of the data.

In order to compare better the fusion of Bayesian and non-Bayesian beliefs, we will re-use the same dataset and transform
each expert’s elicited distribution into a corresponding consonant belief function. This transformation problem was already
discussed by Sandri et al. [27] in a possibilistic context, which is not surprising given that most of the existing available data-
sets are probabilistic.

There are many ways to transform a probability p into a BBA m, starting with the natural injection defined Eq. (18). But if
we relax the assumption that beliefs in the mind of experts are necessarily Bayesian, a principle of least commitment (or
maximal uncertainty) can be used to compute which m an expert could have held, knowing that it has answered the prob-
ability distribution p. The principle is applied as follows. Given p, consider the set M of belief functions consistent with p, for
some definition of consistency. Then select m as the member of M which has the most uncertainty in it, having defined an
uncertainty-related order relation that admits a single maximum in M.

Dubois et al. [11] suggested to select for M the set of all BBAs m such that BetP ¼ p, where BetP is defined by Eq. (14). This
set is never empty because it contains the BBA naturally corresponding to p itself. This amounts to argue that even if the
elicitation procedure does not explicitly use bets, experts, when asked to provide probabilities, actually provided pignistic
probabilities (BetP defined Eq. (14)), that is, probabilities they would use if they were asked to bet.

Following the least commitment principle, one then computes the least committed belief functions compatible with these
pignistic probabilities. The uncertainty order relation is defined as follows: for any two BBAs m1 and m2 with respective com-
monality function q1 and q2, if q1ðAÞP q2ðAÞ for all A � X, we write that m1vqm2.

Dubois et al. [11] states that there is an unique maximum in M with respect to vq, which can be computed as follows.
Order the states of the world from most to least probable, that is pðxn1 Þ > 
 
 
 > pðxnjXj Þ. Consider the sets
Ak ¼ fxn1 ; . . . ;xnk

g and assign to Ak the belief mass:
mðAkÞ ¼ jAj � ðpðxnk
Þ � pðxnkþ1

ÞÞ ð21Þ
with the convention that pnjXjþ1
¼ 0. The procedure is illustrated on Fig. 1, which demonstrates graphically that m is indeed a

BBA, it adds up to unity. Note that the focal sets Ak are nested, that is Ak � Akþ1 for all k. In this case, it is said that m is con-
sonant. It can be shown that the result m is naturally associated with a possibility distribution (via Eq. (20)).

For each expert i, we have a method to transform the Bayesian belief function (corresponding to the elicited probability
distribution pi) into a consonant belief function (corresponding to a possibility distribution that we will denote pi).

3.3. Symmetric fusion of expert opinions

Having discussed opinion elicitation and decision-making, we now turn to the fusion of opinions. The literature offers
many rules to combine beliefs, see Ref. [36] for a survey. This section examines systematically ten ways to combine opinions
symmetrically: five operators defined above, each used with or without discounting.

We will explore two discounting options. The high reliability factor, r ¼ 0:999, amounts to practically no discounting at
all, but is technically necessary to ensure that beliefs can be factorized and combined using the cautious operator. A medium
reliability factor, r ¼ 0:8, can be justified as in Section 2.4. The five operators are: the non-interactive conjunction and dis-
junction, the cautious conjunction, Dempster’s combination rule, and averaging.

Theoretical analysis allows us to disregard 7 of the 10 different ways to fusion opinions, because they can be expected to
give mathematically degenerate or otherwise uninteresting results in the context of expert opinion fusion.

Consider first averaging, also called the linear opinion pool. It is mathematically equivalent to discount the opinions be-
fore averaging, or to discount after averaging. But there is no reason to discount the average opinion, once it is computed.
That only adds unjustified imprecision to the result. This explains why we will only check averaging with r ¼ 0:999 in
the next section. More precisely, denoting mi the BBA associated with expert i and denoting n the number of experts, we will
compute:



Fig. 1. From Bayesian to consonant beliefs. Top, Bayesian beliefs (from expert 1 in the dataset). Assuming that the width of each rectangle is 1, and its height
is proportional to the probability, the area of the rectangle denoted p3 is p3, and the sum of all rectangles’ area is 1. Bottom, the corresponding consonant
belief function. The area of the rectangle denoted mðf3;4gÞ is the belief mass going to the focal set f3;4g. The slices are cut horizontally, but the outline
remains the same. The total area remains 1, meaning that m is a BBA.
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maverage ¼
1
n

X

i¼1;...;n

discountðmi;0:999Þ: ð22Þ
On the contrary, using Dempster’s combination rule � without discounting can give counter-intuitive results [44]. Consider,
for example, three states of the world, X ¼ fA;B;Cg, and the problem of combining Bayesian beliefs corresponding to the two
probability distributions p1 and p2, defined respectively by p1ðAÞ ¼ 0:9, p1ðBÞ ¼ 0, p1ðCÞ ¼ 0:1, and p2ðAÞ ¼ 0, p2ðBÞ ¼ 0:9,
p2ðCÞ ¼ 0:1. The result according to Dempster’s rule has a belief weight 0:85 to the state of the world C, which is paradoxical
since both information sources agree that this is the least probable outcome. In the same example, if opinions are taken with
a reliability factor r ¼ 0:8 before combination, the weight going to state of the world C is only 0.105, which is much more
intuitive. This is why we will only examine Dempster’s rule with the medium reliability factor:
mdDempster ¼ �
i¼1...n

