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a b s t r a c t

Multi-way tensor data are prevalent inmany scientific areas such as genomics and biomed-
ical imaging. We consider a K -way tensor-normal distribution, where the precision matrix
for each way has a graphical interpretation. We develop an l1 penalized maximum likeli-
hood estimation and an efficient coordinate descent-based algorithm for model selection
and estimation in such tensor normal graphical models. When the dimensions of the ten-
sor are fixed, we drive the asymptotic distributions and oracle property for the proposed
estimates of the precision matrices. When the dimensions diverge as the sample size goes
to infinity, we present the rates of convergence of the estimates and sparsistency results.
Simulation results demonstrate that the proposed estimation procedure can lead to better
estimates of the precision matrices and better identifications of the graph structures de-
fined by the precisionmatrices than the standard Gaussian graphical models. We illustrate
the methods with an analysis of yeast gene expression data measured over different time
points and under different experimental conditions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

An increasing number of statistical and datamining problems involves analysis of data that are indexed bymore than one
way. This type of data is often called themultidimensional matrix, multi-way array or tensor [2]. Recently high-dimensional
tensor data have become prevalent in many scientific areas such as genomics, biomedical imaging, remote sensing, biblio-
metrics, chemometrics and internet. Take a two-way n × p data matrix as an example, if n samples are not independent,
their correlations should be taken into consideration in statistical modeling, which leads to a transposable matrix [1]. In
genomic experiments, gene expression data are often collected at different time points during the cell cycle process and
under varying experimental conditions. This gives rise to a 3-way tensor data [8]. In social-economics studies, export of
commodity k from country i to country j at year t [4] defines a three-way tensor data.

Statistical methods for tensor data analysis are limited. Omberg et al. [8] developed tensor higher-order singular value
decomposition for integrative analysis of DNA microarray data from different studies. Tucker and parallel factor analysis
(PARAFAC) are useful methods for tensor decomposition [5]. When modeling high dimensional tensor data, a separable co-
variancematrix structure is often assumed. Such a separable structure on the covariancematrix can dramatically reduce the
dimension of the parameter space. Consider a four-way tensor data, suppose that the dimensions arem1 = m2 = m3 = 100
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andm4 = 10. The nonseparablemodel requires a joint covariancematrix of 107
×107 entries, while the separablemodel re-

quires only three 100×100matrices andone10×10matrix for eachway. The joint covariancematrix is simply theKronecker
product of the matrices over all dimensions. The ratio of dimension between two models is almost of the order of 1010.

In this paper, we consider sparse modeling of the precision matrices of K -way tensor data, assuming a separable covari-
ance matrix structure. The corresponding precision matrices define graphical models for tensor data. In many applications,
sparsity in each of the corresponding precision matrices can be assumed to facilitate the interpretation. In addition, tensor
normality is a natural assumption for the data distribution when the data are continuous [4]. With the separability assump-
tion on the covariance matrix, the joint covariance matrix of the vectorization of the tensor can be obtained by a Kronecker
product of K covariance matrices.

When K = 2, the 2-way normal tensor data are also called matrix normal data. Yin and Li [13] discussed the sparse
model selection and estimation for the matrix normal distribution using a penalized likelihood approach with Lasso and
adaptive Lasso penalties. In their work, the dimensions for row and column can diverge to infinity when the sample size
goes to infinity. Other related works in modeling matrix-normal data include [1,16,15,12].

In this paper, we generalize the work by Yin and Li [13] to K -way tensor data and focus our work on graphical model
selection and estimation. We develop a penalized maximum likelihood estimation with an adaptive Lasso penalty. The con-
sistency and oracle property are obtained when the tensor dimensions hold fixed. In addition, we derive the rate of conver-
gence and prove sparsistency of the estimates when the dimensions diverge with sample size going to infinity. We further
show that the effective sample size for estimating the covariancematrix in eachway of the tensor is the product of the num-
ber of independent samples and the dimensions of the other K −1matrices. It is worth noting that this effective sample size
is usually very large, hence the convergence is quite fast and the high dimension is actually a bless. Our simulation study
demonstrates the high accuracy in estimating the precision matrices with small sample size N .

The rest of the paper is organized as follows. A brief summary ofmulti-way tensor data is presented in Section 2. Section 3
introduces the definition of the array normal distribution of [4] and its estimation in highdimensional settings. The convexity
and optimization of the objective function is discussed in Section 4. In Section 5, the asymptotic properties are derived both
for the case of fixed dimensions and the case of diverging dimensions when the sample size goes to infinity. A Monte Carlo
simulation study is presented in Section 6. Finally, a 3-way tensor data set on gene expressions [8] is analyzed in Section 7.

2. Multi-way tensor data structure and operations

This section presents a brief summary of multi-way array data or high order tensor data [4,2]. Tensor data are higher
order parallels of vector and matrix. Entries in a vector can be indexed by a single index set, while a matrix is indexed by
two sets (row and column). In the following presentation, we use non-bold italic letters for scalars, bold-faced lower case
letters for vectors, and bold-faced capitals for matrices and the multi-way tensor. For a matrix A, we use a(j) to denote its
j-th column, a[i] its i-th row, and A(i, j) its (i, j)-th element. Standard matrix identities and inequalities used in this paper
can be found in [9].

A K-way tensor is an arrangement of elements, which is indexed by K sets. Suppose Y is a K-way tensor with dimensions
{m1,m2, . . . ,mK }, then the total number of elements of Y ism = m1 × m2 × · · · × mK . All the elements in Y are

{y(i1,...,iK ) : ik = 1, 2, . . . ,mk; k = 1, 2, . . . , K}.

Clearly, Y is a vector when K = 1 and a matrix when K = 2. We further introduce the notation Y(···,i0k ,...)
, which is a (K − 1)-

subarray of Y. Specifically, Y(···,i0k ,...)
has the same elements as Y, except that its k-th sub-index is fixed at i0k . In other words,

all the elements in Y(···,i0k ,...)
are

{y(i1,...,i0k ,...,iK ) : ih = 1, 2, . . . ,mh; h = 1, 2, . . . , k − 1, k + 1, . . . , K}.

To analyze the properties of the K -way tensor, it is helpful to relate the tensor with vector or matrix. The vectorization
of Y is a vector of dimensionm,

vec(Y) =

y(1,1,1,...,1), y(2,1,1,...,1), . . . , y(m1,1,1,...,1),

y(1,2,1,...,1), y(2,2,1,...,1), . . . , y(m1,2,1,...,1),

. . . ,

y(1,m2,1,...,1), y(2,m2,1,...,1), . . . , y(m1,m2,1,...,1),

. . . ,

y(1,m2,m3,...,mK ), y(2,m2,m3,...,mK ), . . . , y(m1,m2,...,mK )

T
.

To be explicit, y(i1,...,iK ) is the j-th element of vec(Y) with

j =

K
k=2


(ik − 1)

k−1
l=1

ml


+ i1.

On the other hand, k-mode matrix unfolding results in a mk × (m/mk) matrix, Y(k), whose i0k-th row is [vec(Y(···,i0k ,...)
)]T

for i0k = 1, 2, . . . ,mk.
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The k-mode product of am1 × · · · ×mK K-array Y and a n×mk matrix A is a K-array Zwith dimensions {m1, . . . ,mk−1,
n,mk+1, . . . ,mK }. The product is denoted by Y×k A, and the (i1, . . . , iK )-th element of Z is

z(i1,...,iK ) =

mk
l=1

a(ik, l)y(i1,..., ik−1, l, ik+1,..., iK ).

The Tucker product is defined based on the k-mode product and is useful for the definition of the tensor normal distribu-
tion. For a list of matrices A = {A1,A2, . . . ,AK } with Ak being of dimension nk ×mk, the Tucker product of am1 × · · · ×mK
K-way tensor Y and A is

Y × A = Y×1 A1 ×2 A2 · · · ×K AK .

Let Z = Y × A, then we have the following formula that connects the k-mode unfolding and the Tucker product,

Z(k) = AkY(k)

AK ⊗ · · · ⊗ Ak+1 ⊗ Ak−1 ⊗ · · · ⊗ A1

T
. (1)

3. Tensor normal distribution and penalized likelihood estimation

Our main method builds on the tensor normal distribution introduced by Hoff [4]. Without loss of generality, we assume
the mean is zero, and our focus is the estimation of covariance and precision matrices. The probability density function of a
tensor normal distribution with zero mean and covariances Σ = {Σ1, . . . , ΣK } is

p(Y|Σ1, . . . , ΣK ) = (2π)−m/2
 K
k=1

|Σk|
−m/(2mk)


× exp(−∥Y × Σ−1/2

∥
2/2),

where ∥Y∥
2

=


i1,...,iK
y2(i1,...,iK ) andΣ−1/2

= {Σ
−1/2
1 , . . . , Σ

−1/2
K }. The tensor normal distribution is denoted by Y ∼ anorm

(0, Σ1 ◦ Σ2 ◦ · · · ◦ ΣK ). This definition includes vector normal distribution (K = 1) and matrix normal distribution (K = 2)
as special cases. For k = 1, 2, . . . , K , the inverse of Σk is called the precision matrix or concentration matrix, denoted by
Ωk. For the purpose of identifiability, we assume

Ω2(1, 1) = Ω3(1, 1) = · · · = ΩK (1, 1) = 1, (2)
which requires the (1, 1) entries of Ω2, Ω3, . . . , ΩK to be one.

Derived from (1), some properties for the tensor normal distribution are given below.

Lemma 1. Let Z = Y× Σ−1/2, V = Y(k)(Ω
1/2
K ⊗ · · · ⊗ Ω

1/2
k+1 ⊗ Ω

1/2
k−1 ⊗ · · · ⊗ Ω

1/2
1 )T , and let v(j) be the j-th column of V, then

we have

(i) ∥Y × Σ−1/2
∥
2

= tr

VTΩkV


=

m/mk
j=1

v(j)TΩkv(j)

= vec(Y)T (ΩK ⊗ · · · ⊗ Ω1)vec(Y);

(ii) vec(Y) ∼ N(0, ΣK ⊗ ΣK−1 ⊗ · · · ⊗ Σ1);

(iii) Y can be expressed as

Y = Z × Σ1/2

with Σ1/2
= {Σ

1/2
1 , . . . , Σ

1/2
K } and Z ∼ anorm(0, I1 ◦ I2 ◦ · · · ◦ IK ).

