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The attributes of vehicle routing problems are additional characteristics or constraints that aim to better
take into account the specificities of real applications. The variants thus formed are supported by a well-
developed literature, including a large variety of heuristics. This article first reviews the main classes of
attributes, providing a survey of heuristics and meta-heuristics for Multi-Attribute Vehicle Routing Prob-
lems (MAVRP). It then takes a closer look at the concepts of 64 remarkable meta-heuristics, selected
objectively for their outstanding performance on 15 classic MAVRP with different attributes. This
cross-analysis leads to the identification of ‘‘winning strategies’’ in designing effective heuristics for
MAVRP. This is an important step in the development of general and efficient solution methods for deal-
ing with the large range of vehicle routing variants.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Vehicle routing problems have been the subject of intensive re-
search for more than 50 years, due to their great scientific interest
as difficult combinatorial optimization problems and their impor-
tance in many application fields, including transportation, logistics,
communications, manufacturing, military and relief systems, and
so on. The ‘‘traditional’’ Capacitated Vehicle Routing Problem
(CVRP) involves designing least cost delivery routes to service a
geographically-dispersed customer set, while respecting vehicle-
capacity constraints. This NP-hard optimization problem combines
the characteristics of a Bin Packing Problem aiming to assign loads
to capacitated vehicles, and a Traveling Salesman Problem (TSP)
that aims to find the best route for each vehicle, i.e., the least costly
sequence of visits for the customers assigned to it.

The extremely broad range of actual applications where routing
issues are found leads to the definition of many VRP variants with
additional characteristics and constraints, that we call attributes,
aiming to capture a higher level of system detail or decision choices,
including but not limited to richer system structures (e.g., several
depots, vehicle fleets, and commodities), customer requirements
(e.g., multi-period visits and within-period time windows), vehicle
operation rules (e.g., load placement, route restrictions on total dis-
tance or time, and driver work rules), and decision context (e.g., traf-
fic congestion and planning over extended time horizons). These
attributes complement the traditional CVRP formulations and lead
to a variety of Multi-Attribute Vehicle Routing Problems (MAVRPs),
making up a vast research, development, and literature domain.
The dimensions of most problem instances of interest hinders the
applicability of exact methods, while the few software systems pre-
sented as general heuristic solvers are increasingly challenged by
the growing variety of attributes. Finally, some MAVRPs combining
multiple attributes together, the so-called rich VRPs, may be espe-
cially difficult to solve because of the compound, and possibly antag-
onist, decisions they involve.

Thousands of heuristics, meta-heuristics, and solution concepts
tailored to some specific MAVRPs have been proposed in the liter-
ature. The vehicle routing domain, vast and difficult to classify, has
been historically articulated around several streams of research
dedicated to a number of major attributes. Such diverse research
lines would be justified if the nature of the various problem set-
tings would call for radically different solution approaches. Yet,
MAVRPs naturally share many common features, and most heuris-
tic strategies developed for specific problems can be applied to a
broader range of VRP variants. The identification of such funda-
mental design elements for MAVRP metaheuristics is of primary
interest to progress toward more generalist and efficient VRP
algorithms, thus providing the means to quickly address various
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application cases and rich VRP settings without extensive problem-
tailored algorithmic developments.

To respond to these challenges, we introduce a unifying synthe-
sis and analysis of MAVRP solution methods, providing the means
to identify the main concepts of successful heuristics and metaheu-
ristics. The analysis is based on two main ideas. On the one hand,
we analyze from a general perspective detached from the particu-
lar characteristics of the attributes. On the other hand, we adopt a
synthetic approach to deal with the abundance of contributions.
Thus, in particular, the scope of the analysis is limited to settings
with complete and exact data, demands on nodes (no arc-routing
settings), and a single objective.

We identify, classify, and analyze fifteen notable MAVRPs,
which have been the object of a consistent body of well-acknowl-
edged research resulting in a considerable number of heuristic
methods and a number of common benchmark sets of test in-
stances. We use a simple method-oriented classification, rather
than an application-oriented one. Thus, attributes are discerned
relatively to their impact on the resolution approaches rather than
relatively to the real-life constraint or objective it originates from.
Three to five of the most efficient heuristics are then selected, w.r.t.
solution quality, for each of these MAVRP variants with different
kinds of attributes. The resulting sixty-four methods are analyzed
in detail, resulting in the identification of broad concepts and main
algorithmic-design principles, an objective synthesis of ‘‘winning
strategies’’, perspectives and major research challenges.

The article unfolds in three main parts. Section 2 recalls the ‘‘tra-
ditional’’ CVRP and reviews the fundamental elements of heuristics
developed to address it. Most of these elements are also found in the
next sections when analysing heuristics for multi-attribute prob-
lems. Section 3 introduces an attribute-classification system and
presents the selected MAVRPs and the corresponding subset of se-
lected high-performance heuristics, thus providing the necessary
material for our unifying analysis of state-of-the-art MAVRP heuris-
tics in Section 4. Section 5 concludes with a discussion of a number of
challenges for the field and possible research perspectives.
2. Heuristics for the CVRP

The CVRP was introduced in the seminal article by Dantzig and
Ramser (1959) under the name ‘‘Truck Dispatching Problem’’. It
was only several years later, following the publication of the article
by Christofides (1976), that the current name of the problem be-
came widespread. Like many previous articles, we define the CVRP
as follows.

Let G ¼ ðV; EÞ be a complete undirected graph with jVj ¼ nþ 1
nodes. The node v0 2 V represents a depot, where a fleet of m iden-
tical vehicles is based, and where the product to be distributed is
stored. An unlimited fleet can be modeled with a large m. The other
nodes v i 2 V n fv0g, for i 2 {1, . . ., n}, represent the customers, char-
acterized by demands for non-negative amounts of product qi.
Edges ði; jÞ 2 E represent the possibility of traveling directly from
a node (customer or depot) v i 2 V to a different node v j 2 V for a
transportation cost of cij. The CVRP aims to find m or less vehicle
routes, i.e. sequences of deliveries to customers, to visit each cus-
tomer one time exactly while minimizing the total travel distance.
The sum of demands should not exceed on any route a value Q
assimilated to the vehicle capacity.

Additional limitations on route duration are frequently consid-
ered, leading to a close variant called ‘‘duration-constrained VRP
(DVRP)’’. Each customer i is associated with a service time si, each
edge (i,j) with a travel time tij and the sum of service and travel
times on any route is bounded by a maximum duration T. Most
classic benchmark instances from the literature consider tij = cij

for any ði; jÞ 2 E.
The CVRP has been the subject of intensive research since the
1960s. Numerous exact methods, heuristics, and metaheuristics
have been presented in the literature, as illustrated by various sur-
veys (see Baldacci et al., 2007; Cordeau et al., 2007; Gendreau et al.,
2008b; Eksioglu et al., 2009; Potvin, 2009 and Laporte, 2009, for
the most recent) and books (Golden and Assad, 1988; Toth and
Vigo, 2002a; Golden et al., 2008). Only relatively small CVRPs can
currently be consistently solved to optimality. The largest symmet-
ric instances solved by Fukasawa et al. (2006) and Baldacci et al.
(2008b) have a maximum of 135 customers. Some exact methods
for asymmetric problems have been introduced in Fischetti et al.
(1994) and Pessoa et al. (2008). Because of this, heuristics and
metaheuristics constitute a very active research domain in the lit-
erature. These approaches for the classic CVRP are surveyed in the
following, discerning some main categories of methods: construc-
tive heuristics, local improvement heuristics, metaheuristics, hybrid
methods, and parallel and cooperative metaheuristics.

2.1. Constructive heuristics

Mainly proposed between the 1960s and the 1980s, a large
number of heuristics attempted to produce solutions construc-
tively. One key characteristic of these heuristics is that they oper-
ate in a greedy manner, producing a set of definitive decisions (e.g.,
customer insertion or the merging of two routes) that cannot be re-
versed afterwards.

The savings method of Clarke and Wright (1964) is the best-
known example of a constructive heuristic. Starting from an initial
solution s0 in which each customer is served by a different route,
the heuristic searches for and merges two route extremities i and j,
maximizing the distance saved sij = ci0 + c0j � cij, under the condition
that the merged route is feasible. The original method has been re-
vised and improved several times, notably by Gaskell (1967) and
Yellow (1970) who parametrized the original equation to give more,
or less, importance to the distance to the depot (sij = ci0 + c0j � kcij

with k P 0), thus correcting a flaw in the original method, which
produced routes with a high ‘‘circular’’ tendency. Mole and Jameson
(1976) and Solomon (1987) further generalize these constructive
procedures, considering customer insertions into the routes and
using additional parameters and simple local-improvement
procedures.

Another constructive heuristic, called ‘‘sweep’’ (Gillett and Mill-
er, 1974), is remarkable in its simplicity. The approach explores the
customers circularly, in increasing polar angle around the depot.
Each customer is successively inserted in this order at the end of
the current route. If this insertion is infeasible because of the route
constraints, then a new route is initiated. At the end of this con-
struction phase, Gillett and Miller (1974) proposed to apply a
k � opt improvement heuristic (see Section 2.2) to post-optimize
each route separately.

Other heuristics perform the assignment and sequencing in two
separate phases. The ‘‘route-first cluster-second’’ approach (New-
ton and Thomas, 1974; Bodin and Berman, 1979; Beasley, 1983)
first constructs a giant circuit that visits all customers, like a TSP
solution. This giant tour is then cut into several routes from the de-
pot. The segmentation problem can be solved exactly as a shortest
path problem in an acyclic graph.

Proposed by Fisher and Jaikumar (1981), the ‘‘cluster-first
route-second’’ approach, first creates customer clusters, and then
optimizes the order of visits for each cluster as a TSP subproblem.
The creation of the clusters is performed by solving a Generalized
Assignment Problem (GAP) for the customers, around m locations
chosen to represent zones with a high customer density. A linear
estimate of the route costs is used as the objective function of
the GAP. This approach is strongly linked to the visual solution ap-
proach of human planners. In addition, the priority given to the
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assignment allows capacity constraints to be better dealt with for
highly constrained problems presenting few feasible solutions. This
specificity is significant in the CVRP literature where most construc-
tive heuristics manage the capacity constraints as a by-product of a
policy exclusively dedicated to the geometrical creation of routes.

The heuristics presented in this section are generally capable of
producing solutions that are within 10% or 15% of the optimum in a
very short time. A detailed review of these methods can be found
in Laporte and Semet (2002). Today, constructive methods are still
used to produce initial solutions for a wide range of heuristics, and
have been adapted to many MAVRPs. Furthermore, certain meta-
heuristics (e.g., GRASP or Ant Colony Optimization) rely on itera-
tively calling on constructive heuristics, biased by information
gathered during the global search, to create new solutions.
2.2. Local-improvement heuristics

Sequence-based combinatorial optimization problems lend
themselves well to the application of local search (LS) improve-
ment heuristics (see Aarts and Lenstra, 2003 for a comprehensive
introduction). Based on an initial solution s, a local search heuristic
explores a neighborhood NðsÞ, generally defined by perturbations
(moves) on s, in order to find an improving solution s0 that replaces
s for a new iteration of the heuristic. The local search stops at a
solution �s when no improving solution can be found in Nð�sÞ. This
solution is a local optimum of the problem and the neighborhood
used. The set of solutions – or states characterizing solutions –
linked by neighborhood relationships is usually called search space,
while the succession of states reached in the course of the method
constitutes a search trajectory in the graph thus formed. Many
neighborhoods have been defined in the VRP literature. For the
sake of brevity, we will only describe those which are still fre-
quently used and named as such in the current literature.