discountðmi; 0:8Þ: ð23Þ
Turning now to the non-interactive disjunction , this operator tends to produce very uninformative beliefs. Adding impre-
cision to the input by discounting leads even faster to a vacuous result 1X. This goes against the purpose of information fu-
sion, so we will only consider the fusion with almost no discount:
mniDisjunction ¼ i¼1...n discountðmi;0:999Þ: ð24Þ
The non-interactive conjunction operator and the cautious operator produce a trivial result when the information
sources conflict completely. In this case, the fusion falls into pure contradiction 1;. As with Dempster’s rule, discounting
could be used to decrease conflict before the fusion. This would technically allow to recover more informative results. But
discounting is not justified for these operators, since in the transferable belief model 1; is accepted as a theoretically correct
result. Worse, the non-interactive conjunction finds conflict when combining a Bayesian belief with itself. As seen previ-
ously, when combining the fifty-fifty probability with itself, the belief mass of ; is 0.5.

The introduction enumerated four challenges for mathematical aggregation methods: non-independence, complete con-
tradiction, minority views, and discounting. Contradiction between experts rules out conjunction operators, but is not a
problem for the remaining three approaches. None of these, however, completely answers the other challenges. Dempster’s
rule needs discounting, but there is little evidence to determine reliability factors. Contrary to the cautious conjunction,
Dempster’s rule and the non-interactive operators assume that experts are independent. This can lead to artificially over-
precise results, by counting the same pieces of evidence more than once.

With averaging and Dempster’s rule, the weight of an opinion increases with the number of experts holding it. This can be
seen as a problem, as scientific arguments should be evaluated on their own merits, not by argumentum ad populum (‘‘appeal
to the people”). It is only at the social decision-making stage that the quality and number of people behind each view should
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matter. Groupthink and bandwagon effects are known dangers when pooling opinions. Thus, all other things being equal, a
fusion method that gives equal attention to the minority and the majority views is preferable.

3.4. A hierarchical approach

The difficulties of symmetric fusion methods to aggregate conflicting beliefs have led researchers to suggest adaptive fu-
sion rules [28,2,10]. The general idea is to merge conjunctively subgroups of coherent sources, before disjunctively merging
the different results. We propose a hierarchical fusion procedure based on this idea. This procedure aims to be relevant when
science is not yet stabilized, and the notion of ‘‘competing theories” can be used. Sociology of science suggests that at some
moments in the progress of science, in front of a big unexplained problem, scientists tend to group into schools of thought,
which correspond to alternative candidate theories [21]. Within each group, experts share an explanation of the way the
world works. But only time can tell which theory will emerge, and only one will be adopted in the end.

This suggests to use different operators across and within groups. Across groups, we will use a non-interactive disjunction
operator, assuming that at least one theory, but not all theories, is a reliable information source. This deals with the challenge
of representing equally minority views because all theories are treated equally, regardless of the number of experts in the
group.

Within groups, beliefs will be combined using a cautious conjunction operator. This assumes that experts are all reliable
but not independent information sources. Discounting is needed if the beliefs verify miðXÞ ¼ 0, but this is only a technical
operation; as the reliability factor can be as close to 1 as desired, we will use r ¼ 0:999. This method deals with contradiction
as far as the degree of conflict remains low between experts within groups. Denoting G1; . . . ;GN the groups of experts, we will
compute:
mHierarchical ¼ k¼1;...;N i2Gk
discountðmi; 0:999Þ: ð25Þ
Here, using the operator is tantamount to assuming that schools of thought are non-interactive, that is somewhat inde-
pendent. This assumption could be discussed, but the disjunctive combination rule corresponding to the cautious conjunc-
tion has been published by Den�ux [9] too recently to be examined here.

At this point, we have defined four ways to combine beliefs: the simple linear opinion pool (Eq. (22)), the discounted
Dempster’s combination rule (Eq. (23)), the non-interactive disjunction (Eq. 24), and a hierarchical disjunctive-cautious fu-
sion based on the notion of competing theories (Eq. 25). These four methods will be applied both to the elicited Bayesian
beliefs (Eq. 18), and to the consonant beliefs (Eq. 21). This defines theoretically eight distinct ways to perform opinion fusion
in the transferable belief model. The next section examines how they perform on a real-world dataset.

4. Application to climate sensitivity

4.1. Data used

Climate sensitivity is a proxy for the severity of the climate change problem. It is denoted DT2�, and defined as the equi-
librium global mean surface temperature change following a doubling of atmospheric CO2 concentration, compared to pre-
industrial levels [26]. Over the last two decades, climate sensitivity has become one of the main communication anchors be-
tween the scientists and policymakers to quantify the seriousness of the climate change issue, as discussed by van der Sluijs
[38] and Boa [3].

The value of this parameter is not known precisely. For a long time, the [1.5 �C, 4.5 �C] interval has been regarded as the
canonical uncertainty range for DT2� [23]. Yet knowing better climate sensitivity is critical for climate policy. According to
current trends, humankind is well on track to double the CO2 concentration in the Earth’s atmosphere, not to mention other
greenhouse gases. IPCC (2001a)[15] estimated that 2 �C of global warming raises serious concerns such as risks to many un-
ique and threatened ecosystems (e.g. coral reefs or the arctic ice sheet), plus a large increase in the frequency and magnitude
of extreme climate events (like heatwaves, droughts, and storms).

If climate sensitivity were around 1.5 �C, one could argue that doubling the CO2 concentration would not lead immedi-
ately to a dangerous interference with the climate system. But if climate sensitivity were at the upper end of the canonical
uncertainty range, 4.5 �C, then doubling the CO2 concentration would certainly be a very dangerous interference with the
climate system.