Assuming that we have N i.i.d. observations Y1, Y2, . . . , YN from a tensor normal distribution with zero mean, we are in-
terested in estimating the true covariancematrices {Σ0

1, . . . , Σ0
K } and their corresponding true precisionmatrices {Ω0

1, . . . ,

Ω0
K }. In high dimensional settings, under the sparsity assumption of the precision matrices, we propose to estimate these K

precision matrices by maximizing the following penalized likelihood function,

1
N

N
n=1

log(p(Yn|Ω1, . . . , ΩK )) −

K
k=1

λk


i≠j

p

Ωk(i, j)


= −

m
2

log(2π) +

K
k=1

m
2mk

log |Ωk|

−
1
2N

N
n=1

vec(Yn)
T (ΩK ⊗ · · · ⊗ Ω1)vec(Yn) −

K
k=1

λk


i≠j

p

Ωk(i, j)


, (3)

whereΩk(i, j) is the (i, j)-th element ofΩk and λk’s are the tuning parameters.We focus on the ℓ1 or Lasso penalty p(·) = |·|

and the adaptive Lasso penalty p(·) = | · |/|Ωk(i, j)|γ where Ωk(i, j) is a consistent estimator of Ωk(i, j).
Maximizing (3) is equivalent to minimizing

q(Ω1, . . . , ΩK ) = −

K
k=1

m
mk

log |Ωk| + tr

S(ΩK ⊗ · · · ⊗ Ω1)


+

K
k=1

λk


i≠j

p

Ωk(i, j)


, (4)
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where S =
1
N

N
n=1 vec(Yn)vec(Yn)

T . The optimization can now be expressed as
min

Ω1≻0,...,ΩK≻0
q(Ω1, . . . , ΩK ).

Denote its solution by {Ω1, . . . , ΩK }.

4. Optimization

The block coordinate descent algorithm can be applied to minimize q(Ω1, . . . , ΩK ), which leads to local optimal solu-
tions. For k = 1, . . ., K , we iterativelyminimize the objective functionwith respect to oneΩk, while keeping the othermatri-
ces Ωj(j ≠ k) fixed at current values. As a result of Lemma 1(i) and identity (1), minimizing (4) on a specific Ωk is equivalent
to minimizing

q3(Ωk) = − log |Ωk| + tr[SkΩk] + λk ·
mk

m


i≠j

p

Ωk(i, j)


(5)

with Sk =
mk
N·m

N
n=1 Vn(k)[Vn(k)]

T and Vn(k) is the k-mode matrix unfolding of the tensor

Vn = Yn × {Ω
1/2
1 , . . . , Ω

1/2
k−1, I, Ω

1/2
k+1, . . . , Ω

1/2
K }.

The optimization problem (5) can be solved by the glasso algorithm of Friedman et al. [3]. Through minimizing on Ωk
iteratively, this procedure decreases the objective function after each iteration and eventually converges to a stationary
point [11].

The algorithm is summarized below. Let {Ω
(s)
1 , Ω

(s)
2 , . . . , Ω

(s)
K } be the current estimate at the beginning of the s-th

iteration.

Algorithm 1.
1. s = 0, and Ω

(0)
k = I for k = 1, 2, . . . , K

2. Repeat
3. s:=s+1
4. For k = 1, 2, . . . , K
5. Compute Vn := Yn × Ω(s)k, where Ω(s)k is the matrix list

{[Ω
(s)
1 ]

1/2, . . . [Ω
(s)
k−1]

1/2, I, [Ω(s−1)
k+1 ]

1/2, . . . , [Ω
(s−1)
K ]

1/2
}

6. Compute S(s)
k =

mk
N·m

N
n=1 Vn(k)[Vn(k)]

T .
7. Update Ω

(s−1)
k to Ω

(s)
k by solving the objective function (5).

8. End For
9. Until Convergence
10. Let ωk = Ωk(1, 1) and ω =


j>1 ωj, and output

{ω · Ω
(s)
1 , Ω

(s)
2 /ω2, . . . , Ω

(s)
K /ωK }

Although the objective function q(Ω1, . . . , ΩK ) is not convex, we show that as N → ∞, the function is strictly quasi-
convex with probability 1. To see this, as N → ∞, the limit of the negative log-likelihood function in q(Ω1, . . . , ΩK ), is

l(z) = −

K
k=1

m
mk

log |Ωk| + tr

(Σ0

K ⊗ · · · ⊗ Σ0
1)(ΩK ⊗ · · · ⊗ Ω1)


= −

K
k=1

m
mk

log |Ωk| + tr

Σ0

KΩK

· · · tr


Σ0

1Ω1

.

With parameters z = (vec(Ω1)
T , . . . , vec(ΩK )T )T , we find its Hessian matrix L =

∂ l(z)
∂z∂zT . We then treat L as a block matrix.

For 1 ≤ i, j ≤ K , the (i, j)-th block matrix of this Hessian matrix is

L(i,j) =
∂ l(z)
∂zi∂zTj

=



m/mi


× Ω−1

i ⊗ Ω−1
i , i = j

k≠i,j

tr(Σ0
kΩk)


× vec(Σ0

i )vec(Σ
0
j )

T , i ≠ j

where zi = vec(Ωi). Except at z0 = (vec(Ω0
1)

T , . . . , vec(Ω0
K )T )T , this Hessian matrix cannot be guaranteed to be nonnega-

tive definite. We linearly transform this matrix without changing its eigenvalues. Due to the fact that the diagonal blocks of
the Hessian matrix at z0 are positive definite and the following result in matrix operation [7]

vec(Ω0
i )

T (Σ0
i ⊗ Σ0

i )vec(Ω
0
i ) = tr(Σ0

i Ω
0
i Σ

0
i Ω

0
i ) = mi
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the Hessian matrix ∂ l(z0)
∂z∂zT at z0 can be linearly transformed into a diagonal block matrix L′

= diag{L′

(1,1), . . . , L′

(K ,K)}, and

L′

(k,k) =


m/m1


Σ0

1 ⊗ Σ0
1, k = 1

m/mk

Σ0

k ⊗ Σ0
k −


m/m2

k


vec(Σ0

k)vec(Σ
0
k)

T , k = 2, . . . , K .

Clearly, its first diagonal block L′

(1,1) is positive definite. For k = 2, 3, . . . , K , its first diagonal block L′

(k,k) has eigenvalues
with the following properties:

(E1) One equals 0, with eigenvector vec(Ω0
k);

(E2) The others are positive, with eigenvectors v satisfying vec(Ω0
k)

Tv = 0.
Property (E1) follows from the fact that

m/mk

Σ0

k ⊗ Σ0
kvec(Ω

0
k) −


m/m2

k


vec(Σ0

k)vec(Σ
0
k)

Tvec(Ω0
k)

=

m/mk


vec(Σ0

kΩ
0
kΣ

0
k) −


m/m2

k


vec(Σ0

k)tr(Σ
0
kΩ

0
k) =


m/mk


vec(Σ0

k) −

m/m2

k


vec(Σ0

k) · mk = 0.

Property (E2) can be justified as follows. Suppose v ≠ 0 is an eigenvector of L′

(k,k) (2 ≤ k ≤ K ) satisfying vec(Ω0
k)

Tv = 0,
and suppose ν is its eigenvalue, then

m/mk

Σ0

k ⊗ Σ0
kv −


m/m2

k


vec(Σ0

k)vec(Σ
0
k)

Tv = ν · v.

Multiplying both sides from the left by vTΩ0
k ⊗ Ω0

k we get
m/mk


vTv −


m/m2

k


vTΩ0

k ⊗ Ω0
kvec(Σ

0
k)vec(Σ

0
k)

Tv = ν · vTΩ0
k ⊗ Ω0

kv,
which implies

m/mk

vTv −


m/m2

k


vTvec(Ω0

k)vec(Σ
0
k)

Tv = ν · vTΩ0
k ⊗ Ω0

kv.

Because vec(Ω0
k)

Tv = 0 and Ω0
k ⊗ Ω0

k is positive definite, we have

ν =
m
mk

×
vTv

vTΩ0
k ⊗ Ω0

kv
> 0.

Thus, (E2) is established.
From this, we know that ∂ l(z0)

∂z∂zT is non-negative definite. As a result, the negative likelihood function is a convex func-
tion although not strictly convex. Since the Lasso penalty function is strictly quasi-convex, we have the following lemma.

Lemma 2. As N → ∞, the limit of the objective function (4) with parameters {Ω1, Ω2, . . . , ΩK } is strictly quasi-convex with
probability one at global optimizer {Σ0

1, . . . , Σ0
K }.

5. Asymptotic results

This section discusses the asymptotic behavior for the optimizer of (4). Theorems 1 and 2 assume that the dimensions
(m1,m2, . . . ,mK ) are fixed, while Theorems 3 and 4 allow the dimensions (m1,m2, . . . ,mK ) to diverge with sample size N .
For both scenarios, a fast rate of convergence can be guaranteed and the true sparsity pattern of each precision matrix can
be recovered by using the adaptive Lasso penalty with probability tending to 1.

For the multi-way tensor normal distribution, the effective sample size for estimating Ω0
k is asymptotically m/mk · N ,

which is larger than N . In fact, if Ω0
l (l ≠ k)’s are known, the correlation on the l(≠k)-th mode can be removed, the columns

of the k-mode matrix unfolding can be treated as the i.i.d. samples from the corresponding vector normal distribution, and
these column vectors can be pooled together to estimate Ω0

k . This can be stated precisely in the following lemma. It helps to
explain the fast convergence rate in Theorems 2 and 3 and is used in the proofs.

Lemma 3. Let Y1, Y2, . . . , YN be N i.i.d. observations from tensor normal distribution anorm(0, Σ0
1◦Σ0

2◦· · ·◦Σ0
K ), and suppose

{Σ0
1, . . . , Σ0

k−1, Σ0
k+1, . . . , Σ0

K } are known and Σ0
k is unknown, then the columns v0kn (j) of

V0k
n = Yn(k)


Ω0

K

1/2
⊗ · · · ⊗


Ω0

k+1

1/2
⊗


Ω0

k−1

1/2
⊗ · · · ⊗


Ω0

1

1/2
are i.i.d samples from mk-vector normal distribution N(0, Σ0

k), and

Sk =
mk

N · m

N
n=1

V0k
n


V0k
n

T
=

mk

N · m

N
n=1

m/mk
j=1

v0kn (j)

v0kn (j)

T
(6)

estimates Σ0
k with sample size (m · N)/mk. Furthermore, it holds that for some matrix Rk

N · m
mk


vec(Sk) − vec(Σ0

k)


→ N(0,Rk)

for fixed m, fixed mk and N → ∞.
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Next, Theorem1 shows the consistency of estimators from (4)with Lasso penaltywhen the dimensions (m1,m2, . . . ,mK )
are fixed. The tuning parameters may change with sample size N , but we omit the subscript N for simplicity.