A first category, coming directly from the TSP literature, relies on arc
exchanges to optimize separately the routes. In the terminology of Lin
(1965), a neighborhood of the type k� opt contains the set of solutions
obtained by deleting and reinserting k arcs. The neighborhood size is
jN k�opt j ¼ OðnkÞ. The most commonly used neighborhoods in the liter-
ature include 2-opt and 3-opt, as well as Or-exchange (Or, 1976). The lat-
ter neighborhood involves relocating sequences of visits of bounded
length, and constitutes a subset of 3-opt of size O(n2). Examples of
the 2-opt and Or-exchange moves are illustrated in Fig. 1. Noteworthy
is also the GENI insertion operator (Gendreau et al., 1992), which effec-
tively evaluates combined customer insertions in a route with re-
stricted 3-opt or 4-opt optimization.

Other CVRP local-search neighborhoods allow several routes to
be improved simultaneously, generally by exchanging arcs or mov-
ing visits between the sequences. Among the most commonly used
neighborhoods of this type, the insert neighborhood (also called
shift neighborhood in Osman, 1993) consists of moving a visit from
one route to another, while a swap (also called 1-interchange) ex-
changes 2 visits between their respective routes. The 2-opt⁄ neigh-
borhood (Potvin and Rousseau, 1995) is based on the deletion and
reinsertion of two arc pairs from two different routes. This neigh-
Fig. 1. 2-opt and Or-exchange illustration. The deleted/inserted arcs are indicated
with dotted/bold lines.
borhood, which can also be assimilated to an exchange of ‘‘route
ends’’, is sometimes called crossover neighborhood, and is illus-
trated in Fig. 2. The three previously mentioned neighborhoods
contain O(n2) solutions.

Finally, the CROSS-exchange neighborhood (Taillard et al.,
1997) exchanges two (one being potentially empty) customer se-
quences s1 and s2, thus generalizing the three neighborhoods intro-
duced previously, insert, swap, and 2-opt⁄. The customer sequences
s1 and s2 can eventually be reversed in this process to produce a
slightly larger neighborhood, called I-CROSS in Bräysy (2003). The
CROSS and I-CROSS neighborhoods are of size O(n4) and would
be costly to evaluate exhaustively. In practice, the size of the ex-
changed sequences is often limited by a value Lmax, so that the size
of the neighborhood becomes O L2

maxn2
� �

. CROSS and I-CROSS are
themselves special cases of k-interchanges moves (Osman, 1993),
which involve exchanging any (potentially non-consecutive) set
of less than k customers between two routes.

Even the evaluation of quadratically sized neighborhoods can
be impracticable for certain large problems. Thus, further neighbor-
hood pruning procedures are frequent in the literature. A common
method, called granular search, requires computing for each node vi

a list C(vi) of spatially related neighbors, and only considering
moves that involve vi and vj 2 C(vi) (Gendreau et al., 1992; Johnson
and McGeoch, 1997; Toth and Vigo, 2003). Another type of limita-
tion, introduced early in the TSP literature by Christofides and Ei-
lon (1972), Lin and Kernighan (1973), and generalized for the
CVRP by Irnich et al. (2006) under the name of sequential search,
is based on the observation that all profitable k-opt can be broken
down into a list of arc exchanges (/1, . . ., /k) with gains (g1, . . ., gk),
such that all subsets of k 6 k first arc exchanges have a positive
partial gain

Pk
i¼1gi. This observation allows to rapidly eliminate a

lot of unpromising neighbor solutions.
Of critical concern is the efficient serial evaluation of moves,

route feasibility and costs, which represents the bottleneck of most
local searches. Several techniques can lead to CPU-time reductions.
The management of judicious variables on subsequences of visits
(e.g., partial demands or distances), in particular, can lead to incre-
mental move evaluations in amortized O(1) time. Memory struc-
tures may also be used to store route evaluations or move
evaluations within tables or hashtables. Similar approaches are fre-
quently used to efficiently address various MAVRPs (c.f. Section 4).

Large neighborhoods, with an exponential number of solutions,
have also been widely studied and used in the literature. The pro-
cedure of Lin and Kernighan (1973) is a remarkably effective meth-
od for optimizing a TSP sequence. Like the ejection chains strategy
developed by Glover (1992), Glover (1996) and extensively applied
to the CVRP by Rego (2001), this procedure attempts to find a cycle
that alternates existing and non-existing arcs in the current solu-
tion, so that the solution obtained by replacing existing arcs in a
cycle with the non-existing arcs is feasible and improving. Such a
method can be viewed as an incomplete investigation of a k-opt
neighborhood with large k values. Closely related to the previous
concepts, the cyclical transfers of Thompson and Psaraftis (1993)
explore a large neighborhood obtained by moving k customers
within b routes. The search for an improving neighbor solution is
formulated as a negative-cost cycle detection problem in an auxil-
iary graph. Although NP-hard, this latter subproblem can be solved
effectively by means of heuristics.

Other ruin-and-recreate neighborhoods (Shaw, 1998) operate
deletions and reinsertions of customer visits within customer se-
quences. Methods of this kind vary in the nature of their destruc-
tion and reconstruction operators, and may exploit heuristic
methods, constraint programming, or integer programming for
reconstruction. Finally, generalizing the work of Sarvanov and Dor-
oshko (1981) for the TSP, De Franceschi et al. (2006) and Toth
(2008) propose neighborhoods based on fixing some customers
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and re-assigning unfixed customers between fixed ones, which are
explored by solving an integer-programming model. Other large
neighborhoods and exploration techniques are reviewed in Ahuja
et al. (2002) and Pisinger and Ropke (2010). Additional literature
reviews on local-search methods for the VRP can be found in Van
Breedam (1995), Thompson and Psaraftis (1993), Kindervater and
Savelsbergh (1997)Laporte and Semet (2002), Bräysy and Gend-
reau (2005a) and Funke et al. (2005). Local search constitutes an
essential building block of metaheuristics for the CVRP, described
in the next section.

2.3. Metaheuristics

The term ‘‘metaheuristic’’ was first coined by Glover (1986) to
designate a broad class of heuristic methods that continue the
search beyond the first encountered local optimum. A somewhat
crude but telling definition characterizes metaheuristics as heuris-
tics guiding other heuristics.

Metaheuristics constitute a core research domain in combinato-
rial optimization as illustrated by many literature reviews (e.g., Os-
man and Laporte, 1996; Blum and Roli, 2003; Gendreau and Potvin,
2005) and books (e.g., Corne et al., 1999; Glover and Kochenberger,
2003; Dréo et al., 2003; Gendreau and Potvin, 2010). The CVRP is a
testing ground particularly appreciated for such methods, as illus-
trated by the reviews of Gendreau et al. (2002), Cordeau et al.
(2005), Gendreau et al. (2008b), Laporte (2009) and Potvin
(2009). We distinguish between so-called neighborhood-centered
methods, which generally proceed by iteratively exploring the
neighborhoods of a single incumbent solution, population-based
strategies evolving a set of solutions by generating one of several
‘‘new’’ solutions out of combinations of existing ones, and ap-
proaches that either combine elements of different metaheuristics,
the so-called hybrids, or harness the exploration capabilities of
several solution methods exploiting their interaction, the parallel
and cooperative search methods.

2.3.1. Neighborhood-centered search
Simulated Annealing (SA) (Kirkpatrick et al., 1983; Černý, 1985)

overcomes the limitation of local-improvement heuristics, the ra-
pid attraction to a local optimum, by accepting solution-deteriora-
tion moves with a probability governed by a statistical process, the
so-called temperature parameter. The higher the temperature, the
more likely it is to accept a deteriorating move. Temperature
evolves dynamically during the search relatively to a cooling
scheme, first favoring a vast exploration and frequent degrada-
tions, then gradually accepting fewer and fewer degradations to
intensify the search for good-quality solutions. For the CVRP, effi-
cient deterministic ‘‘Record-to-Record’’ (R-to-R) variants (Dueck,
1993; Li et al., 2005) accept any neighbor solution which is not
much worse than the incumbent solution, and prevent degrada-
tions that are too significant relatively to the best-found solution
s⁄, subject to re-starting the search from s⁄.

Tabu search (Glover, 1986; Glover, 1989; Glover, 1990; Glover
and Laguna, 1998) associates a search trajectory centered on the
choice the best (possibly non-improving) neighbor of the incum-
bent solution, with learning capabilities, generally represented as
short-, medium- and long-term memories on solution elements,
which replace or significantly complement the randomization used
in other metaheuristics. This decision process is enhanced by two
mechanisms, the first aiming to avoid cycling and relying on
short-term memories to reject solutions that contain recently
examined tabu elements, the second accepting solutions that fulfil
some aspiration criteria such as ‘‘the best solution in value or con-
taining a given solution element’’. Of central importance are the
medium- and long-term memories used to manage significant tra-
jectory-inflecting procedures known as intensification, e.g., focusing
the search around elite solutions while promoting high-quality ele-
ments, and diversification, e.g., moving the search to an under-ex-
plored area of the search space, promoting infrequent elements,
and so on. The challenge of balancing diversification and intensifi-
cation is still a key research question in the literature.

Tabu search led to very effective CVRP metaheuristics, including
TABUROUTE (Gendreau et al., 1994), Adaptive Memory (AM) vari-
ants (Taillard, 1993; Rochat and Taillard, 1995; Tarantilis, 2005),
and the Unified Tabu Search (UTS) (Cordeau et al., 1997; Cordeau
et al., 2001). In TABUROUTE and UTS, diversification and intensifi-
cation occur through penalties (incentives, respectively) on fre-
quently (rarely) encountered solution elements, while AM
approaches regularly redirect the search to a region around a
new solution built out of promising fragments from a memory.

Concepts from tabu search have inspired other metaheuristics.
Long-term memories for penalizing frequent solution elements
can also be viewed as a basis of Guided Local Search (Voudouris
and Tsang, 1999), applied by Kilby et al. (1999), Tarantilis et al.
(2007), Kytöjoki et al. (2007), and Zachariadis and Kiranoudis
(2010a) to the CVRP. In this case, modifying the search space by
means of penalties is a primary tool for escaping from local optima.
Similarly, aspiration criteria take a preponderant role in the Attri-
bute Based Hill Climber (ABHC) method (Whittley and Smith,
2004; Derigs and Kaiser, 2007).

Variable Neighborhood Search (VNS) (Mladenović and Hansen,
1997; Hansen et al., 2010) exploits the fact that a local optimum
is defined for a given neighborhood. Thus, changing the nature of
the neighborhood during the search, or at least some of its param-
eters, provides the means for further solution improvements. The
order of neighborhood evaluations and the solution acceptance cri-
teria can be either deterministic or probabilistic. For the CVRP,
additional solution perturbation mechanisms and long-term mem-
ories inspired from tabu search are sometimes employed (Kytöjoki
et al., 2007; Fleszar et al., 2009; Chen et al., 2010). Metaheuristic
hybrids (see Section 2.3.3) based on VNS are thus frequent.