Morgan and Keith [22] conducted structured interviews using expert elicitation methods drawn from decision analysis
with 16 leading US climate scientists. The authors obtained quantitative, probabilistic judgments about a number of key cli-
mate variables, including the climate sensitivity parameter.

This dataset received a significant interest in the climate change literature, as in the late 1990s there were very few other
estimates for this parameter’s probability distribution. For example, Webster and Sokolov [40, 4.1] derived a climate sensi-
tivity probability distribution by taking the median (across the 16 experts) of each of the fractiles (0.05, 0.25, 0.5, 0.75, 0.95),
and using the median fractile values to fit a beta distribution. According to this distribution, pðDT2� 6 1:5 �CÞ ¼ 0:24,
pð1:5 �C 6 DT2� 6 4:5 �CÞ ¼ 0:67, pðDT2� P 4:5 �CÞ ¼ 0:09.

But Keith [18] raised theoretical issues against combining these opinions into a single judgment on climate sensitivity
like Webster and Sokolov [40] did. The 16 experts are not independent, they are part of a research community regularly
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sharing data, models and ideas. And yet opinions on climate sensitivity are widely different in qualitative terms. The authors
confirmed that there is an interest in finding an aggregation technique where the combined probability distribution does not
necessarily narrow as the number of experts increases, and which is more robust with respect to extreme experts judgments
than previously published techniques.

4.2. Implementation

The Transferable Belief Model was implemented in Mathematica version 6 using matrix calculus as described by Smets
[34]. The whole notebook file used to create the published figures and tables is available as an electronic supplement to this
manuscript.

In the dataset, no probability is allocated to climate sensitivity lower than �6 �C, or larger than 12 �C. For the sake of
numerical tractability, this range was subdivided in seven ranges:
X ¼fx1; . . . ;x7g
¼f½�6;0�; ½0;1:5�; ½1:5;2:5�; ½2:5;3:5�; ½3:5;4:5�; ½4:5;6�; ½6;12�g
Each expert’s probability distribution on X was computed from the elicited probability density function Pi:
piðx1Þ ¼Pið�6 6 DT2�CO2 < 0Þ
piðx2Þ ¼Pið0 6 DT2�CO2 < 1:5Þ

. . .
The procedure described in Section 3.2 (see Eq. (21) and Fig. 1) was used to transform the Bayesian beliefs into consonant
beliefs. We computed an implicit possibility distribution pi associated with each expert’s probability distribution pi. Fig. 2
represents pi and pi for the 16 experts.

Four qualitatively different groups of distributions can be identified. The widest distributions come from experts 2, 3, and
6, they allow a positive probability both to cooling and to climate sensitivity well above 6 �C. Distributions from experts 4, 7,
8, 9 do not give weight to cooling, but have an upper bound above 8 �C. Experts {1,10–16} disallow extreme cases, the width
of the range supporting their probability distributions is between 4.2 and 5.5 �C. Expert’s 5 probability distribution lies in the
range x2 ¼ ½0 �C;1:5 �C�.

The 0.80 reliability factor used for Dempster’s rule is arbitrary. Discounting is also necessary to compute the cautious con-
junction, as all experts except {2,3,6} give a zero probability to some outcomes. We used a reliability factor 0.999. Since re-
sults will be shown only to 2 digits, that is presumably close enough to 1, an assumption that will be tested in the sensitivity
analysis.

We used the four qualitative groups outlined above for the hierarchical approach: G1 ¼ f2;3;6g;G2 ¼
f4;7;8;9g;G3 ¼ f1;10;11;12;13;14;15;16g;G4 ¼ f5g. Better ways to group experts together will be discussed in Section
5.3, but this heuristic is sufficient to illustrate the method.

We further assumed that within a school of thought, all experts are reliable but not independent information sources.
Their beliefs were combined using a cautious conjunction operator: mGk

¼ i2Gk
mi. The second stage combined the four

groups together using the non-interactive disjunction operator.

4.3. Results

Fig. 3 and Table 1 present the results, in two different ways. Fig. 3 shows the results obtained by combining Bayesian be-
liefs in the left column, and those obtained with consonant beliefs in the right column. Correspondingly, the table is divided
in a top half showing the fusion of Bayesian beliefs, whereas the bottom half is devoted to the consonant beliefs. In each half,
we compare the results obtained using the four ways to combine opinions: averaging (Eq. 22), discounted Dempster’s rule
(Eq. 23), non-interactive disjunction (Eq. 24) and the hierarchical approach (Eq. 25). Numbers are shown with two significant
digits.

On each plot in Fig. 3, the vertical axis goes from 0 to 1, and horizontally the numbers (from 1 to 7) denote the states of the
world x1 to x7. The legend at the bottom defines these states of the world in terms of climate sensitivity. Finally, there are
three series of points on each plot. The top one is labelled pl, while the middle one is labelled p and the bottom bel. They
display, respectively, the plausibility plðxiÞ, the pignistic probability BetPðxiÞ, and the belief belðxiÞ. Labels are sometimes
superposed. The lines are drawn for readability, but it does not mean that we plot continuous densities.

Showing these three functions only on the xi does not represent completely the results, except when the result is Bayes-
ian. Since there are 7 states of the world, a general BBA m is defined with 27 ¼ 128 numbers. As an example of what the full
results look like, the BBA resulting from the hierarchical fusion of the consonant beliefs is completely tabulated in Table 5
(see Annex) with 5 decimals. It has 18 focal sets.