Theorem 1 (Consistency). For k = 1, 2, . . . , K, assume
√
Nλk → λ0k for some constants λ0k ≥ 0, and Y1, Y2, . . . , YN are N

i.i.d. observations from tensor normal distribution anorm(0, Σ0
1 ◦Σ0

2 ◦ · · · ◦Σ0
K ), then there exists local optimizer {Ω1, . . . , ΩK }

of (4) with the ℓ1 norm penalty such that:
√
N{(Ω1, . . . , ΩK ) − (Ω0

1, . . . , Ω0
K )} →d argmin(U1,...,UK ) g(U1, . . . ,UK )

where

g(U1, . . . ,UK ) =
1
2

K
k=1

m
mk

tr(UkΣ
0
kUkΣ

0
k) +


i<j

m
mimj

tr(UiΣ
0
i )tr(UjΣ

0
j )

+ σ · W +

K
k=1

λ0k


i≠j


Uk(i, j)sign(Ω0

k (i, j))I{Ω
0
k (i, j) ≠ 0} + |Uk(i, j)|I{Ω0

k (i, j) = 0}

,

W is subject to standard normal distribution N(0, 1) and

σ 2
=

K
k=1

2m
mk

tr(UkΣ
0
kUkΣ

0
k) +


i≠j

2m
mimj

tr(UiΣ
0
i )tr(UjΣ

0
j ).

With a slight modification of the proof of Theorem 1, we can show that the consistency also holds for the solutions of (4)
with adaptive Lasso penalty. The adaptive penalty is introduced for selecting the non-zero entries in the precision matrix
and achieving optimal efficiency for them. For k = 1, 2, . . . , K , define the active sets Ak = {(i, j) : Ω0

k (i, j) ≠ 0} as the set
of indices corresponding to non-zero entries in Ω0

k .

Theorem 2 (Oracle Property). Consider (4)with adaptive Lasso penalty, and let γ > 0 be a constant and Ωk be N1/2-consistent
estimators. When

√
Nλk → 0 and N(γ+1)/2λk → ∞ for k = 1, 2, . . . , K, there exist local solutions of (4) satisfying the oracle

property:
(1) For k = 1, 2, . . . , K and all (i, j) ∈ A c

k , Ωk(i, j) = 0 with probability tending to 1.
(2) For k = 1, 2, . . . , K and elements indexed by (i, j) ∈ Ak,

vec(Ωk − Ω0
k)Ak →d N


0,

mk

m


Ω0

k ⊗ Ω0
k


(Ak,·)


Rk


Ω0

k ⊗ Ω0
k


(Ak,·)

T
where Rk is defined in Lemma 3, vec(Ωk − Ω0

k)Ak is a sub-vector of vec(Ωk − Ω0
k) with only elements indexed by Ak preserved;

and

Ω0

k ⊗ Ω0
k


(Ak,·)

is a sub-matrix of Ω0
k ⊗ Ω0

k with all rows corresponding to A c
k removed. That is, the l-th row of Ω0

k ⊗ Ω0
k

can be preserved if and only if l = mk(j − 1) + i for some (i, j) ∈ Ak.

For the tensor normal distribution, the estimators of precision matrices converge much faster than the vector normal
case (K = 1). For the tensor case, the limiting covariance matrix for the active entry estimator is

mk

m


Ω0

k ⊗ Ω0
k


(Ak,·)


Rk


Ω0

k ⊗ Ω0
k


(Ak,·)

T

while for the vector normal distribution(K = 1), the limiting covariance matrix is
Ω0

k ⊗ Ω0
k


(Ak,·)


Rk


Ω0

k ⊗ Ω0
k


(Ak,·)

T
.

In the former case, the additional factor mk/m can be quite small when


i≠k mi is large. This explains the fast rate of con-
vergence in our simulation studies.

This fast rate of convergence is also observed when the dimensions (m1,m2, . . . ,mK ) increase with the sample size N .
Results similar to [6] hold with much faster rates, as shown in Theorem 3. Again, the results are stated and proven for the
ℓ1 penalty. Similar results hold for the adaptive Lasso penalty. Let sk = |Ak| − mk be the number of non-zero off-diagonal
entries in Ωk, which also varies with sample size N . Under some conditions, convergence in terms of the Frobenius norm
can be guaranteed for (4).

Theorem 3 (Rate of Convergence). Assume Y1, Y2, . . . , YN are N i.i.d. observations from a tensor normal distribution anorm
(0, Σ0

1 ◦ Σ0
2 ◦ · · · ◦ Σ0

K ), with dimensions (m1,m2, . . . ,mK ) diverging when sample size N goes to infinity.
In addition, for k = 1, 2, . . . , K and some constants τk1, τk2, assume the eigenvalues are bounded,

0 < τk1 < λmin(Σ
0
k) ≤ λmax(Σ

0
k) < τk2 < ∞. (7)
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If the following conditions on tuning parameters λk’s (k = 1, . . ., K ) are satisfied:

m logmk

mkN
= O(λ2

k) and λ2
k = O


1 +

mk

sk + 1

m logmk

mkN


(8)

then when the Lasso penalty functions are used, there exists a local minimizer (Ω1, Ω2, . . . , ΩK ) of (4) such that

∥Ωk − Ω0
k∥

2
F = Op


mk(mk + sk) logmk/(Nm)


.

Because ∥A∥ ≤ ∥A∥F for any matrix A, this rate of convergence also holds for the spectral norm. The rate of convergence
for the tensor normal distribution is (mk/m)(mk + sk) logmk/N , which is much faster than the multivariate normal case
where K = 1. The rate in the latter case is (m1 + s1) logm1/N , as shown in [6]. Clearly, the results also hold for the adaptive
Lasso penalty. Furthermore, with adaptive Lasso penalty, we can recover the true sparsity patterns of the precisionmatrices
with probability tending to one, as shown in the following theorem.

Theorem 4 (Sparsistency). Given the conditions in Theorem 3, for k = 1, . . ., K , suppose Ωk is the fk-consistent estimator for Ω0
k

in the sense that

fk∥Ωk − Ω0
k∥∞ = Op(1).

If {Ω1, Ω2, . . . , ΩK } is a local minimizer of (4) with adaptive Lasso penalty satisfying

1. ∥Ωk − Ω0
k∥

2
F = Op{mk(mk + sk) logmk/(Nm)}; and

2. ∥Ωk − Ω0
k∥

2
= Op(ηn) for a sequence ηn → 0

and if the tuning parameters satisfy

f −2γ
k

m2

m2
k

mk logmk

mN
+ ηn +


l≠k

τ 2
l,2

mN
(ml + sl) logml


= O(λ2

k)

then with probability tending to one, we have Ωk(i, j) = 0 for all (i, j) ∈ A c
k and k = 1, 2, . . . , K.

Similar to [13], the sparsistency results require condition (8) to impose both a lower and a upper bound on the rates of
the regularization parameters λk’s in order to control the model sparsity and estimation biases.

6. Monte Carlo simulation studies

6.1. Comparison candidates and measurements

We evaluate the performances of the proposed penalized likelihood estimation for tensor normal data and compare this
to two naive methods using simulations.

The first naive method is an approximate maximum likelihood estimation, which is the MLE without a penalty when the
effective sample size is larger than the dimensionsmk’s and the ℓ1 penalized estimate otherwise. Statistical tests are used to
select edges when the effective sample size is large. Specifically, for k = 1, 2, . . . , K , the effective sample size for estimating
Ω0

k is approximately Nk = Nm/mk, where N is the true sample size. In Algorithm 1 of Section 4, if Nk > mk, the inverse of Sk
is directly used to update the estimation ofΩk in Step 7, which corresponds to theMLE procedure. However, whenNk ≤ mk,
we update the estimation ofΩk through (5) with an ℓ1 Lasso penalty. When Nk > mk, hypothesis tests are also performed to
select edges after estimation. Let ρij denote the partial correlation between Xi and Xj adjusting for the remaining elements
and ρ̂ij denote its MLE estimator, then

1
2
log

1 + ρ̂ij

1 − ρ̂ij


→ N(0, 1/(n − p − 5)).

Based on this result, for k = 1, 2, . . . ,N and i < j, let

ρ̂k
ij = −

Ωk(i, j)Ωk(i, i)Ωk(j, j)

and we set Ωk(i, j) = Ωk(j, i) = 0 whenever Nk > mk and12 log
1 + ρ̂k

ij

1 − ρ̂k
ij

 <
zα/2

√
Nk − mk − 5

where zβ is the upper β × 100% quantile of the standard normal distribution. We choose α = 0.1.
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The second naive method estimates each Ωk separately with the adaptive Lasso penalty. It treats the other modes as
independent, i.e., assuming Ωj = Ij (j ≠ k) in the estimation procedure. In this case, Step 5 of Algorithm 1 in Section 4 is
not used and Sk in Step 6 is computed as

Sk =
mk

N · m

N
n=1

Yn(k)[Yn(k)]
T .

For the penalized maximum likelihood estimation, we use the adaptive Lasso penalty with an approximate MLE as the
initial estimator Ωk. The accuracy of the estimated precision matrix is measured by various matrix norms of ∆k = Ω0

k − Ωk,
where Ω0

k is the true matrix and Ωk is the estimated matrix. We consider the following norms: the Frobenius norm ∥ · ∥F ,
the operator norm ∥ · ∥p, and the entry-wise max norm ||| · |||∞. In addition, the accuracy of recovering the Gaussian graph
structure is also measured. Let TP, TN, FP and FN be the numbers of true positives, true negatives, false positives and false
negatives, respectively, where the true positives are the true links on the tensor normal graphs. We define specificity (SPE),
sensitivity (SEN), and Matthew’s correlation coefficient (MCC) as

SPE =
TN

TN + FP
, SEN =

TP
TP + FN

MCC =
TP × TN − FP × FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
1/2 .

6.2. Models and data generation

The sparse precision matrix Ω0
k ’s are generated as follows. The non-zero off-diagonal elements for the upper triangle of

Ω0
k are selected independently with probability pk. For non-zero elements, their values are generated from

Ω0
k (i, j) = Ω0

k (j, i) ∼ Uniform

[−0.8, −0.2] ∪ [0.2, 0.8]


.