In the same spirit, the Adaptive Large Neighborhood Search
(ALNS) by Pisinger and Ropke (2007) exploits the benefits of varied
neighborhoods based on ruin-and-recreate moves (Shaw, 1998).
The frequency of use of these neighborhoods is adapted through-
out the search relatively to their past performance. Finally, the Iter-
ated Local Search (ILS) (see Lourenço et al., 2010 for a recent review)
applies successively a local-improvement phase, which ends up in
a local optima, and a perturbation phase to escape from the local
optima. Scaling appropriately the strength of the perturbation
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operator is a crucial point of the method. Prins (2009a) provides a
simple and efficient application of ILS to the CVRP, where several
solutions are iteratively produced from the same incumbent solu-
tion by means of improvement and perturbation mechanisms, the
best one being selected for the next iteration.
2.3.2. Population-based methods
Population-based methods are often inspired from natural

mechanisms. Genetic Algorithms (GA) and Evolutionary Algorithms
(EA) were introduced during the late 1950s, and developed in their
current form in Holland (1975). These algorithms interpret genetic
laws and natural selection to evolve a population of individuals
assimilated to solutions, through elitist selection, crossover, and
mutation operators. With EA, it is also common to simultaneously
make the search strategies (e.g., operator parameters) evolve with
the solutions. Traditional GA and EA have a tendency to progress
too slowly, however, and have thus been enhanced with various
mechanisms, such as local search, which is also sometimes called
an ‘‘education operator’’. The algorithms thus obtained are some-
times called ‘‘genetic local searches’’ (Mühlenbein et al., 1988) or
‘‘memetic algorithms’’ (Moscato, 1989; Moscato and Cotta, 2010).

Some of these enhanced genetic methods performed remark-
ably well on classical CVRP benchmark instances (Prins, 2004; Alba
and Dorronsoro, 2006; Marinakis et al., 2006; Nagata et al., 2010;
Vidal et al., 2012). We refer to Potvin (2009) for a thorough cover-
age of the field. It is noteworthy that many successful genetic algo-
rithms for the CVRP use a giant-tour solution representation
without trip delimiters (Prins, 2004), along with clustering proce-
dures (Beasley, 1983) to optimally Split a tour into routes. This
strategy, based on route-first cluster-second constructive proce-
dures, reduces the number of alternative solutions (there are less
giant tours than VRP solutions) and enables to use simple crossover
operators for permutations. In addition, an adequate management
or promotion of population diversity appears to be of critical
importance (Prins, 2004; Sörensen and Sevaux, 2006; Vidal et al.,
2012).

The Path Relinking (PR) and Scatter Search (SS) metaheuristics
(Glover, 1977; Resende et al., 2010) are other population methods
based on solutions recombinations. These methods promote stra-
tegic recombination over randomization, and differ essentially
from the GA-type of methods in the manner in which solutions
are crossed and in the size of the solution pool, which is generally
smaller. Recombinations in PR involve an initial solution sDEP and a
guiding solution sGD, both selected from an elite solution popula-
tion. Characteristics of sGD are progressively inserted in sDEP in or-
der to create a trajectory connecting these two solutions,
potentially containing new improving solutions. On the other
hand, the recombinations operators used in SS can involve more
than two solutions. Path relinking was applied to the CVRP by Ho
and Gendreau (2006).

Ant Colony Optimization (ACO) approaches (Dorigo and Stützle,
2004) were inspired by the social behavior of ants foraging for food
and are for now the swarm-type of method most used in optimiza-
tion. ACO was applied to the CVRP by Bullnheimer et al. (1999),
Bell and Mc Mullen (2004), Doerner et al. (2004), Reimann et al.
(2004) and Yu et al. (2009), among others. The individual behavior
of ants is embodied by constructive heuristics, exploiting informa-
tions on the search history (i.e., pheromones). Other swarm-in-
spired methods were proposed for the CVRP by Marinakis and
Marinaki (2011) (bee colonies) and Marinakis and Marinaki
(2010) (particle swarms). All these methods exploit some form of
learning, as are neural networks (Ghaziri, 1996; Vakhutinsky and
Golden, 1994; Créput and Koukam, 2008), and artificial immune
systems (Masutti, 2008), to name a few. These algorithms are often
combined with local-improvement procedures, thus complicating
the task to estimate the proper impact of collective intelligence
paradigms on the search performance.

2.3.3. Hybrid metaheuristics
Hybrid metaheuristics blend concepts from various solution

methodologies, metaheuristic classes most often, to take advan-
tage of their respective strengths. The blending may take the form
of a juxtaposition of methods (e.g., two algorithms called on con-
secutively) or an indissociable inclusion of elements from one
method into a fully-functional different metaheuristic (e.g., tabu
search-inspired memories in VNS). Hybrids may exclusively com-
bine metaheuristic concepts, or also involve algorithmic ideas
and modules from mathematical programming, constraint pro-
gramming, tree-search procedures, and so on.

Although much effort has been recently put into properly defin-
ing the scope of hybrid metaheuristics (Raidl et al., 2010; Blum
et al., 2011), the term remains very general and covers very differ-
ent strategies. One can indeed argue that metaheuristics, described
as heuristics guiding other heuristics, are hybrid in nature. This
shows the shortcomings of a too-encompassing definition or, even,
of trying to find a precise definition. Within the scope of this paper,
we identify hybridisation as a strong concept in metaheuristic de-
sign, rather than a well-defined class of methods, aiming to take
advantage of the synergy among different solution-method ideas
to explore a broad variety of solution strategies, often yielding
superior results.

A large variety of hybrid methods has thus been proposed for
the CVRP. Several approaches involve combined neighborhood-
centered search concepts, such as SA+tabu (Osman, 1993), GRAS-
P+ILS (Prins, 2009a), ILS+VND (Chen et al., 2010), tabu+ILS (Cor-
deau and Maischberger, 2012), among others. Hybridization
schemes of this kind are frequent in recent local search-based
methods, which are frequently enriched with restart procedures
(a main characteristic of GRASP), probabilistic acceptance of dete-
riorating moves (a main characteristic of SA), variable neighbor-
hoods (VNS), or long-term memories and penalties on solutions
attributes (GLS).

Population- and neighborhood-search hybrids are also wide-
spread. The wide majority of population-based approaches for
the CVRP actually integrates some kind of local-search compo-
nents, and can be characterized as hybrid. Furthermore, two of
the three most efficient current CVRP metaheuristics (Nagata and
Bräysy, 2009; Vidal et al., 2012) combine GA and LS. Other ad-
vanced hybridization schemes involve combined GA+tabu (Perboli
et al., 2008), or combined population-based concepts such as
GA+PSO (Marinakis and Marinaki, 2010) and PR+PSO (Marinakis
et al., 2010).

Finally, a number of metaheuristics for the CVRP integrate inte-
ger or constraint programming components to recombine promis-
ing elements of solutions into complete solutions (Rochat and
Taillard, 1995; Tarantilis, 2005; Alvarenga et al., 2007; Groër
et al., 2011), or to explore large neighborhoods based on ruin-
and-recreate (Shaw, 1998; De Franceschi et al., 2006; Salari et al.,
2010). One actually observes a trend towards proposing matheuris-
tics for VRP, combining metaheuristic and mathematical program-
ming components, and explicitly using the model formulation in
defining elements of the method (Doerner and Schmid, 2010).

2.3.4. Parallel and cooperative metaheuristics
Parallel metaheuristics (Toulouse et al., 1996; Alba, 2005; Crai-

nic and Toulouse, 2010) are concerned with the efficient exploita-
tion of simultaneous work (often on several processors) to solve a
given problem instance, and have proved of great interest for rout-
ing problems (Crainic, 2008).

Several types of parallelism may be distinguished according to
how parallelism is obtained, how communications among the
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tasks are defined, as well as how the global search is conducted. In
the most straightforward classification, low-level parallelism in-
volves decomposing parts of the algorithm into independent tasks,
thus providing the means to exploit parallel resources without
changing the general behavior of the method. To be efficient, such
a strategy must target the computationally expensive ‘‘bottleneck’’
procedures, which most frequently are the evaluation of moves in
neighborhood-centered methods, and crossover, selection, and
evaluation in population-based ones. To our knowledge, although
many papers are concerned with the development of such strate-
gies for metaheuristics in general, few studies on low-level proce-
dures have been directly focused on the CVRP. A notable exception
is the recent work of Schulz (2011), considering the efficient solv-
ing of CVRPs on Graphic Processing Units (GPU). In this case, the
change in hardware has direct implications on the resolution
methodology.

In contrast, metaheuristics based on high-level parallelism
either partition the set of decisions, leading to problem decompo-
sitions, or conduct multiple concurrent searches on one or several
search spaces. The simplest method of the latter kind, noted as par-
allel independent multi-search, involves to gather the best final solu-
tion of a set of methods not linked by any communication or
information exchange. This parallel implementation of the multi-
start strategy can offer very interesting performances for the CVRP.
Yet, to fully profit from parallelism, more advanced cooperation
schemes integrate mechanisms to share information during the
course of the methods and, in the most advanced settings, to create
new information out of the exchanged data. Thus, the nature of the
information shared, the frequency of the communications, and the
scope (utilization) of the received information are the main charac-
teristics of cooperation strategies.

For the CVRP, as for most combinatorial optimization cases, the
most efficient parallel metaheuristics are built on asynchronous
communications, triggered individually by the cooperating algo-
rithms, and often taking the form of exchanges of solutions or ele-
ments of solutions. Most multi-search strategies are based on
either adaptive (Rochat and Taillard, 1995; Badeau et al., 1997) or
central memory (Rego, 2001; Groër et al., 2011; Cordeau and Mai-
schberger, 2012; Jin et al., 2012) principles. The former gathers
promising solution fragments and constructs new solutions out
of such fragments. Tabu searches improve these new solutions,
and return the best found solutions to the memory. In central
memory-based cooperation, participating solution methods, which
may be metaheuristics, exact algorithms, or any other method, ex-
change solutions and, possibly, various other data, through a com-
mon data repository (the ‘‘central memory’’). Thus, all information
is always available on request to any of the cooperating processes
and, moreover, can be used to generate new relevant information,
e.g., new solutions, performance measures on solution compo-
nents, promising areas of the search space, and so on. Currently,
tabu search threads cooperate in most central-memory methods
proposed for the CVRP, while Groër et al. (2011) also added integer
programming solvers.

Other parallel strategies arose in the field of evolutionary com-
putation. According to fine-grained parallel ideas, individuals are
arrayed according to some geometrical form (a two-dimensional
toroidal grid in Alba and Dorronsoro, 2006) and interact only with
the (four, in this case) individuals directly connected to. This sets
up a diffusion mechanism of good individual characteristics
throughout the population. The most usual forms of GA coopera-
tion follow a coarse-grained strategy, where populations evolve
separately and cooperate through migrations of elite solutions
(e.g., Dorronsoro et al., 2007).

Doerner et al. (2006) performed extensive sensitivity analyses
on several cooperative ACO metaheuristics that communicate syn-
chronously through exchanges of solutions, ants, or pheromones.
Experiments reproduce the results obtained for the parallel strate-
gies for other metaheuristics, and show that parallel methods tend
to outperform sequential ones, that sharing populations of elite
solutions is more relevant than solely broadcasting the global best
solution, and that episodic re-initializations of pheromone matri-
ces contribute towards a better search. Furthermore, exploiting
the spatial decomposition of Reimann et al. (2004) in a parallel
context leads to increased speed-ups.

2.4. Relative performance of CVRP heuristics

Two main sets of instances have been widely used in the liter-
ature to compare the performance of heuristics in the last 30 years
of research on the CVRP. The 14 benchmark instances of Christo-
fides et al. (1979) include between 50 and 199 customers, which
are spatially randomly distributed for the first 10 instances, and
otherwise clustered. The 20 large-scale instances (pr01-pr20) of
Golden et al. (1998), include between 200 and 483 customers
and present geometric symmetries. Comparisons of VRP ap-
proaches are often based on the quality of the solutions in presence
of similar computational effort. Nowadays, many metaheuristics
reach systematically the best known solution (BKS) on almost all
instances from Christofides et al. (1979). A comparison of state-
of-the-art metaheuristics based on this benchmark tends to be less
statistically significant, as only slight differences on 3 or 4 in-
stances are now reported. To state the best performing methods,
we therefore rely on the larger scale instances of Golden et al.
(1998), for which the results of well-performing approaches re-
main significantly different.