In Table 1, each line describes aspects of the BBA obtained using a different fusion method. Lines 1 to 4 show the com-
bination of Bayesian beliefs, lines 5 to 8 of consonant beliefs. There are five columns. The first column shows the degree of
conflict mð;Þ, while the second column shows mðXÞ. Heuristically, smaller numbers in these columns are better, since they
correspond to intuitively more interesting or informative results. The last three columns show the values of the belief and



Fig. 2. The probability (grey histograms) and implicit possibility (dotted lines) for the 16 experts in [22]. The vertical axis goes from 0 to 1. The horizontal
axis discretizes the [�6 �C, 12 �C] climate sensitivity range into seven intervals using a non-uniform subdivision at �6, 0, 1.5, 2.5, 3.5, 4.5, 6, and 12 �C. Four
qualitatively different groups of distributions can be seen: Experts 2, 3, 6 allow cooling, 4, 7, 8, 9 allow high outcomes but no cooling, 1, 10–16 disallow
extreme cases, and 5 is concentrated on [0 �C,1 �C]. Data are given numerically in Table 6.
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plausibility functions. They refer to a coarsened frame of reference: states of the world have been grouped into three policy
relevant cases. The less worrying case is fx1;x2g, that is sensitivity below 1.5 �C. The historical canonical range is repre-
sented by fx3;x4;x5g. The worst case groups together outcomes for which climate sensitivity is above 4.5 �C, that is
fx6;x7g.

We now discuss each operator successively. Results obtained by averaging are shown in Fig. 3 on the top row. Top left, the
three curves bel, p and pl are superposed: when all beliefs are Bayesian, the average is also Bayesian. The top right graphic
represents the average of consonant beliefs. The plausibility and belief curves are now very different. For a decision-maker
only focused on pignistic probabilities (curve labelled p), the left and right results would seem very close. But from an evi-
dence theory perspective, the left plot under-represents scientific controversies and the need for precautionary decision-
making.

Consider, for example, what the results say about DT2� < 1:5. As shown in Table 1, averaging in the Bayesian case leads to
the conclusion that belðfx1;x2gÞ ¼ 0:23 and plðfx1;x2gÞ ¼ 0:24 (the small difference between belief and plausibility levels
is explained by the reliability factor 0.999 we introduced.). Yet the bottom half of the table shows that averaging in the con-
sonant case leads to belðfx1;x2gÞ ¼ 0:07 and plðfx1;x2gÞ ¼ 0:7.

These results are qualitatively different. The former could be stated as ‘There is a low confidence that DT2� < 1:5’, to mean
a probability around 0.2. But the latter result could be stated as ‘DT2� < 1:5 �C has a low degree of belief but a significant
level of plausibility’. Such a more imprecise statement describes more accurately the state of scientific controversies.

The graphics in the second row reveal that Dempster’s rule with discounting produces very focused beliefs around x3.
This rule considerably reduces the plausibility of states of the world that are outside the canonical range. The issues with
discounting, shared evidence and the bandwagon effect discussed in Section 3.3 suggest that much of this precision is
unwarranted.

Results with the non-interactive disjunction are shown on the third row. With consonant beliefs, the result is al-
most completely uninformative: line 7, column 2 in Table 1 shows indeed that mðXÞ ¼ 0:99. With Bayesian beliefs,
Fig. 3 shows that the results are well shaped. In that case, while the levels of belief are close to zero, the levels of
plausibility do have lower values for the extreme cases. This suggests empirically that the non-interactive disjunction
rule produces degenerate results when used to combine consonant beliefs, but works better when combining Bayesian
beliefs.
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Fig. 3. Results of the fusion, using different operators. Left column using Bayesian beliefs, right column using consonant beliefs.

Table 1
The fusion of expert opinion on climate sensitivity

Conflict mðøÞ Ignorance mðXÞ Below 1.5 �C bel–pl In range bel–pl Above 4.5 �C bel–pl

By using Bayesian beliefs
maverage 0 0.00 0.23–0.24 0.65–0.65 0.11–0.11
mdDempster 0 0 0.04–0.04 0.96–0.96 0–0
mniDisjunction 0 0.08 0–1 0–1 0–0.86
mHierarchical 0 0.00 0.79–1 0–0.16 0–0.16

By using consonant beliefs
maverage 0 0.08 0.07–0.69 0.27–0.93 0–0.45
mdDempster 0 0. 0.02–0.03 0.97–0.98 0–0
mniDisjunction 0 0.99 0–1 0–1 0–1
mHierarchical 0 0.18 0–1 0–1 0–0.61
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Lastly, let us consider the results of the hierarchical fusion. In the case of Bayesian beliefs, almost all the weight goes to
x2, and the plausibility of fx3;x4;x5g is only 0.16. This can be explained by looking at the cautious conjunction within
groups (Table 7 in the annex). At this stage, the degree of conflict is high, respectively, 0.86, 0.86, and 1 within G1, G2,
and G3.

Thus, it appears that the hierarchical fusion method is useless, or at least highly unstable, when applied to subjective
probabilities that are represented by Bayesian BBA’s. Bayesian BBA’s tend to be conflicting, and their conjunction leads to
a large mass on the empty set. Thus, groups of multiple experts tend to eliminate themselves. This is the opposite issue
of averaging, where the majority got a larger weight than minority opinions.