We thenmakeΩ0
k diagonally dominant by dividing the i-th row by 1.2×


j≠i

Ω0
k (i, j)

 for i = 1, 2, . . . ,mk and then setting
all diagonal entries to be 1. We symmetrize the matrix by letting Ω0

k :=

Ω0

k + (Ω0
k)

T

/2.

The following fourmodels are consideredwith sample sizeN = 10. Thesemodels have different dimensions anddifferent
degrees of sparsity as indicated by pk. The simulations are repeated 50 times.

1. Model 1: three-way tensor data with dimensions (30, 30, 30) and sparsity p1 = p2 = p3 = 0.1.
2. Model 2: three-way tensor data with dimensions (6, 6, 500) and sparsity p1 = 0.3, p2 = 0.2, p3 = 0.005.
3. Model 3: four-way tensor datawith dimensions (30, 30, 30, 30) and sparsity p1 = 0.05, p2 = 0.075, p3 = 0.1, p4 = 0.2.
4. Model 4: four-way tensor data with dimensions (30, 40, 50, 100) and sparsity p1 = 0.2, p2 = 0.125, p3 = 0.1,

p4 = 0.075.

6.3. Simulation results

For all simulations, the tuning parameters are chosen based on a validation set of sample size of 10. The results are
presented in Tables 1–4. In almost all scenarios, the dimensions of the models are larger than the real sample size N = 10.
However, we observed that the estimates of the precision matrices are still very accurate. This can be explained by the
effective sample size, which is very large for each dimension of the tensor data.

For all four models considered, the proposed penalized likelihood procedure results in better estimation of the precision
matrices than the two naivemethods in terms of estimation errors. For model selection, the penalized likelihood estimation
also gives better results, although the performance of the naivemethod that assumes independency is comparable in certain
circumstances. The effect of the effective sample sizes on precision matrix estimation is also clearly demonstrated in these
tables. For Model 1, the effective sample size is 10× 30× 30 = 9000 for each way of the tensor data. For Model 3, however,
the effective sample size for eachway of the data is 10×303

= 270,000,which is 30 times larger thanModel 1. It is clear from
Tables 1 and 3 that the estimates for Model 3 are more accurate than these for Model 1. For Model 2, the effective sample
size for estimating Ω0

3 is 6 × 6 × 10 = 360, which is smaller than its dimension of 500, which leads to larger estimation
errors.

7. Real data analysis

Omberg et al. [8] considered the expression levels of 4270 genes of Saccharomyces cerevisiae during a time course of
cell cycle under two different experimental conditions. Each time course was measured at 12 time points with cell cycles
synchronized by α-factor pheromone. Under the depleted condition of Cdc6 or Cdc45 (Cdc6-/Cdc45-), the DNA replication
initialization is preventedwithout delaying cell cycle progression. The gene expressionswere alsomeasured in the presence
of Cdc6 or Cdc45 (Cdc6+/Cdc45+-)without preventing DNA replication. In our analysis, 4720 genes are averaged on observed
values of different probes. After averaging and removing the genes with missing values, a total of 404 genes are used in our
analysis. Among these genes, 141, 97, 62, 37 and 67 genes are regulated during the G1, G2/M, M/G1, S and S/G2 phases,
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Table 1
Model 1: three-way tensor data with dimensions (30, 30, 30), sample size 10 and sparsity p1 = p2 = p3 = 0.1. For
eachmeasurement, mean and standard error over 50 replications are shown. P-MLE: penalizedmaximum likelihood
estimates; A-MLE: approximate maximum likelihood estimates; I-MLE: penalized maximum likelihood estimates
under independency assumption. ∆k is the difference between the true and the estimated precision matrix for
k = 1, 2, 3.

P-MLE A-MLE I-MLE

Ω1 ∥∆1∥F 0.15(0.034) 0.26(0.023) 0.23(0.061)
∥∆1∥∞ 0.09(0.018) 0.20(0.036) 0.14(0.035)
∥∆1∥2 0.06(0.013) 0.11(0.017) 0.10(0.025)
|||∆1|||∞ 0.04(0.010) 0.05(0.010) 0.07(0.018)
SPE 0.95(0.010) 0.90(0.014) 0.98(0.007)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 0.79(0.028) 0.67(0.029) 0.92(0.030)

Ω2 ∥∆2∥F 0.15(0.051) 0.25(0.037) 0.27(0.068)
∥∆2∥∞ 0.10(0.034) 0.20(0.036) 0.18(0.043)
∥∆2∥2 0.07(0.022) 0.11(0.020) 0.12(0.030)
|||∆2|||∞ 0.04(0.011) 0.05(0.011) 0.07(0.021)
SPE 0.99(0.002) 0.90(0.016) 0.96(0.009)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 0.99(0.007) 0.70(0.031) 0.87(0.031)

Ω3 ∥∆3∥F 0.18(0.052) 0.27(0.049) 0.28(0.067)
∥∆3∥∞ 0.11(0.027) 0.20(0.042) 0.18(0.035)
∥∆3∥2 0.07(0.020) 0.11(0.026) 0.12(0.027)
|||∆3|||∞ 0.05(0.013) 0.05(0.015) 0.08(0.022)
SPE 1.00(0.002) 0.90(0.016) 0.96(0.010)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.008) 0.71(0.033) 0.86(0.032)

Table 2
Model 2: three-way tensor data with dimensions (6, 6, 500), sample size 10 and sparsity p1 = 0.3, p2 = 0.2,
p3 = 0.005. For each measurement, mean and standard error over 50 replications are shown. P-MLE: penalized
maximum likelihood estimates; A-MLE: approximate maximum likelihood estimates; I-MLE: penalized maxi-
mum likelihood estimates under independency assumption. ∆k is the difference between the true and the esti-
mated precision matrix for k = 1, 2, 3.

P-MLE A-MLE I-MLE

Ω1 ∥∆1∥F 0.03(0.012) 0.04(0.010) 0.05(0.018)
∥∆1∥∞ 0.04(0.014) 0.04(0.012) 0.05(0.021)
∥∆1∥2 0.03(0.011) 0.03(0.010) 0.04(0.017)
|||∆1|||∞ 0.02(0.007) 0.02(0.006) 0.03(0.010)
SPE 0.99(0.034) 0.91(0.115) 0.99(0.030)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 0.99(0.034) 0.91(0.106) 0.99(0.030)

Ω2 ∥∆2∥F 0.03(0.008) 0.03(0.011) 0.03(0.012)
∥∆2∥∞ 0.02(0.009) 0.03(0.015) 0.03(0.013)
∥∆2∥2 0.02(0.008) 0.03(0.009) 0.03(0.011)
|||∆2|||∞ 0.02(0.005) 0.02(0.005) 0.02(0.008)
SPE 1.00(0.000) 0.92(0.082) 0.99(0.013)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.000) 0.88(0.114) 0.99(0.021)

Ω3 ∥∆3∥F 3.64(0.070) 4.82(0.114) 7.11(0.497)
∥∆3∥∞ 0.95(0.100) 1.36(0.130) 1.82(0.158)
∥∆3∥2 0.46(0.023) 0.55(0.022) 0.80(0.063)
|||∆3|||∞ 0.27(0.0378) 0.29(0.026) 0.44(0.074)
SPE 1.00(0.000) 0.98(0.001) 0.99(0.001)
SEN 0.84(0.015) 0.92(0.010) 0.58(0.023)
MCC 0.63(0.010) 0.36(0.006) 0.37(0.019)

respectively [10]. We treat this data set as a 3-way tensor data, where the first way is the gene with m1 = 404, the second
way is the time point with m2 = 12 and the third way is the condition with m3 = 2. In addition, each sample batch of [8]
is treated as an independent sample for a total of N = 4 samples. The original expression data are log-transformed. The
expression levels of each gene are scaled to zero mean and unit variance across the four samples.

We apply our penalized estimation using the adaptive Lasso penalty to estimate the precision matrices, where the initial
estimates are obtained using the ℓ1 norm penalty. The tuning parameters are selected based on a 4-fold cross-validation.
The conditional independency graph for genes that are linked is shown in Fig. 1. The genes that are regulated at the same
cell-cycle phases are colored with the same colors. It is interesting to note that genes that are regulated by the same cell
cycle phases tend to link together.
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Table 3
Model 3: four-way tensor data with dimensions (30, 30, 30, 30) and sample size 10, p1 = 0.05, p2 = 0.075, p3 =

0.1, p4 = 0.2. For each measurement, mean and standard error over 50 replications are shown. P-MLE: penalized
maximum likelihood estimates; A-MLE: approximate maximum likelihood estimates; I-MLE: penalized maximum
likelihood estimates under independency assumption. ∆k is the difference between the true and the estimated pre-
cision matrix for k = 1, 2, 3, 4.

P-MLE A-MLE I-MLE

Ω1 ∥∆1∥F 0.02(0.006) 0.04(0.004) 0.04(0.009)
∥∆1∥∞ 0.01(0.003) 0.03(0.005) 0.02(0.005)
∥∆1∥2 0.01(0.003) 0.02(0.002) 0.02(0.005)
|||∆1|||∞ 0.01(0.002) 0.01(0.002) 0.01(0.003)
SPE 1.00(0.001) 0.90(0.017) 1.00(0.001)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.010) 0.50(0.035) 1.00(0.007)

Ω2 ∥∆2∥F 0.02(0.005) 0.04(0.005) 0.05(0.012)
∥∆2∥∞ 0.01(0.004) 0.03(0.007) 0.03(0.007)
∥∆2∥2 0.01(0.003) 0.02(0.003) 0.02(0.006)
|||∆2|||∞ 0.01(0.002) 0.01(0.002) 0.01(0.004)
SPE 1.00(0.00) 0.90(0.016) 1.00(0.002)
SEN 1.00(0.00) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.00) 0.63(0.033) 0.99(0.012)

Ω3 ∥∆3∥F 0.03(0.004) 0.04(0.004) 0.05(0.010)
∥∆3∥∞ 0.02(0.003) 0.04(0.006) 0.03(0.007)
∥∆3∥2 0.01(0.002) 0.02(0.003) 0.02(0.004)
|||∆3|||∞ 0.01(0.002) 0.01(0.002) 0.02(0.005)
SPE 1.00(0.001) 0.90(0.016) 1.00(0.002)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.002) 0.72(0.032) 0.99(0.008)

Ω4 ∥∆4∥F 0.03(0.010) 0.05(0.007) 0.07(0.010)
∥∆4∥∞ 0.02(0.006) 0.04(0.006) 0.05(0.008)
∥∆4∥2 0.01(0.004) 0.02(0.003) 0.03(0.005)
|||∆4|||∞ 0.01(0.003) 0.01(0.002) 0.02(0.004)
SPE 1.00(0.001) 0.90(0.020) 1.00(0.001)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.003) 0.79(0.033) 1.00(0.002)

Table 4
Model 4: four-way tensor data with dimensions (30, 40, 50, 100) and sample size 10, p1 = 0.2, p2 = 0.125, p3 =

0.1, p4 = 0.075. For eachmeasurement, mean and standard error over 50 replications are shown. P-MLE: penalized
maximum likelihood estimates; A-MLE: approximate maximum likelihood estimates; I-MLE: penalized maximum
likelihood estimates under independency assumption. ∆k is the difference between the true and the estimated pre-
cision matrix for k = 1, 2, 3, 4.