We start by emphasizing a number of good practices for report-
ing results and establishing a fair comparison between CVRP heu-
ristics. We also refer to Barr et al. (1995) for further discussions and
insights. A performance report must contain at least an estimate of
the solution quality and CPU time of the proposed method, as well
as the computing environment: programming language, processor,
operating system, compiler and compiler options. Any perfor-
mance analysis should be presented with a minimum of statistical
information. As such, for non-deterministic algorithms, the average
solution quality and CPU time on several runs for each problem in-
stance should be reported, as well as the standard deviation to as-
sess both quality and robustness. For deterministic algorithms, we
suggest either to use a large-enough set of instances, or shuffle the
customer indices to perform several different runs. A heuristic
must also not require any other information than the problem in-
stance. Using exterior knowledge, e.g., an optimal solution to trig-
ger termination, or some best known characteristics as a starting
point (fleet size for example in presence of a fleet minimization
objective), is not a fair practice.

The most standard search-effort measure in the CVRP literature
considers the total CPU time, and thus not only the time to reach
the best solution. Other conventions should be clearly stated. The
factors of Dongarra (2011) are commonly used to assess the rela-
tive speed of two processors by scaling the CPU time of two algo-
rithms run on different machines. These factors must be used with
caution however, mostly to compare order of magnitudes, since
differences in operating systems, compilers, and memory organiza-
tion have a huge impact on the measures. The best alternative re-
mains to compare on the same computer whenever possible.
Reporting the best solutions of the method on K runs may also pro-
vide valuable insights on the potential of solution improvement. In
that case, K must be specified, and the computation effort of the
assimilated multi-start method is the CPU time for all runs. Simi-
larly, the effort of a parallel method is evaluated as the sum of
the CPU times on all threads and processors. The communication
overhead, approximated as the difference between the real wall-
clock time and the CPU time should also be reported.
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Table 1 provides a brief comparative analysis of the perfor-
mance of the best CVRP heuristics on the instances of Golden
et al. (1998). The solution quality is measured as the average
Gap (%) to the current Best Known Solutions (BKS) in the literature
for each instance. The CPU time is indicated in column ‘‘T’’. The
scaled computational effort T# ¼ nruns � ncpu � T � f ðcpuÞ is also
reported, where f ðcpuÞ stands for the CPU speed factor relatively
to a Pentium IV 3.0 GHz (Dongarra, 2011). We insist on the fact
that these scaled times provide only rough estimates of the compu-
tation effort.

For the sake of brevity, we restricted the comparison to meth-
ods providing detailed results on all 20 instances, and with an
average Gap smaller than 2%. Algorithm performances are also pre-
sented graphically in Fig. 3 relatively to the dual objective of solu-
tion quality and scaled computational effort.

As shown in Table 1, many current state-of-the-art methods ex-
ploit neighborhood-centered searches such as local-improvement
heuristics, record-to-record, or tabu search. The best performances
are achieved, however, by hybrid methods combining neighbor-
hood-centered search with collective intelligence and population
concepts (MB07, NB09, VCGLR11), and by parallel cooperative
methods based on tabu search and solution-recombination proce-
dures (T05, JCL11, JCL12, GGW11). Fourteen algorithms produce
solutions that are very close to the BKS, with deviations of less than
1%. Seven methods (VCGLR11s, VCGLR11f, MB07s, P09, T05,
GGW10, MB07f) constitute a dominating set with regards to the
bi-objective of quality and computational efficiency. The metaheu-
ristics of GGW11, ZK10, JCL10, P09, CM11, LGW05 and P04, in par-
ticular, stand out by their simplicity and still produce results of
remarkable quality. Some other early neighborhood-centered
metaheuristics, such as Golden et al. (1998) and Toth and Vigo
(2003), are also noteworthy for the same reasons, yielding average
gaps of 3–4% with older and slower computing environments. Fi-
nally, even larger instances including thousands of customers have
been tackled by LGW05, MB07, as well as Kytöjoki et al. (2007),
thus filling the need for quick methods for large CVRPs.

In light of the methods presented in this section, the ‘‘tradi-
tional’’ CVRP is remarkably well addressed heuristically, at least
for the classic benchmark instances, and several metaheuristic
frameworks seem adequate to lead to high-quality solutions. The
problem remains still an interesting testing ground for many stud-
ies aimed towards more efficient local search methods, new meta-
heuristic concepts, hybrid and cooperative methods.
Table 1
Best performing metaheuristics for CVRP on Golden et al. (1998) instances.

Acronym Reference Approach

VCGLR11s Vidal et al. (2012) slow Hybrid GA
VCGLR11f Vidal et al. (2012) fast Hybrid GA
NB09 Nagata and Bräysy (2009) Hybrid GA
GGW11 Groër et al. (2011) Para. R-to-R
MB07s Mester and Bräysy (2007) slow EA+ELS
ZK10 Zachariadis and Kiranoudis (2010a) GLS+Tabu
JCL11 Jin et al. (2011) Guided Tabu
MM11 Marinakis and Marinaki (2011) Bees mating
JCL12 Jin et al. (2012) Coop Tabu
P09 Prins (2009a) GRASP+ELS
RDH04 Reimann et al. (2004) ACO
T05 Tarantilis (2005) Ad.M.+Tabu
CM11 Cordeau and Maischberger (2012) Iter. Tabu
MM10 Marinakis and Marinaki (2010) GA+PSO
DK07 Derigs and Kaiser (2007) ABHC
GGW10 Groër et al. (2010) R-to-R + EC
MB07f Mester and Bräysy (2007) fast EA+ELS
PR07 Pisinger and Ropke (2007) ALNS
LGW05 Li et al. (2005) R-to-R
MMP06 Marinakis et al. (2006) Hybrid GA
P04 Prins (2004) Hybrid GA
In addition, the literature shows that more emphasis has been
put in recent years on VRPs with additional attributes, for which
applications are still very challenging. In fact, although many of
the methods presented in this section can be rapidly adapted to
these VRP extensions, very few general-purpose methods are able
to handle the wide range of MAVRPs, and particular method target-
ing individual cases were generally proposed. The objective of the
following sections is to present and classify the main MAVRP attri-
butes, and analyze the concepts of successful heuristics, as a first
step on the path toward the development of agile methods able
to handle a greater variety of VRP variants.

3. MAVRP: classification and state-of-the-art heuristics

Most VRP attributes directly derive from the requirements of
real applications. They are the subject of a vast amount of studies,
grouping several thousands of articles. Several classification sys-
tems for VRP attributes have been proposed. Bodin (1975) and
Bodin and Golden (1981) inventoried about a dozen attributes of
VRP related to service times. With the same outlook, Ronen
(1988) proposed a similar taxonomy centered on practical problem
characteristics, and discussed the challenges of the solution meth-
ods. Desrochers et al. (1990) introduced a more complete classifi-
cation system, as well as a four-field notation inspired by
Graham et al. (1979). This notation served as a support for the cre-
ation of a management system for algorithms and models, based
on inference mechanisms for selecting or producing appropriate
solution methods (Desrochers et al., 1999). Eksioglu et al. (2009)
provided the most complete taxonomy of the MAVRP literature,
integrating most common variants as well as several general
observations on the nature of the articles. This taxonomy was
accompanied by bibliometric data, illustrating the growth in the
number of articles, the main authors, subjects, and journals. In
addition to the previously listed taxonomies, other papers pro-
posed thematic literature reviews of routing problems (Assad,
1988; Desrosiers et al., 1995; Bräysy et al., 2008a; Bräysy et al.,
2008b; Andersson et al., 2010). The annotated bibliographies by
Laporte and Osman (1995) and Gendreau et al. (2008b) are also
noteworthy, providing pointers towards hundreds of articles deal-
ing with MAVRPs and other related problems.

Unlike scheduling, however, where the classification system of
Graham et al. (1979) is still used and updated, none of the previ-
ously-listed classification systems has been used on a large scale
Runs Gap (%) T (min) CPU T# (min)

Avg 10 0.161 113 Opt 2.4G 92.7
Avg 10 0.267 34.8 Opt 2.4G 28.5
Avg 10 0.273 35.6 Opt 2.4G 29.2
Best 5 0.296 5.00 8�Xe 2.3G 129
Single 0.327 24.4 P IV 2.8G 22.4
Avg 10 0.430 40.5 T5500 1.6G 26.7
Avg 10 0.448 47.1 5�Xe 2.66G 180
Best 50 0.560 3.96 P-M 1.86G 117
Avg 10 0.600 41.9 8�Xe 3.0G 330
Single 0.630 7.27 P-IV 2.8G 6.09
Avg 10 0.930 49.3 P-III 900M 7.05
Single 0.931 45.5 P-II 400M 2.02
Avg 10 0.939 31.3 Xe 2.93G 30.8
Avg 50 0.987 4.20 P-M 1.86G 2.48
Single 1.017 113 Cel 2.4G 106
Single 1.186 1.28 Xe 2.3G 0.82
Single 1.230 0.22 P-IV 2.8G 0.20
Avg 10 1.347 10.8 P-IV 3.0G 10.8
Single 1.390 1.13 Ath 1.0G 0.33
Single 1.559 3.44 P-III 667G 0.23
Single 1.662 66.6 P-III 1.0G 10.6
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Fig. 3. State-of-the-art CVRP methods: solution quality and scaled computation time.
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in the vehicle routing literature. This is probably connected to the
large variety of attributes, which makes all exhaustive taxonomies
extremely difficult. In addition, most of the previous classifications
are application-oriented, based on the actual origin of the different
types of constraints (related to, e.g., particular vehicle, network,
driver or customers requirements). Moreover, even though these
classification systems permitted the organization of the different
attributes and contributions, few hints were given as to what heu-
ristic concepts to privilege for the different types of attributes.
Thus, the objective of the next section is to fill this gap with a
new classification which, even though rather simple, emphasizes
the relationships between problem attributes and recent
heuristics.
3.1. Three main classes of attributes

To analyze the concepts of MAVRP heuristics, we distinguish
three main classes of attributes, relative to their impact on three
aspects of the problem that must imperatively be dealt with by
solvers: the Assignment of customers and routes to resources (AS-
SIGN), the Sequence choices (SEQ), and the Evaluation of fixed se-
quences (EVAL). This simple classification is intimately connected
with the resolution methodologies, as dealing with these three
problem aspects leads to a complete solution method. Please note
that an attribute may impact several aspects of the problem, and
thus possibly appear in several categories.

ASSIGN attributes impact the assignment of limited resources,
e.g., vehicles, vehicle types, depots, and service periods over a plan-
ning horizon, to customer services and routes. Most common AS-
SIGN attributes include multiple depots, heterogeneous fleets,
multiple periods, split deliveries, site dependencies, inventory, location
and profits collection. Furthermore, two main sub-families of AS-
SIGN attributes may be distinguished. Some variants of the VRP,
e.g., multiple depot or heterogeneous VRP, are concerned with
the assignment of resources to routes. In these settings, an entire
route can potentially be re-assigned. In other cases, such as the
VRP with multiple periods (PVRP) or inventory routing, the assign-
ment issues are performed on resources to customers, and re-assign-
ing a full route is likely to be infeasible due to the independent
assignment constraints.
SEQ attributes directly impact the nature and structure of the
routes. In a backhaul setting, for example, the route is a compound
of two sequences of linehaul and backhaul services, respectively. In
presence of multiple trips or intermediate facilities, the routes pass
several times at depots, while in the generalized VRP, groups of cus-
tomers are defined, and only one visit per group is performed. In
truck-and-trailer problems, the routes involve sections with and
without trailer. Finally, some other SEQ attributes are related to
specificities of the graph, e.g., routing on a tree or a shoreline, and
dramatically impact the structure of the routes and the required
sequencing methods.