That contradiction problem does not arise when combining consonant beliefs: the degree of conflict within groups is only
0.01, 0.03, and 0.14. The non-interactive disjunction rule across groups gives a more balanced image of the opinion pool.
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Fig. 3 shows that some combinations of operators and input data produce degenerate results, while other give more inter-
esting BBAs. Designing a study to formally elicit and aggregate information using expert opinion involves several heuristic
choices: which experts to interview, how to elicit their opinions and how to fusion them. To avoid degenerate results, one
has to balance these choices.

Conjunction operators move the belief masses ‘‘down”, into smaller focal sets, but too much precision is a problem given
conflicting opinions. Disjunction operators move the belief masses ‘‘up”, to larger focal sets, but too much generality pro-
duces useless results. To avoid extreme results, a proper heuristic may be to apply a precision increasing operator (conjunc-
tion) to imprecise data (consonant beliefs), or conversely an imprecision-increasing operator (disjunction) to precise data
(Bayesian beliefs). Averaging is neutral here.

This may contribute to explain the qualitative results in Fig. 3. For example, when opinions are represented with Bayesian
beliefs, it is interesting to combine them with the non-interactive disjunction rule: this operator produces beliefs that are
more imprecise than its inputs. Conversely, this operator gives the trivial vacuous beliefs when opinions are represented
using consonant beliefs, because it adds imprecision to a pool of already imprecise data.

5. Discussion

5.1. Sensitivity analysis

Tables 2 and 3 show the result of the fusion under alternative operators (also represented in the annex, Figs. 4–6). First,
we examine the sensitivity of the discounted Dempster’s rule to the reliability factor. Decreasing the reliability factor means
adding doubt to the beliefs to be combined. This spreads around the belief weights, so the result becomes less focused com-
pared to the previous case with r ¼ 0:8. The magnitude of change in the results can be significant. Consider, for example, the
‘below 1.5 �C’ case when combining Bayesian beliefs. Between r ¼ 0:8 (Table 1, line 2, column 3) and r ¼ 0:5 (Table 2, line 1,
column 3), its probability increases by a factor 4.

The other four lines in Table 2 illustrate the problem of contradiction. In the non-interactive conjunction and in the cau-
tious conjunction of all experts, the degree of conflict mð;Þ is very high. We check that is less sensitive to conflict than ,
and that adding doubt, either by discounting or by transforming Bayesian into consonant beliefs, decreases conflict. This only
confirms the theoretical reasons why in Section 3.3 we disqualified these operators.

Table 3 presents variants of the hierarchical approach. Using a reliability factor r ¼ 0:99 does not change the results much
compared to the case with r ¼ 0:999. Adding more doubt to the input data mechanically increases mðXÞ in the output, which
Table 2
Sensitivity analysis: the fusion of expert opinions using alternative symmetric operators

Conflict mðøÞ Ignorance mðXÞ Below 1.5 �C bel–pl In range bel–pl Above 4.5 �C bel–pl

By using Bayesian beliefs
Dempster r ¼ 0:5 0 0.01 0.16–0.17 0.8–0.81 0.03–0.04
cautious 1 0 0–0 0–0 0–0
cautious r ¼ 0:8 0.96 0.00 0.01–0.02 0.01–0.02 0.00–0.01
niConj. 1 0 0–0 0–0 0–0
niConj. r ¼ 0:8 1 0 0–0 0–0 0–0

By using consonant beliefs
Dempster r ¼ 0:5 0 0 0.06–0.12 0.88–0.94 0–0.01
cautious 0.95 0 0.05–0.05 0–0 0–0
cautious r ¼ 0:8 0.71 0 0.1–0.13 0.16–0.19 0–0.01
niConj. 1 0 0–0 0–0 0–0
niConj. r ¼ 0:8 0.87 0 0.00–0.00 0.13–0.13 0–0

Table 3
Sensitivity analysis: the fusion of expert opinions using alternative hierarchic procedures

Conflict mðøÞ Ignorance mðXÞ Below 1.5 �C bel–pl In range bel–pl Above 4.5 �Cbel–pl

By using Bayesian beliefs
Hierarchical r ¼ 0:99 0 0.01 0.74–1 0–0.2 0–0.08
Hierarchical r ¼ 0:9999 0 0.00 0.79–1 0–0.16 0–0.06
Hierarchical 3-way 0 0.00 1–1 0–0.00 0–0.00
Average within 0 0.00 0.01–1 0–0.96 0–0.39

By using consonant beliefs
Hierarchical r ¼ 0:99 0 0.2 0–1 0–1 0–0.62
Hierarchical r ¼ 0:9999 0 0.18 0–1 0–1 0–0.61
Hierarchical 3-way 0 0.00 0.01–1 0–0.99 0–0.15
Average within 0 0.58 0–1 0–1 0–0.95
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in turn increases plausibility levels. Moving to r ¼ 0:9999, the results do not change visibly, as the display is rounded to 2
digits.

Merging G1 and G2 together allows us to check that results are significantly sensitive to the clustering of experts: the plau-
sibility of the ‘‘above 4.5 �C” case, with consonant beliefs, drops from 0.61 to 0.15 (Table 1, line 7, column 5). Finally, we
examined a hierarchic fusion where the first step is averaging, rather than the cautious conjunction. The plausibility function
levels are generally greater with averaging, as the extreme cases get more plausible.