P-MLE A-MLE I-MLE

Ω1 ∥∆1∥F 0.01(0.002) 0.02(0.001) 0.01(0.002)
∥∆1∥∞ 0.01(0.001) 0.01(0.002) 0.01(0.002)
∥∆1∥2 0.00(0.001) 0.01(0.001) 0.01(0.001)
|||∆1|||∞ 0.00(0.001) 0.00(0.001) 0.00(0.001)
SPE 1.00(0.000) 0.90(0.018) 1.00(0.001)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.000) 0.80(0.030) 1.00(0.003)

Ω2 ∥∆2∥F 0.01(0.002) 0.03(0.002) 0.02(0.004)
∥∆2∥∞ 0.01(0.001) 0.02(0.002) 0.01(0.002)
∥∆2∥2 0.01(0.001) 0.01(0.001) 0.01(0.002)
|||∆2|||∞ 0.00(0.001) 0.00(0.001) 0.00(0.001)
SPE 1.00(0.000) 0.90(0.010) 1.00(0.002)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.000) 0.73(0.018) 0.99(0.007)

Ω3 ∥∆3∥F 0.02(0.004) 0.03(0.002) 0.02(0.004)
∥∆3∥∞ 0.01(0.002) 0.02(0.003) 0.01(0.002)
∥∆3∥2 0.01(0.001) 0.01(0.001) 0.01(0.001)
|||∆3|||∞ 0.00(0.001) 0.00(0.001) 0.01(0.001)
SPE 1.00(0.000) 0.90(0.010) 0.99(0.002)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.000) 0.69(0.019) 0.97(0.011)

Ω4 ∥∆4∥F 0.04(0.007) 0.09(0.004) 0.06(0.008)
∥∆4∥∞ 0.02(0.002) 0.06(0.004) 0.03(0.004)
∥∆4∥2 0.01(0.002) 0.02(0.002) 0.01(0.002)
|||∆4|||∞ 0.01(0.001) 0.01(0.001) 0.01(0.002)
SPE 1.00(0.000) 0.90(0.004) 1.00(0.000)
SEN 1.00(0.000) 1.00(0.000) 1.00(0.000)
MCC 1.00(0.002) 0.63(0.008) 1.00(0.000)
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Fig. 1. Gaussian graph of 150 yeast cell cycle associated genes. The colors indicate the cell-cycle phases that the genes are regulated. Green: G1 phase;
orange: G2/M; yellow: M/G1; blue: S; Red: S/G2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2(a) shows the Raster plot of the eigenvectors of the correlationmatrix derived fromΣ2 = Ω−1
2 . Thismatrix describes

the correlation among the 12 time points during the cell cycle process. Each row of Fig. 2(a) corresponds to an eigenvector
sorted bydescending eigenvalues. These eigenvectors are the x-eigengenes of [8]. The first x-eigengene represents a constant
expression level. The second eigengene represents the contrast in gene expression between the odd and even time points.
The third and fourth x-eigengenes reflect the gene expression changes during the cell cycle process. In Fig. 2(b), points are
drawn on a plane with the third x-eigengene on the θ = 0-axis and the fourth on the θ = π/2-axis, normalized together
with the fifth x-eigengene, clearly showing the periodic expression patterns of genes during the cell cycle process.

8. Conclusions and discussion

Motivated by analysis of gene expression data measured at different time points and under different experimental con-
ditions on the same set of samples, we have proposed to apply the tensor normal distribution to model the data jointly and
have developed a penalized likelihood method to estimate each way’s precision matrix assuming that these matrices are
sparse. Our simulation results have clearly demonstrated the proposed penalized estimation method results in better esti-
mates of the precision matrices and better identification of the corresponding graphical structures than naive alternatives.
Our theoretical and numerical results show that for the tensor data, the effective sample size for estimating each precision
matrix can be quite large although the independent observations are only a few. The tensor normal distribution provides a



176 S. He et al. / Journal of Multivariate Analysis 128 (2014) 165–185

(a) Raster plot of the eigenvectors of the correlation matrix of the
time points. Each row represents an eigenvector.

(b) Plot of the third and fourth eigenvectors on
the θ = 0 and θ = π/2 axes.

Fig. 2. Plot of the eigenvectors of the time points correlation matrix based on the estimated time point covariance matrix Σ2 = Ω−1
2 .

natural way of modeling the dependency of data indexed by different sets. If the underlying precision matrices are sparse,
the proposed penalized likelihood estimation can lead to identification of the non-zero elements in these precisionmatrices.
We observe that the proposed l1 regularized estimation can lead to better estimates of these sparse precision matrices than
the MLEs. How to extend the proposed method to non-normal data is a future research direction.
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Appendix

Proof of Theorem 1

Proof. Let U1,U2, . . . ,UK be K square matrices of orderm1,m2, . . . ,mK respectively. Define a function fN of them to be

fN(U1,U2, . . . ,UK ) = −

K
k=1

m
mk

log
Ω0

k +
Uk
√
N

 +
1
N

N
n=1

vec(Yn)
T


Ω0
K +

UK
√
N


⊗ · · · ⊗


Ω0

1 +
U1
√
N


vec(Yn)

+

K
k=1

λk


i≠j

Ω0
k (i, j) +

Uk(i, j)
√
N

.
We consider the asymptotic behavior of N[fN(U1, . . . ,UK ) − fN(0, . . . , 0)].

Firstly, the following result is needed for analyzing N[fN(U1, . . . ,UK ) − fN(0, . . . , 0)]. Expand the Kronecker product in
its first summation to get

1
N

N
n=1

vec(Yn)
T


Ω0
K +

UK
√
N


⊗ · · · ⊗


Ω0

1 +
U1
√
N


vec(Yn)

−
1
N

N
n=1

vec(Yn)
T (Ω0

K ⊗ · · · ⊗ Ω0
1)vec(Yn) =

1
N


q>0

1
N (q/2)

N
n=1

vec(Yn)
T (XK ⊗ · · · ⊗ X1)vec(Yn). (A.1)

For k = 1, 2, . . . , K , the Xk takes the value of either Ω0
k or Uk. For each combination, denote q to be the number of Xk’s

taking Uk. The summation in the third line in (A.1) sums all possible combinations of Xk’s value. For example, the following
corresponds to a term with q = 1, that is, only one Xk takes Uk

µ̂k =
1

√
N

N
n=1

vec(Yn)
T (Ω0

K ⊗ · · · ⊗ Ω0
k+1 ⊗ Uk ⊗ Ω0

k−1 ⊗ · · · ⊗ Ω0
1)vec(Yn). (A.2)
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Now together with similar techniques of Yuan and Lin [14] andYin and Li [13], for N large enough we have

fN(U1, . . . ,UK ) − fN(0, . . . , 0) = −

K
k=1

m
mk

 tr(UkΣ
0
k)

√
N

−
1
2
tr(UkΣ

0
kUkΣ

0
k)

N
+ o

 1
N


+

1
N


q>0

N
n=1

1
N (q/2)

vec(Yn)
T (XK ⊗ · · · ⊗ X1)vec(Yn)

+

K
k=1

λk
√
N


i≠j


Uk(i, j) · sign(Ω0

k (i, j)) · I{Ω0
k (i, j) ≠ 0} + |Uk(i, j)|I{Ω0

k (i, j) = 0}

,

where the Taylor expansion of log |A| can be found in [7]. Then it follows with µ̂k defined in (A.2) that

N(fN(U1, . . . ,UK ) − fN(0, . . . , 0)) =

K
k=1

m
mk

1
2
tr(UkΣ

0
kUkΣ

0
k) + o(1)


+

K
k=1

√
N


µ̂k/

√
N −

m
mk

tr(UkΣ
0
k)


+


q>1

N
n=1

1
N (q/2)

vec(Yn)
T (XK ⊗ · · · ⊗ X1)vec(Yn)

+

K
k=1

√
Nλk


i≠j


Uk(i, j) · sign(Ω0

k (i, j)) · I{Ω0
k (i, j) ≠ 0}

+ |Uk(i, j)|I{Ω0
k (i, j) = 0}


. (A.3)

The asymptotic property of the third and the fourth line in the above displayed equation should be addressed. For the third
line, define

ynk = vec(Yn)
T (Ω0

K ⊗ · · · ⊗ Ω0
k+1 ⊗ Uk ⊗ Ω0

k−1 ⊗ · · · ⊗ Ω0
1)vec(Yn)

and

Wk = (Ω0
K ⊗ · · · ⊗ Ω0

k+1 ⊗ Uk ⊗ Ω0
k−1 ⊗ · · · ⊗ Ω0

1)(Σ
0
K ⊗ · · · ⊗ Σ0

1)

= IK ⊗ · · · ⊗ Ik+1 ⊗ (UkΣ
0
k) ⊗ Ik−1 ⊗ · · · ⊗ I1

then by the results of quadratic form, we have

µk = E(ynk) = tr(Wk) =
m
mk

tr(UkΣ
0
k)

and

σkk = Var(ynk) = 2tr(WkWk) =
2m
mk

tr(UkΣ
0
kUkΣ

0
k),

by the central limit theorem, it follows that
√
N


µ̂k/

√
N − µk


→ N(0, σkk).

Besides, for i ≠ j, due to the fact that

σij = Cov(µ̂i, µ̂j) = 2tr

WiWj


=

2m
mimj

tr(UiΣ
0
i )tr(UjΣ

0
j )

we have
K

k=1

√
N


µ̂k/

√
N − µk


→ N(0, σ 2)

where σ 2
=

K
i,j=1 σij.

Now, we turn to address the fourth line of (A.3). The summands with q > 2 will ultimately vanish as N → ∞. For the
summands with q = 2, for i < j, assume Xi and Xj take the value of Ui and Uj respectively. Then by weak law of large
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numbers,

1
N

N
n=1

vec(Yn)
T (Ω0

K ⊗ · · · ⊗ Ω0
j+1 ⊗ Uj ⊗ · · · ⊗ Ω0

i+1 ⊗ Ui ⊗ · · · ⊗ Ω0
1)vec(Yn)

converges to m
mimj

tr(UiΣ
0
i )tr(UjΣ

0
j ).