Finally, EVAL attributes impact a large variety of evaluations
and constraint checks that must be performed once the route con-
tents and orders are chosen, including the optimization of the
remaining variables, such as service times for problems with time
characteristics, idle-time and break placement, speed choices, or
the explicit consideration of product placement in trucks. The liter-
ature is extremely rich on attributes of this kind, some of the most
common being time windows, time-dependent route durations or
costs, loading constraints, open routes, and working regulations. The
wide majority of EVAL attributes are inherent to separate routes,
and thus the evaluations of routes can still be performed indepen-
dently in the related VRP variants. However, there are also some
linking EVAL attributes, such as synchronization, which link to-
gether the fixed-route evaluations, and result in very challenging
problems.

Separating attributes among the three previously described cat-
egories allows to emphasize relationships between problems, and
also estimate the solution method adjustments necessary to deal
with them. For example, an EVAL attribute may be managed by
an existing algorithm completed with appropriate sequence evalu-
ation methods, while maintaining the resource assignment and se-
quence creation procedures. In a similar manner, an ASSIGN
attribute may be tackled with new assignment procedures without
impacting the route evaluations.

Table 2 gathers attributes frequently encountered in the litera-
ture, displaying for each either a recent survey, or a paper propos-
ing a solid literature review. Fourteen of these attributes, marked
in boldface, were selected to serve as support to our study on MAV-
RP heuristics, relatively to two main criteria: (1) the resulting VRP
variant is the subject of a significant literature, including exact and



Table 2
Some frequently encountered attributes in the literature.

ASSIGN SEQ EVAL

Attribute Ref. Attribute Ref. Attribute Ref.

Multi-Depots Ombuki-Berman and Hanshar (2009) Backhauls Parragh et al. (2008a) Open Li et al. (2007b)
Heterogeneous Baldacci et al. (2008a) 1 ? 1 Pick&D. Cordeau et al. (2008) Time windows Gendreau and Tarantilis (2010)
Multi-Periods Francis et al. (2008) Multiple Trips Salhi and Petch (2007) Time dependent Ichoua et al. (2003)
Split Deliv. Archetti and Speranza (2012) Multi-Echelons Hemmelmayr et al. (2012) HOS Regulations Rancourt et al. (2013)
Prize Collect. Vansteenwegen et al. (2010) Truck & Trailer Villegas et al. (2011) 2D-3D Loading Iori and Martello (2010)
Location Nagy and Salhi (2007) Generalized Baldacci and Mingozzi (2009) Soft & Multiple TW Ibaraki et al. (2005, 2008)
Site Dependent Cordeau and Maischberger (2012) Graph specifics: Chandran and Raghavan (2008) Duration Constr. Savelsbergh (1992)
Inventory Coelho et al. (2012) Tree, Shoreline, etc. Other time feat. Vidal et al. (2011)
Consistency Groër et al. (2008) Cumulative costs Ribeiro and Laporte (2012)

Simult Pick & Deliv Subramanian et al., 2010
Pollution/Green Bektas and Laporte (2011)
Synchronization Drexl (2012)
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heuristic methods, and is possibly mentioned in specialized litera-
ture reviews; and (2) benchmark instances are available for com-
parisons between methods. The first criterion illustrates the
importance of the variant in the domain, while the second guaran-
tees that some remarkably efficient algorithms can be objectively
selected. The 14 resulting variants are now briefly reviewed in Sec-
tions 3.2, 3.3 and 3.4. In each case, we describe the respective
MAVRP, the size of instances currently solvable with exact meth-
ods, the current classic benchmark instances, and a selection of
well performing heuristics in terms of average solution quality.
Note that ‘‘pure’’ versions of MAVRP with one attribute are studied,
since otherwise the number of combinations of attributes is expo-
nential, and since pure variants are covered by a wider literature.

3.2. Heuristics for VRP variants with ASSIGN attributes

3.2.1. Multiple depots
The multi-depot VRP (MDVRP) deals with a number of depots

d > 1. Each vehicle is assigned to a single depot, which is generally
both the origin and the destination of the vehicle’s route. Some
variants, called ‘‘non-fixed’’ problems, relax this latter require-
ment. Furthermore, in the classical MDVRP, no limit on supply at
depots is considered. Recent elements of literature review can be
found in Ombuki-Berman and Hanshar (2009) and Vidal et al.
(2012). The best exact method (Baldacci and Mingozzi, 2009) can
solve problem instances up to 75 customers, as well as a few in-
stances with up to 199 customers. When considering metaheuris-
tics, the best solutions on the classic instances presented in
Cordeau et al. (1997) were produced by the ALNS of Pisinger and
Ropke (2007), the fuzzy logic-guided hybrid GA of Lau et al.
(2010), the ILS and set covering approach of Subramanian (2012),
the Hybrid Genetic Search with Advanced Diversity Control
(HGSADC) of Vidal et al. (2012), and the parallel UTS of Cordeau
and Maischberger (2012).

3.2.2. Heterogeneous fleet
Customers are assigned to vehicle types with different charac-

teristics: capacity, maximum route times, fixed costs, and variable
costs in terms of the distance. When the number of vehicles is not
constrained, the problem is usually referred to as the Vehicle Fleet
Mix Problem (VFMP), otherwise the more difficult version is called
Heterogeneous VRP (HVRP) (see Baldacci et al., 2008a for a review).
The exact algorithm of Baldacci and Mingozzi (2009) solves most
problem instances with 75 customers or less, as well as some in-
stances with 100 customers. The state-of-the-art metaheuristics,
evaluated on the HVRP instances of Taillard (1999) and Li et al.
(2007a), are of various kinds: tabu search (Brandão, 2011), hybrid
GA (Prins, 2009b), or ILS and VNS (Penna et al., 2011) with set cov-
ering phases (Subramanian et al., 2012).
3.2.3. Multiple periods
A time dimension is introduced in the Periodic VRP (PVRP) as

route planning is to be performed over a horizon of several periods.
Each customer requires a total number of services according to
some acceptable combinations of visit periods called patterns.
The assignment of customer visits is thus subject to compatibility
constraints with the patterns. The PVRP is reviewed in Francis et al.
(2008). Exact methods (Baldacci et al., 2011a) are able to solve
some instances with up to 100 customers and 6 time periods.
Benchmark instances for PVRP metaheuristics are gathered in Cor-
deau et al. (1997). Several efficient neighborhood-centered
searches have been designed, such as UTS (Cordeau et al., 1997;
Cordeau et al., 2001) and its parallel extension (Cordeau and Mai-
schberger, 2012), the VNS of Hemmelmayr et al. (2009), and the
hybrid record-to-record and integer programming matheuristic
of Gulczynski et al. (2011). The population-based approach of Ale-
gre et al. (2007), dedicated to large temporal horizons, focuses on
assignment optimization, while using constructive methods to cre-
ate routes. Also, the HGSADC of Vidal et al. (2012) produces the
current best solutions by combining the GA search breadth with
efficient LS, relaxations schemes, and diversity management
procedures.

The PVRP has led to several other notable problem extensions
(Groër et al., 2008; Gulczynski et al., 2011). The issue of service
consistency, i.e., visiting regular customers on each period at sim-
ilar time and with the same driver, has received a notable atten-
tion. Recent methods dealing with this attribute are based on
record-to-record travel (Groër et al., 2008), tabu search (Tarantilis
et al., 2012), and ALNS (Kovacs et al., 2012). All these methods opti-
mize a template of visits to frequent customers, which remains the
same on every day, in which some additional non-frequent deliver-
ies are inserted.
3.2.4. Split deliveries
Customer demands can be satisfied by several vehicles, each

moving a partial load. This variant is called VRP with split deliver-
ies (VRPSD), as reviewed in Gulczynski et al. (2008) and Archetti
and Speranza (2012). Instances with up to 50 customers (Belen-
guer et al., 2000; Lee et al., 2006) can be exactly solved. Recent
metaheuristics have been evaluated with two different fleet-size
policies on the benchmark instances of Archetti et al. (2006),
Belenguer et al. (2000) and Chen et al. (2007). In the first setting,
the fleet size is unlimited, and state-of-the-art methods rely on hy-
brid GA with giant-tour representation (Boudia et al., 2007), Attri-
bute Based Hill Climber (ABHC) (Derigs et al., 2009), and integer
programming optimization with tabu search (Archetti et al.,
2008). In the second setting, a solution with minimum number
of vehicles is imposed, and the best performances are achieved
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by the scatter search of Mota et al. (2007) and the tabu search with
vocabulary building of Aleman and Hill (2010).

3.2.5. Prize collection
For several customers, service is optional but rewarded with a

prize. Hence, customers must be implicitly distributed among
two subsets, following whether their service is omitted or per-
formed. Several objectives were dealt with in the literature, nota-
bly the optimization of a weighted sum of route lengths and
prizes (Dell’Amico et al., 1995), or the maximization of the prizes
under a route length constraint, usually called the team orienteering
problem (see the review of Feillet et al., 2005 and Vansteenwegen
et al., 2010). Exact methods can solve instances with up to 100 cus-
tomers (Boussier et al., 2006). Most efficient metaheuristics, evalu-
ated on the instance set of Chao et al. (1996), rely on population
concepts. Ke et al. (2008) proposed a hybrid ACO method with a lo-
cal search. Souffriau et al. (2010) introduced a path relinking meth-
od, in which elements of the solution set undergo an ageing
process. Bouly et al. (2009) introduced a hybrid GA based on
giant-tour solution representation, which is hybridized later on
with PSO in Dang et al. (2011). Finally, Archetti et al. (2006) pro-
posed a hybrid tabu search and VNS.

3.3. Heuristics for VRP variants with SEQ attributes

3.3.1. Backhauls
Customers are separated into two groups: delivery customers

(i.e., linehaul customers) and pickup customers (i.e., backhaul cus-
tomers). All routes mixing both groups of customers must serve
all linehaul customers before the first backhaul customer, thus
leading to different route structures. We refer to Toth and Vigo
(2002b) and Parragh et al. (2008a) for detailed reviews on the
VRPB. Instances of maximum 100 customers were solved exactly
by Toth and Vigo (1997) and Mingozzi et al. (1999). The best meta-
heuristics, on the instance sets of Goetschalckx and Jacobs-Blecha
(1989), include the ALNS of Ropke and Pisinger (2006a); the tabu
search of Brandão (2006), which, as Zachariadis and Kiranoudis
(2012), uses long-term memories to direct the search toward inad-
equately exploited characteristics; and finally the ACO of Gajpal
and Abad (2009), which concurrently evolves two ant families to
work on assignment and sequences.