5.2. Existing results on climate sensitivity

In its third assessment published in 2001, the Intergovernmental Panel on Climate Change (IPCC) [16, Technical Summary
F.3] stated that ‘‘climate sensitivity is likely to be in the range of 1.5–4.5 �C. This estimate is unchanged from the first IPCC
Assessment Report in 1990”. This estimate can be traced back even earlier [23]. The [1.5, 4.5 �C] was not offered as a 90%
confidence interval, but as a ‘‘likely” range. The word ‘‘likely” had a formally defined meaning, it was used to indicate a judg-
mental estimate of confidence of 66–90% chance. Since this report, several studies have estimated probability density func-
tions for climate sensitivity based on models and observations.

Hall et al. [12] combined a set of 7 such distributions in an imprecise probability framework. The result, given as upper
probability bounds, suggests that pðDT2� 6 1:5Þ 6 0:10 and pðDT2� P 4:5Þ 6 0:60 (determined graphically from Fig. 5 in Hall
et al. [12]).

Kriegler [19, Section 3.2.3] conducted a deeper analysis of the combination of these distributions with imprecise proba-
bilities. Four of the six estimates examined show a 90% confidence interval in the range between 1.3 and 6.3 �C. In the other
two studies, these ranges are ½1:4;7:7� and ½2:2;9:3�. The author then estimated a prior imprecise distribution based on the
literature, and then updated it using a climate model and observational data for 1870–2002. Updating was done using both
Dempster’s rule and the generalized Bayes rule, but only Dempster’s rule produced meaningful results. Table 4 summarizes
them. For example, the posterior results suggest that the probability of climate sensitivity being less than 1.5 �C is very small
(0.00 meaning less than 1 per thousand). In the posterior, the probability that climate sensitivity falls in the ½1:5;4:5� range is
between 0.53 and 0.99.

According to these results, there is a large possibility that climate sensitivity lies above 4.5 �C. The relatively high upper
bound (10 �C) has been contested by Hegerl et al. [13, Fig. 3], who recently estimated that the 5–95% confidence range of
climate sensitivity was about 1.5–6.2 �C. Still, this does not refute the idea that the 90% confidence interval has its upper
bound above 4.5 �C.

Hegerl et al. [14, pp. 718–727] offers a comprehensive assessment of the literature on climate sensitivity. In this more
recently published Fourth Assessment Report, IPCC continues to formulate uncertainty statement literally, with an explicit
correspondence on a probability scale [17]. The conclusion is that, in spite of new research, the result is not changed much
since the previous report: the likely range is [2, 4.5], where ‘‘likely” means a probability between 66 and 90‘‘very unlikely”
that climate sensitivity lies below 1.5, meaning a less than 10% probability.

Andronova et al. [1, Fig. 1.1a] also published an historical perspective on climate sensitivity. They conclude that recent
studies based on observations indicate that there is more than a 50% likelihood that DT2� lies outside the canonical range
of 1.5–4.5 �C, with disquietingly large values not being precluded. They combined the 16 experts opinions in terms of their
mean estimation and variance into a single cumulative density function, under the assumption that each of the 16 estima-
tions is normally distributed, but this was mostly for historical comparison.

Results presented Table 1 can be compared to this more recent literature. Only the non-degenerate cases in lines 1, 3, 5,
and 8 need to be considered. The plausibility that climate sensitivity lies below 1.5 appears to be low in the recent literature.
But it is high in our results (respectively 1, 0.7, and 1 in lines 3, 5, and 8). In the linear pooling case line 1, the probability is
0.23 which can also be seen as rather significant. The fusion results are not in line with the more recent literature here.

Given that the dataset included one opinion certain that DT2� 6 1:5 �C, this discrepancy can hardly be seen as a mathe-
matical artefact. A more intuitive explanation is that the scientific consensus has evolved since 1995, to revise downward the
likelihood of that event. The increase in the IPCC lower bound from 1.5 to 2 �C can be taken as a sign of this change.

Consider now the last column in Table 1, related to the case in which climate sensitivity lies above 4.5 �C. The recent lit-
erature finds that this case is rather plausible. Lines 3, 5, and 8, this event’s plausibility is respectively 0.88, 0.45, and 0.62.
Line 1, the probability is 0.11. Thus, the fusion results are in better agreement with the more recent findings here. If the vis-
Table 4
Probability bounds on climate sensitivity DT2�

T2� 2 ½0 �C;1:5 �C� ½1:5 �C;4:5 �C� ½4:5 �C;10 �C�

Priora ½0;0:07� ½0:31;0:98� ½0:02; 0:62�
Posteriora ½0;0:00� ½0:53;0:99� ½0:01; 0:47�
Priorb ½0;0:08� ½0:12;1:0� ½0; 0:80�

The prior summarizes the literature, the posterior is updated by Dempster’s rule, using the results of a simulation model.
a Top two rows from Kriegler [19, Table 4.2].
b Bottom row from Kriegler and Held [20].
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ibility given to the higher than 4.5 �C case has increased in the recent publications, its subjective weight was already present
in experts’ minds back in 1995.

5.3. Remarks on the hierarchical approach

Clemen and Winkler [4] dichotomize ways to summarize the opinion of a variety of experts in two classes: behavioral
approaches and mathematical methods. In behavioral approaches, also called interactive expert aggregation methods, ex-
perts exchange information with each other. In mathematical approaches, each expert is interviewed separately in a first
phase, and then opinions are combined afterward according to some algorithmic aggregation method.

Behavioral approaches have many interesting advantages over algorithmic methods. The group judgment is more legit-
imate since it comes from the experts themselves and collective deliberation is a natural social process. The way scientific
panels such as the IPCC write their reports is an interactive expert aggregation method. However, behavioral approaches also
have drawbacks. Any group of experts is subject to the social dynamics inherent in any group of humans. There are known
biases towards conservatism and overconfidence in group-thinking. More importantly, managing all the interactions be-
tween the experts is complicated, time consuming and thus costly.