Based on all the results above and the fact that
√
Nλk → λ0k, we can conclude

N[fN(U1, . . . ,UK ) − fN(0, . . . , 0)] →d g(U1, . . . ,UK )

where the function g(U1, . . . ,UK ) is stated in Theorem 1.
The Hessian matrix of

1
2

K
k=1

m
mk

tr(UkΣ
0
kUkΣ

0
k) +


i<j

m
mimj

tr(UiΣ
0
i )tr(UjΣ

0
j )

equals to ∂ l(z0)
∂z∂zT of Section 4. By Lemma 2, g(U1,U2, . . . ,UK ) is strictly quasi-convex for parameters z = (vec(U1)

T , . . . ,

vec(UK )T )T . Furthermore, the convergence forN[fN(U1, . . . ,UK )− fN(0, . . . , 0)] is uniform for z in a compact neighborhood
of the origin 0. Thus, there is a local minimizer of

N[fN(U1, . . . ,UK ) − fN(0, . . . , 0)]

converging to

argmin(U1,...,UK )


g(U1, . . . ,UK )


.

The results follows. �

Lemma 4 and its proof

Lemma 4. Let Y1, Y2, . . . , YN be N i.i.d. observations from tensor normal distribution anorm(0, Σ0
1 ◦ Σ0

2 ◦ · · · ◦ Σ0
K ), and Sk be

defined as (6) in Lemma 3. Now, define

Sk =
mk

N · m

N
n=1

Vk
n

Vk
n

T
=

mk

N · m

N
n=1

m/mk
j=1

vkn(j)vkn(j)T
wherevkn(j) is the j-th column of

Vk
n = Yn(k)(Ω1/2

K ⊗ · · · ⊗ Ω1/2
k+1 ⊗ Ω1/2

k−1 ⊗ · · · ⊗ Ω1/2
1 )

with Yn(k) being the k-mode matrix unfolding of Yn, and Ωj(j ≠ k)’s are consistent estimates of Ω0
j (j ≠ k), which is

Ωj − Ωj

F

= op(1). Then for fixed m, fixed mk and N → ∞, it holds that

∥Sk − Sk∥F = op(1/
√
N). (A.4)

Proof. ComparingSk with Sk, we note that Ω0
j (j ≠ k)’s in Sk are replaced by Ωj(j ≠ k)’s inSk. Let yn(k)[j] be the jth row of

Yn(k), and consider the (i, j)-th entry of the differenceSk − SkSk(i, j) −Sk(i, j) =

 mk

N · m

N
n=1

yn(k)[i]Ekyn(k)[j]T


=

 mk

N · m

N
n=1

tr

yn(k)[j]Tyn(k)[i]Ek

 =
tr EkFk,i,j

 ≤ ∥Ek∥F × ∥Fk,i,j∥F

where

Ek = ΩK ⊗ · · · ⊗ Ωk+1 ⊗ Ωk−1 ⊗ · · · ⊗ Ω1

− Ω0
K ⊗ · · · ⊗ Ω0

k+1 ⊗ Ω0
k−1 ⊗ · · · ⊗ Ω0

1

Fk,i,j =
mk

N · m

N
n=1

yn(k)[j]Tyn(k)[i].
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Furthermore we have ∥Ek∥F = op(1) by consistency of Ωj(j ≠ k)’s, and ∥Fk,i,j∥F = Op(1/
√
N) by the central limit theorem.

From above, we can conclude thatSk(i, j) −Sk(i, j) = op(1/
√
N)

for each i, j and

∥Sk − Sk∥F = op(1/
√
N)

for fixed m, fixedmk and N → ∞. �

Proof of Theorem 2

Proof. For k = 1, 2, . . . , K , define Zk to be amk × mk matrix, whose entries satisfy

Zk(i, j) =


0, i = j
sign

Ωk(i, j)

/|Ωk(i, j)|γ , i ≠ j (A.5)

where sign
Ωk(i, j)


is equal to 1 if Ωk(i, j) > 0, equal to −1 if Ωk(i, j) < 0, or takes the value in the interval [−1, 1]

otherwise.
Based on Lemma 1(i), Ωk = Ω0

k +Uk/
√
N is a local optimizer of (4) with adaptive penalty only if the sub-gradient for Ωk

equals 0, that is

−
m
mk

Ω−1
k +

1
N

N
n=1

m/mk
j=1

vkn(j)vkn(j)T + λkZk = 0 (A.6)

wherevkn(j) is the j-th column of

Vk
n = Yn(k)(Ω1/2

K ⊗ · · · ⊗ Ω1/2
k+1 ⊗ Ω1/2

k−1 ⊗ · · · ⊗ Ω1/2
1 )

with Yn(k) being the k-mode matrix unfolding of Yn.
Now, define

Sk =
mk

N · m

N
n=1

m/mk
j=1

vkn(j)vkn(j)T .
Multiply both sides of (A.6) by

√
N and take vectorization

−
m ·

√
N

mk
vec

Ω−1
k


+

m ·
√
N

mk
vec

Sk +
√
Nλkvec


Zk


= 0.

From the fact that

vec(Ω−1
k ) = vec(Σ0

k) − (Σ0
k ⊗ Σ0

k)
vec(Uk)

√
N

+ o
 1

√
N


it follows

(Σ0
k ⊗ Σ0

k)vec(Uk) +
√
N


vec(Sk) − vec(Σ0

k)


+
mk

√
N

m
λkvec


Zk


+ o(1) = 0. (A.7)

By Theorem 1, we have already known Ωk’s are consistent estimates of Ω0. For the second term on the left side of (A.7),
applying Lemma 3 and the conclusion (A.4) of Lemma 4, it follows that

√
N


vec(Sk) − vec(Σ0

k)


=
√
N


vec(Sk) − vec(Σ0

k)


+ op(1) →d N

0,

mk

m
Rk


, (A.8)

where Rk is defined in Lemma 3. Thus, the first two terms on the left side of equation (A.7) is Op(1). From the assumption of
Theorem 2, we also have

√
Nλk/|Ωk(i, j)|γ →p


0 if (i, j) ∈ Ak
∞ if (i, j) ∈ A c

k .
(A.9)

As a result, for (i, j) ∈ A c
k , the probability that Uk(i, j) = 0 increases to 1 as N → ∞. Otherwise, the necessary condition

(A.7) of local optimality would not hold.
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On the other hand, for the entries in Uk indexed by (i, j) ∈ Ak,

vec(Uk)Ak =
√
N


(Ω0

k ⊗ Ω0
k)


vec(Sk) − vec(Σ0

k)


Ak
+ op(1)

=

Ω0

k ⊗ Ω0
k


(Ak,·)

×
√
N


vec(Sk) − vec(Σ0

k)

+ op(1)

→d N

0,

mk

m


Ω0

k ⊗ Ω0
k


(Ak,·)


Rk


Ω0

k ⊗ Ω0
k


(Ak,·)

T
as a result of (A.7)–(A.9).

Proof of Theorem 3

Proof. The idea is similar to that of Theorem 1, [6]. For k = 1, 2, . . . , K , let Uk be a symmetric matrix of order mk, DUk be
its diagonal matrix, and RUk = Uk − DUk be its off-diagonal matrix. Set ∆k = αNkRUk + βNkDUk . The goal is to prove that, for
α(N,k) = (

mk
m sk logmk/N)1/2 and β(N,k) = (

mk
m mk logmk/N)1/2, for sets Uk = {Uk : ∥∆k∥

2
F = A2

(N,k)α
2
(N,k) + B2

(N,k)β
2
(N,k)} with

bounded sequences {A(N,k)}
∞

N=1 and {B(N,k)}
∞

N=1, it holds

P


inf
U1∈U1,...,UK∈UK

q(Ω0
1 + ∆1, . . . , Ω0

K + ∆K ) > q(Ω0
1, . . . , Ω0

K )


→ 1. (A.10)

As argued in [6], for k = 1, 2, . . . , K , it follows that Ω0
k + ∆k is positive definite and there exists local minimizer (Ω1, Ω2,

. . . , ΩK ) such that ∥Ωk − Ω0
k∥F = Op(α(N,k) + β(N,k)), which is the desired result.

Instead of being constants as in the proof of Theorem 1 in Lam and Fan, the {A(N,k)} and {B(N,k)} aremodified to sequences
bounded by a sufficiently large constant C, that is, for all N and k = 1, 2, . . . , K ,

C < |A(N,k)| < τ K−1(K + 1)K−1C

C < |B(N,k)| < τ K−1(K + 1)K−1C
(A.11)

where τ = max{
K

k=1 τ 2
k,2, 1}. This modification is necessary for the proof of consistency here, as will be shown in Part b

of this proof. The constant C here will be defined by (A.23) in Part a of this proof.
Now, for Uk ∈ Uk, k = 1, 2, . . . , K , consider the difference,

q(Ω0
1 + ∆1, . . . , Ω0

K + ∆K ) − q(Ω0
1, . . . , Ω0

K ) = J1 + J2 + J3

where

J1 = tr

S

(Ω0

K + ∆K ) ⊗ · · · ⊗ (Ω0
1 + ∆1)


− tr


S

Ω0

K ⊗ · · · ⊗ Ω0
1


−

K
k=1

m
mk

(log |Ω0
k + ∆k| − log |Ω0

k |)

J2 =

K
k=1

λk


(i,j)∈Ak

(|Ω0
k (i, j) + ∆k(i, j)| − |Ω0

k (i, j)|)

J3 =

K
k=1

λk


(i,j)∉Ak,i≠j

(|Ω0
k (i, j) + ∆k(i, j)| − |Ω0

k (i, j)|)

and we can split J1 as J1 = K1 + K2, where

K1 = tr

S

(Ω0

K + ∆K ) ⊗ · · · ⊗ (Ω0
1 + ∆1)


− tr


S

Ω0

K ⊗ · · · ⊗ Ω0
1


−

K
k=1

m
mk

tr(Σ0
k∆k) (A.12)

K2 =

K
k=1

m
mk

vec(∆k)
T
 1

0
g(ν, ∆k,ν)(1 − ν)dν


vec(∆k) (A.13)

with Ωk,ν = Ω0
k + ν∆k, and g(ν, ∆k,ν) = Ω−1

k,ν ⊗ Ω−1
k,ν . As shown by [6] in the proof of their Theorem 1, we have

K2 ≥

K
k=1

m
mk

(A2
(N,k)α

2
(N,k) + B2

(N,k)β
2
(N,k))/2 · (τ−1

k2 + o(1))−2
=

K
k=1

O

logmk/N · (A2

(N,k)sk + B2
(N,k)mk)/2


. (A.14)
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Also as argued in [6] in the proof of their Theorem 1, J2 is dominated by K2. Besides, notice J3 is positive. The proof is complete
if we can show K1 is dominated by K2 + J3. Now, K1 can be expressed as H1 + H2, where

H1 =

K
k=1


tr


S

Ω0

K ⊗ · · · ⊗ Ω0
k+1 ⊗ ∆k ⊗ Ω0

k−1 ⊗ · · · ⊗ Ω0
1


−

m
mk

tr(Σ0
k∆k)


H2 =


q>1

tr

S

XK ⊗ · · · ⊗ X1


where Xk takes the value of either Ω0

k or ∆k, q is the number of Xk’s taking ∆k, and the summands in H2 enumerate all
possible combinations for Xk’s values with q > 1. For a clearer understanding of the notation used here, please refer to the
details in the proof of Theorem 1.