3.3.2. Pickups and deliveries
Each service is characterized by a pair of locations designating

the pickup and delivery spots. All pickups must be made before
the deliveries. This type of problem is dealt with in numerous lit-
erature reviews as a one-to-one Pickup and Delivery Problem (PDP)
(Desaulniers et al., 2002; Berbeglia et al., 2007; Cordeau et al.,
2008; Berbeglia et al., 2010) or simply as VRP with Pickup and Deliv-
eries (VRPPD) (Parragh et al., 2008a; Parragh et al., 2008b). This
problem is often coupled with time-window constraints. Ropke
et al. (2007) solved exactly instances involving up to 96 requests.
The classic benchmark instances have been introduced in Li and
Lim (2001). Efficient neighborhood-centered metaheuristics have
been proposed, including the ALNS of Ropke and Pisinger (2006b)
and the two-phase method of Bent and Van Hentenryck (2006),
which combines simulated annealing (SA) to reduce the number
of routes with large neighborhood search (LNS) to optimize the dis-
tance. These methods were recently outperformed by the memetic
algorithm of Nagata and Kobayashi (2011), which exploits a well-
designed crossover focused on transmitting parent characteristics
without introducing too many new arcs in the offspring. For prob-
lem variants arising from the domain of transportation on demand,
the so-called dial-a-ride problems, UTS (Cordeau and Laporte, 2003)
and the VNS of Parragh et al. (2010) produce solutions of good
quality.
3.3.3. Multiple trips
During its tour, a vehicle can reach several times the depot to

load or unload. By doing so, the global constraints on the routes,
such as the maximum duration, are still considered. The exact
method of Mingozzi et al. (2012) can solve some instances of mul-
ti-trip VRP (MTVRP) with up to 120 customers. Three algorithms
produce on average the largest number of feasible solutions, or
the solutions with least amount of infeasibility on the classic in-
stances of Taillard et al. (1996). The original tabu search and adap-
tive memory approach of Taillard (1993) remain still competitive.
In addition, good results have been obtained with the adaptive
memory-based search of Olivera and Viera (2007), and by Alonso
et al. (2008), who generalized UTS to a PVRP with multiple trips
and vehicle-customer compatibility constraints.

3.4. Heuristics for VRP variants with EVAL attributes

3.4.1. Time windows
The VRP with time windows (VRPTW) is certainty the most

extensively studied VRP variant to date. Time windows are associ-
ated to customer visits and depot, each arc being characterized by
a route duration. Waiting time is allowed upon an early arrival to a
customer, while a late arrival is forbidden. Recent literature re-
views can be found in Bräysy and Gendreau (2005b,a) and Gend-
reau and Tarantilis (2010). The classic VRPTW instances were
introduced in Solomon (1987) and Gehring and Homberger
(1999). Most efficient exact methods (Kallehauge et al., 2006; Jep-
sen et al., 2008; Baldacci et al., 2011b) can solve most instances
with up to 100 customers, and a few instances with up to 1000 cus-
tomers. However, exact resolution is highly dependent upon the
characteristics of the instance and the width of time windows. Ac-
tual state-of-the-art VRPTW metaheuristics are of various kinds.
The guided EA of Repoussis et al. (2009) combines evolution,
ruin-and-recreate mutations, and guided local search. Prescott-
Gagnon et al. (2009) proposed a LNS combined with branch-and-
price for solution reconstruction. The HGA proposed by Nagata
et al. (2010) uses a particularly effective crossover operator. This
latter method, as well as the path relinking of Hashimoto and Yag-
iura (2008) and HGSADC of Vidal et al. (2013), apply time-con-
straint relaxations during the search to benefit from infeasible
solutions in the search space.

3.4.2. Time-dependent
In practical settings, when facing network congestion espe-

cially, travel times on an arc depend on the departure date, leading
to a Time-Dependent VRP (TDVRP). This problem is frequently com-
bined with time-window constraints, and a First-In, First-Out (FIFO)
property for the travel times is frequently assumed, meaning that a
vehicle starting earlier arrives at its destination earlier. Specialized
literature reviews were conducted by Malandraki and Daskin
(1992), Ichoua et al. (2003) and Fleischmann et al. (2004). Among
the particularly efficient heuristics, the adaptive memory search
of Ichoua et al. (2003) manages a population of good-quality
routes, which are recombined and improved by tabu search. The
ILS of Hashimoto et al. (2008) draws its strength from a temporary
relaxation of the problem combined with efficient neighborhood
evaluation procedures. Balseiro et al. (2011) proposed a coopera-
tive ACO, hybridized with local searches and ejection chains, which
rely on two ant colonies to perform respectively fleet-size and dis-
tance minimization. The classic benchmark instances originate
from Ichoua et al. (2003) and Balseiro et al. (2011).

3.4.3. Other time attributes
Several other time attributes on routes have been introduced in

the literature, such as speed choices, waiting-time constraints, and
multiple time windows, time-dependent service costs, or the



Table 3
Main metaheuristic concepts used in the 64 winning methods.

Neighbourhood-centred Freq. Population-based Freq.

Tabu Search 17 Genetic or Evolutionary
Algorithm

16

Iterated Local Search 7 Ant Colony Optimization 4
Variable Neighbourhood

Search
5 Scatter Search 2

Adaptive Large Neighb. Search 4 Path Relinking 2
Simulated Annealing & R.-to-R. 3 Particle Swarm Optimization 1

Others 4
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minimization of the average time to reach customers, also called
cumulative VRP (CCVRP). All these variants require determining
the service times to customers for the routes produced during
the search in order to evaluate their cost and feasibility. The result-
ing sub-problems, called optimal start time problems or timing prob-
lems, are reviewed in Hashimoto et al. (2010), and in Vidal et al.
(2011) within a multidisciplinary unifying framework. Some ILS
heuristics allowed to address effectively MAVRP with general or
convex piecewise linear service costs as a function of service times
(Ibaraki et al., 2005; Ibaraki et al., 2008), and with flexible travel
time (Hashimoto et al., 2006). These three heuristics are based
on remarkably efficient move evaluations for the problems consid-
ered. For the CCVRP, Ngueveu et al. (2010) and Ribeiro and Laporte
(2012) successfully extended the hybrid GA with giant tour repre-
sentation of (Prins, 2004), and the ALNS of Pisinger and Ropke
(2007), respectively.

3.4.4. Hours of service regulations
Regulations related to long-distance transportation impose

complex rules for driving time and driver breaks. Combining the
VRP with break scheduling leads to difficult route feasibility
checks. The recent literature on this subject is mainly oriented on
the laws in the United States and the European Union. When con-
sidering a fixed sequence of visits, the break scheduling sub-prob-
lem can be solved exactly in O(n2) for the laws of the U.S. (Goel and
Kok, 2012). For the E.U. laws, the complexity of the resulting prob-
lem has not yet been determined (Goel, 2010). Most metaheuristics
have been compared on the benchmark instances of Goel (2009)
with E.U. regulations. Since routes are costly to evaluate, neighbor-
hood-centered approaches are usually preferred. Both Goel and
Kok (2012) and Prescott-Gagnon et al. (2010) rely on LNS, the latter
method using integer programming for visit reinsertions. Rancourt
et al. (2013) designed a tabu search to address the U.S. regulations
with multiple time windows. Finally, Goel and Vidal (2012) pro-
posed an efficient hybrid genetic algorithm to address a wide range
of regulations.

3.4.5. 2D and 3D loading constraints
Less-than-truckload routing activities are the source of a large

range of constraints related to the 2D and 3D packing of objects
(2L-CVRP and 3L-CVRP), and their effective loading and unloading.
These attribute lead to intricate problems that mix both multi-
capacity bin-packing and VRP. Classic 2L-CVRP and 3L-CVRP
benchmark instances have been proposed in Gendreau et al.
(2008a) and Gendreau et al. (2006). The most effective heuristics
for the 2L-CVRP include the ACO of Fuellerer et al. (2009), and
the GRASPxELS of Duhamel et al. (2011) which solves a problem
relaxation as a project scheduling problem with resource con-
straints, and yields the current best solution quality. For the 3L-
CVRP, the best current methods are based on tabu search combined
with advanced packing heuristics (Bortfeldt, 2012; Zhu et al.,
2012). Other lines of research consider the explicit placement of
different products in different compartments, and the transporta-
tion of hazardous material, with additional constraints related to
product incompatibility and spacing (Iori and Martello, 2010).

3.4.6. Open
Related to the invoicing practices of road transportation suppli-

ers, the last return to the depot is not counted towards the trans-
portation costs in the Open VRP (OVRP). This variant has been
reviewed by Li et al. (2007b). Currently, the exact method of Letch-
ford et al. (2006) can solve problems with up to 100 customers. The
OVRP is very similar to the ‘‘traditional’’ CVRP from the point of
view of a heuristic approach, and a lot of effective methods are
adaptations of metaheuristics originally intended for the CVRP.
These approaches have been tested on the classic CVRP instances
of Christofides et al. (1979) and Golden et al. (1998), in which
the tour-length limits, when applicable, have been reduced by
10%. Among the best methods, we find the tabu search with
route-evaluations memories of Zachariadis and Kiranoudis
(2010b), and the VNS of Fleszar et al. (2009). High performance
was also achieved by the hybrid EA of Repoussis et al. (2010) and
the ILS-VNS and integer programming hybrid of Subramanian
(2012).
4. A synthesis of ‘‘Winning’’ MAVRP strategies

In the previous sections, champion methods were identified for
14 different MAVRPs and for the classic CVRP. All together, these
approaches constitute a set of 64 successful algorithms for 15 dif-
ferent MAVRP, which are ‘‘anatomized’’ in the following. The anal-
ysis we develop is backed by quantitative observations on the
frequency of appearance of elements of methodology in the suc-
cessful approaches. One drawback of quantitative evaluations is
that they favor seminal widespread approaches over single path
breaking papers. Thus, detailed discussions on alternative strate-
gies, even when represented a single time among the 64 methods,
are presented to complete the analysis.

Table 3 first surveys the main metaheuristic frameworks used
in the 64 algorithms. These methods are visibly of various natures,
neighborhood- and population-based methods tending to be
equally represented, contrasting with claims (frequent in the liter-
ature) for a best metaheuristic type. As such, different metaheuris-
tic frameworks may lead to state-of-the-art algorithms for some
variants when cleverly designed and complemented by adequate
diversification and intensification strategies.

To better understand which elements of methodology make
these particular applications a success, we examine in detail 19 se-
lected characteristics, presented in Table 4. Tables 5 and 6 then
provide a summary of our analysis, each line being associated to
a method, and each of the 19 columns (3–21) corresponding to a
feature that is potentially present. An X sign where line i meets col-
umn j indicates that method i relies on concept j. The rest of this
section details how these features are used in the 64 state-of-
the-art metaheuristics under consideration.
4.1. Search space

Metaheuristics are generally described relatively to the concept
of search space, that is, a set of solutions, or more generally a set of
states describing solutions, in which the method evolves. Basing
the search-space definition on solutions is appropriate for the
CVRP. For many MAVRPs, however, defining a complete solution
goes beyond route description, as additional decisions related to
attributes must be specified. Many metaheuristics are then de-
signed to explore a search space made of indirect representations
of solutions, containing, for example, only the route information,
on which an efficient decoder algorithm can be applied to extract



Table 4
Fundamental metaheuristic features.

Search space (1) Presence of infeasible solutions
(2) Use of indirect representations of solutions

Neighbourhoods (3) Presence of multiple neighbourhoods
(4) Use of polynomially enumerable neighbourhoods
(5) Use of pruning procedures
(6) Use of large neighbourhoods
(7) Use of solution recombinations

Trajectory (8) Presence of random components
(9) Continuous aspect of trajectories
(10) Discontinuous aspect
(11) Mixed aspect

Control and memories (12) Use of populations
(13) Diversity management
(14) Parameter adaptation
(15) Advanced guidance mechanisms

Hybrid strategies (16) Use of hybridization
(17) Matheuristics with integer programming

Parallelism (18) Use of parallelism or cooperation concepts

Decompositions (19) Use of problem decompositions
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one or several complete solutions. This widely applied methodol-
ogy is in itself a structural problem decomposition.