Mathematical methods aim at simplifying and rationalizing the procedure by separating in time the expert opinion elic-
itation step from the aggregation step, and performing the later without the experts. The simplest aggregation method we
have seen is linear pooling, that is averaging. It works with Bayesian as well as with consonant beliefs. As an alternative, we
have seen that the non-interactive disjunction produces meaningful and non-trivial results, when beliefs are Bayesian. Final-
ly, we examined a hierarchical approach. Using consonant beliefs, it gave results comparable to those obtained with the non-
interactive disjunction.

The main limitations of our work are the following. First, when beliefs are Bayesian, the hierarchical fusion works poorly.
This is because, in that case, the degree of conflict within groups is too high. Second, we used a probability-possibility trans-
formation, which is an abductive reasoning, an inference to the best explanation. But had we used a possibilistic dataset from
the start, we would also have had to use a possibility-probability transformation in order to compare fusion methods in the
Bayesian and the non-Bayesian cases. Taken together, these two limitations suggest that hierarchical fusion as presented
here is more appropriate when beliefs are elicited as possibility distributions.

Third, the hierarchical approach is based on a partition of experts into a small number of schools of thought. Contrary to
symmetric fusion operators, it requires to structure the pool of experts. Thus, it requires to put back some sociology aspects
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in a mathematical aggregation framework. While in this paper we determined the groups from the elicited probability dis-
tribution, social sciences offer much better procedures:

	 The network of experts can be analyzed through publications. Experts who have published together have seen the same
data, they are more likely to share evidence. Newman [24] shows that bibliometrics can help determine the patterns of
scientific collaborations.

	 Expert elicitation techniques involve semi-structured interviews. That material is prime experimental data for social sci-
entists. Working from transcripts is a classical method to analyze how a group of people is organized. Such analysis is usu-
ally conducted without mathematical tools. There are more formal content analysis methods, often based on the written
rather than oral production of the subjects.

	 The experts themselves know their community. They can help to discover how it is organized, and they can validate the
results of the sociological analysis.

Note that the expert selection step, in an elicitation exercise, has to make sure that no major point of view is omitted. This
shows that sociological considerations on the population of experts cannot be avoided, even in a mathematically oriented
study. When it is clear from the start what the different schools of thought are, one can select a single expert to represent
each position, and then pool the opinions symmetrically. Otherwise, it is only after analyzing the interviews transcripts that
the population of experts can be organized around a small number of archetypes.

Representing the diversity of viewpoints by a small numbers of schools of thought is admittedly a strong simplification of
complex social reality. But it is less simplistic than treating all experts symmetrically. Finding out the detailed structure of
epistemic communities, and explaining the differences between theories can be very informative in itself. Bringing forward
that qualitative analysis is a valuable advantage of the hierarchical approach.
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6. Conclusion

This paper compared several procedures to aggregate expert opinion in the Transferable Belief Model. We considered
both Bayesian beliefs and consonant beliefs. The former correspond naturally with probabilities, the latter with possibilities.
Regarding the procedures that combine opinions symmetrically, results show that:

	 Taking either the non-interactive conjunction or the cautious conjunction of all opinions produces degenerate results,
indicating only that experts contradict each other.

	 Dempster’s rule of combination, even after discounting, led to excessively narrow results (overconfidence).
	 Averaging always produces non-degenerate results, but there are two problems with that method. First, when beliefs are

Bayesian, the result is Bayesian too. In the Dempster–Shafer theory of evidence, Bayesian beliefs under-represent scientific
controversies. Second, averaging is essentially a way to allocate more weight to views held by a larger number of experts.
This is a problem because scientific theories should be assessed only on their own merit.

	 The non-interactive disjunction rule produces a degenerate (uninformative) result when beliefs are consonant. The intui-
tion is that consonant beliefs are vague to start with, and the result of the disjunction is more imprecise than its inputs. The
non-interactive disjunction of Bayesian beliefs represents more appropriately scientific controversies than their average.

Then a hierarchical fusion procedure was assessed. This procedure is built around a simple model of experts’ social rela-
tions: it divides them into schools of thought. Social science methods are available to determine the fine structure of episte-
mic communities, and knowing this structure may be as interesting as knowing an aggregate opinion. Within each school,
beliefs are aggregated using the cautious conjunction operator. Across the groups, beliefs are combined using the non-inter-
active disjunction rule. Hierarchical fusion in the Transferable Belief Model offers a solution to several theoretical problems
regarding opinion aggregation:

	 It allows to represent the issue of precautionary decision-making due to scientific controversies in ways that purely prob-
abilistic methods are not able to, beyond standard expected utility maximization.

	 Disjunction allows coping with complete contradiction among opinions without falling into degenerate results or para-
doxes. When several scientific theories compete to explain the same observations, it should not be assumed that both
are true at the same time (conjunction), but that at least one will remain (disjunction).
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assumed that opinions are independent: this would overestimate the precision of actual information.