Now, we are about to show that (A.12) is dominated by K2 + J3, which is positive. The following proof is divided into two
parts. Part a is devoted to prove H1 is dominated by K2 + J3, while Part b shows that H2 is dominated by K2.
Part a. For H1, each of the K summands is dominated by a corresponding term in K2 + J3. We only need to prove this by
showing the summand

H1(k) = tr

S(Ω0

K ⊗ · · · ⊗ Ω0
k+1 ⊗ ∆k ⊗ Ω0

k−1 ⊗ · · · ⊗ Ω0
1)


−

m
mk

tr(Σ0
k∆k) (A.15)

in H1, is dominated by both the term

K2(k) =
m
mk

vec(∆k)
T
 1

0
g(ν, ∆k,ν)(1 − ν)dν


vec(∆k) ≥ O


logmk/N · (A2

(N,k)sk + B2
(N,k)mk)/2


(A.16)

in K2 and the term

J3(k) = λk


(i,j)∉Ak,i≠j

(|Ω0
k (i, j) + ∆k(i, j)| − |Ω0

k (i, j)|) = λk


(i,j)∉Ak,i≠j

|∆k(i, j)| (A.17)

in J3. It is worth noticing that H1 =
K

k=1 H1(k), K2 =
K

k=1 K2(k) and J3 =
K

k=1 J3(k).
Let v0kn (j) be the j-th column of

V0k
n = Yn(k)


Ω0

K

1/2
⊗ · · · ⊗


Ω0

k+1

1/2
⊗


Ω0

k−1

1/2
⊗ · · · ⊗


Ω0

1

1/2
where Yn(k) is the k-mode matrix unfolding of Yn. By Lemma 3,

Sk =
mk

N · m

N
n=1

m/mk
j=1

v0kn (j)

v0kn (j)

T
is a sample covariancematrix estimatingΣ0

k with sample sizeN ·m/mK . Denote thematrix (Sk −Σ0
k) by Ak, and by Lemma 2

of [6], we have the maximum of elements of Ak satisfying

max
ij

|Ak(i, j)| = Op(

mk logmk/(N · m)

1/2
). (A.18)

Now, applying Lemma 1 (i) to (A.15), we get that

H1(k) =
m
mk

tr

(Sk − Σ0

k)∆k

. (A.19)

Recalling that we have defined Ak = Sk − Σ0
k , we can further split (A.19) into L1 + L2,

L1(k) =
m
mk


(i,j)∈Ak

Ak(i, j)∆k(i, j)

L2(k) =
m
mk


(i,j)∉Ak

Ak(i, j)∆k(i, j).
(A.20)

With the result of (A.18) we have,

|L1(k)| =
m
mk

 
(i,j)∈Ak

Ak(i, j)∆k(i, j)
 ≤

m
mk

 
(i,j)∈Ak


Ak(i, j)

21/2 
(i,j)∈Ak


∆k(i, j)

21/2

≤
m
mk

(sk + mk)
1/2 max

i,j
|Ak(i, j)| · ∥∆k∥F
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=
m
mk

(sk + mk)
1/2

· Op

{mk logmk/(N · m)}1/2


·

A2

(N,k)α
2
(N,k) + B2

(N,k)β
2
(N,k)

1/2
= Op


{sk logmk/N + mk logmk/N}

1/2


×


A2

(N,k)sk logmk/N + B2
(N,k)mk logmk/N

1/2

= Op(A(N,k) · sk · logmk/N + B(N,k) · mk · logmk/N


(A.21)

where the last equality is due to the fact that, there exists some constant ϵ > 0 such that

ϵ <
[a + bz]2

(1 + z)(a2 + b2z)
≤ 1

for z ≥ 0, and positive a, b satisfying (A.11).
Besides, there exists a sufficiently large constant Ck, such that when A(N,k) > Ck and B(N,k) > Ck,

A(N,k) · sk + B(N,k) · mk ≤
1

2 · (K + 1)
(A2

(N,k)sk + B2
(N,k)mk). (A.22)

This is because the left side is linear inA(N,k) and B(N,k), the right side is squared inA(N,k) and B(N,k), and the ratio of coefficients
on two sides is a constant 1/(2K + 2). Then it follows that L1(k) is dominated by K2(k) due to (A.16) and (A.21).

The fact that L2(k) is dominated by J3(k) follows from

J3(k) − L2(k) ≥


(i,j)∉AK ,i≠j


λk|∆k(i, j)| −

m
mk

|∆k(i, j)| · Op


mk logmk/(N · m)
1/2

=


(i,j)∉AK ,i≠j


λk|∆k(i, j)| − |∆k(i, j)| · Op

 m
mk

·
logmk

N

1/2
≥ 0

by the assumption on λk of Theorem 3. Combined with the result that L1(k) is dominated by K2(k), it has been shown that
H1(k) is dominated by K2(k) + J3(k) for k = 1, 2, . . . , K .

Now define a constant C to be

C = max{C1, C2, . . . , CK }. (A.23)

This C is used to control the sequences {A(N,k)} and {B(N,k)} as mentioned at the beginning of the proof, andwould be applied
in Part b of this proof. Now, it follows that when A(N,k) > C and B(N,k) > C for k = 1, 2, . . . , K , we have H1 is dominated by
K2 + J3.

Part b. Define Q (i, j) (i > j) to be the summand in H2 with exactly two Xi and Xj taking ∆i and ∆j, that is

Q (i, j) = tr

S(Ω0

K ⊗ · · · ⊗ Ω0
i+1 ⊗ ∆i ⊗ Ω0

i−1 ⊗ · · · ⊗ Ω0
j+1 ⊗ ∆j ⊗ Ω0

j−1 ⊗ · · · ⊗ Ω0
1)


.

To prove H2 is also dominated by K2, we only need to consider the summands Q (i, j)(i > j) in H2 with exactly two
Xk’s taking ∆k’s (q = 2). For the summands in H2 with more than two Xk’s taking ∆k’s (q > 2), they are dominated by
corresponding summands like Q (i, j).

The method to bound |H2| is illustrated specifically through the following term

Q (K , K − 1) = tr(S(∆K ⊗ ∆K−1 ⊗ Ω0
K−2 ⊗ · · · ⊗ Ω0

1)) = Q1 + Q2 (A.24)

where

Q1 = tr


S − Σ0
K ⊗ · · · ⊗ Σ0

1


∆K ⊗ ∆K−1 ⊗ Ω0

K−2 ⊗ · · · ⊗ Ω0
1


(A.25)

and

Q2 = tr((Σ0
K ⊗ · · · ⊗ Σ0

1)(∆K ⊗ ∆K−1 ⊗ Ω0
K−2 ⊗ · · · ⊗ Ω0

1)) =
m

mKmK−1
tr(Σ0

K∆K )tr(Σ0
K−1∆K−1). (A.26)

Notice H1(K) in Part a can be expressed as

tr


S − Σ0
K ⊗ · · · ⊗ Σ0

1


∆K ⊗ Ω0

K−1 ⊗ Ω0
K−2 ⊗ · · · ⊗ Ω0

1


. (A.27)

Comparing this with Q1, we can find that Ω0
K−1 in (A.27) (or H1(K)) is replaced by ∆K−1 to get Q1. Besides, it holds that

max
i,j

∆K−1(i, j)
 ≤ ∥∆K−1∥F → 0, as N → ∞.

Q1 is of smaller order than H1(K). At the end of Part a, it has been shown that H1(K) is bounded by K2(K) + J3(K). With a
similar argument to bound H1(K), it can be shown that

Q1 = op

K2(K) + J3(K)


. (A.28)
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Now, a bound is remained to be derived for Q2. From tr(B) ≤

ptr(BTB) for any matrix B of order p, it follows that

tr(Σ0
K∆K ) ≤


mK tr


∆K


Σ0

K

2
∆K


≤


mK∥∆KΣ0

K∥
2
F ≤


mKτ 2

K2∥∆K∥F .

The last inequality is due to Lemma 1 of [6] and assumption (7). Similarly,

tr(Σ0
K−1∆K−1) ≤


mK−1τ

2
K−1,2∥∆K−1∥F . (A.29)

With these, it follows that

|Q2| ≤
m

√
mKmK−1

· τK ,2 · τK−1,2 · ∥∆K∥F · ∥∆K−1∥F

= τK ,2 · τK−1,2 · (A2
(N,K) · sK + B2

(N,K) · mK )1/2 · (A2
(N,K−1) · sK−1 + B2

(N,K−1) · mK−1)
1/2


logmK logmK−1/N.

Without loss of generality, we assume

(sK + mK ) logmK ≥ (sK−1 + mK−1) logmK−1 ≥ · · · ≥ (s1 + m1) logm1. (A.30)

If the order of (A.30) is violated, we simply need to modify the order of (A.31) accordingly, and then adjust the subsequent
proof, the result would still hold. Under this assumption, let

A(N,K) = B(N,K) = τ K−1(K + 1)K−1C

A(N,K−1) = B(N,K−1) = τ K−2(K + 1)K−2C
· · · · · ·

A(N,1) = B(N,1) = C

(A.31)

where τ = max{
K

k=1 τ 2
k,2, 1}. As a result of (A.31),

(A2
(N,K−1) · sK−1 +B2

(N,K−1) · mK−1)
1/2(logmK−1)

1/2
≤

1
τ ·(K+1) (A

2
(N,K) · sK + B2

(N,K) · mK )1/2(logmK )1/2.