In the heuristics surveyed, 12/64 methods rely explicitly on
indirect solution representations and decoders. The resulting
search spaces may then be smaller and more prone to lead to high
quality solutions. A well-known example is the representation of
Prins (2004) as a giant tour without trip delimiters, used in many
of the selected GAs (Boudia et al., 2007; Prins, 2009b; Ngueveu
et al., 2010), and in the GRASP+ELS of Duhamel et al. (2011). In this
case, the optimal insertion of depot visits in the tour can be solved
in a quadratic number of route evaluations with a shortest path-
based Split procedure. In Alegre et al. (2007), solutions are charac-
terized exclusively by decisions on assignments to time periods.
The role of the decoder is assumed by a VRP algorithm (a quick
constructive method in this case) that creates the routes for each
period separately. Other decoding methods can be found in the lit-
erature. For example, Salhi and Petch (2007) rely on an abstract
solution representation in the form of circular sectors. Decoding
is performed by means of a cluster-first route-second heuristic that
relies on the sectors for the clustering phase. Finally, multiple
structurally different search spaces, relying on different (represen-
tations, decoder) pairs, may efficiently reduce the risks of getting
trapped in a local optimum.

Another main characteristic of the search space comes from the
potential use of infeasible solutions. Since the early literature on
tabu search with the strategic oscillation concept (Glover, 1986;
Glover and Hao, 2011), studies report that a controlled exploitation
of infeasible solutions may enhance the search, by allowing it to
transition more easily between structurally different feasible solu-
tions. Furthermore, the use of infeasible solutions may contribute
toward improving the robustness of the method, which is less
dependent upon the availability of a feasible initial solution (find-
ing a feasible solution is often in itself a NP-hard problem).

About half of the selected MAVRP heuristics (31/64) rely on
penalized infeasible solutions in the search space, which violate
either the route constraints (load, duration, or time windows),
the fleet size limit, or do not service all customers. Moreover, iter-
atively decrementing the fleet size limit while relaxing route con-
straints provides the means to address the ‘‘fleet size
minimization’’ objective without relying on complex route elimi-
nation procedures. Elements of sensitivity analyses on the role of
infeasible solutions in the context of PVRP and MDVRP can be
found in Vidal et al. (2012). In the methods surveyed, relaxations
of route constraints are usually privileged over fleet-size relax-
ations, as it can be difficult to progress from a solution with too
many routes to a feasible solution.

4.2. Neighborhoods

With the exception of some methods that use exclusively large
neighborhoods, and the GA of Lau et al. (2010) which appears to
rely exclusively on crossover and random mutation, all mentioned
MAVRP heuristics are based on at least one type of enumerable
neighborhood using the arc exchanges described in Section 2.2.
The size of these enumerable neighborhoods is usually O(n2) in
practice. Exponentially large neighborhoods are also frequently
used (20/64). Besides ruin-and-recreate neighborhoods or pertur-
bation mechanisms that are well represented in recent methods,
cyclic transfers or ejection chains are also used (Ibaraki et al.,
2005), as well as variants of the Sarvanov-Doroshko IP refinement
heuristic (Gulczynski et al., 2011). Finally, 29/64 methods combine
solutions, or fragments of solutions, into new solutions, thus trans-
mitting good sequence elements as the evolutionary, genetic,
scatter search and path relinking algorithms do. Not only GA and
EA use these mechanisms. Consider for example the adaptive
memory approaches of Taillard et al. (1996), Ichoua et al. (2003)
and Olivera and Viera (2007), which operate recombinations of
solution fragments, and the set covering based approach of Groër
et al. (2011) involving recombinations of routes issued from multi-
ple solutions.

Almost all the methods surveyed (60/64) rely on multiple
neighborhoods, either successively, or in a compound way. The
successive exploration of multiple neighborhoods makes the basis
of the VNS methodology, and is recognized as an important success
factor for metaheuristics in general, especially on complex prob-
lems with multiple constraints and characteristics such as MAV-
RPs. The methods of Archetti et al. (2006) and Parragh et al.
(2010) push very far the concept of neighborhood variation by
exploiting structurally-different, enumerative and large, neighbor-
hoods. Other VNS for MAVRPs may gradually increase the size of
the enumerative neighborhoods by varying the number of arcs to
be exchanged (Hemmelmayr et al., 2009), but, strictly speaking,
do not involve structural neighborhood differences.

Searching efficiently these neighborhoods is critical for perfor-
mance, as it generally makes for the biggest part of the computa-
tion effort. Therefore, many techniques aim at pruning the
neighborhoods (26/64 algorithms), or at enumerating them more
efficiently. Move restrictions based on customer neighborhood
lists (granular search) are frequently used (Ibaraki et al., 2005;
Mester and Bräysy, 2007; Olivera and Viera, 2007; Hashimoto
and Yagiura, 2008; Vidal et al., 2012), as well as neighborhood
limitation strategies based on recently modified solution features
(Nagata and Bräysy, 2008; Nagata and Bräysy, 2009; Nagata et al.,
2010; Nagata and Kobayashi, 2011). In presence of EVAL attri-
butes, re-optimization information developed on subsequence of
successive customers can increase the efficiency of neighbor eval-
uations (Kindervater and Savelsbergh, 1997; Cordeau and Laporte,
2003; Nagata et al., 2010; Vidal et al., 2013). Lower bounds, mul-
ti-phase (feasibility-first or cost-first for example) or approximate
evaluations of neighbors can be used to reduce complexity
(Ichoua et al., 2003; Bortfeldt, 2012).

Memories of previous computations, aimed at reducing compu-
tational redundancy without changing the method behavior, are
also frequently used. Although such procedures may be viewed
as a matter of algorithmic engineering, and thus not necessarily
mentioned, they are critical to reach a good performance, espe-
cially on problems for which route evaluations are costly such as
the 2L- or 3L-CVRP, or the VRP with break scheduling. Most com-
mon memories of this kind are dedicated to manage move



Table 5
Successful metaheuristics for CVRP and MAVRPs with ASSIGN attributes.
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informations (Cordeau and Laporte, 2003; Alegre et al., 2007;
Zachariadis and Kiranoudis, 2010a; Vidal et al., 2012) and route
evaluations (Duhamel et al., 2011). Addressing all the attributes
of the problem with well-designed neighborhood-centered
searches is, and should remain, a primary concern when address-
ing complex MAVRPs.

4.3. Search trajectories

The inclusion of random components in the various algorithm
choices, mentioned explicitly in 56/64 methods, is a dominant
characteristic of search trajectories. Randomisation is a prerequi-
site of asymptotic convergence properties of metaheuristics such
as SA or GA. In practice, however, it is mostly used as a simple
and efficient way to avoid cyclic behavior and increase the diver-
sity of solutions. Only a few current methods for MAVRPs are
deterministic. For example, although tabu search has been first
built on deterministic arguments (Glover, 1986), recent applica-
tions involve random diversification operations, or tabu lists whose
size vary probabilistically. Adding random noise to the objective
function, as in Pisinger and Ropke (2007), is another way to exploit
randomization to diversify the search.
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The amount of change from one solution to the next is also
characteristic of the methods. In neighborhood-centered methods,
successive solutions tend to be in close proximity, sharing many
common elements. This kind of trajectory can be qualified as con-
tinuous, unlike the trajectories of most population-based metaheu-
ristics with crossovers, which are discontinuous, and display a
‘‘jumpy’’ behavior between successive solutions. Finally, mixed tra-
jectories, combining continuous search and jumps, aim to profit
from both kinds of exploration.

We identified 42/64 methods that use mostly a continuous tra-
jectory, and 35/64 methods that often use discontinuous trajecto-
ries. Twelve algorithms use mixed trajectories, with large
continuous search phases as well as regular jumps. These are
neighborhood-centered metaheuristics that include mechanisms
to change abruptly the search region by ‘‘jumping’’ to an elite solu-
tion (e.g., Archetti et al., 2006; Groër et al., 2011), during GRASP re-
starts (Duhamel et al., 2011), or when complete solutions are
reconstituted from fragments or separate routes (Taillard et al.,
1996; Ichoua et al., 2003; Olivera and Viera, 2007). Note that,
ruin-and-recreate LNS and perturbation moves were included
among the continuous class. Our main motivation is that the effec-
tive amount of arcs that are actually changed from one LNS itera-
tion to the next can remain rather small, and such moves are
generally operated to improve a single incumbent solution.

4.4. Memories and control

The judicious acquisition, management, and exploitation of
knowledge on the problem and on the past search history is a com-
plex task that belongs to the core of metaheuristics. Glover (1986)
described three types of memories in the case of tabu search:
short-term memories (e.g., tabu lists), which allow the search to
be influenced locally in order to evade local optima, and medium-
and long-term memories (e.g., memories on solutions elements),
which are used to direct the overall exploration of the search space.
These kind of memories have since been developed into various
forms, and exploited for many means in other metaheuristics,
including those surveyed for MAVRPs.

In particular, 28/64 of the selected metaheuristics bring into
play populations as memories to manage promising or good-qual-
ity solutions, solution representations, routes, or solutions frag-
ments. This is naturally the case for GA-based methods, path
relinking, and scatter search, as well as metaheuristics relying on
adaptive (Taillard et al., 1996; Ichoua et al., 2003; Olivera and
Viera, 2007) or central memory cooperation (Groër et al., 2011;
Cordeau and Maischberger, 2012). The populations of solution ele-
ments are used as the support for recombination procedures,
including through set covering formulations, yielding new incum-
bent solutions.

Usually, a mix of diverse and high-quality elements is stored,
thus aiming to find a balance between exploring new solution ele-
ments and focusing on champion features. Maintaining both diver-
sity and elitism simultaneously in a population is a difficult task, as
the aggressive local-improvement procedures, used in most effi-
cient metaheuristics, tend to strongly drive the population towards
a few local optima, resulting in premature convergence. Popula-
tion-diversity management has thus been shown to be a key suc-
cess factor in achieving good performance for MAVRPs (Prins,
2004; Goel and Vidal, 2012; Vidal et al., 2012). It is especially crit-
ical in addressing rich VRPs combining several attributes, as find-
ing new high-quality solutions on such intricate problems seems
to require a good diversity of solution elements.

Half of the above-mentioned methods operate diversity man-
agement procedures, relying usually on a distance metric between
individuals for both measuring diversity and driving the popula-
tion management. For MAVRPs, this metric is usually based on
solution differences in the objective space (Prins, 2004; Ngueveu
et al., 2010) or similarities in the route sequences (Prins, 2009b; Vi-
dal et al., 2012), or are designed specifically for the attributes con-
sidered (those of the ASSIGN category especially, e.g., Alegre et al.,
2007, Vidal et al., 2012). Diversity can then be controlled by differ-
ent means. Lau et al. (2010) rely on fuzzy logic to adapt search
parameters relatively to population diversity and quality mea-
sures. Prins (2004), as well as several other recent genetic algo-
rithms with population management (Sörensen and Sevaux,
2006), impose distance constraints for acceptance in the popula-
tion. Souffriau et al. (2010) implement ageing concepts to discard
too ‘‘old’’ solutions from the pool. Finally, HGSADC (Vidal et al.,
2012) does not consider diversity as a constraint, but as an integral
part of the objective that competes with solution quality during
individual evaluations. Empirical studies show that the latter
mechanism leads to a higher solution diversity and quality.

Population management parameters are not the only ones to be
adapted throughout the search. Parameter adaptation tends to be
widespread in the methods analyzed (30/64) to drive the infeasi-
bility penalties (Cordeau et al., 1997; Vidal et al., 2012), mutation
or crossover rates (Repoussis et al., 2009; Lau et al., 2010), or other
algorithm strategies such as the frequency of use of operators and
neighborhoods (Ropke and Pisinger, 2006a; Pisinger and Ropke,
2007). Evolving search parameters directly within the genetic
material of individuals is a common practice in EAs, while general
metaheuristics adaptation is a main focus of hyper-heuristics
(Burke et al., 2010).