	 Pooling opinions across schools of thoughts, rather than across individual experts, is arguably a more balanced procedure.
Contrary to averaging, where the number of experts holding a view is essential, minority views are equally taken into
account in hierarchical fusion.
Table 5
The BBA resulting of the hierarchical fusion (cautious conjunction within groups, non-interactive disjunction across, consonant beliefs)

S mðSÞ

{2} 0.00014
{2, 3} 0.00765
{2, 4} 0.00340
{2, 3, 4} 0.16386
{1, 2, 3, 4} 0.00663
{2, 4, 5} 0.00114
{2, 3, 4, 5} 0.13432
{1, 2, 3, 4, 5} 0.07212
{2, 3, 4, 6} 0.02748
{1, 2, 3, 4, 6} 0.01334
{2, 3, 4, 5, 6} 0.08973
{1, 2, 3, 4, 5, 6} 0.18316
{2, 3, 4, 7} 0.02128
{2, 3, 4, 5, 7} 0.00624
{2, 3, 4, 6, 7} 0.01364
{1, 2, 3, 4, 6, 7} 0.01063
{2, 3, 4, 5, 6, 7} 0.06289
{1, 2, 3, 4, 5, 6, 7} 0.18234

Table 6
The elicited probability distributions, discretized on 7 intervals, and the possibility distributions derived from these

Climate sensitivity (�C) -6–0 0–1.5 1.5–2.5 2.5–3.5 3.5–4.5 4.5–6 6–12

The elicited probability distributions, corresponding to histograms in Fig. 2
Expert 1 0 0.1333 0.5167 0.2333 0.0917 0.025 0
Expert 2 0.1 0.2 0.175 0.1625 0.0875 0.1179 0.1571
Expert 3 0.1429 0.1203 0.1579 0.2632 0.1667 0.1002 0.049
Expert 4 0 0.2333 0.2667 0.1429 0.1171 0.14 0.1
Expert 5 0 1 0 0 0 0 0
Expert 6 0.1217 0.1488 0.1494 0.205 0.1917 0.1333 0.05
Expert 7 0 0.0909 0.2591 0.375 0.125 0.0786 0.0714
Expert 8 0 0.1333 0.3667 0.2286 0.127 0.1023 0.0421
Expert 9 0 0.225 0.275 0.1833 0.1367 0.13 0.05
Expert 10 0 0.14 0.26 0.4 0.2 0. 0
Expert 11 0 0.05 0.35 0.25 0.2 0.15 0
Expert 12 0 0.1 0.4 0.275 0.125 0.1 0
Expert 13 0 0.375 0.3417 0.2083 0.075 0 0
Expert 14 0 0.0357 0.281 0.3583 0.225 0.1 0
Expert 15 0 0.35 0.27 0.2133 0.1167 0.05 0
Expert 16 0 0.05 0.375 0.325 0.2 0.05 0

Possibility distributions derived from these histograms, represented as dotted lines in Fig. 2
Expert 1 0 0.5167 1 0.7167 0.3917 0.125 0
Expert 2 0.6875 1 0.975 0.95 0.6125 0.7768 0.9339
Expert 3 0.8409 0.7506 0.886 1 0.9035 0.6499 0.3427
Expert 4 0 0.9667 1 0.7857 0.6857 0.7771 0.6
Expert 5 0 1 0 0 0 0 0
Expert 6 0.7804 0.9005 0.9022 1 0.9867 0.8384 0.35
Expert 7 0 0.5136 0.8841 1 0.6159 0.4643 0.4286
Expert 8 0 0.6714 1 0.8619 0.6524 0.5538 0.2526
Expert 9 0 0.95 1 0.8667 0.7267 0.7 0.3
Expert 10 0 0.56 0.86 1 0.74 0 0
Expert 11 0 0.25 1 0.9 0.8 0.65 0
Expert 12 0 0.5 1 0.875 0.575 0.5 0
Expert 13 0 1 0.9667 0.7 0.3 0 0
Expert 14 0 0.1786 0.9226 1 0.8107 0.4357 0
Expert 15 0 1 0.92 0.8067 0.5167 0.25 0
Expert 16 0 0.25 1 0.95 0.7 0.25 0



Table 7
The cautious conjunction within groups of expert opinion on climate sensitivity

Conflict mðøÞ Ignorance mðXÞ Below 1.5 �C bel–pl In range bel–pl Above 4.5 �C bel–pl

By using Bayesian beliefs
2, 3, 6 0.86 0 0.04–0.04 0.07–0.07 0.03–0.03
4, 7, 8, 9 0.86 0 0.02–0.02 0.09–0.09 0.02–0.02
1,10, . . ., 16 1 0 0–0 0–0 0–0
5 0 0.00 1–1 0–0.00 0–0.00

By using consonant beliefs
2, 3, 6 0.01 0.14 0.02–0.75 0.24–0.97 0–0.48
4, 7, 8, 9 0.03 0 0–0.44 0.52–0.97 0–0.26
1,10, . . ., 16 0.14 0 0.00–0.06 0.81–0.86 0–0
5 0 0.00 1–1 0–0.00 0–0.00

See also Fig. 4.

M. Ha-Duong / International Journal of Approximate Reasoning 49 (2008) 555–574 573
	 This hierarchical fusion procedure uses only a technical approach to discounting. It applies the same very high reliability
factor to all experts. This avoids the two issues of discounting: adding lots of doubt to experts opinions, or saying that
some experts are less qualified than others.

This study was conducted using a real-world dataset on climate sensitivity, published in 1995. The fusion of expert opin-
ion was compared to the more recent stochastic results on climate sensitivity, some of them based on model simulations.
That comparison suggest that since 1995, the plausibility that climate sensitivity will remain below 1.5 �C has decreased.
The plausibility that climate sensitivity is above 4.5 �C was significant in the community’s opinion in 1995. It remains so
today.
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