Now it holds that

|Q2| ≤ τK ,2 · τK−1,2 ·
1

τ · (K + 1)
· (A2

(N,K)sK + B2
(N,K)mK ) · logmK/N

≤
1

2(K + 1)
· (A2

(N,K)sK + B2
(N,K)mK ) · logmK/N.

Combining with (A.28), it holds that

|Q (K , K − 1)| ≤
1

2(K + 1)
·

A2

(N,K) · sK + B2
(N,K) · mK


· logmK/N + op


K2(K) + J3(K)


. (A.32)

Based on these results, we now come to showH2 is dominated by K2. Recall that we only need to consider the summands
in H2 with exactly two Xk’s taking ∆k’s,

R =

K−1
k=1

Q (K , k) +

K−2
k=1

Q (K − 1, k) + · · · +

2
k=1

Q (3, k) + Q (2, 1).

With similar techniques leading to (A.32), it can be proved that

|Q (K , k)| ≤
τK ,2 · τK−1,2

(K + 1)K−k · τ K−k
·

A2

(N,K) · sK + B2
(N,K) · mK


· logmK/N + op


K2(K) + J3(K)


≤

1
2(K + 1)

·

A2

(N,K) · sK + B2
(N,K) · mK


· logmK/N + op


K2(K) + J3(K)


where in the last inequality, we have used K + 1 > 1, τ = max{

K
k=1 τ 2

k,2, 1} ≥ 1 and 2 · τK ,2 · τK−1,2 ≤ τ . As a result, K−1
k=1

Q (K , k)
 ≤

K−1
2(K+1) · (A2

(N,K) · sK + B2
(N,K) · mK ) · logmK/N + op


K2(K) + J3(K)


.

Similarly, K−2
k=1

Q (K − 1, k)
 ≤

K − 2
2(K + 1)

· (A2
(N,K−1) · sK−1 + B2

(N,K−1) · mK−1) · logmK−1/N + op

K2(K − 1) + J3(K − 1)


.
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Thus, R ≤

K
k=2

k − 1
2(K + 1)

· (A2
(N,k) · sk + B2

(N,k) · mk) · logmk/N +

K
k=2

op

K2(k) + J3(k)


<

K
k=2

1
2

· (A2
(N,k) · sk + B2

(N,k) · mk) · logmk/N +

K
k=2

op

K2(k) + J3(k)


.

In this way, we can conclude H2 is also dominated by K2. Combining with (A.22), H1 and H2 together can be dominated by
K2 + J3. �

Proof of Theorem 4

Similar to the proof of Theorem 2, Ωk is a local optimizer of (4) with adaptive penalty only if the sub-gradient for Ωk
equals 0,

−
m
mk

Ω−1
k +

1
N

N
n=1

m/mk
j=1

vkn(j)

vkn(j)

T
+ λkZk = 0 (A.33)

where Zk is defined at the beginning of the proof of Theorem 2, and vkn(j) is the j-th column of

Vk
n = Yn(k)(Ω1/2

K ⊗ · · · ⊗ Ω1/2
k+1 ⊗ Ω1/2

k−1 ⊗ · · · ⊗ Ω1/2
1 )

with Yn(k) being the k-mode matrix unfolding of Yn.
Furthermore, define v0kn (j) to be the j-th column of

V0k
n = Yn(k)


Ω0

K

1/2
⊗ · · · ⊗


Ω0

k+1

1/2
⊗


Ω0

k−1

1/2
⊗ · · · ⊗


Ω0

1

1/2
.

Then, (A.33) can be written as

−

Ω−1
k − Σ0

k


+

 mk

m · N

N
n=1

m/mk
j=1

v0kn (j)

v0kn (j)

T
− Σ0

k


+

 mk

m · N

N
n=1

m/mk
j=1

vkn(j)

vkn(j)

T
−

mk

m · N

N
n=1

m/mk
j=1

v0kn (j)

v0kn (j)

T
+ λk

mk

m
Zk = 0.

Define

Ak = Ω−1
k − Σ0

k

Bk =

 mk

m · N

N
n=1

m/mk
j=1

v0kn (j)

v0kn (j)

T
− Σ0

k


Ck =

 mk

m · N

N
n=1

m/mk
j=1

vkn(j)

vkn(j)

T
−

mk

m · N

N
n=1

m/mk
j=1

v0kn (j)

v0kn (j)

T
.

As shown by [6] in the proof of their Theorem 2

max
i,j

|Ak(i, j)| = Op(η
1/2
n ). (A.34)

With similar arguments leading to (A.18) in the proof of Theorem 3, we have

max
i,j

|Bk(i, j)| = Op


mk logmk/(m · N)

1/2

. (A.35)

As for Ck, define Ui = Ωi − Ω0
i , then we have

Ck =
mk

m · N

N
n=1

Yn(k)

ΩK ⊗ · · · ⊗ Ωk+1 ⊗ Ωk−1 ⊗ · · · ⊗ Ω1


−


Ω0

K ⊗ · · · ⊗ Ω0
k+1 ⊗ Ω0

k−1 ⊗ · · · ⊗ Ω0
1


Yn(k)

T
=

mk

m · N

N
n=1


q>0

Yn(k)


XK ⊗ · · · ⊗ Xk+1 ⊗ Xk−1 ⊗ · · · ⊗ X1


Yn(k)

T
whereXl(l ≠ k)’s take the value of eitherUl orΩ0

l , and q is the number ofXl’s takingUl. The termswith q > 1 are dominated
by the terms with q = 1, as a result of consistency of Theorem 3. So we only need to consider the term with q = 1. For a
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term with q = 1, define for l ≠ k that

Dl
k =

1
N

N
n=1

Yn(k)


Ω0

K ⊗ · · · ⊗ Ω0
k+1 ⊗ Ω0

k−1 ⊗ · · · ⊗ Ω0
l+1 ⊗ Ul ⊗ Ω0

l−1 ⊗ · · · ⊗ Ω0
1


Yn(k)

T
.

Let Dl
k(i, j) be the (i, j)-th element of Dl

k, and ykn[i] be the i-th row of Yn(k), then

Dl
k(i, j) =

mk

m · N

N
n=1

yn[i]

Ω0

K ⊗ · · · ⊗ Ω0
k+1 ⊗ Ω0

k−1 ⊗ · · · ⊗ Ω0
l+1 ⊗ Ul ⊗ Ω0

l−1 ⊗ · · · ⊗ Ω0
1


yn[j]

T
=

mk

m · N

N
n=1

yn[i]

Ω0

K ⊗ · · · ⊗ Ω0
k+1 ⊗ Ω0

k−1 ⊗ · · · ⊗ Ω0
l+1 ⊗ Ul ⊗ Ω0

l−1 ⊗ · · · ⊗ Ω0
1


yn[j]

T
−

1
ml

tr

Σ0

l Ul

+

1
ml

tr

Σ0

l Ul

.

With similar techniques applied to (A.24) in the proof of Theorem 3, we can show that
Dl

k(i, j)
 is dominated by 1

ml
tr


Σ0

l Ul
 ≤

τl,2
√
ml

· ∥Ul∥F

the inequality is a result of (A.29). Thus

max
i,j

Ck(i, j)


is dominated by
l≠k

τl,2
√
ml

· ∥Ul∥F . (A.36)

Combining (A.34), (A.35) and (A.36), and by the conditions on λk, we have Ωk(i, j) = 0 with probability increasing to one
for (i, j) ∈ A c

k . Otherwise, the necessary optimality condition (A.33) would not hold. �

References

[1] G. Allen, R. Tibshirani, Transposable regularized covariance models with an application to missing data imputation, Ann. Appl. Statist. 4 (2) (2010)
764–790.

[2] L. De Lathauwer, B. De Moor, J. Vandewalle, A Multilinear singular value decomposition, SIAM J. Matrix Anal. Appl. 21 (4) (2000) 1253–1278.
[3] J. Friedman, T. Hastie, R. Tibshirani, Sparse inverse covariance estimation with the graphical Lasso, Biostatistics 9 (3) (2008) 432–441.
[4] P.D. Hoff, Separable covariance arrays via the Tucker product, with application to multivarite relational data, Bayesian Anal. 6 (2) (2011) 179–196.
[5] T.G. Kolda, Multilinear operators for higher-order decompositions, Sandia Report, Sand (2006–2081).
[6] C. Lam, J. Fan, Sparsistency and rates of convergence in large covariance matrix estimation, Ann. Statist. 37 (6B) (2009) 4254–4278.
[7] J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, in: Wiley Series in Probability and Statistics:

Texts and References Section, 1999.
[8] L. Omberg, et al., Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression, Mol. Syst. Biol. 5 (1) (2009).
[9] G.A. Seber, A Matrix Handbook for Statisticians, vol. 15, Wiley.com, 2008.

[10] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, B. Futcher, Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Mol. Biol. Cell 9 (12) (1998) 3273–3297.

[11] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl. 109 (3) (2001) 474–494.
[12] T. Tsiligkaridis, A. Hero, S. Zhou, Convergence properties of kronecker graphical Lasso algorithms. 2012. http://arxiv.org/1204.0585v1.pdf.
[13] J. Yin, H. Li, Model selection and estimation in the matrix Normal graphical model, J. Multivar. Anal. 107 (2012) 1190–140.
[14] M. Yuan, Y. Lin, Model selection and estimation in the Gaussian graphical model, Biometrika 94 (1) (2007) 19–35.
[15] Y. Zhang, J. Schneider, Learning multiple tasks with a sparse matrix-normal penalty, in: In Advances in Neural Information Processing Systems, 23,

2010, pp. 2550–2558.
[16] S. Zhou, 2012. Gemini: Graph estimation with matrix variate normal instances, Technical Report. http://arxiv.org/abs/1209.5075.

http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref1
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref2
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref3
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref4
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref5
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref6
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref7
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref8
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref9
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref10
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref11
http://arxiv.org//1204.0585v1.pdf
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref13
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref14
http://refhub.elsevier.com/S0047-259X(14)00063-3/sbref15
http://arxiv.org//abs/1209.5075

	Graphical model selection and estimation for  high dimensional tensor data
	Introduction
	Multi-way tensor data structure and operations
	Tensor normal distribution and penalized likelihood estimation
	Optimization
	Asymptotic results
	Monte Carlo simulation studies
	Comparison candidates and measurements
	Models and data generation
	Simulation results

	Real data analysis
	Conclusions and discussion
	Acknowledgments
	Appendix
	References