More advanced forms of guidance, aiming to explicitly collect,
analyze, and exploit knowledge on the past search to orient the fu-
ture trajectories, are used in 29/64 methods. In MAVRP metaheu-
ristics, the information is usually built as statistics on solution
features, arcs, sets of arcs, routes, or problem specific attributes.
The search context, e.g., the value of the incumbent solution and,
eventually, the evolution of the value of the best solution (overall
or for the current phase of the search), the value of particular coun-
ters resulting from the search history, and so on, is also part of the
knowledge which is built.

This body of information, once collected and analyzed, serves as
support for guidance actions. The purpose of such actions is gener-
ally to either intensify the search, by focusing on promising solu-
tion features, or diversify it towards under-explored areas of the
search space. Various methods are used in the methods surveyed
to undertake such intensification and diversification actions, such
as, penalties or incentives on solution attributes (see Cordeau
and Laporte, 2003; Derigs et al., 2009; Repoussis et al., 2009;
Repoussis et al., 2010 among others), ‘‘jumps’’ toward elite solu-
tions or new solutions recombined from elite elements (Taillard
et al., 1996; Ichoua et al., 2003; Brandão, 2006; Olivera and Viera,
2007), target solutions in path relinking (Hashimoto et al., 2008;
Souffriau et al., 2010), neighborhood choices governed by phero-
mone matrices (Ke et al., 2008; Fuellerer et al., 2009; Balseiro
et al., 2011), or history-based ruin-and-recreate operators (Ropke
and Pisinger, 2006a; Pisinger and Ropke, 2007; Ribeiro and Laporte,
2012). Guidance actions may be undertaken continuously, as part
of the fundamental search pattern of the metaheuristic (e.g., path
relinking or TABUROUTE and UTS incorporating dynamically ad-
justed penalties on solution stagnation or infeasibility elements),
or discreetly through a purposeful move.

Balancing intensification and diversification is particularly
important for MAVRPs, where many problem features may be
exploited in order to drive the search more efficiently. It is thus
well-known that statistically frequent features of high-quality solu-
tions are more likely to appear in the global optimum, thus explain-
ing partly the recent success for MAVRP of population-based
metaheuristics (Jones, 1995), which favor the apparition and trans-
mission of good solution elements, called building blocks in Holland
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(1975). Similarly, concepts of identification and combination of sta-
tistically promising solution attributes appeared with tabu search
under the name of vocabulary building (Glover and Laguna, 1998;
Aleman and Hill, 2010). Problem knowledge can thus be exploited
in many ways in MAVRPs to intensify the search around relevant
solution elements. Much of this same information can also be used
for diversification, as it does, and should not play second violin. In-
deed, MAVRP search spaces, sometimes metaphorically described
as globally convex ‘‘big valleys’’ (Boese, 1995; Kubiak, 2007), remain
nonetheless rugged and some near-optimal solutions may be sub-
stantially different from the global optimum. Thus, diversification
procedures play a critical role in search efficiency.

Finally, among the papers surveyed, many sensitivity analyses
on parameters seek a good balance between intensification and
diversification, though modifications of diversity management,
tabu lists, temperature controls in SA, pheromone matrices, thresh-
olds choices in R-to-R, neighborhood choices in LNS or VNS, and so
on. However, due to the balance that must be established, such
parameters are subject to correlations, and advanced calibration
methods, meta-calibration (De Landgraaf et al., 2007) or other sta-
tistical methods (Nannen and Eiben, 2007) that address all param-
eters together may be necessary.

4.5. Hybridization

The metaheuristics surveyed rely to a large extent (39/64) on
hybridization. By decreasing order of appearance, we report genet-
ic algorithms and ACO methods combined with local search, some-
times using large neighborhoods; tabu search methods combined
with diversification operators based on solution recombinations
(Ichoua et al., 2003; Olivera and Viera, 2007); and hybrid neighbor-
hood-centered methods combining SA and LNS (Gajpal and Abad,
2009), tabu search and VNS (Archetti et al., 2006), or ILS with
VNS (Penna et al., 2011). Nine hybrid matheuristics involve math-
ematical programming components. These components are used to
handle attributes of the problem, such as loading constraints (Fuel-
lerer et al., 2009) or split deliveries (Archetti et al., 2008). In other
cases, exact methods are used to search large neighborhoods (Bent
and Van Hentenryck, 2006; Prescott-Gagnon et al., 2010; Gulczyn-
ski et al., 2011), or recombine solution elements (Groër et al.,
2011).

4.6. Parallelism and cooperation

With the exception of multi-start methods which can be consid-
ered as a straightforward form of parallelism, 6/64 efficient meth-
ods relying on advanced parallelism and cooperation mechanisms
were identified. Most such methods involve neighborhood-cen-
tered heuristics, tabu search in particular, that communicate
through an adaptive memory of elements of solutions (Ichoua
et al., 2003) or through a central memory of complete solutions
(Groër et al., 2011; Cordeau and Maischberger, 2012). Integer pro-
gramming solvers are used in Groër et al. (2011) to recreate solu-
tions from the routes present in memory. In Balseiro et al.
(2011), cooperation is based on pheromone exchanges between
two ant colonies which simultaneously optimize travel times and
fleet size.

It should finally be mentioned that more advanced cooperative
metaheuristics are emerging for rich MAVRPs. In particular, Le
Bouthillier and Crainic (2005a) introduced an advanced coopera-
tive method for the VRPTW based on central memory. The method
was complemented in Le Bouthillier and Crainic (2005b) with ad-
vanced guidance features. It served then as a building block of
the Integrative Cooperative Search (ICS) framework (Crainic et al.,
2009; Lahrichi et al., 2012), which relies on a structural problem
decomposition among several such central memories. Each central
memory involves several partial solvers that cooperate to produce
partial solutions of the sub-problems, while integrators take on
the role of reconstituting complete solutions from partial solutions
picked in the partial memories. A global search coordinator is in
charge of guiding the overall search as well as modifying the
parameters and procedures.
4.7. Problem decompositions

MAVRPs lend themselves well to various decomposition ap-
proaches, centered on assignments or geometry (Ostertag, 2008;
Bent and Van Hentenryck, 2010), temporal aspects (Bent and Van
Hentenryck, 2010), or on solution attribute subsets (Crainic et al.,
2009; Lahrichi et al., 2012). Among the methods analyzed, Ichoua
et al. (2003), Fuellerer et al. (2009) and Vidal et al. (2013) separate
temporarily the routes of an elite solution using geometrical argu-
ments, the different customer sets corresponding to sub-problems
that are solved separately. Such decompositions thus makes it pos-
sible to improve the assignments of an elite solution in a view of
intensification. Structural problem decompositions, involving suc-
cessive or simultaneous solutions of sub-problems presenting less
attributes, are also used. Alegre et al. (2007) apply to the PVRP a
scatter search to optimize the assignment to periods, while a sim-
ple CVRP heuristic is repeatedly used for route creation. Decompo-
sitions become essential to handle rich MAVRPs but, in this
context, the sequential approaches that independently solve prob-
lem characteristics consecutively are not sufficient to attain high-
quality solutions. A clever management of the successive decom-
positions, sub-problem resolutions, and full solution reconstruc-
tions becomes thus essential.
5. Conclusions and perspectives

This unifying survey and synthesis responds to the considerable
challenge related to the abundance of VRP variants and to the rel-
atively few general classifications and analyses of these problems
and solution methods. The survey underlines that, while few gen-
eral and efficient metaheuristics were proposed in the literature for
this important class of problems, MAVRPs naturally share many
common features, and most heuristic strategies developed for spe-
cific problems can be applied to a broader range of VRP variants.
Hence, we conducted this analysis from a general perspective de-
tached from the particular characteristics of the VRP attributes,
and adopted a synthetic approach providing the means to cope
with the abundance of contributions. We analyzed in detail
sixty-four successful metaheuristics for fifteen well-studied MAV-
RPs, identifying the main concepts and algorithmic-design princi-
ples, and highlighting the winning strategies of many efficient
metaheuristics for a wide variety of variants.

When considering state-of-the-art methods, we observed recur-
rent notions such as mix, variability, hybridisation, cooperation,
diversity, multiplicity, as well as balance, equilibrium, trade-off. It ap-
pears that most successful metaheuristics are not determined by a
single factor but are the result of a good balance between several
elements of methodology: the use of different search spaces, vari-
able neighborhoods, mixed continuous and discontinuous search,
short-, medium- and long-term memories, trade-off between
diversification and intensification, cooperation and collective intel-
ligence, hybridisation, and so on. In brief, in cooperation and diver-
sity lies strength. The performance of those methods indicates that
each element plays an important role. On the one hand, long-term
memories, jumps, recombinations and, generally, advanced guid-
ance mechanisms providing diversification and, when relevant,
population-diversity management methods have the potential to
make the search progress in the general ‘‘big rugged valley’’ of
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MAVRPs. On the other hand, short and medium-term memories
and well-designed solution-improvement methods provide the
aggressive search capabilities to complete the refinement of
solutions.

We also observed that a clever implementation of algorithms is
a necessary condition to yield competitive and scalable methods.
neighborhood-pruning procedures (granularity, sequential
searches) or memories on already evaluated routes, route seg-
ments, and moves, are necessary in many cases. Furthermore,
one may notice that many algorithms rely on randomization and
dedicate most of their computing time to evaluating various poten-
tial choices, without taking much advantage of history and already
performed computations that may in many cases be profitably
used. More intelligent guidance schemes have thus the potential
to lead to performance improvements.

The research avenues for developing efficient MAVRP heuristics
are numerous. We conclude the paper by summing up some open
research questions.

In the previous sections, we identified a number of search-
space, neighborhoods, and trajectory choices leading to successful
MAVRP metaheuristics. One may then ask to what extent these
choices should depend upon the variant of the problem, and
whether it is possible to identify desirable search spaces and
neighborhoods for some broad MAVRP classes. Of a similar nature
are studies related to the definition of population-diversity metrics
(e.g., what type of distance for MAVRPs) and management meth-
ods, and whether it should it be dependent upon the particular
problem setting. Designing adequate and general neighborhood
pruning procedures for MAVRPs is another important issue of sim-
ilar nature, which may also be stated in terms of making current
mechanisms, e.g., granular and sequential search, efficiently appli-
cable to a large variety of attributes and problem settings. Such
algorithmic developments and proof-of-concept studies make up
a very challenging research area.

The integration of diversification and the appropriate balance
between intensification and diversification are critical factors for
efficient MAVRP metaheuristics. This area is closely related to the
development of advanced mechanisms to extract knowledge out
of the explored search-space areas and to globally guide the meta-
heuristics. Links to the fields of hyper-heuristics and landscape
analysis should also be more thoroughly explored.

As this survey illustrates, a number of metaheuristic families,
tabu search, adaptive large neighborhood search, and hybrid genetic
algorithms, in particular, are widely acknowledged for their perfor-
mance on a variety of MAVRPs. Given how differently these meta-
heuristics define and explore the search space, they are very likely
to lead to extremely effective hybrid algorithms and parallel cooper-
ative methods. This is an extremely rich and promising research
field, particularly given the trend toward problem settings including
a continuously increasing number of attributes and solution meth-
ods capable of addressing these attributes simultaneously.

To conclude, more general-purpose solvers, capable of handling
a wide range of MAVRPs, are necessary to efficiently address prac-
tical routing applications in a timely manner. Many research ques-
tions have been answered by personalizing algorithms for each
particular variant and by case-by-case improvements. However,
solving generically (e.g., using a single solver and parameter set)
a wide range of MAVRPs requires a better understanding of the
problem foundations and the methods. This unifying survey and
synthesis is a step toward reaching these goals.
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